Enhanced Field-Oriented Controlled Induction Motor Using Fuzzy Control Method

Azzam, Hamzah Nur (2023) Enhanced Field-Oriented Controlled Induction Motor Using Fuzzy Control Method. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 07111942000012-undergraduate_Thesis.pdf] Text
07111942000012-undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2025.

Download (8MB) | Request a copy

Abstract

Motor induksi merupakan penggerak listrik yang banyak diaplikasikan dibeberapa sektor. Dikarenakan biaya yang relatif murah, serta ketahanan dan minimnya perawatan. Namun, apabila dibandingkan dengan beberapa motor listrik seperti brushless DC dan permanent magnet synchronous motor, motor induksi memiliki performa yang lebih rendah. Hal ini disebabkan karena motor induksi memiliki masalah terkait respon torsi awal cenderung rendah. Hal tersebut dapat diatasi dengan pengaturan motor secara vector dengan metode field-oriented control (FOC) untuk mendapatkan torsi awal yang lebih cepat. Adapun untuk memaksimalkan performa dari efisiensi diperlukan pengembangan pada metode FOC untuk menurunkan error. Error merupakan hasil perbedaan dari kecepatan secara actual dengan perbandingan kecepatan referensi. Sehingga pengembangan FOC dengan fuzzy logic controller (FLC) diimplementasikan pada penelitian ini. Adapun untuk pengujian dari motor induksi ini dengan diberikan input referensi kecepatan berbeda, kemudian dilanjut dengan pemberian beban berupa percepatan dan perlambatan. Berdasarkan pengamatan pada penelitian ini didapatkan fuzzy FOC berhasil memaksimalkan pengaturan motor induksi dengan nilai settling time lebih cepat ±1,5 detik, rise time lebih cepat ±0.3 detik lebih cepat, menurunkan overshoot ±55 RPM dan menurun root mean square error (RMSE) hinga 1.1788. sehingga fuzzy dapat meningkatkan performa dari FOC.
==============================================================================================================================
Induction motors (IM) have a huge broad application aspect in the application of electric propulsion. In addition to the relatively low cost, durability, and minimal maintenance. However, induction motors have lower performance compared to some electric motors, such as brushless DC and permanent magnet synchronous motors. In addition, induction motors have problems related to the initial acceleration torque response being relatively low. This can be overcome by controlling the motor in vector with the field-oriented control (FOC) method to get a faster starting torque. As for maximizing performance from efficiency, it is necessary to develop the FOC method to reduce errors. Error is the result of the difference between the actual speed, and the comparison of the reference speed. Therefore, the development of FOC with fuzzy logic controller (FLC) is implemented in this research. As for testing this induction motor, give a different speed reference input, then proceed with giving a load in the form of acceleration and deceleration. Based on the observations in this study, it was found that fuzzy FOC succeeded in maximizing the induction motor settings with ±1.5 seconds faster settling time, ±0.3 seconds faster rise time, reduced ±55 RPM overshoot, and decreased root mean square error (RMSE) to up to 1.1788. The conclusion is that fuzzy could enhance the performance of FOC.

Item Type: Thesis (Other)
Uncontrolled Keywords: Motor Induksi, Field-Oriented Control, Fuzzy Logic Controller
Subjects: Q Science > QA Mathematics > QA9.64 Fuzzy logic
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK1007 Electric power systems control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2681.O85 Electric motors, Brushless.
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK2692 Inverters
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3070 Automatic control
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK4055 Electric motor
T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK7888.3 Digital computers
Divisions: Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis
Depositing User: Hamzah Nur Azzam
Date Deposited: 04 Feb 2023 21:21
Last Modified: 04 Feb 2023 21:21
URI: http://repository.its.ac.id/id/eprint/96224

Actions (login required)

View Item View Item