Metode Regresi Logistik Biner Untuk Pemodelan Belanja Online Mahasiswa Departemen Statistika Bisnis ITS

Hafiyyan, Muhammad Rizqi (2023) Metode Regresi Logistik Biner Untuk Pemodelan Belanja Online Mahasiswa Departemen Statistika Bisnis ITS. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 10611710000002-Undergraduate_Thesis.pdf] Text
10611710000002-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (4MB) | Request a copy

Abstract

Perkembangan Belanja Online (e-commerce) di Indonesia saat ini menjadi sesuatu yang sangat menjajikan bagi masyarakat apalagi belanja online ini bagi kalangan para mahasiswa. Hal ini tentu saja sangat mempengaruhi keputusan saat belanja online. Pada 2017, pengguna internet di Indonesia telah terdaftar sebanyak 84 juta orang dan diproyeksikan akan tumbuh hingga 150 juta orang pada tahun 2023 (Statista, 2019). Tentunya keadaan ini menjadi peluang yang besar sekali ketika saat belanja online, karena internet berguna dalam kegiatan penjualan atau pembelian barang dan jasa (Cheung, 2000). Oleh karena itu, pada penelitian ini akan dilakukan analisis terhadap faktor-faktor yang mempengaruhi keputusan saat belanja online studi kasus seluruh Mahasiswa Departemen Statistika Bisnis ITS. Metode statistik yang digunakan adalah regresi logistik biner dengan faktor-faktor yang diduga mempengaruhi saat belanja online. Hasil analisis menunjukkan bahwa jenis kelamin dan jumlah anggota rumah tangga mempengaruhi keputusan pembelian online, dengan nilai Ketepatan klasifikasi sebesar 66.0% yang tepat diklasifkasikan oleh model.
===============================================================================================================================
The development of online shopping (e-commerce) in Indonesia is currently something that is very promising for the community, especially online shopping for students. This of course greatly influences the decision when shopping online. In 2017, internet users in Indonesia had registered 84 million people and are projected to grow to 150 million people in 2023 (Statista, 2019). Of course, this situation is a huge opportunity when shopping online, because the internet is useful in selling or buying goods and services (Cheung, 2000). Therefore, in this study an analysis will be carried out on the factors that influence decisions when shopping online for case studies of all students of the ITS Business Statistics Department. The statistical method used is binary logistic regression with factors that are thought to influence online shopping. The results of the analysis show that gender and number of household members influence online purchasing decisions, with a classification accuracy value of 66.0%, which is correctly classified by the model.

Item Type: Thesis (Other)
Uncontrolled Keywords: Analisis Regresi Logistik Biner, Belanja Online, Mahasiswa, Binary Logistic Regression Analysis, Online Shopping, Students
Subjects: H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: MUHAMMAD RIZQI HAFIYYAN
Date Deposited: 07 Mar 2023 07:55
Last Modified: 07 Mar 2023 07:55
URI: http://repository.its.ac.id/id/eprint/97737

Actions (login required)

View Item View Item