Pemodelan Faktor-Faktor yang Mempengaruhi Angka Kematian Ibu di Indonesia Menggunakan Geographically Weighted Regression

Ramadhani, Hanifa Krisdarianti (2023) Pemodelan Faktor-Faktor yang Mempengaruhi Angka Kematian Ibu di Indonesia Menggunakan Geographically Weighted Regression. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 10611910000031-Undergraduate_Thesis.pdf] Text
10611910000031-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 April 2025.

Download (1MB) | Request a copy

Abstract

Angka kematian ibu di Indonesia mengalami penurunan dari Tahun 2017 ke Tahun 2021. Meskipun begitu, angka kematian ibu Tahun 2021 masih tinggi sehingga perlu dilakukan penanganan terhadap kematian ibu. Penanganan permasalahan kematian ibu tidak bisa dilakukan secara general karena faktor yang mempengaruhi bisa saja berbeda. Tujuan penelitian ini adalah untuk mengetahui karakteristik angka kematian ibu dan faktor-faktor yang mempengaruhinya serta mengkaji pemodelan angka kematian ibu di Indonesia menggunakan Geographically Weighted Regression (GWR). Pemodelan angka kematian ibu di Indonesia menggunakan GWR dilakukan dengan pembobot adaptive bisquare. Berdasarkan uji kesamaan antara model regresi linear dengan model GWR diperoleh hasil bahwa terdapat perbedaan signifikan antara model regresi linear dengan model GWR. Hasil pemodelan GWR angka kematian ibu diperoleh model yang berbeda di tiap provinsi. Variabel yang berpengaruh signifikan di mayoritas provinsi yaitu persentase rumah tangga dengan akses layanan air minum, persentase ketidakcukupan konsumsi pangan, dan rasio puskesmas per kecamatan. Terdapat lima belas kelompok yang terbentuk berdasarkan provinsi dengan kesamaan variabel yang signifikan terhadap angka kematian ibu. Model GWR merupakan model yang paling tepat untuk menggambarkan angka kematian ibu di Indonesia karena nilai AIC model GWR sebesar 301,722 bernilai lebih kecil dari nilai AIC model regresi linear yaitu sebesar 368,433 serta R2 model GWR sebesar 92,33 bernilai lebih besar daripada R2 model regresi linear yaitu 31,05.
===============================================================================================================================
The maternal mortality rate in Indonesia has decreased from 2017 to 2021. Even so, the maternal mortality rate in 2021 is still high, so it is necessary to deal with maternal deaths. Handling the problem of maternal death cannot be done in general because the influencing factors can be different. The purpose of this study was to determine the characteristics of the maternal mortality rate and the factors that influence it and examine the modeling of maternal mortality in Indonesia using Geographically Weighted Regression (GWR). Modeling maternal mortality in Indonesia using GWR was carried out with adaptive bisquare weighting. Based on the similarity test between the linear regression model and the GWR model, the results were obtained that there were significant differences between the linear regression model and the GWR model. GWR modeling results of maternal mortality were obtained by different models in each province. Variables that have a significant effect in the majority of provinces are the percentage of households with access to drinking water services, the percentage of insufficiency in food consumption, and the ratio of puskesmas per sub-district. There were fifteen groups formed by province with significant variable similarities to maternal mortality. The GWR model is the most appropriate model to describe the maternal mortality rate in Indonesia because the AIC value of the GWR model of 301,722 is less than the AIC value of the linear regression model of 368,433 and the R2 of the GWR model of 92.33 is worth more than the R2 of the linear regression model of 31.05.

Item Type: Thesis (Other)
Uncontrolled Keywords: Angka Kematian Ibu, Geographically Weighted Regression, Indonesia, Geographically Weighted Regression, Indonesia, Maternal Mortality Rates
Subjects: H Social Sciences > HA Statistics > HA30.6 Spatial analysis
H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
R Medicine > RA Public aspects of medicine > RA0421 Public health. Hygiene. Preventive Medicine
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Hanifa Krisdarianti Ramadhani
Date Deposited: 13 Mar 2023 01:24
Last Modified: 13 Mar 2023 01:24
URI: http://repository.its.ac.id/id/eprint/97750

Actions (login required)

View Item View Item