Izati, Prajna Pramita (2022) Analisis Risiko Penyebaran COVID-19 di Surabaya Raya Menggunakan Model Neyman-Scott Cox Processes. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
06211840000088-Undregraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2024. Download (2MB) | Request a copy |
Abstract
COVID-19 merupakan penyakit yang menyerang alat pernapasan.
Jumlah kasus COVID-19 di Jawa Timur terus mengalami peningkatan
tiap harinya khususnya wilayah Surabaya Raya meliputi Kota Surabaya,
Kabupaten Gresik, dan Kabupaten Sidoarjo yang memiliki jumlah pasien
terkonfirmasi positif tertinggi di Jawa Timur. Kota Surabaya menjadi
penyumbangkan terbesar kasus terkonfirmasi postif COVID-19 di
Surabaya Raya yaitu sebesar 60,1 %. Penelitian ini bertujuan untuk
membandingkan 4 model Neyman-Scott Cox Process yaitu Matern,
Thomas, Cauchy, dan Variance Gamma Cluster Process dengan
melibatkan beberapa kovariat untuk mendapatkan model yang paling
sesuai dalam memodelkan risiko penyebaran COVID-19 di Surabaya
Raya dimana kriteria pembandingnya yaitu nilai BIC terkecil dan
envelope K-function. Hasil uji homogenitas menunjukkan penyebaran
data kasus terkonfirmasi positif COVID-19 di Surabaya Raya tidak
homogen dan untuk korelasi spasial dengan Inhomogeneous K-function
diperoleh bahwa data cenderung membentuk kelompok. Berdasarkan
hasil pemodelan Neyman-Scott Cox Processes didapatkan bahwa model
Inhomogeneous Cauchy Cluster Process merupakan model terbaik,
dimana kovariat kepadatan penduduk dan kepadatan lokasi kerumunan
yaitu pusat perindustrian dan tempat ibadah berpengaruh secara
signifikan terhadap risiko penyebaran kasus terkonfirmasi positif
COVID-19 di Surabaya Raya. Hasil prediksi risiko kasus terkonfirmasi
positif COVID-19 di Surabaya Raya menunjukkan risiko penyebaran
kasus terkonfirmasi positif COVID-19 di wilayah Kota Surabaya lebih
tinggi jika dibandingkan dengan wilayah Kabupaten Sidoarjo maupun
Gresik.
================================================================================================
COVID-19 is a disease that attacks the respiratory system. The
number of COVID-19 cases in East Java continues to increase
every day, especially the Greater Surabaya area including
Surabaya City, Gresik Regency, and Sidoarjo Regency which have
the highest number of positive confirmed patients in East Java. The
city of Surabaya became the largest contributor to the positive
confirmed case of COVID-19 in Greater Surabaya, amounting to
60.1%. This study aims to compare 4 Neyman-Scott Cox Process
models, namely Matern, Thomas, Cauchy, and Variance Gamma
Cluster Process by involving several covariates to obtain the most
suitable model in modeling the spread of COVID-19 in Greater
Surabaya where the comparison criterion is the BIC function value.
K envelope and smallest. The results of the homogeneity test
showed that the spread of data on positive confirmed cases of
COVID-19 in Greater Surabaya was not homogeneous and for the
spatial correlation with the K-function which was not
homogeneous, it was found that the data tended to form groups.
Based on the Neyman-Scott Cox Processes modeling, it was found
that the Inhomogeneous Cauchy Cluster Process model is the best
model, where the covariates of population density and density of
industrial centers and places of worship have a significant effect on
the risk of spreading positive confirmed cases of COVID-19 in
Greater Surabaya. The results of the prediction of the risk of
positive confirmed cases of COVID-19 in Greater Surabaya show
that the risk of spreading positive confirmed cases of COVID-19 in
ix
the Surabaya City area is higher when compared to the Sidoarjo
and Gresik regencies.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | COVID-19, Inhomogeneous Cauchy Cluster Process, Neyman-Scott Cox Processes, Pemodelan, Surabaya Raya, Inhomogeneous Cauchy Cluster Process, Modeling, Neyman-Scott Cox Processes, Surabaya Raya |
Subjects: | H Social Sciences > HA Statistics H Social Sciences > HA Statistics > HA30.6 Spatial analysis H Social Sciences > HA Statistics > HA31.7 Estimation R Medicine > RA Public aspects of medicine > RA644.C67 COVID-19 (Disease) |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | Prajna Pramita Izati |
Date Deposited: | 21 Feb 2022 01:56 |
Last Modified: | 31 Oct 2022 04:15 |
URI: | http://repository.its.ac.id/id/eprint/94670 |
Actions (login required)
View Item |