Penyisihan Mikroplastik pada Proses Pengolahan Air Minum Konvensional

Radityaningrum, Arlini Dyah (2023) Penyisihan Mikroplastik pada Proses Pengolahan Air Minum Konvensional. Doctoral thesis, Institut Teknologi Sepuluh Nopember Surabaya.

[thumbnail of Dissertation] Text (Dissertation)
03211960010003_Dissertation.pdf - Published Version
Restricted to Repository staff only until April 2025.

Download (4MB) | Request a copy

Abstract

Pencemaran mikroplastik (MP) sebesar 1,47-47,11 partikel/m3 telah ditemukan di sumber air baku PDAM di Jawa Timur dengan cakupan layanan 98,97% dari total penduduk. Dengan keberadaan MP di air baku, dapat dipastikan terdapatnya MP dalam air baku yang dapat mempengaruhi kualitas air produksi. Penyediaan air bersih yang layak dan aman bagi masyarakat memerlukan teknologi pengolahan air yang sesuai. Instalasi Pengolahan Air Minum (IPAM) yang diteliti meliputi IPAM K-1, K-3, N-2, dan N-3, dengan total kapasitas10.830 L/detik. Teknologi pengolahan air yang digunakan pada IPAM K-1, K-3, N-2, dan N-3 masih merupakan teknologi konvensional, yang terdiri atas unit aerasi, prasedimentasi, koagulasi-flokulasi, sedimentasi, filter, dan desinfeksi. Penelitian ini bertujuan untuk: (1) menentukan kelimpahan dan karakteristik MP pada air baku, efluen setiap unit operasi IPAM, serta air produksi; (2) mengkaji kemampuan dan mekanisme penyisihan MP pada setiap unit operasi IPAM; (3) menyusun rekomendasi teknologi pengolahan air minum yang sesuai untuk penyisihan MP. Titik pengambilan sampel adalah intake air baku, outlet setiap unit operasi, dan outlet reservoir air produksi pada IPAM K-1, K-3, serta N-2, N-3. Sampel diambil secara grab, dengan volume 5 L. Pengambilan sampel dilakukan pada 2 hari yang berbeda, dengan pengulangan harian sebanyak 4 kali. Pengambilan sampel dimulai pukul 05.00 WIB, dengan interval setiap 5 jam. Akuades dengan volume 5 L digunakan sebagai kontrol, yang dibuat pada setiap hari pengambilan sampel. Sampel dan kontrol kemudian disimpan pada suhu 4℃. Selanjutnya, sampel dioksidasi secara Wet Peroxide Oxidation (WPO), dengan menambahkan 10 mL H2O2 dan 10 mL larutan Fe(II) 0,05 M ke dalam 1 L sampel air. Sampel air kemudian disaring menggunakan filter vakum dengan membran PTFE Scientific Hawach berukuran pori 0,2 µm dan berdiameter 47 mm. Kelimpahan dan karakteristik partikel MP (ukuran, bentuk, warna) diidentifikasi menggunakan mikroskop stereo Sunshine SZM45T-B1 dan digital Dino Lite AF 3113 T. Kelimpahan MP dalam sampel ditunjukkan dengan jumlah partikel/L, yang telah dikurangi jumlah MP dalam kontrol. Klasifikasi ukuran partikel MP adalah 1–100 μm, 101–350 μm, 351–1000 μm, dan 1001–<5000 μm. Bentuk partikel dikategorikan menjadi serat, fragmen, film, pelet, dan foam. Warna MP dibedakan menjadi hitam, biru, merah, kuning, dan transparan. Selanjutnya, sejumlah 5-10 partikel MP berukuran 351–1000 μm yang mewakili setiap titik sampling dianalisis dengan Fourier Transform Infra Red (FTIR) tipe Thermo Scientific Nicolet i10 untuk karakterisasi jenis polimer MP. Efisiensi penyisihan MP diukur di setiap unit operasi IPAM. Data ditampilkan dengan tabulasi dan grafik, serta dilakukan uji Anova 0ne-way untuk menentukan signifikansi penyisihan MP pada tiap unit operasi. Selanjutnya, uji skala laboratorium terhadap penyisihan MP dengan teknologi membran mikrofiltrasi (MF) dan ultrafiltrasi (UF) dilakukan sebagai dasar penyusunan rekomendasi teknologi pengolahan air minum yang sesuai untuk penyisihan MP. Pengujian dilakukan menggunakan alat Dead End Flow (DEF) dengan membran MF (ukuran pori 0,45 μm) dan UF (ukuran pori 0,1 μm) yang berdiameter 47 mm. Selain itu, kajian dilakukan terhadap aplikasi teknologi membran MF dan UF pada Unit Zona Air Minum Prima (ZAMP) IPAM N-3 dalam penyisihan MP. Sampel air baku dan air produksi diambil pada Unit ZAMP sebanyak 1 L pada 2 