Rupawan, Abdi Dewa Maha (2022) Eksplorasi Dan Klasifikasi Bentuk Tubuh Berdasarkan Data Antropometrik Mentah Dengan Metode Berbasis Deep Neural Network. Other thesis, Institut Teknologi Sepuluh Nopember.
| ![[thumbnail of 05111840000003-Undergraduate_Thesis.pdf]](http://repository.its.ac.id/style/images/fileicons/text.png) | Text 05111840000003-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only Download (3MB) | Request a copy | 
Abstract
Tubuh  manusia  memiliki  berbagai  macam  ukuran  dan  bentuk.  Bentuk tubuh  manusia berbeda-beda,  namun  terdapat  beberapa  upaya  untuk  mengelompokkan  bentuk  tubuh yang serupa. Contoh pengelompokan bentuk tubuh adalah klasifikasi somatotype dan bentuk tubuh wanita.   Beberapa   metode   pengenalan   bentuk   tubuh   diantaranya   adalah   pemanfaatan serangkaian  gambar  tubuh,  3D scanner,  dan depth  camera.  Selain  itu,  terdapat  metode konvensional  dan  pendekatan deep  neural  networkdengan  data  antropometrik  dan  gambar. Penelitian  ini  dilakukan  untuk  menutupi  kekurangan  penelitian-penelitian  sebelumnya  yang memerlukan perangkat-perangkat khusus dan gambar seluruh tubuh yang tidak selalu tersedia. Dalam  tugas  akhir  ini,  diajukan  sebuah  metode  pengenalan  bentuk  tubuh  manusia menggunakan  pendekatan deep  neural  network pada  data  nilai-nilai  atribut  tubuh  (disebut antropometrik) mentah yang diperoleh dari internet. Data ini diperoleh dari hasil web crawling sebelumnya  dan  diproses  menjadi  suatu spreadsheet data set.  Selanjutnya,  data  akan melalui proses exploratory data analysis untuk membersihkan dan menyeimbangkan data. Eksplorasi data ini dilakukan untuk menyempurnakan pembuatan model deep neural network di langkah selanjutnya.
===========================================================================================================================
Human  bodies  come  in  many  sizes  and  shapes.  There  are  many  kinds  of  human  body shapes, but there are attempts of grouping similar body shapes. A way of grouping body shapes is somatotype  classification  and  female  body  shapes. Some  of  the  body  shape  recognition methods  include  the  use  of  body  images,  3D  scanners,  and  depth  cameras.  Furthermore, conventional methods and deep neural network approach using image data has been explored.This research is done with the purpose of eliminating the usage of specialized equipment and full-body images which commonly are notreadily available.In  this  final  project,  proposed  a  method of  body  shape  recognition  using  a  deep  neural network  approach  on  anthropometric  data  gathered  from  the  internet. The  data  used  for  this research was obtained using a web crawler and then is processed into a dataset in a spreadsheet form. Next, the data is  analyzed to clean up the data and  fix imbalancewithin the data. This data exploration stage is done to ensure optimum performance of the deep neural network model.
| Item Type: | Thesis (Other) | 
|---|---|
| Additional Information: | RSIf 006.32 Rup e-1 2022 | 
| Uncontrolled Keywords: | Klasifikasi, Bentuk Tubuh, Exploratory Data Analysis, Imbalanced Data, Deep Neural Network, Classification, Body Shapes | 
| Subjects: | Q Science > QA Mathematics > QA76.87 Neural networks (Computer Science) T Technology > TA Engineering (General). Civil engineering (General) > TA1637 Image processing--Digital techniques. Image analysis--Data processing. | 
| Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Informatics Engineering > 55201-(S1) Undergraduate Thesis | 
| Depositing User: | Anis Wulandari | 
| Date Deposited: | 08 Nov 2022 04:54 | 
| Last Modified: | 10 Oct 2025 07:14 | 
| URI: | http://repository.its.ac.id/id/eprint/95066 | 
Actions (login required)
|  | View Item |