

TUGAS AKHIR - MO 091336

KAJIAN KEKUATAN STRUKTUR SEMI-SUBMERSIBLE DENGAN KONFIGURASI ENAM KAKI BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG

AHMAD ADILAH

NRP. 4310 100 012

Dosen Pembimbing: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D Dr. Eng. Rudi Walujo Prastianto, ST., MT.

JURUSAN TEKNIK KELAUTAN Fakultas Tekonolgi Kelautan Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT - MO 091336

STRUCTURAL STRENGTH ANALYSIS ON SEMI-SUBMERSIBLE WITH SIX RECTANGULAR SECTION OF COLUMNS DUE TO WAVE EXCITATION

AHMAD ADILAH

REG. 4310 100 012

Supervisors:

Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D Dr. Eng. Rudi Walujo Prastianto, ST., MT.

DEPARTMENT OF OCEAN ENGINEERING Faculty of Marine Technology Sepuluh Nopember Institute of Technology Surabaya 2014

KAJIAN KEKUATAN STRUKTUR *SEMI-SUBMERSIBLE* DENGAN KONFIGURASI ENAM KAKI BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG

NamaMahasiswa	: Ahmad Adilah
NRP	: 4310 100 012
Jurusan	: Teknik Kelautan
	Fakultas Teknologi Kelautan
	Institut Teknologi Sepuluh Nopember
Dosen Pembimbing	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D
	Dr. Eng. Rudi Walujo Prastianto, ST., MT.

ABSTRAK

Struktur semi-submersible mempunyai konfigurasi yang terdiri dari deck yang ditumpu oleh kolom-kolom tegak lalu ditumpu dibagian bawah oleh pontoon. Pada tugas akhir ini dilakukan kajian untuk mengetahui kekuatan struktur dari semisubmersible dengan konfigurasi enam kolom persegi empat dan dua pontoon dengan displasemen struktur sebesar 24173 ton. Tahapan awal yaitu analisa hidrodinamis untuk mendapatkan respon gerakan akibat eksitasi gelombang. Setelah itu dilakukan analisa respon struktur yang diakibatkan oleh eksitasi gelombang yaitu berupa shear force dan bending moment, analisa dilakukan pada dua kondisi yaitu pada kondisi panjang gelombang sama dengan panjang struktur yaitu 107 meter dan panjang gelombang periode 100 tahunan. Selanjutnya beban yang terdisribusi pada struktur dengan material baja A36 dan tebal plat 30 mm yang ditransformasi menjadi distribusi tegangan. Analisa dilakukan dengan menggunakan tiga model struktur yaitu : struktur tanpa deck, deck beam rigid, dan deck smeared. Pada masing-masing model didapatkan tegangan maksimum berurut-urut sebesar 201 MPa, 155 MPa, dan 121 MPa pada lokasi dan dari ketiga tegangan maksimum tersebut diketahui bahwa tidak ada yang melebihi tegangan yield untuk material baja A36 yaitu 250 Mpa. Lokasi tegangan maksimum pada struktur dengan tanpa deck berada di transverse beam dekat deck pada kolom tiga dan struktur dengan deck rigid berada di sambungan kolom dan pontoon pada kolom tiga, sedangkan model dengan deck smeared lokasi tegangan maksimumnya ialah pada transverse beam di pontoon yang berada di bawah kolom satu.

Kata kunci: Semi-submersible, Respon struktur, Shear force, Bending moment, Tegangan maksimum

STRUCTURAL STRENGTH ANALYSIS ON SEMI-SUBMERSIBLE WITH SIX RECTANGULAR SECTION OF COLUMNS DUE TO WAVE EXCITATION

Name	: Ahmad Adilah
Reg	: 4310 100 012
Department	: Ocean Engineering
	Faculty of Marine Technology
	Sepuluh Nopember Institute of Technology
Supervisors	: Prof. Ir. Eko Budi Djatmiko, M.Sc., Ph.D
	Dr. Eng. Rudi Walujo Prastianto, ST., MT.

ABSTRACT

The configuration on semi-submersible consist of deck with a straight column and on the bottom of the structure has pontoon for bouyancy. Structural strength analysis is important for semi-submersible strucutre because the analysis can find out the strength of the semi-submersible structure. This current study is concentrated on structural strength analysis of the semi-submersible with six columns and two pontoons for the bouyancy, and the displacement of the structure is 24173 ton on Natuna Sea at water depth 90 m with the significant wave is 5,3 m. The first stage of evaluation is to analyze the hydrodinamics motion to obtain the motion characteristics of the structure due to excitation wave. The second stage is to analyze the structure response due to excitation wave that is shear force and bending moment, analysis performed in two condition that is at wave length 107 m and at wave length on T = 100 years. The distibute load on the structure with plate thickness is 30 mm transformed into structure response than become stress on the structure. Analysis performed in three model that is : structure semi-submersible without deck, structure sei-submersible with rigid deck, and strucutre semisubmersible with smeared deck. In each model obtained maximum stress 201 Mpa, 155 Mpa, and 121 Mpa in different locations. The largest stress in structure without deck is located in transverse beam near deck in column three, in structure with deck rigid the largest stress located between column and pontoon in column three, and the largest stress in structure semi-submersible with smeared deck the largest stress located in transverse beam inside pontoon under column one.

Keyword: Semi-submersible, structure response, Shear force, Bending moment, structural strength

KAJIAN KEKUATAN STRUKTUR *SEMI-SUBMERSIBLE* DENGAN KONFIGURASI ENAM KAKI BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat

Memperoleh Gelar Sarjana Teknik

pada

Program Studi S-1 Jurusan Teknik Kelautan

Fakultas Teknologi Kelautan Institut Teknologi Sepuluh Nopember

Oleh:

AHMAD ADILAH NRP. 4310 100 012

Disetujui oleh Pembimbing Tugas Akhir :

(Pembimbing 1)

FUSAN

1. Prof. Ir. Eko B. Djatmiko, M.Sc., Ph.D...

(Pembimbing 2) 2. Dr. Eng. Rudi W. Prastianto, ST., MT.

SURABAYA, AGUSTUS 2014

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Puji syukur penulis panjatkan kehadirat Allah SWT atas segala limpahan rahmat, hidayah dan karunia-nya, sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan baik. Tugas Akhir ini berjudul "KAJIAN KEKUATAN STRUKTUR SEMI-SUBMERSIBLE DENGAN KONFIGURASI ENAM KAKI BERPENAMPANG PERSEGI EMPAT AKIBAT EKSITASI GELOMBANG"

Laporan ini disusun untuk memenuhi persyaratan dalam menyelesaikan Studi Kesarjanaan (S-1) di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan (FTK), Institut Teknologi Sepuluh Nopember (ITS) Surabaya. Tugas Akhir ini menitikberatkan pada kekuatan struktur *semi-submersible* yang diakibatkan oleh eksitasi gelombang pada saat kondisi operasi.

Penulis menyadari dalam penulisan laporan ini mungkin masih terdapat kekurangan, oleh karena itu saran dan kritik sangat penulis harapkan sebagai bahan penyempurnaan laporan selanjutnya. Penulis berharap semoga laporan ini dapat bermanfaat bagi perkembangan teknologi di bidang rekayasa kelautan bagi pembaca pada umumnya dan penulis pada khususnya.

Wassalamu'alaikum Wr. Wb.

Surabaya, Agustus 2014

Ahmad Adilah

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	iii
ABSTRAK	iv
ABSTRACT	v
KATA PENGANTAR	vi
UCAPAN TERIMA KASIH	vii
DAFTAR ISI	viii
DAFTAR TABEL	x
DAFTAR GAMBAR	xi
DAFTAR LAMPIRAN	xiii
BAB I PENDAHULUAN	1
1.1. LATAR BELAKANG MASALAH	1
1.2. PERUMUSAN MASALAH	2
1.3. TUJUAN	3
1.4. MANFAAT	3.
1.5. BATASAN MASALAH	3
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI	5
2.1. TINJAUAN PUSTAKA	5
2.2. DASAR TEORI	7
2.2.1. Konsep Pembebanan	7
2.2.2. Gerakan Struktur Bangunan Apung Akibat Eksitasi	
Gelombang	9
2.2.3. Gerakan Struktur Apung Dalam Enam Derajat Kebebasan	13
2.2.4. Response Amplitude Operator	16
2.2.5. Shear Force dan Bending Moment	17
2.2.6. Metode Elemen Hingga	19
2.2.7. Tegangan (Stress)	20
2.2.8. Tegangan <i>Buckling</i> pada Kolom	22

BAB III METODOLOGI PENELITIAN	25
3.1. METODE PENELITIAN	25
3.2. PROSEDUR PENELITIAN	26
BAB IV ANALISIS DAN PEMBAHASAN	37
4.1. ANALISA RESPON GERAKAN SEMI-SUBMERSIBLE PADA	
GELOMBANG REGULER	37
4.2. ANALISA RESPON STRUKTUR AKIBAT GELOMBA	١NG
REGULER	43
4.2.1. Shear force dan bending moment kondisi still water	43
4.2.2. Shear force dan bending moment kondisi $\lambda w = 107 \text{ m}$	45
4.2.3 Shear force dan bending moment kondisi periode 100 tahunan	46
4.3. NILAI EKSTREM SHEAR FORCE DAN BENDING MOMENT	
AKIBAT EKSITASI GELOMBANG REGULER	49
4.4. STRUKTUR SCANTLING KOLOM DAN PONTOON	50
4.5. ANALISA KEKUATAN STRUKTUR	53
4.6. LOKASI TEGANGAN MAKSIMUM	62
4.6.1. Struktur tanpa deck	63
4.6.2. Struktur dengan deck <i>rigid</i>	64
4.6.3. Struktur dengan deck <i>smeared</i>	65
BAB V KESIMPULAN DAN SARAN	67
5.1 KESIMPULAN	67
5.2 SARAN	68
DAFTAR PUSTAKA	xiv
LAMPIRAN	

DAFTAR TABEL

Tabel	3.1	Principal dimension dari semi-submersible	27
Tabel	3.2	Belanak metocean data	29
Tabel	3.3	Tinggi gelombang signifikan vs periode puncak untuk	
		keseluruhan bulan dan tahun – frekuensi setiap tinggi	
		gelombang	30
Tabel	3.4	Data ukuran utama semi-submersible Dreivar	31
Tabel	3.5	Hasil analisa hidrostatis Dreivar	34
Tabel	3.6	Hasil validasi displacement model berdasarkan kriteria ABS	35
Tabel	4.1	Total shear force dan bending moment kondisi still water	43
Tabel	4.2	Total <i>shear force</i> dan <i>bending moment</i> kondsi $\lambda w = 107 m$	45
Tabel	4.3	Total <i>shear force</i> dan <i>bending moment</i> kondsi periode 100 tahunan.	47
Tabel	4.4	Nilai shear force dan bending moment maksimum kondisi hogging.	50
Tabel	4.5	Nilai shear force dan bending moment maksimum kondisi sagging.	50
Tabel	4.6	Meshing sensitivity analysis	57
Tabel	4.7	Tegangan terbesar node 145804 dan node-node sekitarnya	63
Tabel	4.8	Tegangan terbesar node 7667 dan node-node sekitarnya	65
Tabel	4.9	Tegangan terbesar node 138698 dan node-node sekitarnya	66

