Agsa, Mohamad Revano (2023) Estimasi State of Charge Baterai dengan Kalman Filter untuk Battery Management System. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
07111840000126-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 April 2025. Download (1MB) | Request a copy |
Abstract
Dengan adanya kesadaran umat manusia dalam menjaga lingkungan serta mengurangi tingkat emisi yang dikeluarkan oleh kendaraan bermotor, diciptakanlah kendaraan alternatif yang menggunakan lebih sedikit bahan bakar minyak serta emisi yang dikeluarkan berkurang, yaitu Hybrid Electric Vehicle (HEV) di dalam HEV terdapat sistem yang bernama BMS atau Battery Management System, yang dimana BMS ini mengatur penyimpanan dan pengeluaran energi pada baterai. Yang dimana tingkat efisiensi perhitungan SoC dapat lebih ditingkatkan. Salah satu cara untuk membuat BMS lebih efisien adalah dengan menambah tingkat keakuratan State of Charge (SoC) pada baterai. State of Charge (SOC) didefinisikan sebagai persentase sisa kapasitas baterai yang tersisa. Banyak penelitian yang bekerja keras dalam meningkatkan masa hidup baterai dengan perkiraan kapasitas baterai yang akurat. Pada panelitian ini digunakanlah metode Kalman filters untuk mengestimasi State of Charge pada sebuah baterai, yang dimana Kalman Filter dinilai dapat memiliki hasil error yang sangat mendekati nol, hasil dari penelitian ini diharapkan dapat meningkatkan keakurasian State of Charge yang ada pada BMS kendaraan hybrid secara akurat, yaitu sebesar 1,326%
==================================================================================================================================
With the awareness of mankind in protecting the environment and reducing the level of emissions released by motorized vehicles, alternative vehicles were created that use less fuel oil and reduce emissions, namely Hybrid Electric Vehicles (HEV) in HEV there is a system called BMS or Battery Management System, where this BMS regulates the storage and expenditure of energy on the battery. Which is where the efficiency level of SoC calculations can be further improved. One way to make the BMS more efficient is to increase the accuracy of the State of Charge (SoC) on the battery. State of Charge (SOC) is defined as the percentage of remaining battery capacity remaining. Many studies have worked hard to improve battery life with accurate battery capacity estimates. In this research, the Kalman filters method is used to estimate the State of Charge on a battery, where the Kalman Filter is considered to have an error result that is very close to zero, the results of this study are expected to increase the accuracy of the State of Charge in the BMS of hybrid vehicles accurately, which is 1.326%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | State of Charge, Kalman filters, Battery Management System |
Subjects: | Q Science > QA Mathematics > QA402.3 Kalman filtering. T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2941 Storage batteries |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | Mohamad Revano Agsa |
Date Deposited: | 03 Feb 2023 02:31 |
Last Modified: | 03 Feb 2023 02:31 |
URI: | http://repository.its.ac.id/id/eprint/96131 |
Actions (login required)
View Item |