hari yang berbeda. Kelimpahan, ukuran, bentuk MP hasil uji skala laboratorium dan aplikasi MF-UF di Unit ZAMP dikaji untuk menentukan kemampuan penyisihan MP. Hasil penelitian menunjukkan bahwa air produksi dari IPAM K-1, K-3, serta N-2, N-3 telah terkontaminasi MP dengan kelimpahan rata-rata masing-masing 16,9 ± 7,7; 7,5 ± 4; 5,5 ± 0,3; dan 3,8 ± 2,8 partikel/L. Kelimpahan rata-rata MP yang ditemukan dalam air baku IPAM K-1, K-3, serta N-2, N-3, masing-masing adalah 27,1 ± 3; 27 ± 18.4; 16,1 ± 6,4; dan 9,9 ± 5,2 partikel/L. Kehadiran MP dalam efluen unit operasi IPAM K-1, K-3, serta N-2, N-3 berfluktuasi. Partikel MP berukuran 351–1000 μm dominan ditemukan di IPAM K-1 (28,8-69,4%) dan K-3 (31,5-48,2%), serta N-2 (38,5-63,5%). Sedangkan di IPAM N-3, MP berukuran 1001–5000 μm paling banyak ditemukan (59,7-70%). Serat merupakan bentuk MP yang dominan di IPAM K-1 (86,7-100%) dan K-3 (80,6-96,3%), serta N-2 (97,2-100%) dan N-3 (90,1-98,7%). MP berwarna transparan mendominasi pada sampel air IPAM K-1 (32-61%) dan K-3 (22-52%), serta N-2 (59-83%) dan N-3 (65-84%). Jenis polimer yang dapat diidentifikasi secara signifikan dalam sampel air baku IPAM adalah polietilena (PE). Rata-rata efisiensi penyisihan MP dalam air produksi yang dicapai di IPAM K-1, K-3, serta N-2, N-3 masing-masing adalah 38 ± 25%; 71 ± 7%; 66 ± 31%; dan 62 ± 15%. Aplikasi teknologi membran di Unit ZAMP mampu menghilangkan MP sebesar 82 ± 5%. Hal ini didukung oleh penelitian skala laboratorium dengan alat DEF, dimana kemampuan penyisihan MP oleh teknologi MF dan UF masing-masing adalah 75 ± 11% dan 86 ± 8%. Dengan demikian teknologi membran MF-UF dipandang mampu untuk meningkatkan penyisihan MP di air baku setelah melalui pengolahan dengan teknologi konvensional.
========================================================================================================================================
Microplastic (MP) contamination (1,47-47,11 particles/m3) has been found in raw water source of water supply enterprise in East Java, which served 98.97% of residents. This condition certainly led to the MP occurrence in raw water, which could affect the quality of treated water. Feasible and clean water supply for community required an appropriate water treatment technology. This research was conducted in Drinking Water Treatment Plants (DWTPs) of K-1, K3, N-2, N-3, which had the total of treatment capacity of 10,830 L/second. Currently, the DWTPs apply conventional water treatment technology, which consists of aeration unit, pre-sedimentation, coagulation-flocculation, sedimentation, filter, and disinfection. This study aimed to: (1) determine the abundance and characteristics of MP in raw water, effluent of each water treatment unit, and treated water; (2) investigate the capability and mechanism of removal in each water treatment unit; (3) recommend an appropriate drinking water treatment technology for MP removal. Water sampling was conducted in DWTPs K-1, K-3, and N-2, N-3. Sampling points were raw water intake, outlet of each water treatment unit, and outlet of produced water reservoir. Volume of 5 L water samples were collected by grabbed sampling technique. Sampling was carried out in 2 different days, with four daily replications. Sampling started at 05.00 WIB, with five hourinterval. Volume of 5 L aquadest was used as a control, which was made on each sampling day. Samples and controls were then stored at 4℃. Next, the sample was oxidized by Wet Peroxide Oxidation (WPO), by adding 10 mL of H2O2 and 10 mL of 0,05 M Fe(II) solution into 1 L of water sample. Water sample was then filtered using a vacuum filter with PTFE Scientific Hawach membrane with a pore size of 0,2 μm and a diameter of 47 mm. Abundance and characteristics of MP particles (size, shape, color) were identified using a Sunshine SZM45T-B1 stereo microscope and