DAFTAR GAMBAR

Gambar 1.1	konfigurasi umum semi-submersible	2
Gambar 2.1	Konfigurasi umum semi-submersible (API-RP2P,2001)	6
Gambar 2.2	Gerakan heaving	. 10
Gambar 2.3	Gerakan surging	.11
Gambar 2.4	Gerakan swaying	.11
Gambar 2.5	Gerakan pitching	.12
Gambar 2.6	Gerakan rolling	.13
Gambar 2.7	Gerakan yawing	.13
Gambar 2.8	Gerakan semi-submersible dalam enam derajat kebebasan	.14
Gambar 2.9	Defleksi akibat <i>hogging</i> pada kapal	.18
Gambar 2.10	Defleksi akibat sagging pada kapal	.18
Gambar 2.11	Contoh grafik shear force dan bending moment	. 19
Gambar 2.12	Tegangan normal yang bekerja pada luasan A	.21
Gambar 3.1	Diagram alir pengerjaan	. 25
Gambar 3.2	General arrangement semi-submersible Essar tampak depan.	. 28
Gambar 3.3	General arrangement semi-submersible Essar tampak atas	. 28
Gambar 3.4	Permodelan menggunakan AutoCAD	.31
Gambar 3.5	Pemodelan menggunakan MOSES 6.0 tampak isometric	. 32
Gambar 3.6	Pemodelan menggunakan MOSES 6.0 tampak atas	. 32
Gambar 3.7	Pemodelan menggunakan MOSES 6.0 tampak depan	. 33
Gambar 3.8	Pemodelan menggunakan MOSES 6.0 tampak samping	. 33
Gambar 3.9	Pemodelan dengan MAXSURF	. 34
Gambar 4.1	RAO gerakan surge	. 37
Gambar 4.2	RAO gerakan sway	. 38
Gambar 4.3	RAO gerakan <i>heave</i>	. 39
Gambar 4.4	RAO gerakan <i>roll</i>	.40
Gambar 4.5	RAO gerakan <i>pitch</i>	.41
Gambar 4.6	RAO gerakan <i>yaw</i>	.42
Gambar 4.7	Kurva total shear force semi-submersible Dreivar	.48

Gambar 4.8	Kurva total bending moment semi-submersible Dreivar
Gambar 4.9	Struktur scantling kolom
Gambar 4.10	Properti penegar pada kolom51
Gambar 4.11	Struktur scantling kolom
Gambar 4.12	Properti penegar pada pontoon
Gambar 4.13	Struktur semi-submersible tanpa deck54
Gambar 4.14	Struktur semi-submersible dengan deck rigid54
Gambar 4.15	Struktur semi-submersible dangan deck smeared
Gambar 4.16	Lokasi input beban pada model struktur55
Gambar 4.17	Lokasi dan arah gaya pembebanan56
Gambar 4.18	Grafik meshing sensitivity tegangan terhadap jumlah elemen57
Gambar 4.19	Distribusi tegangan struktur semi-submersible tanpa deck58
Gambar 4.20	Deformasi pada struktur semi-submersible tanpa deck58
Gambar 4.21	Distribusi tegangan semi-submersible dengan deck rigid59
Gambar 4.22	Deformasi pada struktur semi-submersible dengan deck rigid. 60
Gambar 4.23	Distribusi tegangan semi submersible dengan deck smeared61
Gambar 4.24	Deformasi struktur semi submersible dengan deck smeared 61
Gambar 4.25	Lokasi tegangan maksimum pada struktur tanpa deck63
Gambar 4.26	Lokasi tegangan maksimum pada struktur dengan deck rigid 64
Gambar 4.27	Lokasi tegangan maksimum struktur dengan deck smeared 66

BAB I

PENDAHULUAN

1.1. LATAR BELAKANG MASALAH

Saat ini kebutuhan manusia akan energi semakin meningkat yang diakibatkan karena permintaan yang semakin membesar. Hal itu tidak diimbangi dengan produksi energi yang semakin lama semakin menurun terutama minyak dan gas bumi. Cadangan minyak dan gas bumi yang terletak di darat maupun laut dangkal sudah mulai berkurang dan saat ini sudah mulai beralih ke laut dalam. Struktur terpancang sangat tidak memungkinkan untuk dipasang di laut dalam dikarenakan banyak faktor, seperti faktor lingkungan yang sangat tidak memungkinkan dan faktor biaya yang pasti sangat mahal, sehingga digunakan struktur terapung untuk mengambil minyak dan gas bumi yang terdapat di laut dalam. Salah satu struktur terapung yang banyak digunakan saat ini ialah *semi-submersible*.

Penggunaan semi-submersible sebagai anjungan lepas pantai telah dikembangkan dalam tiga dekade terakhir. Untuk ladang marginal pada laut dalam, semisubmersible sebagai sistem produksi mungkin adalah satu-satunya alternatif yang ekonomis (Patel, 1991). Normalnya semi-submersible didesain dengan bagian upper hull, kolom dan lower hull yang terhubung secara horizontal dan diagonal dengan bracing members. Desain semi-submersible berbeda dengan bentuk kapal konvensional pada hal yang paling mendasar. Bagian yang tercelup air pada semisubmersible menyebabkan pengurangan signifikan pada gelombang yang mengakibatkan gerakan heave, roll dan pitch jika dibandingkan degan kapal berlambung tunggal. Filsofi dari inovasi semi-submersible adalah mereduksi intensitas gerakan pada saat mengalami eksitasi gelombang melalui dua aspek dengan memanfaatkan karakteristik konfigurasinya. Aspek pertama adalah dari perpotongan antara kolom dengan permukaan air, yang menghasilkan luas garis air relatif kecil. Luas garis air yang relatif kecil, dan selanjutnya juga mempengaruhi harga momen inersia massa yang juga relatif kecil, akan memberikan efek penurunan pada frekuensi alami gerakan vertikalnya, yakni heave, roll dan pitch (Djatmiko, 2012). Aspek kedua adalah meletakkan bagian lambung terbesarnya sebagai penyedia gaya apung, yakni bagian ponton, jauh di bawah permukaan air. Dengan posisi lambung utama yang jauh dari permukaan air akan menjamin efek eksitasi gaya gelombang menjadi lebih kecil, sehingga gerakan relatif menjadi lebih rendah.

Gambar 1.1 Konfigurasi umum *semi-submersible* (sumber : <u>http://www.auuuu.com/shiptravel/semi-submersible/</u>)

Pada tugas akhir ini objek *semi-subemrsible* yang dikaji mempunyai konfigurasi kolom tegak lurus dan pontoon persegi empat, dimana ukuran utama dari *semi-submersible* ini mengacu pada parameter struktur deck *semi-submersible Essar Wildcat. Semi-submersible* harus dianalisa respon dinamisnya pada gelombang dengan tujuan untuk mengetahui gerakan yang diakibatkan oleh gelombang.

1.2. PERUMUSAN MASALAH

Permasalahan yang akan dibahas dalam tugas akhir ini adalah :

- 1. Bagaimana respon struktur global *semi-submersible* pada kondisi *still water* maupun akibat eksitasi gelombang?
- 2. Bagaimankah distribusi tegangan yang terjadi pada struktur global *semi-submersible*?

3. Dimanakah lokasi tegangan maksimum pada struktur *semi-submersible* tersebut?

1.3. TUJUAN

Tujuan dari tugas akhir ini adalah :

- 1. Mengetahui respon struktur global *semi-submersible* akibat eksitasi gelombang.
- 2. Mengetahui distribusi tegangan yang terjadi pada struktur global *semi-submersible* pada kondisi *still water* dan *wave*.
- 3. Mengetahui lokasi tegangan maksimum pada struktur *semi-submersible* tersebut.

1.4. MANFAAT

Adapun manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

- 1. Dapat mengetahui prosedur cara menganalisis dan menghitung karakteristik respon struktur *semi-submersible*.
- 2. Dapat mengetahui besarnya dan letak tegangan maksimum yang terjadi pada struktur *semi-submersible* yang diakibatkan oleh eksitasi gelombang.

1.5. BATASAN MASALAH

Agar lebih memudahkan analisis dan dapat dicapai tujuan yang diharapkan, maka perlu diberikan batasan-batasan sebagai berikut:

- Ukuran utama *semi-submersible* berlambung persegi empat akan ditentukan dengan mengacu pada parameter utama *Semi-Submersible Essar Wildcat*, pada khususnya displasemen, draft, panjang serta lebarnya deck.
- 2. Ukuran dari kolom dan ponton akan disesuaikan untuk memenuhi parameter utama.
- 3. Konfigurasi *semi-submersible* akan ditetapkan mempunyai bentuk yang simetri antara haluan dan buritan.

- 4. Daerah operasi *semi-submersible* ditetapkan di perairan Natuna dengan kedalaman 90 m.
- 5. Analisa dilakukan pada struktur *semi-submersible* dengan kondisi terapung bebas.
- Beban yang bekerja adalah beban dinamis akibat eksitasi gelombang, sementara untuk beban angin dan beban arus diabaikan karena tidak berdampak signifikan pada respon struktur.
- Arah pembebanan gelombang yang bekerja pada struktur adalah 0°, 45°, 90°, 135°, 180°.
- 8. Prediksi gerakan di gelombang reguler dilakukan dengan menggunakan teori difraksi
- 9. Dalam permodelan, *riser* tidak dimodelkan.
- 10. Struktur adalah terapung dengan konfigurasi dua lambung serta enam kolom.
- 11. Kekuatan yang ditinjau adalah kekuatan memanjang dan hanya ditinjau sampai level elastis
- 12. Rules mengacu pada ABS.

BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 TINJAUAN PUSTAKA

Secara garis besar konstruksi anjungan lepas pantai dapat dibedakan menjadi tiga golongan utama (Soedjono, 1998) yaitu:

- a. Struktur terapung (*Mobile Offshore Drilling Unit* (MODU) atau *Floating Production Platform*), seperti: semi-submersible, drilling ship, tension leg platform (TLP), jack-up, dll.
- b. Struktur terpancang (*Fixed Offshore Platform*), seperti: jacket platform, concrete gravity, tripod, dll.
- c. Struktur lentur (*Compliant Platform*), seperti: articulated tower, guyed tower, dll.

Anjungan terapung merupakan anjungan yang mempunyai karakter bergerak mengikuti gerakan gelombang. Seringkali anjungan tipe ini dihubungkan dengan dasar laut menggunakan peralatan mekanik seperti kabel atau rantai. Untuk anjungan tipe ini, yang utama adalah mobilitas dan kemampuannya meng-antisipasi gerakan akibat gelombang dan arus laut (Djatmiko, 2004).

Salah satu bangunan apung yang banyak digunakan saat ini adalah *semi-submersible. Semi-submersible* merupakan bangunan apung yang mempunyai geometri yang berbeda dengan *ship-shaped structure* yang sering digunakan di daerah lepas pantai. Struktur *semi-submersible* mempunyai pontoon yang tercelup air dan terhubung dengan geladak yang dihubungkan dengan beberapa konfigurasi kolom. Salah satu fungsi *semi-submersible* digunakan sebagai *drilling rig. Semi-submersible drilling rig* digunakan pada rentang kedalaman 91.5 hingga 915 m (300ft hingga 3000ft) (Randall, 1997). Dengan fungsi *semi-submersible* sebagai *driling rig* yang harus berpindah-pindah dari satu tempat ke tempat lain, maka struktur *semi-submersible* akan mengalami beban lingkungan

yang berbeda-beda. Akibat dari beban lingkungan yang bervariasi tersebut dapat terjadi fluktuasi tegangan pada komponen struktur *semi-submersible*.

