Studi Numerik Conjugate Heat Transfer Pendinginan Internal Pada Modified NASA C3X Gas Turbine Vane Dengan Penambahan Porous Media

Tanod, Stefano Johanes (2021) Studi Numerik Conjugate Heat Transfer Pendinginan Internal Pada Modified NASA C3X Gas Turbine Vane Dengan Penambahan Porous Media. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111740000173-Undergraduate_Thesis.pdf] Text
02111740000173-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (3MB) | Request a copy

Abstract

Ketergantungan manusia terhadap energi listrik semakin hari semakin meningkat. Untuk mendapatkan energi listrik tersebut, proses konversi energi perlu dilakukan untuk mengubah suatu sumber energi, baik energi terbarukan maupun tidak terbarukan, menjadi energi listrik. Salah satu mesin konversi energi adalah siklus turbin gas. Pada komponen turbin dalam siklus turbin gas, gas panas (atau fluida kerja lainnya) yang melalui turbin memiliki temperatur yang sangat tinggi. Oleh karena itu, sudu turbin membutuhkan sistem pendinginan untuk mempertahankan temperatur sudu tetap dingin dan memungkinkan temperatur gas masuk yang lebih tinggi. Penelitian ini dilakukan untuk mendapatkan solusi baru pendinginan sudu turbin gas dengan memodifikasi lubang saluran pendingin pada sudu turbin NASA C3X, serta penambahan porous media.
Penelitian ini dilakukan dengan menggunakan program Ansys Workbench 19.2 dan dengan solver Ansys Fluent untuk mendapatkan solusi simulasi numerik conjugate heat transfer. Sudu turbin yang panas akibat pertukaran panas antara gas panas dengan sudu akan didinginkan dengan saluran pendingin internal. Simulasi dilakukan dengan menggunakan sudu turbin NASA C3X sebagai referensi dan dilakukan tiga variasi simulasi yang terdiri dari simulasi sudu turbin NASA C3X normal, simulasi sudu turbin NASA C3X dengan modifikasi saluran pendingin, dan simulasi sudu turbin NASA C3X dengan modifikasi saluran pendingin dan penambahan porous media.
Hasil yang didapatkan dari penelitian ini adalah dalam bentuk performa pendinginan pada variasi kedua dan ketiga lalu dibandingkan dengan kondisi semula (NASA C3X normal). Modifikasi desain saluran pendingin memberi pengaruh merugikan terhadap pendinginan sudu turbin. Modified NASA C3X memiliki temperatur dinding sisi luar sudu pada mid-span yang 3,81% lebih tinggi dibanding NASA C3X normal. Selebihnya, modified NASA C3X juga memiliki total heat rate 8,61% lebih rendah dibanding NASA C3X normal. Pada variasi sudu turbin dengan porous media, penambahan porous media memberi pengaruh menguntungkan terhadap pendinginan sudu turbin. Modified NASA C3X dengan penambahan porous media memiliki temperatur dinding sisi luar sudu pada mid-span yang 3,47% lebih rendah dibanding tanpa penambahan porous media. Selebihnya, modified NASA C3X dengan penambahan porous media juga memiliki total heat rate 9,81% lebih tinggi dibanding NASA C3X normal dan 16,96% lebih tinggi dibanding modified NASA C3X.
=====================================================================================================
Human dependence on electrical energy is increasing day by day. To obtain said electrical energy, an energy conversion process needs to be carried out to convert an energy source, both renewable and non-renewable energy, into electrical energy. One example of an energy conversion device is the gas turbine cycle. In the turbine component of a gas turbine cycle, the hot gas (or other working fluid) passing through the turbine has a very high temperature. Therefore, the turbine vanes require a cooling system to keep the vane temperatures cool and allow higher inlet gas temperatures. This research was conducted to obtain a new solution for cooling the gas turbine vanes by modifying the cooling channel holes on the NASA C3X turbine vanes, as well as adding porous media.
This research was conducted using the Ansys Workbench 19.2 program and the Ansys Fluent solver to obtain a numerical simulation solution for conjugate heat transfer. The hot turbine vanes due to heat exchange between the hot gases and the vanes are cooled by the internal cooling channels. Simulations were carried out using the NASA C3X turbine vane as a reference and three variations of the simulation were carried out which consisted of a normal NASA C3X turbine vane simulation, a NASA C3X turbine vane simulation with modified cooling channels, and a NASA C3X turbine vane simulation with modified cooling channels with the addition of porous media.
The results obtained from this study are in the form of cooling performance in the second and third variations compared with the original conditions (normal NASA C3X). Modification of the cooling duct design has a detrimental effect on turbine vane cooling. The modified NASA C3X has a vane outer wall temperature at the mid-span which is 3,81% higher than the normal NASA C3X. Moreover, the modified NASA C3X also has a total heat rate of 8,61% lower than the normal NASA C3X. In the variation of turbine vanes with porous media, the addition of porous media has a beneficial effect on cooling the turbine vanes. Modified NASA C3X with the addition of porous media has an outer wall temperature of the vane at the mid-span which is 3,47% lower than without the addition of porous media. The rest, modified NASA C3X with the addition of porous media also has a total heat rate of 9,81% higher than normal NASA C3X and 16,96% higher than modified NASA C3X.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Pendinginan Turbin Gas, Computational Fluid Dynamics, Conjugate Heat Transfer, Porous Media. Gas Turbine Cooling, Computational Fluid Dynamics, Conjugate Heat Transfer, Porous Media.
Subjects: Q Science > QC Physics > QC320 Heat transfer
T Technology > TJ Mechanical engineering and machinery
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Stefano Johanes
Date Deposited: 09 Aug 2021 08:18
Last Modified: 09 Aug 2021 08:18
URI: http://repository.its.ac.id/id/eprint/85263

Actions (login required)

View Item View Item