a digital Dino Lite AF 3113 T. The MP abundance in samples was enumerated based on the particle number/L which was already deducted by particle number in control. The MP particle size classifications were 1–100 μm, 101–350 μm, 351–1000 μm, and 1001–<5000 μm. The MP shapes were categorized into fibers, fragments, films pellets, and foam. MP colors were divided into black, blue, red, yellow, and transparent. Numbers of 5-10 MP particles with 351–1000 μm, which were representative in each sampling point, then were analyzed by using Thermo Scientific Nicolet i10 Fourier Transform Infra-Red (FTIR) to characterize the type of MP polymer. MP removal efficiency was measured in each water treatment unit. Data were presented with tabulations and graphs. One-way Anova test was performed to determine the significance of MP removal in each water treatment unit. Furthermore, laboratory-scale test of MP removal using microfiltration (MF) and ultrafiltration (UF) membrane technology were carried out to recommend an appropriate drinking water treatment technology for MP removal. The test was carried out using a Dead-End Flow (DEF) tool with MF (0.45 μm) and UF (0.1 μm) membranes. In addition, an investigation on MP removal was conducted on the application of MF and UF in Zona Air Minum Prima (ZAMP) in DWTP N-3. Volume of 1 L raw and produced water samples in ZAMP Unit were collected on 2 different days. MP abundance, size, and shape from MF and UF laboratory scale tests and their application to the ZAMP Unit were studied to determine the ability to remove MP. The results showed that average of MP abundances in the treated water from DWTPs K-1, K-3, and N-2, N-3 were 16.9 ± 7.7; 7.5 ± 4; 5.5 ± 0.3; and 3.8 ± 2.8 particles/L, respectively. The average MP abundances of raw water in DWTPs K-1, K-3, and N-2, N-3 were 27.1 ± 3; 27 ± 18.4; 16.1 ± 6.4; and 9.9 ± 5.2 particles/L, respectively. The presence of MP in the effluent water treatment unit of K-1, K-3, and N-2, N-3 fluctuated. MP size of 351-1000 μm was dominantly found in DWTPs of K-1 (28.8-69.4%), K-3 (31.5-48.2%), and N-2 (38.5-63.5%). While, in DWTP N-3, the most common MP size was 1001-5000 μm (59.7-70%). Fiber was the dominant shape of MP in the DWTPs of K-1 (86.7- 100%); K-3 (80.6-96.3%); N-2 (97.2-100%); and N-3 (90.1-98.7 %). Transparent MP dominated in the DWTPs of K-1 (32-61%) and K-3 (22-52%), and N-2 (59-83%) and N-3 (65-84%). The polymer type found in raw water sample was polyethylene (PE). The average MP removal efficiencies in treated water of DWTPs K-1, K-3, and N-2, N-3 was 38 ± 25%; 71 ± 7%; 66 ± 31%; dan 62 ±15%, respectively. The application of MF UF membrane technology in ZAMP Unit in DWTP N-3 was able to remove MP by 82 ± 5%. This was supported by laboratory-scale studies using DEF tool with MF and UF, which reached the MP removal capabilities of 75 ± 11% and 86 ± 8%, respectively. Therefore, MF-UF membrane technology was seen as capable to increase MP removal content in raw water after being treated with conventional technology

Item Type: Thesis (Doctoral)
Additional Information: RDL 628.162 Rad p-1 2023
Uncontrolled Keywords: karakteristik, kelimpahan, mikroplastik, pengolahan air minum
Subjects: T Technology > TD Environmental technology. Sanitary engineering > TD259.2 Drinking water. Water quality
T Technology > TD Environmental technology. Sanitary engineering > TD427.P62 Microplastics--Environmental aspects.
T Technology > TD Environmental technology. Sanitary engineering > TD433 Water treatment plants
Divisions: Faculty of Civil, Planning, and Geo Engineering (CIVPLAN) > Environmental Engineering > 25001-(S3) PhD Thesis
Depositing User: Mrs Arlini Dyah Radityaningrum
Date Deposited: 15 Feb 2023 03:07
Last Modified: 18 Sep 2023 05:51
URI: http://repository.its.ac.id/id/eprint/97378

Actions (login required)

View Item View Item