Gambar 2.1: Konfigurasi umum semi-submersible (API-RP2P, 2011)

Kekuatan bangunan apung seperti *semi-submersible* sangat dipengaruhi oleh beban-beban yang bekerja pada bangunan tersebut, yang mana seorang *engineer* harus mampu menentukan parameter apa saja yang harus dipertimbangkan dalam perancangan suatu struktur. Beban-beban yang dapat mempengaruhi bangunan apung yaitu :

- Beban Mati (*Dead Loads*), dimana beban mati adalah beban konstruksi dari bangunan apung tersebut serta seluruh peralatan permanen pada struktur yang tidak berubah selama proses operasi.
- 2. Beban Hidup (*Live Loads*), dimana beban hidup ini adalah beban yang membebani platform yang dapat berubah selama proses operasi, beban hidup ini meliputi : peralatan pengeboran, living quarter, berat tangki penyimpanan dan peralatan yang mendukung kehidupan dan peralatan keselamatan.
- 3. Beban Lingkungan *(Environtmental Loads)*, dimana beban lingkungan adalah beban yang membebani bangunan apung akibat fenomena alam,

seperti angin, arus, gelombang, salju dan variasi tekanan hidrostatik akibat gelombang dan pasang surut.

4. Beban Akibat Kecelakaan *(Accidental Loading),* merupakan beban tambahan yang terjadi akibat adanya kecelakaan yang menimpa bangunan apung tersebut, seperti tubrukan dengan kapal lain.

Seorang *engineer* harus mampu untuk menganalisa kekuatan dari struktur bangunan apung terhadap lingkungan tempat struktur tersebut bekerja karena setiap bangunan apung memiliki karakteristik perilaku yang berbeda-beda yang sesuai dengan konfigurasinya, sehingga perlu diketahui batasan kekuatan dari bangunan apung tersebut dan pada saat proses pemilihan bahan dan proses produksi dapat dilakukan dengan maksimal.

2.2 DASAR TEORI

2.2.1 Konsep Pembebanan

Untuk merancang bangunan lepas pantai maka harus ditentukan terlebih dahulu kemampuan kerja dari struktur tersebut yang dipengaruhi oleh beban yang bekerja pada struktur tersebut. Perancang harus menentukan akurasi beban yang akan dipakai dalam perancangan bangunan lepas pantai terlebih dahulu. Bebanbeban yang harus dipertimbangkan oleh perancang dalam perancangan *offshore structure* adalah sebagai berikut (Murdjito, 2003):

a. Beban mati (dead load)

Beban mati adalah beban dari semua komponen kering serta peralatan, perlengkapan, dan permesinan yang tidak berubah dari mode operasi pada suatu struktur , meliputi: berat struktur, beral peralatan, dan berat permesinan yang digunakan dalam proses pengeboran ketika sedang tidak dioperasikan.

b. Beban hidup (live load)

Beban hidup adalah beban yang terjadi pada struktur selama dipakai (menjalankan fungsi) dan tidak berubah dari mode operasi satu ke mode operasi yang lain. Contoh beban yang termasuk dalam beban hidup ini adalah beban yang diakibatkan oleh pengoperasian mesin atau peralatan lainnya pada suatu struktur yang berhubungan dengan operasi struktur tersebut termasuk beban pengoperasian *crane*.

- c. Beban akibat kecelakaan (*accidental load*)
 Beban kecelakaan merupakan beban yang tidak dapat diduga sebelumnya yang terjadi pada struktur, misalnya tabrakan dengan kapal pemandu operasi, putusnya tali tambat, dan kebakaran.
- d. Beban lingkungan (environmental load)

Beban lingkungan adalah beban yang terjadi karena dipengaruhi oleh lingkungan dimana suatu struktur lepas pantai dioperasikan atau bekerja. Beban lingkungan yang digunakan dalam perancanganadalah beban gelombang dan beban arus.

2.2.1.1 Gaya Gelombang

Syarat pemilihan teori untuk perhitungan gaya gelombang didasarkan pada perbandingan antara diameter struktur (*D*) dengan panjang gelombang (λ) sebagai berikut:

- $\frac{D}{\lambda} > 1$ = gelombang mendekati pemantulan murni, persamaan morison tidak valid
- $\frac{D}{\lambda} > 0.2$ = difraksi gelombang perlu diperhitungkan, persamaan morison tidak valid

 $\frac{D}{\lambda} < 0.2$ = persamaan morison valid

Berikut adalah teori yang digunakan pada perhitungan gaya gelombang (Indiyono, 2004), yaitu:

a. Teori Morison

Persamaan morison mengasumsikan bahwa gelombang terdiri dari komponen gaya inersia dan *drag force* (hambatan) yang dijumlahkan secara linier. Persamaan morison lebih tepat diterapkan pada kasus struktur dimana gaya hambatan merupakan komponen yang dominan. Hal ini biasanya dijumpai pada struktur yang ukurannya (D) relatif kecil dibandingkan dengan panjang gelombangnya (λ).

b. Teori Froude-Krylov

Froude-Krylov digunakan bilamana gaya hambatan relatif kecil dan gaya inersia dianggap lebih berpengaruh, dimana struktur dianggap kecil. Teori ini mengadopsi metode tekanan gelombang *incident* dan bidang tekanan pada permukaan struktur. Keuntungan dari teori ini adalah untuk struktur yang simetris, perhitungan gaya dapat dilakukan dengan persamaan terangkai (*closed-form*) dan koefisien-koefisien gayanya mudah ditentukan.

c. Teori Difraksi

Bilamana suatu struktur mempunyai ukuran yang relatif besar, yakni memiliki ukuran yang kurang lebih sama dengan panjang gelombang, maka keberadaan struktur ini akan mempengaruhi timbulnya perubahan arah pada medan gelombang disekitarnya. Dalam hal ini difraksi gelombang dari permukaan struktur harus diperhitungkan dalam evaluasi gaya gelombang. Difraksi gelombang pada permukaan struktur harus diperhitungkan, dimana persamaan *Navier-Stokes* merupakan persamaan yang sering digunakan pada permasalahan difraksi, untuk teori gelombang digunakan teori gelombang linier (*Airy*). Gaya gelombang difraksi memiliki efek yang signifikan terhadap struktur *semi-submersible* di perairan dalam.

Karena struktur pada tugas akhir ini memiliki ukuran sama dengan panjang gelombang sehingga teori gelombang yang memungkinkan untuk digunakan adalah teori difraksi.

2.2.2 Gerakan Struktur Bangunan Apung Akibat Eksitasi Gelombang

Setiap struktur apung yang bergerak di atas permukaan laut selalu mengalami gerakan osilasi. Gerakan osilasi ini terdiri enam macam gerakan dengan tiga gerakan lateral dan tiga gerakan rotasional dalam tiga arah. Macam-macam gerakan ini meliputi gerakan translasional dan rotasional, yaitu:

2.2.2.1 Heaving

Heaving merupakan gerakan osilasi translasi pada arah sumbu z (vertikal), *heaving* merupakan salah satu gerakan kapal pada permukaan gelombang reguler yang mana gerakan-gerakannya yang disebabkan oleh gaya luar yang bekerja pada struktur bangunan apung adalah gaya gelombang (Murtedjo,1990). Persamaan gelombang permukaan dapat ditulis :

 $\zeta = \zeta_a \cos(kx - W_e t).$ (2.1)

Persamaan umum untuk gerakan *heave* pada gelombang reguler dapat ditulis : $a\ddot{Z} + b\dot{Z} + cZ = F_o cos W_e t.....(2.2)$

Penyelesaian persamaan umum (2.2) adalah :

 $Z(t) = Z_h(t) + Z_p(t)....(2.3)$

Yang mana Z_h (t) adalah penyelesaian homogen yang memenuhi persamaan, dengan ruas kanan sama dengan nol (persamaan gerak di perairan tenang), sedangkan Z_p (t) adalah sebagai penyelesaian partikuler dari persamaan diatas yang ruang kanan tidak sama dengan nol.

Gambar 2.2 gerakan heaving (Nurfadiyah, 2011)

Keterangan gambar :

G : titik berat bangunan apung

В	:	titik bouyancy bangunan apung
γV	:	gaya angkat ke atas
W_0L_0	:	garis air keadaan awal
W_1L_1	:	garis air keadaan <i>heave</i>
A_zZ	:	tambahan gaya angkat ke atas karena massa tambah
δΖ	:	besar jarak simpangan <i>heave</i>

2.2.2.2 Surging

Surging merupakan gerakan osilasi pada bangunan apung arah translasional pada sumbu x (longitudinal)

Gambar 2.3 : gerakan surging (<u>www.wikipedia.com</u>)

2.2.2.3 Swaying

Swaying merupakan gerakan osilasi pada bangunan apung yang arah pergerakannya bersifat translasional arah sumbu y (melintang).

Gambar 2.4 : gerakan swaying (<u>www.wikipedia.com</u>)

2.2.2.4 Pitching

Pitching ialah gerakan osilasi rotasional pada sumbu y (melintang), yang mana gerakan pitching menimbulkan beberapa momen yaitu :

- 1. Momen inersia
- 2. Momen redaman
- 3. Momen pengembali
- 4. Momen eksitasi

Gambar 2.5 : gerakan *pitching* (Nurfadiyah, 2011)

Persamaan umum gerakan pitching pada gelombang reguler yaitu :

 $\ddot{a\theta} + b\dot{\theta} + c\theta = M_o \cos \omega_e t....(2.4)$ Keterangan :

ωe	=	frekuensi gelombang encountering (hz)
а <i>Ӫ</i>	=	momen inersia
bΘ	=	momen redaman
cθ	=	momen pengembali

 $M_0 \cos \omega_e t = momen eksitasi$

2.2.2.5 Rolling

Rolling merupakan gerakan osilasi rotasional terhadap sumbu x (longitudinal) yang mana persamaan umum dari gerakan rolling yaitu :

$a\theta + b\theta + c\theta = M_0 \cos \omega_0 t$.(2.5)

Keterangan :

ωe	=	frekuensi	gelombang	encoutering	(hz)
----	---	-----------	-----------	-------------	------

ä .	•
$a\theta = momen momen momen momen momen momen moments and the moment moment momen momen$	ersia

 $b \dot{\theta}$ = momen redaman

- $c\theta$ = momen pengembali
- $M_0 cos \omega_e t = momen eksitasi$

Gambar 2.6 :gerakan rolling (Icelandic Maritime Administration, 1999)

2.2.2.6 Yawing

Yawing merupakan gerakan rotasional pada angunan apung yang mana arah gerakannya terhadap sumbu z (vertikal)

Gambar 2.7 : gerakan yawing (Pacific Boats, 2012)

2.2.3 Gerakan Struktur Apung Dalam Enam Derajat Kebebasan

Gerakan kopel dari keenam gerakan bangunan apung yang sudah dijelaskan sebelumnya mempunyai persamaan sebagai berikut :

dengan:

- M_{jk} : matriks massa dan momen inersia massa bangunan laut
- A_{jk} : matriks koefisien-koefisien massa tambah hidrodinamik
- B_{jk} : matriks koefisien-koefisien redaman hidrodinamik
- K_{jk} : matriks koefisien-koefisien kekakuan atau gaya dan momen hidrostatik
- F_j : matriks gaya eksitasi (F_1, F_2, F_3) dan momen eksitasi (M_4, M_5, M_6) dalam fungsi kompleks (dinyatakan oleh $e^{i \omega t}$)

 ζ_k : elevasi gerakan pada mode ke k

 $\dot{\zeta}_k$: elevasi kecepatan gerak pada mode ke k

 $\ddot{\zeta}_k$: elevasi percepatan gerak pada mode ke k

Gambar 2.8 : Gerakan *semi-submersible* dalam enam derajat kebebasan (Arda, 2012)

Persamaan (2.6) menunjukan bahwa hubungan antara gaya aksi di ruas kanan dan gaya reaksi di ruas kiri. Gaya aksi yaitu eksitasi gelombang, dan gaya reaksi terdiri dari gaya inersia, gaya redaman dan gaya pengembali yang masing-masing berkolerasi dengan percepatan gerak, kecepatan gerak dan displasemen gerakan.

