Majid, Muhammad Aqil Rayhan (2023) Sistem Deteksi Dan Tracking Keretakan Bangunan Dengan Unmanned Aerial Vehicle Menggunakan Algoritma CNN. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
07111940000211-Undergraduate Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 September 2025. Download (2MB) | Request a copy |
Abstract
Perkembangan Kendaraan Udara Tanpa Awak (Unmanned Aerial Vehicle) pada era ini mengalami perkembangan pesat. Penggunaan Quadcopter pada zaman sekarang banyak dimanfaatkan dalam bidang seperti militer, penyelematan korban jiwa, dan inspeksi bangunan. Salah satu kempampuan drone yang dibutuhkan untuk melaksanakan tugasnya adalah kemampuan drone untuk mendeteksi suatu objek. Selain kemampuan mendekteksi drone juga dapat menjakau tempat yang tinggi dan sulit dijangkau oleh manusia. Dalam deteksi keretakan bangunan menggunakan drone dibutuhkan kecepatan dan tingkat presisi yang tinggi. Untuk melakukan deteksi ini, Algoritma CNN telah dikembangkan. Penggunaan YOLO pada penelitian ini dikarenakan YOLO memiliki kemampuan untuk mendeteksi objek secara real time dan memiliki keakurasian yang cukup untuk mendeteksi keretakan pada bangunan. Kemampuan drone untuk mengenali objek secara real time ini sangatlah dibutuhkan agar drone dapat melakukan manuver-manuver yang dibutuhkan untuk menjalakan tugas-tugas yang diberikan.
================================================================================================================================
Unmanned Aerial Vehicle (UAV) has experienced rapid development in this era. The use of Quadcopters nowadays is widely utilized in various fields such as military operations, search and rescue missions, and building inspections. One of the crucial capabilities of a drone in carrying out its tasks is the ability to detect objects. Moreover, drones can reach high and inaccessible areas, which are difficult for humans to reach. In the case of detecting structural cracks using drones, high speed and precision are required. To address this, the CNN algorithm has been developed. YOLO (You Only Look Once) is used in this research because it can detect objects in real-time and has sufficient accuracy to detect cracks in buildings. The drone's ability to recognize objects in real-time is essential for executing the necessary maneuvers to accomplish assigned tasks.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | CNN, Keretakan Bangunan, Unmanned Aerial Vehicle. |
Subjects: | Q Science > Q Science (General) > Q325.5 Machine learning. Support vector machines. Q Science > QA Mathematics > QA336 Artificial Intelligence T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3070 Automatic control |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | Muhammmad Aqil Rayhan Majid |
Date Deposited: | 26 Jul 2023 02:27 |
Last Modified: | 26 Jul 2023 02:27 |
URI: | http://repository.its.ac.id/id/eprint/99064 |
Actions (login required)
View Item |