Herijanto, Wahju (2021) Pengembangan Model Distribusi Perjalanan Dengan Pembobotan Geografis dan Spatial Menggunakan Informasi Citra di Surabaya. Doctoral thesis, Institut Teknologi Sepuluh Nopember.
Text
03111360010004-Disertation.pdf - Accepted Version Restricted to Repository staff only Download (15MB) | Request a copy |
Abstract
Pada saat ini Trip Distribution Model yang keakuratannya relatif tinggi yaitu doubly constrained gravity model mempunyai beberapa kelemahan, yang pertama adalah memerlukan variabel dari output pemodelan trip production dan trip attraction yang variabelnya dari hasil survey lapangan yang mahal atau dilakukan yang oleh pemerintah, yang di wilayah tertentu dipublikasikan tetapi di wilayah lain tidak dipublikasikan. Yang kedua adalah koefisien yang diperoleh adalah sesuai zona yang dimodelkan sehingga hanya bisa meramalkan trip pada zona yang ada, sedangkan apabila wilayah studi dikembangkan dengan zona-zona baru tidak dapat diramalkan. Sementara itu jenis trip distribution model yang lain seperti unconstrained gravity model rumusnya dapat dipakai untuk pengembangan zona-zona baru, tetapi keakuratannya dibawah doubly constrained gravity model, sementara tetap menggunakan variable dari survey lapangan yang dipublikasikan.
Sumber data baru dijadikan input data untuk variabel trip distribution model adalah digitasi pemukiman dan tempat aktivitas dari citra satelit dalam Google Earth Pro yang tidak mahal bahkan tanpa biaya, serta digitasi spatial yang memasukkan variasi pola ruang kota untuk memperoleh enam kombinasi terdiri dari tiga variasi pusat kota dan dua variasi deterrence function. Bobot geografis dan spatial berupa koefisien dan pangkat diperoleh dengan optimasi menggunakan metode GRG non linear dalam fasilitas Solver dari Microsoft Excel.
Hasil penelitian menunjukkan bahwa ke enam variasi model distribusi perjalanan yang menggabungkan bobot geografis dan spasial menghasilkan nilai normalized mean absolute error (NMAE) lebih kecil daripada model gravitasi konvensional yang menggunakan variabel populasi, tenaga kerja, dan siswa. Salah satu model yang mengasumsikan struktur konsentris dan deterrence function power adalah yang juga paling robust dengan NMAE tidak terlalu berbeda saat diuji dalam validasi silang. Model juga mempunyai kemampuan transferability dengan nhanya memerlukan penyesuaian satu koefisien
================================================================================================
Until recently, the trip distribution model to be used with relatively high accuracy is the doubly constrained gravity model, but this model is still considered to have several weaknesses. The first is that it requires variables from the output of trip production and trip attraction modeling, the variables of which are the results of expensive field surveys or of those surveys carried out by the government, while those surveys are rarely available or published in many cities and areas. The second is that the coefficients obtained are related to the zone being modeled, so that it can predict the trip in the existing zone only; however, the trip prediction will not be applicable to the new extended zones (of the city). Meanwhile, other types of trip distribution model, the unconstrained gravity model, can be used for the development of new zones, but the accuracy is below the doubly constrained gravity model, while still using variables from published field surveys.
The new data sources used as variables in trip distribution model in this study are digitation of settlements and places of activity from satellite imagery in Google Earth Pro, which is freely available, and also digitation of spatial which includes variations in urban spatial patterns to obtain six combinations consisting of three variations of city centers and two variations of the deterrence function. Geographical and spatial weights, in the form of coefficients and powers of equation, are obtained by optimization using the non-linear GRG method in the Solver facility of Microsoft Excel.
The results show that all the six variations of the trip distribution model that combined geographical and spatial weights have less Normalized Mean Absolute Error (NMAE) than that of the conventional gravity models, which use population, employment, and student variables. One of the six models that assumes a concentric structure and a power deterrence function is also the most robust with almost equal NMAE when tested in cross validation. This particular model also has good transferability with only one coefficient adjustment is needed
Item Type: | Thesis (Doctoral) |
---|---|
Uncontrolled Keywords: | Trip Distribution, Geografis, Spatial, Surabaya, Cross Validation, GRG Non Linear, Transferability |
Subjects: | T Technology > TE Highway engineering. Roads and pavements > TE7 Transportation--Planning |
Divisions: | Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Civil Engineering > 22001-(S3) PhD Thesis |
Depositing User: | Wahju Herijanto |
Date Deposited: | 11 Mar 2021 01:39 |
Last Modified: | 11 Mar 2021 01:39 |
URI: | http://repository.its.ac.id/id/eprint/84117 |
Actions (login required)
View Item |