Untuk penyelesain persamaan (2.6) dapat dilakukan dengan menentukan potensial kecepatan yang terdiri dari komponen tunak independen terhadap waktu yang ditimbulkan oleh laju gerak maju, dan komponen yang dependen terhadap waktu akibat sistem gelomang insiden dan gerakan tak-tunak dari bangunan laut sebagai berikut :

Pada persamaan (2.7) variabel pertama di ruas kanan adalah merupakan kontribusi dari potensial kecepatan tunak atau *stedy* Φ_s , dan kecepatan maju bangunan laut, U_x . Sedangkan variabel kedua adalah kontribusi dari potensial kecepatan tak tunak atau *unsteady*.

$$\boldsymbol{\Phi}_{T} = \zeta \left(\boldsymbol{\Phi}_{I} + \boldsymbol{\Phi}_{D} \right) + \sum_{j=1}^{6} \zeta_{j} \boldsymbol{\Phi}_{j}$$

dimana Φ_I dan Φ_D adalah potensial kecepatan gelombang insiden dan difraksi, yang intensitasnya dipengaruhi oleh elevasi gelombang ζ . Besaran ζ_j adalah potensial kecepatan radiasi yang ditimbulkan oleh moda gerakan ke *j*, atau ζ_j . Penyelesaian potensial kecepatan insiden dan difraksi akan memberikan gaya-gaya eksitasi gelombang. Penyelesaian potensial kecepatan radiasi akan memberikan harga-harga koefisien hidrodinamis, yakni massa tambah dan redaman, sebagaimana diutarakan dalam sub-bab sebelumnya.

Penyelesaian persamaan gerak akan terdiri, pertama, komponen persamaan moda gerakan *surge*, yang mempunyai bentuk:

$$m_{11}\ddot{\zeta}_x = F_1 \tag{2.9}$$

Kedua, komponen gerakan kopel *heave* dan *pitch*, yang mempunyai bentuk:

$$(m_{33} + a_{33})\ddot{\zeta}_z + b_{33}\dot{\zeta}_z + k_{33}\zeta_z + a_{35}\ddot{\zeta}_{\theta} + b_{35}\dot{\zeta}_{\theta} + k_{35}\zeta_{\theta} = F_3$$

 $(I_{55} + a_{55})\ddot{\zeta}_{\theta} + b_{55}\dot{\zeta}_{\theta} + k_{55}\zeta_{\theta} + a_{53}\ddot{\zeta}_z + b_{53}\dot{\zeta}_z + k_{53}\zeta_z = M_5$ (2.10)

Ketiga, komponen gerakan kopel *sway, roll* dan *yaw,* yang diekspresikan sebagai berikut:

$$(m_{22} + a_{22})\ddot{\zeta}_{y} + b_{22}\dot{\zeta}_{y} + a_{24}\ddot{\zeta}_{\phi} + b_{24}\dot{\zeta}_{\phi} + a_{26}\ddot{\zeta}_{\psi} + b_{26}\dot{\zeta}_{\psi} = F_{2} (I_{44} + a_{44})\ddot{\zeta}_{\phi} + b_{44}\dot{\zeta}_{\phi} + k_{44}\zeta_{\phi} + a_{42}\ddot{\zeta}_{y} + b_{42}\dot{\zeta}_{y} + a_{46}\ddot{\zeta}_{\psi} + b_{46}\dot{\zeta}_{\psi} = F_{4} (I_{66} + a_{66})\ddot{\zeta}_{\psi} + b_{66}\dot{\zeta}_{\psi} + a_{62}\ddot{\zeta}_{y} + b_{62}\dot{\zeta}_{y} + a_{64}\ddot{\zeta}_{\phi} + b_{64}\dot{\zeta}_{\phi} = F_{6}$$
.....(2.11)

Prediksi gerakan dengan menggunakan formulasi di atas dapat diselesaikan secara numerik, antara lain dengan penerapan metoda panel, yang mengakomodasi teori difraksi 3-dimensi, dengan teknik *itranslating-pulsating source distribution*, sebagaimana dijelaskan oleh Chan (1990). Hasil prediksi gerakan bangunan apung umum diberikan dalam bentuk perbandingan antara amplitudo moda gerakan tertentu dengan amplitudo gelombang insiden, yang berfluktuasi sebagai fungsi perubahan frekuensi *encountering*. Perbandingan amplitudo tersebut, ζ_{j}/ζ_{0} , adalah disebut sebagai *Response Amplitude Operator (RAO)*.

2.2.4 Response Amplitude Operator

Response Amplitude Operator (RAO) adalah fungsi respon gerakan dinamis struktur yang diakibatkan oleh gelombang dalam rentang frekuensi tertentu. Menurut Chakrabarti (1987), persamaan RAO dapat dicari dengan persamaan :

$$RAO = \frac{Amplitudo Respon Gerakan}{Amplitudo Gelombang} = \frac{R_a}{\zeta_a}....(2.12)$$

dimana,

$$R_a$$
 : Amplitudo respon gerakan [ft]

16

 ζ_a : Amplitudo gelombang [ft]

Dalam praktiknya RAO didefinisikan sebagai response amplitude per unit wave height. Tetapi dalam pemahamannya, RAO dapat didefinisikan sebagai amplitudo respon per amplitudo gelombang yang dalam perhitungannya RAO selalu dianggap sebagai gelombang dan frekuensi gelombang yang ditentukan dalam range frekuensi lalu digunakan untuk membuat spektrum gelombang. Untuk persamaan RAO struktur dapat dinyatakan sebagai :

$$X_{p} = \left(\frac{x_{o}}{\sqrt{(1-r^{2})^{2} + (2\zeta_{c}r)^{2}}}\right) \cos(\omega t - \alpha) \dots (2.13)$$

Dimana :

$$x_{o} = \frac{F_{o}}{k}$$
$$r = \frac{\omega}{\omega_{n}}$$
$$\tan \alpha = \frac{2\zeta r}{1 - r^{2}}$$

2.2.5 Shear Force dan Bending Moment

Pada struktur terapung aspek yang harus diperhitungkan adalah *longitudinal strength* (kekuatan memanjang kapal). Kekuatan struktur terapung ini berhubungan dengan kemampuan struktur untuk bertahan oleh beban yang ditimbulkannya, baik berupa beban internal maupun eksternal, yang diperkirakan oleh adanya pengaruh tekanan memanjang pada lambung struktur. Jika lengkung diagram gaya berat kita kurangi dengan lengkung diagram gaya tekan keatas, akan diperoleh lengkung penyebaran beban sepanjang struktur

Gambar 2.9 : defleksi akibat kondisi *hogging* pada kapal

Gambar 2.10 : defleksi akibat sagging pada kapal

$$V(x) = \int_0^x (w(x) - \Delta(x)) dx.$$
(2.14)

$$M(x) = \int_0^x V(x) dx.$$
(2.15)

Keterangan :

- V(x) = Shear force pada sumbu x dari haluan (atau buritan) [ton]
- M(x) = Bending moment pada sumbu x dari haluan (atau buritan) [ton.m]
- w = Beban per satuan panjang [ton/m]
- $\Delta = Bouyancy \text{ per satuan panjang [ton/m] dan beban gaya geser f(x)}$ ini merupakan turunan kedua dari momen lengkung

Pada tugas akhir ini untuk menghitung *shear force* dan *bending moment* menggunakan cara yang terdapat di buku *basic ship theory* 5E Volume 01. Pada perhitungan dengan menggunakan cara dari *basic ship theory* pada saat plotting kurva ada beberapa hal yang harus diperhatikan yaitu :

$$p' = \frac{dS}{dx} = \frac{d^2M}{dx^2}.$$
(2.16)

- a. Ketika p'= 0, maka S maksimum atau minimum dan point dari inflaksi terjadi pada kurva M
- b. Ketika p' maksimum, point inflaksi terjadi pada kurva S
- c. Ketika S = 0, nilai M menjadi maksimum atau minimum.

Gambar 2.11 : contoh grafik *shear force* dan *bending moment* (*Basic Ship Theory*, 2001)

2.2.6 Metode Elemen Hingga

Metode elemen hingga ialah permodelan struktur dengan elemen-elemen kecil yang saling terhubung yang disebut elemen hingga. Suatu fungsi displacement dipakai pada tiap elemennya. Baik secara langsung maupun tidak langsung, semua elemen dihubungkan dengan interface yang bisa berupa simpul dan/atau garis pembatas dan/atau prmukaan pembatas. Dengan diketahuinya nilai tegangan dan regangan dari material struktur tersebut maka dapat ditentukan kekakuan dari simpul yang merupakan fungsi dari sifat elemen yang lain. Dalam perumusan metode elemen hingga terdapat 8 tahapan untuk menyelesaikan persoalan-persoalan struktur. Tahapannya adalah :

- Pendiskritan dan pemilihan jenis elemen
- Pemilihan fungsi displacement
- Pendefinisian hubungan regangan-displacement dan tegangan regangan
- Penurunan matrik elemen kekakuan elemen dan persamaan elemen
- Penggabungan persamaan elemen untuk mendapatkan persamaan penentuan kondisi batas
- Penyelesaian derajat kebebasan yang belum diketahui
- Menentukan tegangan dan regangan elemen
- Interpretasi hasil

2.2.7 Tegangan (Stress)

Tegangan normal

Tegangan normal ialah gaya yang pekerja secara terus-menerus yang tegak lurus terhadap penampang yang dapat didefinisikan :

$$\sigma = \lim_{\Delta A \to 0} \frac{\Delta F}{\Delta A}.$$
(2.17)

keterangan:

 σ = Tegangan normal, N/m²

- F = Gaya yang bekerja dalam arah tegak lurus atau normal terhadap penampang (gaya aksial), N
- A = Luas penampang, m^2

Gambar 2.12 : Tegangan normal yang bekerja pada luasan A (Hakim, 2012)

Tegangan geser

Tegangan geser ialah intensitas gaya pada suatu titik yang sejajar terhadap penampang, persamaannya adalah :

$$\tau = \lim_{\Delta A \to 0} \frac{\Delta V}{\Delta A}.$$
(2.18)

dengan:

 τ : Tegangan Geser (*N/m²*)

V : Gaya yang bekerja dalam arah sejajar terhadap penampang (gaya geser) (N)

A : Luas penampang (m^2)

Tegangan ijin

Tegangan ijin ialah tegangan yang didapatkan dari pembagian antara *yield strength* dengan *safety factor*. Untuk beban statis tegangan ijin yang dipergunakan adalah 1.67 untuk axial atau bending stress dan 2.5 untuk *shear stress*. Untuk beban kombinasi tegangan ijin yang dipergunakan adalah 1.25 untuk axial dan *bending stress* dan 1.88 untuk *shear stress*.

Tegangan von Mises

Tegangan von Mises merupakan kombinasi geometris dari semua tegangan yang ada, yaitu tegangan normal dan tegangan geser yang bekerja pada bagian tertentu dari struktur yang dianalisa. Tegangan von Mises berlaku pada material yang bersifat *ductile*. Apabila tegangan von Mises pada bagian tertentu melebihi *yield strength* maka material tersebut akan luluh atau *yielding* dan apabila tegangan von Mises sudah melebihi *ultimate strength* maka material tersebut akan mengalami kepecahan.

