Analisis Stabilitas Frekuensi Pada Optimisasi Setting Kontroler Inersia Virtual Berbasis Retired Electric Vehicles Battery Menggunakan Algoritma Kunang-Kunang

Syifa, Baity Nuris (2023) Analisis Stabilitas Frekuensi Pada Optimisasi Setting Kontroler Inersia Virtual Berbasis Retired Electric Vehicles Battery Menggunakan Algoritma Kunang-Kunang. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 6022212006-Master_Thesis.pdf] Text
6022212006-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2025.

Download (3MB) | Request a copy

Abstract

Penelitian ini mengusulkan pengaplikasian optimisasi konsep VIC pada baterai EV retired berbasis algoritma kunang-kunang dengan pemodelan sistem tenaga listrik dua area yang diuji. Simulasi dilakukan dengan bantuan software Matlab Simulink 9.4/R2022a. dengan menerapkan metode Time-domain simulation (TDS) untuk mengivestigasi efek pemasangan VIC pada sistem tenaga listrik dua area terinterkoneksi. Simulasi dibagi menjadi 2 skenario. Skenario pertama difokuskan mengenai perbandingan dalam penggunaan baterai EV baru dan baterai EV retired terhadap respon sistem tenaga listrik dua area terinterkoneksi. Skenario kedua dilakukan simulasi untuk membandingkan dampak penggunaan kontrol inersia virtual konvensional dengan kontrol inersia virtual yang parameternya telah dioptimasi menggunakan algoritma kunang-kunang terhadap respon sistem tenaga listrik dua area terinterkoneksi. Penurunan kapasitas dan beberapa nilai parameter pada baterai EV retired akibat bertambahnya siklus hidup yang digunakan menyebabkan respon penggunaannya yang lambat pada sistem apabila dibandingkan dengan baterai EV baru. Sehingga saat pengintegrasian PV dan beban 50MW pada area 1 sistem, generator-generator pada area 1 dan area 2 masing-masing memiliki ramping-up yang lebih besar 64% dan 74% dibandingkan dengan penggunaan VIC berbasis baterai EV baru sehingga berdampak pada undershoot frekuensi yang lebih besar 51% pada area 1 dan 35% pada area 2, dan juga daya pada tie-line yang 46% lebih besar saat menggunakan baterai EV retired. Setelah itu dilakukan simulasi skenario 2 dengan pengintegrasian PV dan penambahan beban 450 MW pada area 1 sistem. Setelah dilakukan running simulasi 10 kali dengan total maksimum iterasi 1000. Didapatkan standar deviasi yang dihasilkan oleh algoritma kunang-kunang lebih kecil 98% dibandingan dengan penggunaan PSO dalam optimasi parameter VIC, dimana nilai error terkecil yang dihasilkan lebih presisi untuk tiap hasil running simulasinya, namun penggunaan PSO lebih efektif karena cepat dalam konvergensi dengan waktu yang lebih singkat dibandingkan saat menggunakan algoritma kunang-kunang.
==============================================================================================================================
This research proposes the application of the VIC concept optimization to EV retired battery based on the firefly algorithm. The performance of the proposed method is assessed using two area power systems. The simulation was carried out with the help of Matlab Simulink 9.4/R2022a software. by applying the method Time-domain simulation (TDS) to investigate the effect of VIC application on an interconnected two-area power system. The simulation is divided into 2 scenarios. The first scenario is focused on a comparison in the use of new EV batteries and retired EV batteries to the response of two interconnected area electric power systems. The second scenario is simulated to compare the impact of using conventional virtual inertial control with virtual inertial control whose parameters have been optimized using the firefly algorithm on the response of the electric power system in interconnected areas. The decrease in capacity and several parameter values in retired EV battery due to the increased life cycle used causes a slow response to use in the system when compared to new EV batteries. So that when integrating PV and a 50MW load in area 1 of the system, the generators in area 1 and area 2 respectively have a larger ramping-up of 64% and 74% compared to the use of the new EV battery-based VIC resulting in a higher frequency undershoot, where 51% in area 1 and 35% in area 2, and also 46% more power on the tie-line when using retired. After that, a scenario 2 simulation was carried out with PV integration and an additional 450 MW load in area 1 of the system. The simulation result after 10 running simulations with 100 iterations are the standard deviation generated by the firefly algorithm is 98% smaller than the use of PSO in optimizing the VIC parameters, where the smallest error value produced is more precise for each simulation running result. But the use of PSO is more effective because it converges quickly with a shorter time compared to when using the firefly algorithm.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Firefly Algorithm, Frequency, Retired EV Battery, Time Domain Simulation, VIC, Algoritma Kunang-Kunang, Baterai EV Retired, Frekuensi
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1001 Production of electric energy or power
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1010 Electric power system stability. Electric filters, Passive.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1087 Photovoltaic power generation
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2692 Inverters
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2921 Lithium cells.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis
Depositing User: Baity Nuris Syifa
Date Deposited: 23 Jan 2023 14:08
Last Modified: 23 Jan 2023 14:08
URI: http://repository.its.ac.id/id/eprint/95555

Actions (login required)

View Item View Item