Simulasi 2D Magnetohidrodinamika untuk Magnetosfer Bumi

Filawati, Siska (2021) Simulasi 2D Magnetohidrodinamika untuk Magnetosfer Bumi. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2023.

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy
[thumbnail of 01111950010002-Master_Thesis.pdf] Text
01111950010002-Master_Thesis.pdf
Restricted to Repository staff only

Download (8MB) | Request a copy

Abstract

Magnetosfer merupakan bagian terluar Bumi, terbentuk dari interaksi medan magnet dipol Bumi dan angin matahari. Kondisi angin matahari bergantung pada aktivitas Matahari yang dapat mempengaruhi cuaca antariksa. Salah satu aktivitas Matahari yang memiliki dampak signifikan terhadap cuaca antariksa adalah Coronal Mass Ejection (CME). Pengamatan magnetosfer telah dilakukan dengan data berbasis antariksa melalui satelit dan data berbasis Bumi melalui magnetometer. Namun, pengamatan tersebut terbatas pada lokasi dan waktu tertentu. Oleh karena itu, untuk mengetahui interaksi angin matahari dan magnetosfer, maka digunakan magnetohidrodinamika (MHD). MHD memiliki empat persamaan, yaitu transfer massa, momentum, magnetik, dan energi termal yang dapat menggambarkan empat parameter utama angin matahari, yaitu densitas, kecepatan, medan magnet, dan tekanan. Dari keempat parameter tersebut dapat diketahui respon magnetosfer Bumi. Metode yang digunakan adalah perhitungan analitis dan numerik dengan memanfaatkan SHASTA-FCT. Hasil menunjukkan bahwa respon medan magnet antarplanet dengan nilai positif dapat bergabung dengan medan magnet bumi, sedangkan saat medan magnet antarplanet bernilai negatif tidak bergabung dengan medan magnet bumi. Kecepatan angin matahari mempengaruhi waktu simulasi. Semakin tinggi kecepatan angin matahari maka waktu yang dibutuhkan simulasi semakin singkat. Bow shock sebagai hasil interaksi angin matahari dan medan magnet bumi terbentuk pada jarak ~ 50.000 km dan magnetopause sebagai hasil kesetimbangan tekanan angin matahari dan tekanan madan magnet bumi membentang dengan ketebalan ~ 5.000 km. Serta, Kecepatan Alfven merepresentasikan gerak medan magnet dalam plasma. ================================================================================================
The magnetosphere is the outermost part of the Earth, formed by the interaction of the Earth's dipole magnetic field and the solar wind. Solar wind conditions depend on solar activity, which can affect space weather. One of the solar activities that have a significant impact on space weather is Coronal Mass Ejection (CME). The magnetosphere is observed in space-based data using satellite and earth-based data using a magnetometer. However, these observations are limited to location and time. We are interested in the interaction of solar wind in the magnetosphere, and then, it is then necessary to employ magnetohydrodynamics (MHD) in the magnetosphere. The MHD has four equations: transfer of mass, momentum, magnetic, and thermal energy, which explain the four main parameters of the solar wind: density, velocity, magnetic field, and pressure, respectively. From these four parameters, the response of Earth's magnetosphere can be identified. In this thesis, we use both analytical and numerical calculation via the SHASTA-FCT. The results show that the positive interplanetary magnetic field merges to Earth's magnetic field. However, the negative interplanetary magnetic field does not merge to Earth's magnetic field. We also observe that the solar wind speed affects the simulation time. The higher the solar wind speed, the shorter the simulation time. The bow shock as a result of the interaction of the solar wind and the Earth's magnetic field is formed at a distance of ~ 50,000 km and the magnetopause as a result of the equilibrium of the solar wind pressure and the pressure of the Earth's magnetic field has a thickness of ~ 5,000 km. In addition, we also discuss Alfven's velocity represents the motion of the magnetic field itself.

Item Type: Thesis (Masters)
Uncontrolled Keywords: magnetosfer, angin matahari, cuaca antariksa, CME, MHD
Subjects: Q Science
Q Science > QC Physics
Q Science > QC Physics > QC151 Fluid dynamics
Divisions: Faculty of Science and Data Analytics (SCIENTICS) > Physics > 45201-(S1) Undergraduate Thesis
Depositing User: Siska Filawati
Date Deposited: 28 Aug 2021 06:30
Last Modified: 28 Aug 2021 06:34
URI: http://repository.its.ac.id/id/eprint/90197

Actions (login required)

View Item View Item