Maulana, Adinusa Gibran (2022) Analisis Keandalan Jacket Platform Berbasis Ultimate Strength Dengan Koefisien Variasi Peubah Acak Berbeda Pada Simulasi Monte Carlo. Other thesis, Institut Teknologi Sepuluh Nopember Surabaya.
Text
04311840000104-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 September 2024. Download (7MB) | Request a copy |
Abstract
Wellhead platform merupakan salah satu jenis bangunan lepas pantai terpancang yang efektif digunakan untuk eksplorasi minyak bumi dan gas alam di wilayah perairan Indonesia. Dalam tahap rancangan desain struktur wellhead platform tersebut diperlukan analisis kekuatan yang bertujuan untuk merepresentasikan ketahanan struktur dalam menahan beban selama periode yang ditentukan. Beban lingkungan tersebut yaitu gelombang, arus, serta angin berperan penting dalam analisis kekuatan struktur. Salah satu metode yang efektif untuk dilakukannya analisis kekuatan struktur yaitu metode pushover non-linear. Hasil dari analisis pushover ini menunjukkan bahwa reserve strength ratio terkecil senilai 5,4 dari arah pembebanan 150 derajat dan pada arah tersebut struktur mengalami keruntuhan pada load step
39. Dari keruntuhan struktur ini dapat dilanjutkan ke analisis keandalan platform. Analisis keandalan pada tugas akhir ini menggunakan Simulasi Monte Carlo dengan persamaan kombinasi tegangan aksial dan bending pada tahap desain serta collapse. Salah satu parameter statistik yang mempengaruhi ketepatan perkiraan Simulasi Monte Carlo adalah koefisien varians (CoV). Untuk itu, pada tugas akhir ini dilakukan analisis dengan 4 variasi pengecilan nilai CoV dari peubah acak untuk mengetahui pengaruhnya terhadap peluang kegagalan (PoF). Hasil PoF untuk variasi 1 senilai 6.42 × 10, untuk variasi 2 senilai 6.63 × 10, variasi 3 senilai 4.45 × 10
=======================================================================================================================================
The wellhead platform is a type of fixed offshore structure that is effectively used for oil and natural gas exploration in Indonesian waters. In the design stage of the wellhead platform structure design, a strength analysis is required which aims to represent the resistance of the structure in holding the load for a specified period. These environmental loads, namely waves, currents, and wind play an important role in the analysis of structural strength. One of the effective methods for carrying out structural strength analysis is the non-linear pushover method. The results of this pushover analysis show that the smallest reserve strength ratio is 5.4 from the 150 degree loading direction and in that direction the structure collapses at the load step. 39. From the collapse of this structure can proceed to the analysis of platform reliability. Reliability analysis in this final project uses a Monte Carlo Simulation with the equations for the combination of axial and bending stress at the design stage and collapse. One of the statistical parameters that affect the accuracy of the Monte Carlo Simulation estimates is the coefficient of variance (CoV). For this reason, in this final project an analysis was carried out with 4 variations of reducing the CoV value of the random variable to determine its effect on the probability of failure (PoF). The results of PoF for variation 1 are 6.42 × 10, for variation 2 are 6.63 × 10, variation 3 are 4.45 × 10, and for variation 4 are 2.11 × 10, Based on the recommendation from DNV-RP-G101, the PoF category for variation 1 is in the medium criteria. The PoF of variation 2 is in the low category. Whereas for variations 3 and 4 have PoF which is in the negligible category
Item Type: | Thesis (Other) |
---|---|
Additional Information: | RSKe 627.98 Mau a-1 |
Uncontrolled Keywords: | Keandalan, Pushover Non-Linear, Probability of Failure, Reserve Strength Ratio |
Subjects: | T Technology > TC Hydraulic engineering. Ocean engineering > TC1680 Offshore structures |
Divisions: | Faculty of Marine Technology (MARTECH) > Ocean Engineering > 38201-(S1) Undergraduate Thesis |
Depositing User: | EKO BUDI RAHARJO |
Date Deposited: | 23 Dec 2022 01:52 |
Last Modified: | 23 Dec 2022 01:52 |
URI: | http://repository.its.ac.id/id/eprint/95279 |
Actions (login required)
View Item |