Berikut ini adalah rumusan dari tegangan von Mises yang dibandingkan dengan tegangan ijin maksimum dari *yield strength* pada suatu material :

$$\sigma_{HVM} = \left[\sigma_x^2 + \sigma_y^2 + \sigma_x \sigma_y + 3\tau_{xy}^2\right]^{1/2} \dots (2.18)$$

dimana :

$\sigma_{\rm HVM}$	= tegangan von Mises, Pa
σ_{x}	= tegangan normal sumbu –x, Pa
σ_{y}	= tegangan normal sumbu –y, Pa
$ au_{\mathrm{xy}}$	= tegangan geser, Pa

2.2.8 Tegangan buckling pada kolom

Tegangan buckling pada kolom dapat dibedakan menjadi dua jenis yaitu global buckling dan lokal buckling. Untuk global buckling adalah tekanan pada member yang mengenai seluruh kolom pada semi-submersible. Persamaan tegangan buckling kritis yaitu :

$$F_{cr} = F_y - (F_y^2/4\pi E)(Kl/r)^2 \qquad \text{ketika Kl/r} < \sqrt{(2\pi^2)E/F_y}....(2.19)$$

$$F_{cr} = \pi^2 E / (Kl/r)^2$$
 ketika Kl/r $\geq \sqrt{(2\pi^2 E / F_y)}$(2.20)

keterangan :

 F_{cr} = tegangan global buckling kritis F_y = *yield strength*

Lokal buckling adalah member yang terkena tekanan aksial atau tekanan yang diakibatkan oleh bending. Untuk lokal buckling yang diakibatkan oleh tekanan axial pada *turbular member* dengan parameter $D/t \le Ei$ (4.5 σ_0) maka tekanan axialnya bisa didapatkan dengan persamaan :

$$\sigma_{Cx} = \{\sigma_{Ex}\}$$
 jika $\sigma_{Ex} \le P_r \sigma_0$(2.21)

$$\sigma_{Cx} = \left\{ \sigma_0 \left[1 - P_r (1 - P_r) \frac{\sigma_0}{\sigma_{Ex}} \right] \right\} \qquad \text{jika } \sigma_{\text{Ex}} > P_r \sigma_0....(2.22)$$

Untuk lokal buckling pada *turbular member* yang disebabkan oleh *bending moment* kondisi kritis dengan D/t \leq Ei (4.5 σ_0) didapat dengan persamaan :

$$\begin{split} \sigma_{CB} &= (SM_p \ / \ SM_e) \sigma_0 & \text{untuk } \sigma_0 D / (Et) \leq 0.02 \\ \sigma_{CB} &= [1.038 - 1.90 \sigma_0 \ D / (Et)] \ (SM_p \ / \ SM_e) \ \sigma_0 & \text{untuk } 0.02 < \sigma_0 D \ / \ (Et) \leq 0.10 \\ \sigma_{CB} &= [0.921 - 0.73 \sigma_0 \ D \ / \ (Et)] \ (SM_p \ / \ SM_e) \ \sigma_0 & \text{untuk } \sigma_0 D \ / \ (Et) > 0.10 \end{split}$$

(halaman ini sengaja di kosongkan)

BAB III

METODOLOGI PENELITIAN

3.1. METODE PENELITIAN

Metodologi penelitian yang digunakan dapat digambarkan dalam diagram alir (*flow chart*) pengerjaan dapat dilihat pada Gambar (3.1).

Gambar 3.1 Diagram alir pengerjaan

Gambar 3.1 Diagram alir pengerjaan (lanjutan)

3.2. PROSEDUR PENELITIAN

Penjabaran diagram di atas akan dijelaskan pada langkah-langkah dibawah ini:

1. Tahap Studi Literatur

Pada tahap ini akan dilakukan studi terhadap referensi-referensi yang memiliki kaitan dengan pengerjaan Tugas Akhir pengumpulan jurnal-jurnal ilmiah, tugas akhir, dan literatur yang relevan yang bisa dijadikan acuan dalam pengerjaan tugas akhit ini.

- 2. Pengumpulan Data
 - Data Struktur :

Data struktur terdiri dari ukuran dimensi struktur *semi-submersible*. Parameter data yang digunakan untuk tugas akhir ini adalah *semi-submersible Essar Wildcat* yang dioperasikan di sumur Bawal, perairan Natuna oleh Conoco Philips Indonesia. Selanjutnya data struktur ini akan divariasikan dengan mengacu pada latar belakang pengerjaan tugas akhir ini, dimensi utama dari *semi-submersible Essar Wildcat* adalah :

Description	Unit	Quantity
Length Overall	m	108.2
Breadth (moulded)	m	67.36
Large Coloumn Diameter	m	7.92
Corner Coloumn Diameter	m	5.2
Height of Pontoons	m	6.71
Operating Draught	m	21.335
Operating Displacement	m	24173
VCG (Operating)	m	17.83
GM (Operating)	m	2.74

Tabel 3.1 : principal dimension dari semi-submersible EssarWildcat (PT.GM, 2012)

Gambar 3.2 General arrangement semi-submersible Essar Wildcat tampak depan (PT. GM, 2012)

Gambar 3.3 General arrangement semi-submersible Essar Wildcat tampak atas (PT. GM, 2012)

• Data lingkungan berupa data gelombang dan arus

Data lingkungan yang digunakan meliputi kedalaman, tinggi gelombang, periode gelombang, jenis spektra, kecepatan arus, dan kecepatan angin yang didapatkan dari perairan Natuna yang ditunjukan dalam Tabel (3.2) berikut ini :

Parameter	100-years Retrun
	Period
Kedalaman	90 m
Gelombang :	
Tinggi gelombang signifikan (Hs)	5.3 m
Periode puncak (Tp)	13.9 s
Tinggi gelombang maksimum (Hm)	10.2 m
Periode rata-rata (Tm)	8.5 s
Spektrum	JONSWAP
Arus :	
Permukaan	1 m/s
Kedalaman tengah	0.8 m/s
Dasar	0.8 m/s
Angin :	
Kecepatan angin 1 menit	24 m/s

 Tabel 3.2 : Belanak metocean data (PT, MGM, 2012)

Т	р.							Hs						
Lower	Upper	0.00	0.50	1.00	1.50	2.00	2.50	3.00	3.50	4.00	4.50	5.00	5.50	6.00
		0.49	0.99	1.49	1.99	2.49	2.99	3.49	3.99	4.49	4.99	5.49	5.99	6.49
0	0.9	-	-	-	-	-	-	-	-	-	-	-	-	-
1	1.9	0.0049	-	-	-	-	-	-	-	-	-	-	-	-
2	2.9	0.1284	-	-	-	-	-	-	-	-	-	-	-	-
3	3.9	0.6595	0.2687	0.0257	0.0145	0.0025	-	-	-	-	-	-	-	-
4	4.9	0.1119	0.4760	0.0734	-	-	-	-	-	-	-	-	-	-
5	5.9	0.0367	0.1152	0.3960	0.0378	-	-	-	-	-	-	-	-	-
6	6.9	0.0263	0.0551	0.2101	0.2068	0.0127	-	-	-	-	-	-	-	-
7	7.9	0.0141	0.0246	0.1438	0.3073	0.1331	0.0034	-	-	-	-	-	-	-
8	8.9	0.0122	0.0181	0.0529	0.1987	0.4233	0.2052	0.0278	-	-	-	-	-	-
9	9.9	0.0043	0.0128	0.0318	0.1271	0.2231	0.4397	0.3981	0.0710	-	-	-	-	-
10	10.9	-	0.0115	0.0262	0.0539	0.1204	0.1948	0.3519	0.4734	0.3091	-	-	-	-
11	11.9	0.0006	0.0084	0.0175	0.0274	0.0545	0.1017	0.1451	0.2899	0.4545	0.6667	0.3000	-	-
12	12.9	-	0.0062	0.0113	0.0129	0.0114	0.0345	0.0586	0.1065	0.1818	0.2727	0.5000	0.7500	-
13	13.9	-	0.0022	0.0051	0.0032	0.0076	0.0034	0.0123	0.0651	0.0545	0.0606	0.2000	0.2500	-
14	14.9	-	0.0006	0.0046	0.0032	0.0051	0.0052	0.0031	-	-	-	-	-	-
15	15.9	0.0006	0.0003	0.0010	0.0048	0.0051	0.0121	0.0031	-	-	-	-	-	-
16	16.9	-	0.0003	-	0.0008	-	-	-	-	-	-	-	-	-
17	17.9	-	-	-	-	-	-	-	-	-	-	-	-	-
18	18.9	-	-	-	-	-	-	-	-	-	-	-	-	-
To	otal	1	1	1	1	i	1	1	1	1	1	1	1	1

 Tabel 3.3 Tinggi gelombang signifikan vs periode puncak untuk keseluruhan

 bulan dan tahun – frekuensi setiap tinggi gelombang

3. Pemodelan semi-submersible sesuai dengan general arangement

Pemodelan awal struktur *semi-submersible* dilakukan dengan *software* AutoCAD. Untuk pemodelan struktur *deck* menggunakan struktur *semi-submersible Essar Wildcat*. Pemodelan awal dilakukan untuk mendapatkan koordinat-koordinat yang selanjutnya akan diinputkan kedalam *software* MOSES (*Multi Operational Structural Engineering Simulator*). *Semi-submersible Essar Wildcat* juga digunakan sebagai acuan dalam penentuan ukuran dan konfigurasi dari *semi-submersible Dreivar*. *Semi-submersible Dreivar* mempunyai konfigurasi enam kolom persegi dan dua pontoon persegi panjang, adapun untuk ukuran utamanya adalah :

	DREIVAR	Satuan
Panjang Pontoon	107	meter
Tinggi Pontoon	6,71	meter
Lebar Pontoon	10,9	meter
Lebar Kolom	9,1	meter
Sarat Air	21,34	meter
Diameter Bracing	2	meter
Tinggi Kolom	26,2	meter
Displacement	24028,28	Ton

 Tabel 3.4 : Data ukuran utama semi-submersible Dreivar

Gambar 3.4 Pemodelan menggunakan AutoCAD

Dari ukuran yang sudah ditentukan diatas maka selanjutnya dilakukan pemodelan struktur pada *software* AutoCAD 3D yang dilanjutkan pemodelan pada *software* MOSES 7.0 dan MAXSURF. Hasil dari pemodelan MOSES dan MAXSURF digunakan untuk analisis respon struktur dinamis yang diakibatkan beban gelombang. Berikut merupakan hasil pemodelan struktur pada MOSES :

Gambar 3.5 Pemodelan mengunakan MOSES 6.0 tampak isometric

Gambar 3.6 : Pemodelan mengunakan MOSES 6.0 tampak atas

Gambar 3.7 : Pemodelan mengunakan MOSES 6.0 tampak depan

Gambar 3.8 : Pemodelan mengunakan MOSES 6.0 tampak samping

Untuk pemodelan pada MAXSURF dilakukan untuk memvalidasi model yang sudah dibuat, dengan toleransi yang diijinkan sebesar 5%, hasil pemodelan pada MAXSURF dapat dilihat pada Gambar (3.9).

Gambar 3.9 : Pemodelan dengan MAXSURF

Selanjutnya dilakukan analisa hidrostatis untuk mengetahui nilai- nilai yang akan divalidasi dengan nilai *displacement* dari *semi-submersible Essar Wildcat*. Hasil dari analisa hidrostatis dapat dilihat pada Tabel (3.5).

	DREIVAR	Satuan
Displacement	24028,28	Ton
Draft	21,34	m
KB	6,79	m
WSA	12371,7	m ²
WPA	484	m ²
BMT	16,02	m
BML	10,17	m

Tabel 3.5 : Hasil analisa hidrostatis Dreivar

	DREIVAR	Satuan
KMT	22,81	m
KML	16,96	m

 Tabel 3.5 : Hasil analisa hidrostatis Dreivar (lanjutan)

4. Validasi Model

Setelah tahap pemodelan dilakukan perhitungan hidrostatik. Jika model tidak valid maka model akan didesain ulang hingga menyerupai bentuk asli dengan batas *error* kurang dari 5%. Hasil yang didapat digunakan untuk validasi model terhadap *booklet* yang digunakan sebagai referensi pengerjaan tugas akhir ini. Tujuan dari validasi adalah untuk mengetahui apakah model yang digunakan sesuai atau tidak untuk dianalisis.

