Marasabessy, Atika (2021) Kontrol Optimal Pada Model Penyebaran Virus Hepatitis B Dengan Menggunakan Prinsip Minimum Pontryagin. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
06111540000025 - Undergraduate_Theses.pdf - Accepted Version Restricted to Repository staff only until 1 April 2024. Download (5MB) | Request a copy |
Abstract
Hepatitis B adalah suatu penyakit peradangan organ hati yang disebabkan oleh Virus Hepatitis B (HBV). Virus ini mempunyai daya tular seratus kali lebih cepat dan sepuluh kali lebih sering penularannya jika dibadingkan virus HIV. Pada Tugas Akhir ini membahas tentang analisis kestabilan sistem dengan mencari titik kesetimbangan terlebih dahulu. Berdasarkan hasil analisis model diperoleh dua titik setimbang, yaitu titik setimbang bebas penyakit 〖(P〗^0) dan titik setimbang endemik 〖(P〗^*). Dengan menggunakan metode Matriks Generasi Selanjutnya diperoleh bilangan reproduksi dasar (R_0). Titik setimbang bebas penyakit 〖(P〗^0) stabil asimtotis lokal jika nilai R_0<1, sedangkan titik setimbang endemik 〖(P〗^*) stabil asimtotis lokal jika nilai R_0>1. Selanjutnya, model diberikan kontrol optimal pengobatan dan pengendalian lingkungan dengan tujuan untuk meminimumkan jumlah individu Infective. Penyelesaian kontrol optimal dilakukan dengan menggunakan prinsip minimum pontryagin. Kemudian pehitungan numerik untuk mendapatkan solusi optimal digunakan program Matlab berdasarkan metode Runge-Kutta Orde-4. Pada simulasi menunjukkan bahwa pemberian kontrol berupa pengobatan dan pengendalian lingkungan dapat mengurangi tingkat penyebaran virus hepatitis B.
================================================================================================
Hepatitis B is an inflammation of the liver caused by the Hepatitis B virus (HBV). Hepatitis B Virus (HBV) is a hundred times more infectious than HIV. In this final project, we discuss a mathematical model of hepatitis B virus transmission. Based on the analytical result of the model, there are two equilibrium point, namely disease-free equilibrium point 〖(P〗^0) and endemic equilibrium point 〖(P〗^*). By the Next Generation Matrix (NGM) method, we obtain basic reproduction number is (R_0). The disease-free equilibrium point is locally asymptotically stable if R_0<1, while the endemic equilibrium point is locally asymptotically stable if R_0>1. Furthermore, the model is given optimal control of treatment and environmental control with the aim of minimizing the number of infective individuals. The optimal control solution is carried out using the pontryagin minimum principle. Then numerical calculation to get the optimal solution used Matlab program based on Runge-Kutta method. The simulation show that the provision of control in the form of treatment and environmental control can reduce the level of spread of the hepatitis B virus.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Mathematical Model, Hepatitis B Virus, Stability, Pontryagin Minimum Principle, Runge-Kutta, Model Matematika, Kestabilan. |
Subjects: | Q Science > QA Mathematics > QA401 Mathematical models. |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | ATIKA MARASABESSY |
Date Deposited: | 24 Jan 2022 03:34 |
Last Modified: | 24 Jan 2022 03:34 |
URI: | http://repository.its.ac.id/id/eprint/92468 |
Actions (login required)
View Item |