Strategi Peningkatan Profit Rantai Pasok Menggunakan Pendekatan Agent-Based Modeling

Rahmasari, Dewi (2023) Strategi Peningkatan Profit Rantai Pasok Menggunakan Pendekatan Agent-Based Modeling. Masters thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 024119500030002-Master_Thesis.pdf] Text
024119500030002-Master_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2025.

Download (3MB) | Request a copy

Abstract

Meningkatnya kompetisi di pasar menuntut anggota rantai pasok untuk lebih cepat dalam menanggapi permintaan konsumen. Dalam merespon kompetisi tersebut supplier dan retailer dapat berkoordinasi bersama untuk mendapatkan kesesuaian antara supply dan demand. Kedepannya dengan adanya kesesuaian tersebut diharapkan dapat meningkatkan profit rantai pasok secara keseluruhan.
Penelitian ini dilakukan untuk mengetahui dampak koordinasi yang dilakukan oleh supplier dan retailer terhadap profit rantai pasok dibawah pengaruh kompetisi yang dilakukan oleh kedua retailer. Pendekatan agent-based modeling and simulation digunakan dalam penelitian ini untuk memodelkan interaksi antar agen yang kompleks. Agen yang dikembangkan dalam model ini adalah supplier, retailer, dan customer. Agen retailer dikembangkan dengan mengadopsi pendekatan Q-Learning. Dengan pendekatan tersebut memungkinkan kedua retailer bekerja secara intelijen dalam mengambil keputusan terkait discount depth. Terdapat tiga skenario yang digunakan dalam penelitian ini yaitu skenario tidak ada koordinasi antara supplier dan retailer, terdapat koordinasi antara supplier dan salah satu retailer, serta terdapat koordinasi antara supplier dengan kedua retailer. Hasil penelitian menunjukkan bahwa retailer dengan fase eksplorasi lebih singkat selalu memenangkan persaingan dan retailer yang melakukan koordinasi dengan supplier selalu menghasilkan rata-rata profit rantai pasok yang lebih tinggi dari pada retailer yang tidak menjalankan koordinasi dengan supplier.
================================================================================================================================
Increasing competition in the market requires supply chain members to respond more quickly to consumer demands. In response to this competition, suppliers and retailers can coordinate together to get a match between supply and demand. In the future, this conformity is expected to increase the overall supply chain profit. This research was conducted to determine the impact of coordination carried out by suppliers and retailers on supply chain profits under the influence of competition carried out by the two retailers. An agent-based modeling and simulation approach is used in this study to model complex interactions between agents. The agents developed in this model are suppliers, retailers, and customers. The retail agent was developed by adopting a Q-Learning approach. This approach allows both retailers to work intelligently in making decisions regarding discount depth. There are three scenarios used in this study, namely the scenario where there is no coordination between suppliers and retailers, there is coordination between the supplier and one of the retailers, and there is coordination between the supplier and the two retailers. The results of the study show that retailers with shorter exploration phases always win the competition and retailers who coordinate with suppliers always produce a higher average supply chain profit than retailers who do not coordinate with suppliers.

Item Type: Thesis (Masters)
Uncontrolled Keywords: Koordinasi supply chain, kompetisi retailer, Agent-based modeling and simulation, Q-Learning Supply chain coordination, retail competition, Agent-based modeling and simulation, Q-Learning
Subjects: T Technology > T Technology (General) > T57.62 Simulation
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Industrial Engineering > 26101-(S2) Master Thesis
Depositing User: Dewi Rahmasari
Date Deposited: 16 Feb 2023 10:44
Last Modified: 16 Feb 2023 10:44
URI: http://repository.its.ac.id/id/eprint/97372

Actions (login required)

View Item View Item