Peningkatan Nilai Signal to Noise Ratio Data Microearthquake Menggunakan Multi-Stage Filter untuk Penentuan Waktu tiba Gelombang P

Dewani, Hanindya (2023) Peningkatan Nilai Signal to Noise Ratio Data Microearthquake Menggunakan Multi-Stage Filter untuk Penentuan Waktu tiba Gelombang P. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 03411840000055-Undergraduate_Thesis.pdf] Text
03411840000055-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2025.

Download (2MB) | Request a copy

Abstract

Pemantauan reservoir geotermal salah satunya dapat dilakukan dengan pengamatan aktivitas gempa mikro (MEQ) berupa data seismik pasif waveform 3 komponen. Pengolahan data MEQ perlu dilakukan untuk menentukan waktu tiba gelombang P dan S sebagai langkah awal untuk proses pengolahan selanjutnya seperti penentuan lokasi hiposentrum dan magnitudo. Masalah utama dalam penentuan waktu tiba gelombang adalah nilai Signal-to Noise Ratio (SNR) yang rendah akibat magnitudo gempa yang kecil. Sehingga, sinyal gempa yang dibutuhkan dalam penentuan waktu tiba gelombang sulit terlihat karena tertutupi dengan noise. Penentuan hiposentrum dapat dihitung dengan hanya menggunakan waktu tiba gelombang P. Pada penelitian ini, proses filtering dilakukan dengan tujuan untuk meningkatkan nilai SNR. Proses multi-stage filtering ditulis menggunakan bahasa pemrograman python. Keluaran dari proses filtering berupa data dengan noise yang tereduksi dan waktu perkiraan tiba gelombang P, yang kemudian menjadi data masukan pada perangkat lunak SeisGram2K70 untuk proses penentuan waktu tiba gelombang P dan S. Sebuah filter multi – stage telah berhasil dibuat untuk meningkatkan nilai signal – to – noise ratio yang cukup baik. Filter ini memuat tahapan short time fourier transform, filter bandpass, filter polarisasi, dan short – term average/long – term average dengan hasil peningkatan nilai SNR hingga 23680 dB. Filter yang dibuat dapat meningkatkan nilai SNR dengan rata – rata kenaikan sebesar 5.24% dan tingkat keberhasilan 93% untuk 54 data microearthquake. Namun, ada 4 data yang mengalami penurunan SNR sebesar 0.016%. Hal ini disebabkan oleh parameter pada filter polarisasi yang tidak sesuai dengan datanya yang berpengaruh kepada hasil filtering. Filter yang dibuat dapat memperjelas fasa gelombang P dan S sehingga mempermudah proses picking arrival time karena fasa terlihat dan tidak terakumulasi oleh noise.
====================================================================================================================================

Geothermal reservoirs is monitored by observing micro-earthquake activity (MEQ) in the form of passive seismic data with a 3-component waveform. MEQ data processing is necessary to determine the arrival time of the P and S waves as a first step for further processing, such as determining the location of the hypocenter and magnitude. The main problem in determining the arrival time is limited Signal-to-Noise Ratio (SNR) because of small earthquake magnitude. Thus, the signal of the earthquake is masked with noise. Hypocenter location can be determined using only the arrival time of the P wave. In this study,sesmic data filtering process, namely multi – stage filtering, is carried out with the aim of increasing the SNR value. The multi-stage filtering process is written in Python programming language. The output of the filtering process is presented by data with reduced noise and the estimated arrival time of the P wave, which then becomes input in the SeisGram2K70 software for the manual arrival time picking of the P and S waves. The multi stage filter has been successfully created indicated by increasing the signal – to – noise. This filter consists of multiple stage, such as short time fourier transform, bandpass filter, polarization filter, and short - time average / long - term average. The increase in SNR is dominated after the multistages filtering with value up to 23680 dB. The multistage filter is proven to increase the SNR value with an average increase of 5.24% and success rate of 93% for 54 microearthquake data. However, there are 4 microearthquake waveform data with decreasing in SNR of 0.016%. This is caused by the parameters on the polarization filter that are not in accordance with the data which affect the filtering results. The multi-stage filter can clarify the phases of P and S waves to ease arrival time picking because the phases are easily identifiable and isn’t accumulated by noise.

Item Type: Thesis (Other)
Uncontrolled Keywords: Filter, SNR, Python
Subjects: Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines.
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Geophysics Engineering > 33201-(S1) Undergraduate Thesis
Depositing User: hanindya dewani
Date Deposited: 13 Feb 2023 09:29
Last Modified: 13 Feb 2023 09:29
URI: http://repository.its.ac.id/id/eprint/97010

Actions (login required)

View Item View Item