Xavier, Farrel Shaquilla (2023) Pengolahan Sinyal EEG untuk Kendali Robot Beroda. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
07111940000029-Undergraduate_Thesis.pdf - Accepted Version Restricted to Repository staff only until 1 September 2025. Download (5MB) | Request a copy |
Abstract
Penyandang cacat tubuh yang memiliki kekurangan dalam menggerakkan anggota tubuhnya mengalami kesulitan dalam menjalani aktivitas sehari – hari. Kesulitan ini bisa diatasi dengan menggunakan bantuan orang lain maupun alat bantu. Secara umum alat bantu yang dimaksud tersebut sudah ada di pasaran termasuk dengan teknologi BCI. Dalam tugas akhir ini telah dirancang alat BCI dengan cara merekam sinyal electroencephalogram (EEG) dari otak seseorang untuk mengoperasikan perangkat elektronik lainnya. Yang membedakan dengan BCI umumnya di tugas akhir ini, sinyal EEG yang diolah dengan butterworth bandpass filter kemudian diterapkan short-time fourier transform untuk memisah sinyal menjadi lima pita frekuensi yang berbeda. Nilai daya dari masing-masing pita frekuensi tersebut direkam saat seseorang sedang memfokuskan dan menenangkan pikirannya. Daya dari pita teta, alfa, dan beta dijadikan input dari fuzzy inference system yang dirancang dengan fuzzy c–means clustering dengan output berupa estimasi perbedaan antara tingkat atensi dan meditasi pikiran. Hasil pengujian dari alat menunjukkan tingkat akurasi 85% untuk gerakan maju yaitu saat dominan fokus, 70% untuk gerakan mundur, yaitu saat tenang, dan 85% untuk gerakan belok, yaitu saat berkedip. Saran untuk penelitian kedepannya adalah dengan menggunakan perangkat sensor EEG dan metode pengambilan keputusan yang lebih mutakhir.
===================================================================================================================================
Individuals with physical disabilities, who experience limitations in moving their body parts, face challenges in performing daily activities. These difficulties can be resolved by utilizing assistance from others or using assistive devices. Generally, such assistive tools, including Brain-Computer Interface (BCI) technology, are already available in the market. In this thesis, a BCI device has been designed to record electroencephalogram (EEG) signals from a person's brain to operate other electronic devices. What sets this particular BCI apart from conventional ones is the processing of EEG signals using a Butterworth bandpass filter, followed by the application of the short-time Fourier transform to separate the signals into five distinct frequency bands. The power values from each frequency band are recorded while the individual is focusing and calming their mind. The powers from theta, alpha, and beta bands are used as inputs to a fuzzy inference system, designed with fuzzy c-means clustering, to estimate the differences between the levels of attention and meditation of the mind. The testing results of the device indicate an 85% accuracy for forward movement (dominant focus), 70% accuracy for backward movement (calm state), and 85% accuracy for turning movement (blinking). Suggestions for future research include using more advanced EEG sensor devices and decision-making methods.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Electroencephalogram, Fuzzy logic, Short-time fourier transform, Electroencephalogram, Fuzzy logic, Short-time fourier transform. |
Subjects: | Q Science > QP Physiology > Q376.5 Electroencephalography (EEG) T Technology > TJ Mechanical engineering and machinery > TJ211.4 Robot motion T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5102.9 Signal processing. |
Divisions: | Faculty of Intelligent Electrical and Informatics Technology (ELECTICS) > Electrical Engineering > 20201-(S1) Undergraduate Thesis |
Depositing User: | Farrel Shaquilla Xavier |
Date Deposited: | 24 Jul 2023 07:38 |
Last Modified: | 24 Jul 2023 07:38 |
URI: | http://repository.its.ac.id/id/eprint/99115 |
Actions (login required)
View Item |