Berdasarkan hasil dari analisa hidrostatis pada Tabel (3.5) maka dapat dilakukan validasi model dengan membandingkan parameter-parameter dari *semi-submersible Dreivar* dengan *Essar Wildcat*. Hasil validasi dari kedua model struktur dapat dilihat di Tabel (3.6).

Parameter	satuan	Booklet	MOSES	MAXSURF	Error
					%
Displacement	ton	24173	24028.28	24047	0.6%
KB	m	-	6.79	6.825	0.5%
KMT	m	-	22.81	23.732	3.8%
KML	m	-	16.96	17.267	1,7%
BMT	m	-	16.02	16.09	0.4%
BML	m	-	10.17	10.443	2,6%

Tabel 3.6 : Hasil validasi displacement model berdasarkan kriteria ABS

Dari hasil validasi di Tabel (3.6) dapat disimpulkan bahwa hasil pemodelan perhitungan displasemen yang dikomputasi dengan *software* Micosoft Excel 2013 sudah valid karena error yang didapatkan kurang dari 5% untuk semua parameter.

- Tahap Pemodelan Struktur Global dengan Metode Elemen Hingga Pada tahap ini pemodelan struktur secara global dilakukan kembali untuk mendapatkan distribusi tegangan pada *semi-submersible*. Perangkat lunak yang digunakan adalah ANSYS 14.
- Perhitungan tegangan nominal pada kondisi *hogging* dan *sagging* Tegangan nominal merupakan tegangan yang terjadi pada struktur yang diakibatkan oleh beban gelombang
- Mengetahui nilai tegangan struktur global dan lokasi tegangan maksimum Setelah mengetahui nilai tegangan struktur global dan lokasi tegangan maksimum maka akan divalidasi dengan *rules* dari ABS.

BAB IV

ANALISIS DAN PEMBAHASAN

4.1 ANALISA RESPON GERAKAN *SEMI-SUBMERSIBLE* PADA GELOMBANG REGULER

Analisa respon gerakan dilakukan untuk mencari karakteristik respon gerak struktur dengan pembebanan gelombang arah sudut 0°, 45°, 90°, 135°, dan 180°. Analisa dilakukan dengan membandingkan RAO (*Response Amplitude Operator*) gerakan pada tiap sudut arah datang gelombang. Dari perbandingan tersebut maka akan diketahui gerakan maksimum yang terjadi pada model untuk tiap-tiap gerakan. Hasil RAO yang merupakan *output* dari MOSES disajikan dalam bentuk grafik yang sumbu x merupakan fungsi frekuensi dan sumbu y merupakan fungsi RAO. Hasil RAO pada gelombang reguler dapat dilihat pada Gambar (4.1) – (4.6) :

Gerakan Translasional

Gambar 4.1 : RAO gerakan surge

Dari Gambar (4.1) dapat dilihat bahwa gerakan *surge* pada struktur *semi-submersible* yang terbesar terjadi pada frekuensi awal yaitu pada 0,25 - 0,3 rad/s yang kemudian berangsur-angsur menurun sampai ke frekuensi 0,875 rad/s dan kemudian naik lagi untuk arah gelombang 0° dan 180°. Untuk RAO arah gelombang 0° mempunyai amplitudo tertinggi sebesar 0,961 m/m yang terjadi pada frekuensi 0,2513 rad/s sedangkan untuk arah gelombang 180° mempunyai amplitudo tertingi sebesar 0,948 m/m yang terjadi pada frekuensi 0,2513 rad/s. Lalu untuk RAO arah gelombang 45° nilai amplitudo yang tertinggi ialah 0,682 m/m pada frekuensi 0,2513 rad/s dan arah 135° nilai amplitudo yang tertinggi ialah 0,67 m/m pada frekuensi 0,2513 rad/s. RAO *surge* arah gelombang 90° adalah yang paling kecil yang mempunyai nilai amplitudo tertinggi sebesar 0,0055 m/m pada frekuensi 0,2513 rad/s. RAO *surge* pada arah 0° dan 180° adalah yang paling signifikan dan memiliki pola yang sama, hal ini disebabkan karena untuk gerakan *surge* amplitudo besar pada sudut arah pembebanan yang mendominasi yaitu untuk 0° dan 180°, sebaliknya untuk arah gelombang 90°.

Gambar 4.2 : RAO gerakan sway

RAO *sway* pada Gambar (4.2) mempunyai bentuk yang hampir serupa dengan RAO *surge*. Gerakan *sway* yang terbesar juga terjadi pada frekuensi awal yaitu pada 0,25 - 0,3 rad/s lalu kemudian turun derastis sampai pada frekuensi 0,7 – 0,75 rad/s kemudian mulai naik kembali untuk arah gelombang 90° pada frekuensi 0,8 – 0,9 rad/s begitu juga seterusnya. Untuk arah gelombang 90° amplitudo yang tertinggi yaitu 0,899 m/m pada frekuensi 0,2513 rad/s sedangkan untuk arah 45° amplitudo terbesar ialah 0,63 m/m pada frekuensi 0,2513 rad/s, pada arah 135° amplitudo yang terbesar yaitu 0,647 m/m pada frekuensi 0,2513 rad/s. RAO *sway* untuk arah gelombang 0° dan 180° merupakan gerakan *sway* yang paling kecil yang mempunyai nilai RAO tertinggi yaitu sebesar 0,027 m/m dan 0,028 m/m pada frekuensi 0,8976 rad/s. RAO *sway* pada arah 90° adalah yang paling signifikan, hal ini disebabkan karena untuk gerakan *sway* amplitudo besar pada sudut arah pembebanan yang mendominasi yaitu untuk 90°, sebaliknya untuk arah gelombang 0° dan 180°.

Gambar 4.3 : RAO gerakan heave

Pada kurva RAO untuk gerakan *heave* (Gambar 4.3), amplitudo terbesar dihasilkan oleh semua arah sudut pembebanan dengan nilai antara 1.483 m/m hingga 1.621

m/m, pada saat frekuensi 0.2513 rad/s. Namun terjadi penurunan yang signifikan pada frekuensi 0.3142 rad/s pada semua arah pembebanan. Terjadi resonansi yang tidak terlalu besar pada frekuensi 0.3696 rad/s Nilai amplitudo *heave* sangat kecil ketika frekuensi 2.0944 rad/s yaitu berkisar antara 0 - 0.001 m/m untuk semua sudut. Pada grafik RAO heave diatas tidak terlihat perbedaan pola bentuk dari keseluruhan kurva, rata-rata nilai amplitudo untuk tiap-tiap frekuensinya hampir sama untuk semua arah pembebanan.

Gerakan Rotasional

Gambar 4.4 : RAO gerakan roll

Pada Gambar (4.4) diketahui bahwa gerakan *roll* terbesar terjadi untuk arah datang gelombang 90°. Pada frekuensi sekitar 0,5 - 0,6 rad/s terjadi penurunan yang cukup signifikan untuk arah gelombang 40°, 90° dan 135° hingga frekuensi 1,1 rad/s akan tetapi untuk kurva RAO arah 90° kembali naik kembali yang mempunyai amplitudo terbesar sebesar 0,969 deg/m pada frekuensi 0,5464 rad/s sedangkan untuk arah 45° mempunyai amplitudo terbesar 0,588 deg/m pada frekuensi 0,5027 rad/s lalu untuk arah 135° mempunyai amplitude terbesar sebesar 0,554 deg/m pada frekuensi 0,4654 rad/s. Pada grafik RAO diatas terlihat bahwa terdapat dua bentuk kurva yang

memiliki pola yang berbeda dari pola bentuk kurva lainnya, yaitu kurva dari arah 0^0 dan 180⁰. Pada kurva dengan arah 0^0 memiliki pola yang rendah sekali dengan nilai amplitudo terbesar sebesar 0.08 deg/m, tidak berbeda dengan arah 180⁰ yang memiliki nilai amplitudo terbesar sama dengan arah 0^0 . Hal tersebut wajar terjadi karena untuk gerakan roll amplitudo besar pada sudut arah pembebanan yang mendominasi yaitu dari arah melintang struktur *semi-submersible*, sebaliknya untuk pembebanan dari arah longitudinal struktur.

Gambar 4.5 : RAO gerakan pitch

Pada kurva RAO untuk gerakan *pitch* (Gambar 4.5), amplitudo terbesar dihasilkan oleh arah sudut 0⁰ dan 180⁰ adalah sebesar 1.249 deg/m dan 1.199 deg/m, pada saat frekuensi sebesar 0.4833 rad/s dan 0.4189 rad/s. Pada frekuensi tersebut juga terjadi resonansi pada hampir semua arah pembebanan. Nilai amplitudo *roll* sangat kecil ketika frekuensi 2.0944 rad/s yaitu berkisar antara 0 - 0.004 deg/m untuk semua arah sudut. Pada grafik RAO diatas terlihat bahwa terdapat satu bentuk kurva yang memiliki pola yang berbeda dari pola bentuk kurva lainnya, yaitu kurva dari arah 90⁰. Pada kurva dengan arah 90⁰ memiliki pola yang rendah sekali dengan nilai amplitudo terbesar sebesar 0.207 deg/m. Hal tersebut wajar terjadi karena untuk gerakan pitch amplitudo besar pada sudut arah pembebanan yang mendominasi

yaitu dari arah membujur struktur *semi-submersible*, sebaliknya untuk pembebanan dari arah melintang struktur.

Gambar 4.6 : RAO gerakan yaw

Pada kurva RAO untuk gerakan *yaw* (Gambar 4.6), amplitudo terbesar dihasilkan oleh arah sudut 45° dan 135° adalah sebesar 0.183 deg/m dan 0.155 deg/m, pada saat frekuensi sebesar 1.0472 rad/s dan 0.4654 rad/s. Nilai amplitudo *yaw* sangat kecil ketika frekuensi 2.0944 rad/sec yaitu berkisar antara 0.001 - 0.005 deg/m untuk semua arah sudut. Berdasarkan amplitudo terbesar yang menyebabkan gerakan *yaw* pada struktur dengan sudut arah pembebanan 45° dan 135° bahwa hal tersebut wajar terjadi karena untuk gerakan *yaw* amplitudo besar terjadi pada sudut arah pembebanan yang mengarah tidak pada arah tegak lurus maupun sejajar struktur.

4.2 ANALISA RESPON STRUKTUR (*SHEAR FORCE* DAN *BENDING MOMENT*) AKIBAT GELOMBANG REGULER

Analisa respon struktur dilakukan untuk mencari nilai *shear force* dan *bending moment* untuk kondisi air tenang (*still water*) dan ada gelombang. Gelombang yang mengenai struktur menyebabkan terjadinya *hogging* dan *sagging* pada struktur apung. Untuk mendapatkan nilai *shear force* dan *bending moment* digunakan dua kondisi gelombang yaitu gelombang dengan panjang gelombang sama dengan panjang struktur dan gelombang dengan panjang gelombang sesuai dengan data lingkungan dengan tinggi gelombang 5.25 m. Perhitungan ini dilakukan untuk mengetahui tegangan yang terdistribusi pada struktur pada kondisi *hogging* maupun *sagging*.

