Rosyidah, Nirmala Mega (2022) Dimensi Metrik Sisi Komplemen dan Dimensi Metrik Sisi Komplemen Lokal Pada Graf Hasil Operasi Korona. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
06111950012003-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2024. Download (1MB) | Request a copy |
Abstract
Dimensi metrik merupakan kajian dalam teori graf yang terus berkembang baik dari segi konsep maupun penerapannya pada graf hasil operasi. Beberapa contoh pengembangan konsep dari dimensi metrik adalah konsep dimensi metrik sisi dan konsep dimensi metrik komplemen. Dimensi metrik telah banyak diteliti oleh para peneliti sebelumnya sedangkan penelitian-penelitian tentang dimensi metrik sisi dan dimensi metrik komplemen masih sedikit. Pada tesis ini diperkenalkan konsep-konsep baru yaitu konsep dimensi metrik sisi komplemen dan konsep dimensi metrik sisi komplemen lokal pada graf, yang merupakan hasil penggabungan konsep antara dimensi metrik sisi serta dimensi metrik komplemen. Lebih lanjut, dilakukan analisis untuk mendapatkan dimensi metrik sisi komplemen dan dimensi metrik sisi komplemen lokal pada graf hasil operasi korona. Pada penelitian ini, diperoleh varian-varian baru dari dimensi metrik sisi yaitu dimensi metrik sisi komplemen dan dimensi metrik sisi komplemen lokal. Selanjutnya, juga diperoleh pola dimensi metrik sisi komplemen dan pola dimensi metrik sisi komplemen lokal pada graf hasil operasi korona antara dua graf terhubung G dan H yaitu G⊙H.
================================================================================================
The metric dimension is a study in graph theory that continues to develop both in terms of concepts and its application of operating product graphs. Some examples of developing concepts from metric dimension are the concept of edge metric dimensions and the concept of complement metric dimensions. The metric dimension has been widely researched by previous researchers while studies on the edge metric dimension and the complement metric dimension are still few. In this thesis, new concepts are introduced, namely the complement edge metric dimension and the local complement edge metric dimension on the graph, which is the result of combining the concepts between the edge metric dimension and the complement metric dimension. Furthermore, an analysis was carried out to obtain the complement edge metric dimension and the local complement edge metric dimension on corona product graph. In this research, new variants of the edge metric dimensions were obtained, namely the complement edge metric dimension and the local complement edge metric dimension. Further, the complement edge metric dimension pattern and the local complement edge metric dimension pattern are also obtained on the corona product graph between two connected graphs G and H, that is G⊙H.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Dimensi Metrik Sisi, Dimensi Metrik Komplemen, Dimensi Metrik Sisi Komplemen, Dimensi Metrik Sisi Komplemen Lokal, Graf Hasil Operasi Korona |
Subjects: | Q Science > QA Mathematics |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Mathematics > 44101-(S2) Master Thesis |
Depositing User: | Nirmala Mega Rosyidah |
Date Deposited: | 09 Feb 2022 03:30 |
Last Modified: | 02 Nov 2022 01:26 |
URI: | http://repository.its.ac.id/id/eprint/93277 |
Actions (login required)
View Item |