Bahri, Mauizah (2021) Deteksi Lampu Lalu Lintas menggunakan YOLO untuk Autonomous Car. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
07211540007001_Undergraduated_thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2023. Download (12MB) | Request a copy |
Abstract
Abstrak— Autonomous car adalah pengembangan dari
teknologi mobil dengan berbagai fitur pintar yang dilengkapi
pada mobil tersebut. Salah satu fitur yang perlu dikembangkan adalah deteksi lampu lalu lintas.Dalam fitur ini Autonomous Car harus dapat mengenali letak dan warna lampu lalu lintas.
Pada tugas akhir ini akan dikembangkan sebuah sistem
pendeteksian letak dan warna lampu lalu lintas untuk
keamanan Autonomous Car, sehingga Autonomous Car dapat
berhenti saat lampu berwarna merah, mengurangi kecepatan
saat lampu berwarna kuning dan jalan saat lampu berwarna
hijau. Dengan menggunakan sensor kamera dan metode YOLO
akan dapat mengenali lampu lalu lintas dan diklasifikasikan
menurut fungsinya, Dari hasil klasifikasi ini menghasilkan
respon yang sesuai dengan perintah lampu lalu lintas yang
sudah ada pada Autonomous Car. Index Terms—Autonomous Car, Sistem Pendeteksi, Lampu Lalu Lintas, You Only Look Once (YOLO).
================================================================================================
Autonomous car is the development of car technology with various
smart features equipped on the car. One of the features that need to
be developed is traffic light detection. In this feature, Autonomous
Car must be able to recognize the location and color of the traffic
lights. In this final project will be developed a system to detect the
location and color of traffic lights for Autonomous Car security, so
that Autonomous Car can detect the color of traffic lights (red, ye-
llow and green). By using a camera sensor and the YOLO method, you will be able to recognize traffic lights and classified according to
their function. From the results of this classification, it produces a response that is in accordance with the traffic light commands that are already on the Autonomous Car
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Autonomous Car, Sistem Pendeteksi, Lampu Lalu Lintas, YOLO, Detection System, Traffic Light, YO-LO. |
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Computer Engineering > 90243-(S1) Undergraduate Thesis |
Depositing User: | Mauizah Mauizah |
Date Deposited: | 02 Sep 2021 15:42 |
Last Modified: | 02 Sep 2021 15:42 |
URI: | http://repository.its.ac.id/id/eprint/91599 |
Actions (login required)
View Item |