4.2.1 Shear force dan bending moment kondisi still water

Perhitungan *shear force* dan *bending moment* dilakukan pada kondisi operasi dengan sarat 21.335 m. Berikut merupakan hasil perhitungan *shear force* pada kondisi air tenang :

Station	Shear force (MN)	Bending moment (MN.m)
0	0,000	0,000
1	1,104	-19,029
2	1,594	-35,926
3	2,084	-51,512
4	2,574	-65,787
5	3,064	-78,751
6	4,201	-89,540
7	5,393	-97,213
8	7,812	-100,056
9	11,065	-95,314
10	8,433	-89,743

Tabel 4.1 : Total shear force dan bending mon	ment semi-submersible Dreivar
kondisi still wate	2r

Station	Shear force (MN)	Bending moment (MN.m)
11	5,210	-92,001
12	7,317	-95,752
13	8,946	-94,506
14	10,574	-88,904
15	12,311	-78,801
16	13,330	-65,013
17	15,085	-47,515
18	16,054	-26,372
19	18,017	-1,307
20	15,554	23,090
21	11,826	39,205
22	14,648	54,107
23	14,618	72,744
24	16,090	93,311
25	16,061	115,808
26	16,032	138,226
27	16,160	160,776
28	16,130	183,458
29	13,712	202,865
30	5,286	207,768
31	-2,550	190,922
32	-0,535	166,292
33	0,478	145,711
34	0,564	126,599
35	0,633	107,694
36	0,016	88,056
37	-0,601	66,768
38	-1,002	44,117
39	-0,734	21,289
40	0,149	0,000

 Tabel 4.1 : Total shear force dan bending moment semi-submersible Dreivar kondisi still water (lanjutan)

4.2.2 Shear force dan bending moment kondisi $\lambda w = 107$ m

Perhitungan *shear force* dan *bending moment* dilakukan pada kondisi gelombang reguler dengan panjang gelombang sama dengan panjang struktur yaitu 107 meter, dengan tinggi gelombang signifikan dari perairan Natuna sebesar 5.25 meter. Berikut merupakan hasil perhitungan *shear force* dan *bending moment* kondisi *hogging* dan *sagging* :

Station	Shear force (MN)		Bending mor	<i>nent</i> (MN.m)
	hogging	sagging	hogging	sagging
0	0,000	0,000	0,000	0,000
1	1,884	1,085	-18,649	-18,738
2	3,154	1,557	-33,079	-35,393
3	4,424	2,028	-44,112	-50,787
4	5,694	2,500	-51,748	-64,920
5	6,964	2,971	-55,986	-77,792
6	8,880	4,089	-55,963	-88,538
7	10,853	5,263	-50,739	-96,219
8	14,052	7,663	-38,598	-99,120
9	16,900	10,806	-18,369	-94,607
10	12,247	7,728	-0,553	-90,007
11	6,748	4,187	3,685	-94,260
12	8,132	6,250	2,420	-100,490
13	10,414	7,732	6,056	-101,979
14	12,695	9,215	15,796	-99,501
15	15,084	10,806	31,782	-92,912
16	16,756	11,679	53,200	-83,028
17	19,163	13,288	80,073	-69,823
18	20,786	14,112	112,337	-53,365
19	21,552	16,631	147,797	-32,435
20	16,034	15,436	176,900	-9,734
21	9,250	12,975	189,549	8,077
22	10,875	16,353	195,299	27,114
23	11,499	16,178	204,056	50,436
24	13,623	17,504	216,488	75,297

Tabel 4.2 : Total *shear force* dan *bending moment semi-submersible* Dreivar kondisi $\lambda w = 107$ m

Station	Shear force (MN)		Bending mor	<i>nent</i> (MN.m)
	hogging	sagging	hogging	sagging
25	14,247	17,329	232,596	101,697
26	14,870	17,154	250,372	127,629
27	15,651	17,136	270,026	153,303
28	16,275	16,961	291,558	178,719
29	13,133	14,498	309,722	200,606
30	1,967	5,754	308,749	207,504
31	-8,353	-2,528	279,038	191,630
32	-6,742	-0,622	237,679	167,228
33	-4,949	0,372	200,873	146,705
34	-4,084	0,439	167,623	127,601
35	-3,235	0,489	136,665	108,653
36	-3,072	-0,146	107,060	88,923
37	-2,909	-0,782	77,891	67,493
38	-2,531	-1,202	49,447	44,651
39	-1,482	-0,952	22,911	21,581
40	0,18	-0,088	0,000	0,000

Tabel 4.2 : Total *shear force* dan *bending moment semi-submersible* Dreivar kondisi $\lambda w = 107$ m (lanjutan)

4.2.3 Shear force dan bending moment kondisi periode 100 tahunan

Perhitungan *shear force* dan *bending moment* dilakukan pada kondisi gelombang reguler dengan periode 100 tahunan, dengan tinggi gelombang signifikan dari perairan Natuna sebesar 5.25 meter. Untuk mendapatkan nilai panjang gelombang periode 100 tahunan digunakan persamaan panjang gelombang reguler yaitu :

$$\lambda_w = \frac{gT_p^2}{2\pi} tanh \frac{2\pi d}{\lambda_w}.$$
(4.1)

keterangan :

 λ_w = panjang gelombang (m) T_p = periode (sec) d = kedalaman (m) Dengan data lingkungan di perairan Natuna dengan $T_p = 13.39$ sec dan kedalaman 90 meter, melalui proses iterasi maka ditemukan panjang gelombangnya sebesar 290 meter. Berikut merupakan hasil perhitungan *shear force* dan *bending moment* kondisi *hogging* dan *sagging* :

Station	Shear force (MN)		Bending moment (MN.m)		
	hogging	sagging	hogging	sagging	
0	0,000	0,000	0,000	0,000	
1	2,222	1,094	-18,535	-18,971	
2	3,831	1,574	-31,947	-35,836	
3	5,439	2,055	-41,056	-51,416	
4	7,048	2,535	-45,863	-65,711	
5	8,656	3,015	-46,366	-78,722	
6	10,911	4,142	-41,703	-89,583	
7	13,222	5,325	-30,933	-97,356	
8	16,759	7,734	-12,342	-100,324	
9	18,977	11,120	13,948	-95,542	
10	12,800	8,450	34,942	-89,802	
11	5,926	5,169	38,480	-92,020	
12	6,829	7,325	34,031	-95,744	
13	9,448	8,817	34,294	-94,588	
14	12,068	10,308	41,565	-89,442	
15	14,796	11,908	55,988	-80,162	
16	16,806	12,790	76,748	-67,563	
17	19,552	14,408	103,869	-51,620	
18	21,513	15,241	137,286	-32,399	
19	22,243	17,410	174,302	-9,164	
20	16,320	15,499	204,372	14,417	
21	9,133	12,322	216,908	31,193	
22	10,721	15,350	221,955	47,770	
23	11,683	15,184	230,413	68,174	
24	14,146	16,518	243,451	90,141	
25	15,108	16,352	261,071	113,671	
26	16,070	16,186	281,264	136,757	
27	17,189	16,177	304,240	159,608	

Tabel 4.3 : Total shear force dan bending moment semi-submersible Dreivarkondisi periode 100 tahunan

Station	Shear force (MN)		Bending moment (MN.m)		
	hogging	sagging	hogging	sagging	
28	18,151	16,011	330,000	182,225	
29	14,528	13,641	352,201	201,450	
30	1,668	5,215	352,355	206,236	
31	-10,496	-2,600	319,039	189,299	
32	-9,515	-0,452	270,765	164,783	
33	-7,384	0,552	226,655	144,482	
34	-6,180	0,627	187,005	125,625	
35	-4,993	0,686	150,553	106,948	
36	-4,491	0,060	116,360	87,511	
37	-3,990	-0,567	83,509	66,399	
38	-3,273	-0,978	52,286	43,898	
39	-1,886	-0,720	23,878	21,192	
40	0,115	0,153	0,000	0,000	

Tabel 4.3 : Total shear force dan bending moment semi-submersible Dreivarkondisi periode 100 tahunan (lanjutan)

Gambar 4.7 : Kurva total shear force semi-submersible Dreivar

Gambar 4.8 : Kurva total bending moment semi-submersible Dreivar

4.3 NILAI EKSTREM SHEAR FORCE DAN BENDING MOMENT AKIBAT EKSITASI GELOMBANG REGULER

Dari Tabel (4.2) dan (4.3) dibawah dapat diketahui bahwa nilai maksimum *shear force* dan *bending moment* terjadi pada kondisi *hogging* yaitu *shear force* sebesar 22.243 MN/m dan *bending moment* sebesar 352.355 MN.m, hal ini disebabkan karena struktur *semi-submersible Dreivar* memiliki luasan melintang yang relatif kecil. Luasan melintang dapat dihitung dengan mengalikan nilai lebar pontoon (B) dan tinggi pontoon (H), yaitu sebesar 73,139 m². Hasil tersebut sesuai dengan persamaan 2.4 yang menunjukan bahwa nilai *shear force* tiap satuan panjang merupakan pga-mg. Hal ini menunjukan bahwa dengan kondisi mg yang sama, maka nilai resultan *shear force* akan ditentukan oleh besarnya nilai a. Berdasarkan persamaan yang sama dapat juga dijelaskan *bending moment* karena besaran nilai *bending moment* merupakan integral dari nilai *shear force*.

Model	Shear force dan bending moment							
semi-								
submers	shear	station	shear	station	bending	station	bending	station
ible	force		force		moment		moment	
	maksim		minim		maksimum		minimum	
	um		ит					
	MN/m		MN/m		MN.m		MN.m	
DREIV	22.243	19	-	31	352.355	30	-55.988	5
AR			10.496					

Tabel 4.4 : Nilai shear force dan bending moment maksimum kondisi hogging

Tabel 4.5 : Nilai shear force dan bending moment maksimum kondisi sagging

Model	Shear force dan bending moment							
semi-								
submersible	shear	station	shear	station	bending	station	bending	statio
	force		force		moment		moment	n
	maksi		minim		maksimum		minimum	
	mum		ит					
	MN/m		MN/m		MN.m		MN.m	
DREIVAR	17.504	24	-2.528	31	207.504	30	-101.979	13

4.4 STRUKTUR SCANTLING KOLOM DAN PONTOON

Perancangan struktur *scantling* berguna untuk mengetahui komponen-komponen yang berada di dalam struktur *semi-submersible* yang berfungsi sebagai penegar. Adapun properti dari material yang digunakan pada *semi-submersible* Dreivar ini adalah sesuai dengan *general arrangement* dari *semi-submersible Essar Wildcat* dan TLP *West Seno*. Adapun desain dari scantling dari kolom pada Gambar (4.9) dan pontoon pada Gambar (4.11).

Gambar 4.9 : struktur scantling kolom

Gambar 4.10: properti penegar pada kolom (a) *stiffner* (b) *Longitudinal beam/girder*

Gambar 4.11 : Struktur scantling pontoon

Gambar 4.12 : properti penegar pada pontoon (a) *stiffner* (b) *longitudinal beam/girder*

Struktur penegar pada kolom dan pontoon terdiri dari *stiffner, longitudinal beam/girder* dan *frame/transverse girder*. Adapun untuk tebal dari *frame/transverse girder* adalah 30 mm dan tebal plat pada kolom dan pontoon adalah 30 mm.

4.5 ANALISA KEKUATAN STRUKTUR

Dengan menggunakan model struktur yang sudah didesain sebelumnya maka dilakukan analisa kekuatan struktur untuk mengetahui seberapa besar tegangan yang dialami strukur yang diakibatkan oleh *shear force* dan *bending moment* dan apakah tegangan tersebut masih dalam batas elastis atau tegangannya jauh lebih besar dari tegangan leleh atau *yield* sesuai dengan tipe baja yang digunakan yaitu baja A36. Pada analisa ini hanya dimodelkan sebagian saja dikarenakan geometri struktur yang simetris dan keterbatasan perangkat komputer. Analisa kekuatan struktur dilakukan dengan menggunakan ANSYS 14.0.

