Krisbiantoro, Krisbiantoro (2022) Evaluasi Kombinasi Model Aermod Dan Land Use Regresion (Lur) Untuk Dispersi Pencemar Udara. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
03211850010004-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2024. Download (5MB) | Request a copy |
|
Text
03211850010004-Master_Thesis.pdf Restricted to Registered users only Download (5MB) | Request a copy |
Abstract
Polusi udara merupakan permasalahan dari negara berkembang. Pencemar udara telah menjadi permasalahan bagi kota-kota besar dan kota-kota yang industrinya sedang berkembang. Maka diperlukan perencanaan yang baik terutama pada kota yang industrinya sedang berkembang seperti kota Tuban. Perencanaan terutama dalam upaya pencegahan harus didasarkan pada analisa yang baik, salah satunya dengan mengetahui sebaran polutan dari sumber yang terverifikasi di ambien. Beberapa model dispersi menghasilkan model sebaran polutan yang mungkin berbeda terutama jika kondisi permukaan (land use) berbeda, oleh karena itu perlu adanya metode atau model yang mengakomodasi keduanya dalam menghitung dispersi dan menentukan sebaran polutan di ambien.
Penelitian ini bertujuan untuk mengevaluasi kinerja pemodelan kombinasi AERMOD dengan LUR untuk memprediksi kualitas udara ambien. Pada penelitian ini menggunakan parameter pencemar berupa NO2, SO2, dan TSP. Evaluasi kinerja pada pemodelan kombinasi AERMOD-LUR model dilakukan dengan metode cross-validation. Hasil dari kombinasi kedua model ini adalah dispersi pencemar udara di udara ambien. Hasil ini kemudaian diverifikasi dengan data-data pemantauan lapangan yang bersesuaian, dan dinyatakan dalam evaluasi RMSE (root mean square error), dan korelasi.
Hasil penelitian menunjukan bahwa nilai RMSE dari AERMOD (AERMOD + Background concentration) model antara 17,8 hingga 81,5 (parameter NO2), 10,0 hingga 19,9 (parameter SO2) dan 86,7 hingga 303,5 (parameter TSP). Hasil kombinasi AERMOD – LUR model menunjukkan kinerja yang lebih baik dimana nilai RMSE diantara 2,82 hingga 7,00 (parameter NO2), 1,62 hingga 8,08 (parameter SO2), dan 14,23 hingga 76,69 (parameter TSP). Kecenderungan kenaikan ukuran grid pada model AERMOD memberikan peningkatkan kinerja model sedangkan kombinasi AERMOD-LUR model memberikan kinerja yang cukup variatif untuk parameter NO2 dan TSP.
=====================================================================================================
Air pollution is a problem in developing countries. Air pollution has become a problem for big cities and cities whose industries are growing. So good planning is needed, especially in a city whose industry is developing, such as the city of Tuban. Planning, especially in prevention efforts, must be based on good analysis, one of which is knowing the distribution of pollutants from verified sources in the ambient. Several dispersion models will produce a pollutant distribution model that may be different, especially if the surface conditions (land use) are different, so it is necessary to have a method or model that accommodates both in calculating the dispersion and determining the distribution pollutants in the ambient.
This study aims to evaluate the performance of the combined AERMOD and LUR modeling to predict ambient air quality. In this study, the pollutant parameters used are NO2, SO2, and TSP. Performance evaluation on the modeling of the AERMOD-LUR combination model was carried out using the cross-validation method. The result of the combination of these two models is the dispersion of air pollutants in the ambient air. These results were then verified with the appropriate field monitoring data and were expressed in the RMSE (root mean square error) evaluation and correlation.
The results showed that the RMSE values of the AERMOD (AERMOD + Background concentration) model were between 17.8 to 81.5 (NO2 parameter), 10.0 to 19.9 (SO2 parameter), and 86.7 to 303.5 (TSP parameter). The results of the AERMOD – LUR combination model showed better performance where the RMSE values were between 2.82 to 7.00 (NO2 parameter), 1.62 to 8.08 (SO2 parameter), and 14.23 to 76.69 (TSP parameter). ). The trend of increasing grid size in the AERMOD model will improve model performance, while the combination AERMOD-LUR model provides quite varied performance for the NO2 and TSP parameters.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | AERMOD, Land Use Regression, Pemodelan Kualitas Udara AERMOD, Land Use Regression, Air Quality Modelling |
Subjects: | T Technology > TD Environmental technology. Sanitary engineering > TD883.5 Air--Pollution |
Divisions: | Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Environmental Engineering > 25101-(S2) Master Thesis |
Depositing User: | Krisbiantoro Krisbiantoro |
Date Deposited: | 04 Mar 2022 01:54 |
Last Modified: | 01 Nov 2022 00:51 |
URI: | http://repository.its.ac.id/id/eprint/94775 |
Actions (login required)
View Item |