Optimasi Multi-Produk Multi-Bays Untuk Proses Pengisian Bahan Bakar Menggunakan Mixed Integer Linear Programming (Studi Kasus : Fuel Terminal Tuban)

Puspaningrum, Widia Yuliati (2022) Optimasi Multi-Produk Multi-Bays Untuk Proses Pengisian Bahan Bakar Menggunakan Mixed Integer Linear Programming (Studi Kasus : Fuel Terminal Tuban). Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 09211950083007-Master_Thesis.pdf]
Preview
Text
09211950083007-Master_Thesis.pdf - Accepted Version

Download (6MB) | Preview

Abstract

PT Pertamina (Persero) merupakan Badan Usaha Milik Negara (BUMN) yang melakukan kegiatan usaha migas pada Sektor Hulu hingga Sektor Hilir. Perusahaan ini berkomitmen untuk tetap konsisten menjaga ketersediaan energi hingga ke seluruh pelosok daerah di Indonesia. Perusahaan memerlukan suatu strategi yang tepat untuk membuat perencanaan distribusi BBM bagi Fuel Terminal Tuban (FTT) supaya persediaan bahan bakar di masyarakat terpenuhi. Strategi perusahaan ini menjadi bagian dalam peningkatan service level pelanggan. Perusahaan juga terus berupaya untuk memperbaiki proses bisnisnya supaya mendapatkan pendapatan maksimum. Pada penelitian ini, akan dibentuk model distribusi BBM ke sejumlah armada tangki di FTT dengan memanfaatkan sejumlah fasilitas bays yang tersedia. Model distribusi BBM yang akan dibentuk berdasarkan tiga skenario yaitu: Skenario 1 adalah distribusi BBM Pertalite dengan memanfaatkan 2 bays dari 4 bays. Skenario 2 adalah distribusi BBM Pertalite melalui 3 bays dari 4 bays dan Skenario 3 adalah distribusi BBM Pertalite melalui 4 bays. Metode optimasi pendistribusian BBM dalam penelitian ini menggunakan metode Mixed Integer Linear Programming (MILP). Metode MILP diperlukan supaya tujuan optimasi dapat tercapai yaitu memaksimumkan pendapatan dan meminimumkan cost (transportasi dan penyimpanan). Berdasarkan hasil percobaan numeris diperoleh pendapatan maksimum sebesar Rp. 44,520,825,000 yang diperoleh dari keputusan skenario 3.
============================================================
====================================
PT Pertamina (Persero) is a state enterprise that carries out oil and gas business activities in the upstream to downstream. The company is committed to consistently maintaining the availability of energy to all corners of the region in Indonesia. The company needs the right strategy to plan the distribution of fuel for Fuel Terminal Tuban (FTT) in order to fulfill the fuel supply in the market. This strategy also part of the company strategy to reach the increasing service-level customer. The company also improved their business processes to gain maximum profit. In this study, a fuel distribution model will be formed for a number of tank fleets in FTT by utilizing a number of available bays facilities. In this research, there will be three scenarios to build: Scenario 1 is the distribution of Pertalite using 2 bays out of 4 bays. Scenario 2 is the distribution of Pertalite through 3 bays out of 4 bays and Scenario 3 is the distribution of Pertalite using 4 bays. Optimization of this model will be solved using the Mixed Integer Linear Programming (MILP) method. MILP is needed to optimize the objectives which are maximizing profit and minimizing costs (transportation and storage). Based on the results of numerical experiments, the maximum profit of Rp. 44,520,825,000 was chosen from the decision of scenario 3.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Fuel Terminal, Mixed Integer Linear Programming, Optimasi Pendapatan,Fuel Terminal, Mixed Integer Linear Programming, Profit Optimization.
Subjects: H Social Sciences > H Social Sciences (General) > H61.4 Forecasting in the social sciences
H Social Sciences > HG Finance > HG4012 Mathematical models
Divisions: Faculty of Creative Design and Digital Business (CREABIZ) > Technology Management > 61101-(S2) Master Thesis
Depositing User: WIDIA YULIATI PUSPANINGRUM
Date Deposited: 16 Feb 2022 03:37
Last Modified: 19 Nov 2024 06:05
URI: http://repository.its.ac.id/id/eprint/94326

Actions (login required)

View Item View Item