Izzaty, Nabiela Rahma (2023) Prediksi Kesehatan Finansial Perusahaan Non-Finansial Di Indonesia Menggunakan Kombinasi K-Means Dan Regresi Logistik Biner. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
10611910000073-Non_Degree.pdf - Accepted Version Restricted to Repository staff only until 1 April 2025. Download (2MB) | Request a copy |
Abstract
Perusahaan untuk mempertahankan kelangsungan hidup usahanya ialah dengan memperoleh laba. Laba juga digunakan perusahaan sebagai salah satu indikator dalam menentukan apakah perusahaan tersebut mengalami financial distress atau tidak. Tolak ukur perusahaan mengalami financial distress apabila kondisi keuangan suatu perusahaan mengalami penurunan net income selama tiga tahun berturut-turut. Upaya pemerintah untuk mengatasi hutang perusahaan yang menjurus ke kegagalan keuangan adalah dengan restrukturisasi dan melakukan suntikan APBN melalui Program Pembiayaan Nasional (PMN) untuk memperbaiki keuangan BUMN. Manajemen perusahaan terkait juga berupaya sebaik mungkin dalam mengantisipasi kegagalan keuangan, akan tetapi hal itu tetap tak terhindarkan. Salah satu langkah pencegahan kegagalan keuangan ialah dengan melakukan prediksi financial distress untuk mengantisipasi resiko kegagalan keuangan serta sebagai bahan pertimbangan bank dan investor dalam memberikan pinjaman maupun melakukan investasi. Metode yang akan digunakan dalam penelitian ini adalah K-Means dan regresi logistik biner dengan perusahaan non-finansial yang terdaftar di Bursa Efek Indonesia (BEI) dan secara terus-menerus menerbitkan laporan keuangan pada tahun 2018 – 2021 sebagai populasi. Hasil model prediksi menggunakan metode hybrid classifier memiliki akurasi sebesar 86,90%, sensitivitas sebesar 14,58%, dan spesifisitas sebesar 96,85%. Model hybrid classifier lebih diutamakan untuk digunakan dengan mempertimbangkan hasil tingkat sensitivitas yang lebih tinggi.
=====================================================================================================================================
The company to maintain the survival of its business is to make a profit. Profit is also used by the company as an indicator in determining whether the company is experiencing financial distress or not. The benchmark for a company to experience financial distress if the financial condition of a company has decreased net income for three consecutive years. The government's efforts to overcome corporate debt that leads to financial failure are by restructuring and injecting the state budget through the National Financing Program (PMN) to improve the finances of SOEs. The management of the relevant company also tried its best in anticipating financial failures, but it remained inevitable. One of the steps to prevent financial failure is to predict financial distress to anticipate the risk of financial failure and as a consideration for banks and investors in providing loans and making investments. The methods that will be used in this study are K-Means and binary logistic regression with non-financial companies listed on the Indonesia Stock Exchange (IDX) and continuously publishing financial statements in 2018 – 2021 as a population. The result of the prediction model using the hybrid classifier method have an accuracy of 86,90%, sensitivity of 14,58%, and specificity of 96,85%. Hybrid classifier models are preferred to be used by considering the results of a higher level of sensitivity.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Financial Distress, K-Means, Perusahaan Non-Finansial, Regresi Logistik Biner, Financial Distress, K-Means, Non-Financial Companies, Binary Logistic Regression |
Subjects: | H Social Sciences > HD Industries. Land use. Labor H Social Sciences > HD Industries. Land use. Labor > HD108 Classification (Theory. Method. Relation to other subjects ) |
Divisions: | Faculty of Vocational > 49501-Business Statistics |
Depositing User: | Nabiela Rahma Izzaty |
Date Deposited: | 17 Feb 2023 06:51 |
Last Modified: | 17 Feb 2023 06:51 |
URI: | http://repository.its.ac.id/id/eprint/97538 |
Actions (login required)
View Item |