Studi Numerik Pengaruh Porous Media Pada Proses Pendinginan Turbin Blade NASA C3X

Baiturrochman, Firlana (2023) Studi Numerik Pengaruh Porous Media Pada Proses Pendinginan Turbin Blade NASA C3X. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 02111940000060_Undergradute_Thesis.pdf] Text
02111940000060_Undergradute_Thesis.pdf - Accepted Version
Restricted to Repository staff only until 1 October 2025.

Download (5MB) | Request a copy

Abstract

Salah satu mesin konversi energi untuk mendapatkan energi listrik adalah siklus turbin gas. Pada komponen turbin dalam siklus turbin gas, gas panas (atau fluida kerja lainnya) yang melalui turbin memiliki temperatur yang sangat tinggi. Oleh karena itu, sudu turbin membutuhkan sistem pendinginan untuk mempertahankan temperatur sudu tetap dingin dan memungkinkan temperatur gas masuk yang lebih tinggi. Penelitian ini dilakukan untuk mendapatkan solusi baru pendinginan sudu turbin gas melalui penambahan porous media. Hal ini karena porous media dapat memberikan efisiensi yang lebih tinggi daripada metode lain untuk mass flow rate berdimensi kecil. Studi numerik dilakukan dengan menggunakan program Ansys Workbench 19.2 dan dengan solver Ansys Fluent untuk mendapatkan solusi simulasi numerik conjugate heat transfer. Sudu turbin yang panas akibat pertukaran panas antara gas panas dengan sudu akan didinginkan dengan saluran pendingin internal. Simulasi dilakukan dengan menggunakan sudu turbin NASA C3X sebagai referensi dan dengan penambahan porous media pada saluran pendingin yang telah dimodifikasi di penelitian sebelumnya. Hasil yang didapatkan dari penelitian ini adalah dalam bentuk performa pendinginan akibat penambahan porus media dan akibat penurunan Reynolds Number dari mass flow rate di Hole A. Penambahan porous media yang didesain langsung pada saluran pendingin memberi pengaruh menguntungkan terhadap pendinginan sudu turbin gas dibandingkan tanpa porous media, dengan perbedaan temperatur dinding sisi luar sudu pada mid-span 3,03% lebih rendah. Modified NASA C3X dengan penambahan porous media yang didesain langsung memiliki temperatur dinding sisi luar sudu pada mid-span sebesar 0,46% lebih tinggi dibanding penambahan porous media yang dimodelkan di Fluent. Penurunan Reynolds Number mass flow rate di lubang A yang semulanya 237000 menjadi 118500, 11850, dan 1185 mendapatkan hasil bahwa effectiveness peningkatan perpindahan panas (Nusselt Number) lebih besar daripada effectiveness peningkatan daya pompa coolant (Friction Factor). Namun, bila nilai Reynolds Number-nya semakin tinggi, maka akan mengakibatkan effectiveness persentase peningkatan perpindahan panas lebih kecil daripada effectiveness persentase peningkatan daya pompa coolant. Pada saat menganalisis dari sisi heat transfer, dampak penurunan nilai mass flow rate di lubang A memberikan pengaruh merugikan terhadap pendinginan sudu turbin gas. Hal ini dibuktikan dengan temperatur dinding sisi luar sudu pada mid-span mengalami peningkatan dengan total porsentase 0,59%, 2,33%, dan 3,52% masing-masing ketika nilai Reynolds Number diturunkan. Lalu, verifikasi yang dilakukan terhadap penelitian numerik Purnadiana et al (2019) menunjukkan kesesuaian hasil.
================================================================================================================================
One of the energy conversion machines to get electrical energy is the gas turbine cycle. In the turbine component in the gas turbine cycle, the hot gas (or other working fluid) that passes through the turbine has a very high temperature. Therefore, turbine blades require a cooling system to keep the blade temperature cool and allow a higher inlet gas temperature. This research was conducted to obtain a new solution for cooling gas turbine blades by adding porous media. This is because porous media can provide higher efficiency than other methods for mass flow rates with small dimensions. Numerical studies were carried out using the Ansys Workbench 19.2 program and the Ansys Fluent solver to obtain conjugate heat transfer numerical simulation solutions. The hot turbine blade due to heat exchange between the hot gas and the blade will be cooled by an internal cooling channel. The simulation was carried out using the NASA C3X turbine blade as a reference and with the addition of porous media to the cooling channel which has been modified in previous studies. The results obtained from this study are in the form of cooling performance due to the addition of porous media and due to a decrease in the Reynolds Number from the mass flow rate in Hole A. The addition of porous media which is designed directly on the cooling channel has a beneficial effect on cooling the gas turbine blades compared to without porous media. with a temperature difference on the outer side of the blade at mid-span 3.03% lower. Modified NASA C3X with the addition of porous media which is directly designed to have a mid-span outer wall temperature of 0.46% higher than the addition of porous media modeled on Fluent. Decreasing the Reynolds Number mass flow rate in hole A which was originally 237000 to 118500, 11850 and 1185 resulted in the effectiveness of increasing heat transfer (Nusselt Number) greater than the effectiveness of increasing coolant pump power (Friction Factor). However, if the Reynolds Number value is higher, the percentage effectiveness increase in heat transfer will be smaller than the percentage effectiveness increases in coolant pump power. When analyzing from the heat transfer side, the impact of decreasing the value of the mass flow rate in hole A has a detrimental effect on the cooling of the gas turbine blades. This is evidenced by the temperature of the outer side of the blade in the mid-span increasing with a total percentage of 0.59%, 2.33% and 3.52% respectively when the Reynolds Number value is lowered. Then, the verification carried out on the numerical research of Purnadiana et al (2019) showed the suitability of the results.

Item Type: Thesis (Other)
Uncontrolled Keywords: CFD, conjugate heat transfer, gas turbine cooling, porous media, pendinginan turbin gas, porous media.
Subjects: T Technology > TJ Mechanical engineering and machinery > TJ164 Power plants--Design and construction
T Technology > TJ Mechanical engineering and machinery > TJ263 Heat exchangers
T Technology > TJ Mechanical engineering and machinery > TJ778 Gas turbines
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Firlana Baiturrochman
Date Deposited: 22 Jun 2023 02:15
Last Modified: 22 Jun 2023 02:15
URI: http://repository.its.ac.id/id/eprint/98177

Actions (login required)

View Item View Item