Laksono, Mochammad Arief Tri (2023) Rancang Bangun Real-Time Speed Estimator Untuk Sensorless Drive Motor Induksi Berbasis Disturbance Observer. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
02311940000011_Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 October 2025. Download (6MB) | Request a copy |
Abstract
Dalam penelitian ini, metode speed sensorless dirancang untuk motor induksi yang diintegrasikan dengan perangkat keras dan perangkat lunak. Metode speed sensorless berbasis Disturbance Observer diterapkan menggunakan pendekatan discrete time system dengan tujuan untuk mendapatkan estimasi kecepatan motor dengan akurasi yang baik dan komputasi yang sederhana serta dapat diimplementasikan pada sistem digital. Speed sensorless memanfaatkan informasi arus dan tegangan untuk mengetahui kecepatan motor induksi. Dengan adanya speed sensorless, peran sensor kecepatan dapat dihilangkan. Perangkat keras dan lunak yang digunakan yaitu inverter Toshiba VF-nC3, data akusisi DAQ NI6001, sensor SCT-013 5A, sensor HW-201, dan MATLAB Simulink. Parameter performansi yang digunakan adalah persentase RMSE pada saat steady state dan settling time sistem pada Simulink. Berdasarkan pengujian yang telah dilakukan, didapat bahwa settling time rata-rata pada tiap kecepatan adalah 3,2 detik dan nilai persentase RMSE steady state yang didapat kurang dari 5% dengan nilai terkecil sebesar 0,28% yang terjadi pada saat kecepatan 500 RPM. Kemudian, pengujian tracking set point 100 RPM menuju 300 RPM memiliki persentase RMSE steady state sebesar 3,5%. Untuk pengujian 300 RPM menuju 100 RPM memiliki persentase RMSE steady state sebesar 6,26%. Rata-rata settling time pada pengujian tracking kecepatan sebesar 3 detik. Pada percobaan, dapat disimpulkan bahwa semakin tinggi kecepatan maka nilai arus dan fluks akan semakin kecil dan Disturbance Observer mampu melakukan estimasi pada rentang kecepatan lebar bahkan pada kecepatan rendah dengan error estimasi dibawah ambang batas yang ditentukan yaitu 5%.
================================================================================================================================
This research uses a sensorless speed method for induction motors integrated with hardware and software. The speed sensorless method based on Disturbance Observer is implemented using a discrate-time system approach to obtain accurate speed estimation of the induction motor with simple computation also can be implemented into a digital system. Speed sensorless utilizes current and voltage information to determine the speed of the induction motor and eliminate the speed sensor. The hardware and software used in this research are Toshiba VF-nC3 inverter, DAQ NI 600I data acquisition, SCT-013 current sensor, IR HW-201 speed sensor, and Matlab Simulink. The performance parameters are RMSE at steady state and settling time in Simulink. Based on the conducted tests, it was found that the average settling time at each speed was 3,2 seconds and the RMSE percentage at steady state was less that 5%. The smallest value of RMSE is 0,28% at 500 RPM. Furthermore, the test for tracking a set point from 100 RPM to 300 RPM had a steady state RMSE percentage 3,5%. For the test from 300 RPM to 100 RPM. The steady state RMSE percentage was 6,26%. The average settling time is 3 second. From these experiments, it can be concluded that as the speed increase, the current and flux values decrease. The Disturbance Observer can estimate within a wide speed range, including low speed with estimation errors below 5%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Motor Induksi, Sensorless Speed, Disturbance Observer, Induction motor |
Subjects: | Q Science > QC Physics > QC100.5 Measuring instruments (General) T Technology > TJ Mechanical engineering and machinery > TJ217.2 Robust control T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3070 Automatic control |
Divisions: | Faculty of Industrial Technology and Systems Engineering (INDSYS) > Physics Engineering > 30201-(S1) Undergraduate Thesis |
Depositing User: | Mochammad Arief Tri Laksono |
Date Deposited: | 20 Jul 2023 07:07 |
Last Modified: | 20 Jul 2023 07:07 |
URI: | http://repository.its.ac.id/id/eprint/98710 |
Actions (login required)
View Item |