Al Muntaha, Wildan Zakky (2022) Program Pelacakan Kontak Pada Wabah Di Klaster Perumahan Menggunakan Analisis Jejaring Sosial. Undergraduate thesis, Institut Teknologi Sepuluh Nopember.
Text
06111640000077-Undergraduate_Theses.pdf - Accepted Version Restricted to Repository staff only until 1 April 2024. Download (11MB) | Request a copy |
Abstract
Coronavirus Disease (Covid-19) adalah penyakit infeksi menular yang disebabkan oleh virus corona yang ditemukan di Wuhan, China. Untuk mengatasi penyebaran Covid-19 yang sangat cepat, tentunya diperlukan cara agar penyebaran tersebut dapat dilacak dan dikendalikan. Salah satu cara adalah dengan melakukan contact tracing dari orang yang terpapar Covid-19. Pelacakan ini menggunakan metode Social Network Analysis (SNA) untuk mengetahui aktor yang berpengaruh berdasarkan pengukuran centrality. SNA merupakan salah satu metode analisis yang memiliki konsentrasi pada riset interaksi dan sering digunakan untuk mengukur sebuah hubungan dan menggambarkan beberapa informasi secara individu. Pada Tugas Akhir ini digunakan data penyebaran Covid-19 pada 282 kontak di klaster perumahan. Hasil visualisasi graf adalah graf unconnected graf dimana memiliki subgraf yang terpisah-pisah dan penyebaran secara directed graf. Pengukuran centrality dengan metode SNA didapatkan hasil degree centrality menunjukkan ID kontak F391 dengan nilai tertinggi 9.0 menjadi aktor paling aktif menyebarkan Covid-19 dan betweenness centrality menunjukkan ID kontak K171 dengan nilai tertinggi 7.0 menjadi aktor penghubung penyebaran Covid-19 terluas. Sedangkan closeness centrality tidak dapat dihitung dengan maksimal karena graf penyebaran kontak hanya satu arah. SNA centrality pada program hanya dapat menghitung centrality secara maksimal jika graf tersebut saling terhubung pada satu graf, node memiliki interaksi dua arah, dan kepadatan interaksi yang relatif rendah. Graf visualisasi SNA mempermudah membaca penyebaran Covid-19 pada klaster perumahan.
================================================================================================
Coronavirus Disease (Covid-19) is a contagious infectious disease caused by the corona virus that was discovered in Wuhan, China. To overcome the very fast spread of Covid-19, of course, a way is needed so that the spread can be tracked and controlled. One way is to do contact tracing of people who have been exposed to Covid-19. This tracking uses the Social Network Analysis (SNA) method to determine the influential actors based on the measurement of centrality. SNA is one of the analytical methods that has a concentration on interaction research and is often used to measure a relationship and describe some individual information. In this Final Project, data on the spread of Covid-19 was used on 282 contacts in the housing cluster. The result of graph visualization is an unconnected graph which has separate subgraphs and spreads in a directed graph. Centrality measurement using the SNA method showed that the degree centrality results showed contact ID F391 with the highest value of 9.0 being the most active actor in spreading Covid-19 and betweenness centrality showing contact ID K171 with the highest value of 7.0 being the liaison actor for the widest spread of Covid-19. Meanwhile, closeness centrality cannot be calculated maximally because the contact spread graph is only in one direction. SNA centrality in the program can only calculate the maximum centrality if the graphs are connected to one another, the nodes have two-way interaction, and the interaction density is relatively low. The SNA visualization graph makes it easier to read the spread of Covid-19 in housing clusters.
Item Type: | Thesis (Undergraduate) |
---|---|
Uncontrolled Keywords: | Pelacakan Kontak, Analisis Jejaring Sosial, Klaster, Contact Tracing, Social Network Analysis, Cluster |
Subjects: | Q Science > QA Mathematics > QA166 Graph theory Q Science > QA Mathematics > QA278.55 Cluster analysis |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44201-(S1) Undergraduate Thesis |
Depositing User: | Wildan Zakky Al Muntaha |
Date Deposited: | 11 Feb 2022 02:10 |
Last Modified: | 11 Feb 2022 02:10 |
URI: | http://repository.its.ac.id/id/eprint/93184 |
Actions (login required)
View Item |