Saraswati, Sekar Nur (2021) Analisis Faktor Penyebab Anak Penderita Attention Deficit Hyperactivity Disorder (ADHD) Di Sidoarjo Menggunakan Regresi Binomial Negatif. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
06111740000048-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2023. Download (1MB) | Request a copy |
Abstract
Model yang menganalisis tentang hubungan variabel prediktor dan variabel respon adalah model regresi. Salah satu model regresi yang digunakan ketika data dari variabel respon berupa data count adalah analisis Regresi Poisson. Kasus data count seperti jumlah anak penderita ADHD, asumsi bahwa data harus bersifat equidispersi tidak selalu terpenuhi karena data bertipe diskrit seringkali mengalami kasus overdispresi. Regresi Binomial Negatif digunakan sebagai alternatif dari Model Regresi Poisson yang mengalami overdispersi. Metode estimasi parameter yang digunakan adalah Maximum Likelihood Estimation (MLE) dengan uji signifikansi parameter menggunakan Likelihood Ratio Test dan Uji Wald. Pada penelitian ini dilakukan analisis faktor- faktor penyebab anak penderita ADHD di wilayah Kabupaten Sidoarjo tahun 2019. Berdasarkan hasil pengolahan data, didapatkan model terbaik yaitu model Regresi Binomial Negatif. Model tersebut berarti bahwa rata-rata jumlah anak penderita ADHD di Sidoarjo tahun 2019 disebabkan oleh faktor jumlah bayi lahir mengalami komplikasi neonatal.
=====================================================================================================
The model that analyzes the relationship between predictor variables and response variables is a regression model. One of the regression models used when the data from the response variable is count data is Poisson Regression analysis. In cases of count data such as the number of children with ADHD, the assumption that the data must be equidispersion is not always fulfilled because discrete type data often experience cases of overdispresion. Negative Binomial Regression is used as an alternative to the overdispersion Poisson Regression model. The parameter estimation method used is Maximum Likelihood Estimation (MLE) with parameter significance test using Likelihood Ratio Test and Wald Test. In this Final Project, an analysis of the factors that influenced the number of children with ADHD in Sidoarjo 2019. Based on the results of data processing, the best model Negative Binomial Regression model . That model means that the average number of children with ADHD in Sidoarjo in 2019 is caused by the number of babies born with neonatal complication.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Attention Deficit Hyperactivity Disorder (ADHD), Overdispersi, Regresi Poisson, Regresi Binomial Negatif, Attention Deficit Hyperactivity Disorder (ADHD), Overdisperssion, Poisson Regression, Negative Binomial Regression |
Subjects: | H Social Sciences > HA Statistics > HA31.3 Regression. Correlation Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Sekar Nur Saraswati |
Date Deposited: | 27 Aug 2021 03:36 |
Last Modified: | 27 Aug 2021 03:36 |
URI: | http://repository.its.ac.id/id/eprint/90529 |
Actions (login required)
View Item |