Pemodelan Kasus Pneumonia Pada Balita Di Indonesia Menggunakan Pendekatan Metode Geographically Weighted Regression

Nurifa, Zati Adila (2023) Pemodelan Kasus Pneumonia Pada Balita Di Indonesia Menggunakan Pendekatan Metode Geographically Weighted Regression. Diploma thesis, Insititut Teknologi Sepuluh Nopember.

[thumbnail of 10611910000055-Undergraduate_Thesis.pdf] Text
10611910000055-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (5MB) | Request a copy

Abstract

Indonesia, pneumonia menjadi pembunuh pertama balita sehingga diperlukan analisis lebih lanjut untuk membantu menurunkan kematian balita di Indonesia. Analisis regresi linear berganda merupakan analisis statistik yang bertujuan memodelkan hubungan antara variabel respon dengan variabel prediktor yang lebih dari satu. Geographically Weighted Regression (GWR) adalah pengembangan dari regresi linear dan merupakan metode statistik yang digunakan menganalisis data spasial. Penelitian ini bertujuan mengetahui pemodelan pada pneumonia balita di Indonesia dengan menggunakan GWR. Tujuan yang ingin dicapai yaitu untuk mengetahui variabel apa saja yang memengaruhi penyebaran penyakit menular pada balita seperti pneumonia di Indonesia pada setiap provinsi yang berbeda-beda dengan metode GWR. Manfaat yang diperoleh yaitu sebagai informasi untuk membantu sasaran pelaksanaan program pencegahan dan pengendalian pneumonia balita di Indonesia dalam rangka menurunkan Angka Kematian Balita (AKBA) di Indonesia yang merupakan salah satu tujuan dari SDGs (Sustainable Development Goals) yaitu kehidupan sehat dan sejahtera dengan cara mengakhiri kematian bayi baru lahir dan balita, serta menambah wawasan peneliti tentang metode spasial khususnya GWR dalam masalah epidemiologi penyakit. Berdasarkan hasil analisis karakteristik menunjukkan bahwa persentase pneumonia pada balita di Indonesia, dan faktor-faktor risikonya memperlihatkan pola yang cukup menyebar pada setiap provinsi. Model GWR kejadian pneumonia balita menghasilkan R2 lebih besar daripada model regresi linear dan SSE yang lebih kecil. Faktor geografis berpengaruh terhadap kejadian pneumonia balita di Indonesia sehingga model GWR yang terbentuk berbeda-beda setiap provinsi. Analisis GWR secara parsial menghasilkan bahwa setiap provinsi dipengaruhi oleh variabel yang berbeda-beda dan variabel signifikan yang memiliki provinsi dengan jumlah paling banyak ada pada variabel imunisasi balita.
========================================================================================================================
Indonesia, pneumonia became the first killer of toddlers so further analysis is needed to help reduce the mortality of toddlers in Indonesia. Multiple linear regression analysis is a statistical analysis that aims to model the relationship between response variables and more than one predictor variable. Geographically Weighted Regression (GWR) is a development of linear regression and is a statistical method used to analyze spatial data. This study aims to determine modeling in pneumonia in toddlers in Indonesia using GWR. The goal to be achieved is to find out what variables affect the spread of infectious diseases in toddlers such as pneumonia in Indonesia in each province which is different from the GWR method. The benefits obtained are as information to help the target of implementing the prevention and control program for toddler pneumonia in Indonesia in order to reduce the Infant Mortality Rate (AKBA) in Indonesia which is one of the goals of the SDGs (Sustainable Development Goals), namely a healthy and prosperous life by ending the mortality of newborns and toddlers, as well as adding researchers' insights on spatial methods, especially GWR in epidemiological problems. disease. Based on the results of the characteristic analysis, it shows that the percentage of pneumonia in children under five in Indonesia, and its risk factors shows a fairly widespread pattern in each province. The GWR model of the incidence of toddler pneumonia yielded a larger R2 than the smaller linear regression and SSE models. Geographical factors influence the incidence of pneumonia under five in Indonesia so that the GWR model formed varies by province. The GWR analysis partially resulted in each province being affected by different variables and the significant variables that had the provinces with the most numbers were in the toddler immunization variables.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Geographically Weighted Regression, Pneumonia, Spatial, Sustainable Development Goals,Geographically Weighted Regression, Pneumonia, Spasial.
Subjects: G Geography. Anthropology. Recreation > G Geography (General) > G70.212 ArcGIS. Geographic information systems.
G Geography. Anthropology. Recreation > G Geography (General) > G70.217 Geospatial data
H Social Sciences > HA Statistics
H Social Sciences > HA Statistics > HA30.6 Spatial analysis
H Social Sciences > HA Statistics > HA31.35 Analysis of variance
H Social Sciences > HA Statistics > HA31.3 Regression. Correlation
H Social Sciences > HA Statistics > HA31.38 Data envelopment analysis.
H Social Sciences > HA Statistics > HA31.7 Estimation
Q Science > QA Mathematics > QA246.8 Gaussian
Q Science > QA Mathematics > QA353.K47 Kernel functions (analysis)
Divisions: Faculty of Vocational > 49501-Business Statistics
Depositing User: Zati Adila Nurifa
Date Deposited: 14 Apr 2023 08:27
Last Modified: 14 Apr 2023 08:27
URI: http://repository.its.ac.id/id/eprint/97858

Actions (login required)

View Item View Item