Herdhiyanto, Andre Dwi (2023) Evaluasi AI Readiness Menggunakan AI Readiness Index (AIRI) Framework Pada Kementerian Di Indonesia. Masters thesis, Institut Teknologi Sepuluh Nopember.
Text
6022211042-Master_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 September 2025. Download (3MB) | Request a copy |
Abstract
Evaluasi tingkat kesiapan Artificial Intelligence (AI) menggunakan AI Readiness Index (AIRI) framework yang dikembangkan oleh AI Singapore (AISG) sangat diperlukan untuk kementerian di Indonesia untuk mengevaluasi tingkat kesiapan penerapan dan implementasi teknologi Artificial Intelligence (AI) serta memberikan rekomendasi dari hasil asesmen yang dilakukan di instansi pusat pemerintah khususnya untuk Kementerian Komunikasi dan Informatika, Kementerian Keuangan, dan Kementerian Hukum dan HAM, sehingga dapat dilakukan analisis yang optimal dan objektif terhadap penyebab ketertinggalan penerapan dan implementasi teknologi Artificial Intelligence (AI) di Indonesia. Analisis dilakukan secara deskriptif dan komparatif. Analisis deskriptif dilakukan terhadap hasil penilaian yang muncul sesuai dengan perhitungan menggunakan AI Readiness Index (AIRI) Framework. Hasil penelitian menunjukkan bahwa Kementerian Komunikasi dan Informatika memperoleh skor 2.9 dianggap sadar dalam menerapkan dan mengimplementasikan AI sehingga Kementerian Komunikasi dan Informatika dapat mempersiapkan institusi untuk mengadopsi AI, sedangkan Kementerian Hukum dan HAM memperoleh skor 2.48 dianggap belum sadar dalam menerapkan dan mengimplementasikan AI sehingga Kementerian Hukum dan HAM dapat meningkatkan literasi AI di dalam institusi, sedangkan Kementerian Keuangan memperoleh skor 3.64 dianggap siap dalam menerapkan dan mengimplementasikan AI sehingga Kementerian Keuangan dapat membantu institusi untuk mengadopsi solusi AI
============================================================================================================================
Evaluation of the level of Artificial Intelligence (AI) readiness using the AI Readiness Index (AIRI) framework developed by AI Singapore (AISG) is needed for ministries in Indonesia to evaluate the level of readiness for the adoption and implementation of Artificial Intelligence (AI) technology and provide recommendations from the results of the assessment conducted in central government institutions, especially for the Ministry of Communication and Informatics, the Ministry of Finance, and the Ministry of Law and Human Rights, so that an optimal and objective analysis can be conducted on the causes of lagging behind the adoption and implementation of Artificial Intelligence (AI) technology in Indonesia. The analysis was conducted descriptively and comparatively. A descriptive analysis was conducted on the assessment results that appeared in the calculation using the AI Readiness Index (AIRI) Framework. The results showed that the Ministry of Communication and Informatics scored 2.9 as aware of adopting and implementing AI so that the Ministry of Communication and Informatics can prepare the institution to adopt AI, while the Ministry of Law and Human Rights scored 2.48 as unaware of implementing and implementing AI so that the Ministry of Law and Human Rights can improve the institution's AI literacy, while the Ministry of Finance scored 3.64 as ready to implement and implement AI so that the Ministry of Finance can help the institution to adopt AI solutions.
Item Type: | Thesis (Masters) |
---|---|
Uncontrolled Keywords: | Kecerdasan Buatan, Indeks Kesiapan AI, Kerangka Kerja; AIRIArtificial Intelligence, AI Readiness Index, AIRI Framework |
Subjects: | H Social Sciences > HD Industries. Land use. Labor > HD30.2 Knowledge management. Q Science > QA Mathematics > QA336 Artificial Intelligence |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20101-(S2) Master Thesis |
Depositing User: | ANDRE DWI HERDHIYANTO |
Date Deposited: | 17 Jul 2023 07:28 |
Last Modified: | 17 Jul 2023 07:28 |
URI: | http://repository.its.ac.id/id/eprint/98482 |
Actions (login required)
View Item |