Dalam pemodelan struktur *semi submersible* dimodelkan menjadi 3 model yaitu : model dengan struktur tanpa deck, model dengan struktur deck yang diwakili dengan beam *rigid*, dan model dengan deck dengan tebal plat *smeared*. Hal ini dilakukan untuk membandingkan tegangan dari masing-masing struktur tersebut. Untuk model dengan tebal plat *smeared* merupakan representasi dari tebal plat dan tinggi *stiffner*. Untuk mendapatkan tebal *smeared* digunakan persamaan :

```
T_s = (1 + smear \ ratio)T_p....(4.2)
dimana :
```

```
Ts : tebal smear
```

Tp : tebal plat

smear ratio yang digunakan adalah 1 (Djatmiko, 1992)

Sehingga dalam analisa kekuatan struktur pada model dengan deck *smeared* digunakan tebal *smeared* 60 mm untuk tebal plat 30 mm.

Gambar 4.13 : Struktur *semi submersible* tanpa deck

Gambar 4.14 : Struktur semi submersible dengan beam rigid

Gambar 4.15 : Struktur semi submersible dengan deck smeared

Beban *shear force* dan *bending moment* diinputkan pada tiap-tiap kolom dengan menggunakan *software* ANSYS 14.0 seperti pada gambar berikut :

Gambar 4.16 : Lokasi input beban pada model struktur dengan software ANSYS

Gambar 4.17 : Lokasi dan arah gaya pembebanan

Beban diinputkan sesuai pada Gambar 4.17 dengan tumpuan jepit-jepit pada kedua ujung kolom. Setelah model struktur diselesaikan dan beban-beban sudah diinputkan maka langkah selanjutnya adalah tahapan *meshing. Meshing* adalah membagi satu struktur menjadi elemen-elemen hingga yang mempunyai ukuran, untuk menentukan ukuran elemen tersebut yang sesuai maka perlu dilakukan *meshing sensitivity analysis. Meshing sensitivity* perlu dilakukan untuk mendapatkan ukuran *meshing* yang tepat sehingga didapat hasil yang mendekati kenyataan. *Meshing sensitivity* dilakukan dengan mengambil satu atau beberapa titik untuk dilihat tegangan, apabila dengan semakin kecilnya ukuran elemen dan tegangan semakin konstan maka *mesihing sensitivity* sudah tercapai.

ukuran	Jumlah	stress terbesar		
meshing	elemen	(Pa)		
0,4	1034634	2,01E+08		
0,42	938554	2,01E+08		
0,44	888850	2,00E+08		
0,48	781532	1,85E+08		
0,6	695252	1,85E+08		
0,8	520718	1,60E+08		
1	452278	1,39E+08		

 Tabel 4.6 : meshing sensitivty analysis

Gambar 4.18 : Grafik meshing sensitivity tegangan terhadap jumlah elemen

Dari Gambar (4.18) diketahui nilai tegangan mulai konstan pada ukuran *meshing* 0,4 meter, untuk ukuran meshing yang lebih kecil tidak dapat dilakukan karena keterbatasan perangkat komputer. Dengan meshing 0,4 meter didapatkan hasil tegangan dan deformasi :

Model struktur semi-submersible tanpa deck :

Gambar 4.19: Distribusi tegangan pada struktur semi-submersible tanpa deck

Gambar 4.20 : Deformasi pada struktur semi-submersible tanpa deck

Dari Gambar (4.19) dan (4.20) didapatkan tegangan maksimum yaitu sebesar 201 MPa dan deformasi maksimum sebesar 4,51 cm pada ujung kolom tiga. Tegangan dan deformasi pada strukur global terjadi akibat pengaruh *bending moment* pada keseluruhan model global, dan pada kolom tiga terjadi *bending moment* sebesar 352.355 MN.m. Dari hasil analisa tegangan tersebut diketahui bahwa tegangan terbesar yang terjadi masih kurang dari tegangan leleh atau *yield* untuk baja A36 yaitu sebesar 250 MPa.

Model struktur semi-submersible dengan deck rigid :

Gambar 4.21 : Distribusi tegangan pada struktur *semi-submersible* dengan deck *rigid*

Gambar 4.22 : Deformasi pada struktur semi-submersible dengan deck rigid

Dari Gambar (4.21) dan (4.22) didapatkan tegangan maksimum yaitu sebesar 155 MPa dan deformasi maksimum sebesar 1,04 cm pada kolom tiga yang diakibatkan karena nilai dari *bending moment* terbesar terjadi pada kolom tiga yaitu sebesar 352.355 MN.m. Dari hasil analisa tegangan tersebut diketahui bahwa tegangan terbesar pada struktur masih kurang dari tegangan leleh atau *yield* untuk baja A36 yaitu sebesar 250 MPa. Dengan pengaruh deck *rigid* yang dimodelkan maka dapat mengurangi tegangan dan deformasi yang terjadi pada struktur dikarenakan fungsi deck *rigid* yang dapat meredam tegangan yang ditimbulkan akibat *shear force* dan *bending moment* Model struktur semi-submersible dengan deck smeared

Gambar 4.23 : Distribusi tegangan struktur semi submersible deck smeared

Gambar 4.24 : Deformasi pada struktur semi submersible dengan deck smeared
Dari Gambar (4.23) dan (4.24) didapatkan tegagan maksimum yaitu sebesar 121 Mpa dan deformasi maksimum sebesar 1,6 cm pada ujung kolom tiga yang dikarenakan *bending moment* terbesar terjadi pada kolom tiga yaitu sebesar 352.355 MN.m. Dari hasil analisa tersebut diketahui bahwa tegangan terbesar pada struktur masih kurang dari tegangan leleh atau *yield* untuk baja A36 yaitu sebesar 250 MPa. Dengan ditambahkannya deck *smeared* sebagai penyederhanaan dari deck yang sebenarnya dapat mengurangi tegangan yang terjadi pada strukutur yang diakibatkan oleh *shear force* dan *bending moment*.

Model dengan deck *smeared* merupakan model struktur yang hampir mendekati keadaan nyata dari struktur tersebut karena deck tidak mungkin mempunyai sifat *rigid* murni dan pasti akan mengalami deformasi walaupun sangat kecil, deck juga berfungsi sebagai peredam dari tegangan yang dihasilkan oleh *shear force* dan *bending moment* pada masing-masing kolom.

4.6 LOKASI TEGANGAN MAKSIMUM

Lokasi tegangan maksimum terdapat pada lokasi yang sama yaitu pada sambungan kolom dan pontoon pada kolom tiga. Untuk struktur tanpa deck mempunyai tegangan maksimum sebesar 201 MPa. Lokasi dan nilai tegangan maksimum dapat dilihat pada Gambar (4.25) dan tabel (4.8).

Gambar 4.25 : Lokasi tegangan maksimum pada struktur tanpa deck

Node number	Equivalent (von-mises) stress (Pa)
142155	1,60E+07
142156	1,49E+07
142157	1,49E+07
142158	1,04E+07
142159	5,84E+06
142160	4,89E+06
142161	1,03E+07
142162	1,43E+07
142163	9,94E+06
142164	2,01E+08
142165	1,09E+08
142166	8,78E+07
142167	7,60E+07
142168	7,10E+07

Tabel 4.7 : Tegangan terbesar pada node 142164 dan node-node sekitarnya

Tabel 4.7 : Tegangan terbesar pada *node* 142164 dan *node-node* sekitarnya(lanjutan)

Node number	Equivalent (von-mises) stress (Pa)
142169	6,90E+07
142170	7,28E+07
142171	6,87E+07

4.6.2 Struktur dengan deck rigid

Lokasi tegangan maksimum pada model dengan struktur deck *rigid* terletak pada *rigid* yang terletak pada sambungan kolom pontoon di kolom tiga dengan tegangan terbesar yaitu 155 MPa. Lokasi dan nilai tegangan maksimum dapat dilihat pada Gambar (4.26) dan tabel (4.9).

Gambar 4.26 : Lokasi tegangan maksimum pada struktur dengan deck rigid

Node number	Equivalent (von-mises) stress (Pa)					
7660	5,06E+07					
7661	5,98E+07					
7662	4,69E+07					
7663	1,81E+07					
7664	1,05E+07					
7665	1,32E+07					
7666	2,60E+07					
7667	1,55E+08					
7668	4,23E+07					
7669	3,45E+07					
7670	3,09E+07					
7671	2,92E+07					
7672	3,05E+07					
7673	3,22E+07					
7674	3,04E+07					

Tabel 4.8 : Tegangan terbesar pada node 7667 dan node-node sekitarnya

4.6.3 Struktur dengan deck *smeared*

Lokasi tegangan maksimum pada model dengan struktur deck *smeared* terletak pada *transverse beam* yang terletak pada pontoon di bawah kolom tiga dengan tegangan terbesar yaitu 121 MPa. Lokasi dan nilai tegangan maksimum dapat dilihat pada Gambar (4.27) dan tabel (4.10).

Gambar 4.27 : Lokasi tegangan maksimum dengan penomoran tiap *node* disekitar tegangan maksimum

Node number	Equivalent (von-mises) stress (Pa)				
1715	4,36E+06				
1716	4,90E+06				
1717	5,41E+06				
1718	6,00E+06				
1719	6,59E+06				
1720	7,23E+06				
1721	7,98E+06				
1722	8,79E+06				
1723	9,83E+06				
1724	1,12E+07				
1725	1,05E+08				
1726	6,95E+07				
1727	4,92E+07				
1728	3,91E+07				
1729	3,35E+07				

 Tabel 4.9 : Tegangan terbesar pada node 1725 dan node-node sekitarnya

BAB V

KESIMPULAN DAN SARAN

5.1 KESIMPULAN

Pada tugas akhir ini didapatkan kesimpulan sebagai berikut :

- Nilai *shear force* maksimum pada kondisi *still water* yaitu sebesar 18,017 MN pada lokasi 50,825 m dari haluan, untuk kondisi *hogging* sebesar 22,243 MN pada lokasi yang sama dengan kondisi *still water* dan untuk kondisi *sagging* sebesar 17,504 MN pada lokasi 64,2 m dari haluan. Untuk nilai *bending moment* maksimum pada kondisi *still water* yaitu sebesar 207,768 MN.m pada lokasi 80,25 m dari haluan, untuk kondisi *hogging* sebesar 352,355 MN.m pada lokasi yang sama dengan kondisi *still water*, untuk kondisi *sagging* sebesar -101,979 MN.m pada lokasi yang sama dengan kodisi *still water* dan *hogging*.
- 2. Distribusi tegangan maksimum yang terjadi pada tiga model global *semi-submersible* yang sudah dianalisa sebelumnya didapatkan untuk model global struktur *semi-submersible* tanpa deck mempunyai nilai tegangan maksimum yaitu sebesar 201 MPa, struktur *semi-submersible* dengan deck *rigid* mempunyai nilai tegangan maksimum sebesar 155 MPa, dan untuk struktur *semi-submersible* dengan deck *smeared* mempunyai nilai tegangan maksimum sebesar 121 MPa. Menurut *rules* yang terdapat di ABS (*American Bureau of Shipping*) yaitu tegangan maksimum tidak boleh lebih dari 90% dari tegangan *yield* (σ_{maks} ≥ 90% σ_{yield}), pada material baja A36 mempunyai σ_{yield} sebesar 250 Mpa, maka dapat disimpulkan bahwa ketiga model *semi-submersible* memenuhi kriteria ABS.
- 3. Lokasi tegangan maksimum pada masing-masing model global dari struktur semi-submersible mempunyai letak yang sama yaitu pada sambungan kolom dan pontoon. Dari ketiga hasil tersebut didapatkan bahwa pada kolom tiga terjadi tegangan maksimum, hal itu terjadi karena pada kolom tiga mempunyai nilai *bending moment* terbesar yaitu 352,355 MN.m.

5.2 SARAN

Saran yang dapat diberikan untuk penelitian lebih lanjut mengenai tugas akhir ini ialah sebagai berikut :

- 1. Perlu dilakukan pemodelan struktur *scantling* dan deck yang lebih mendetail untuk mendapatkan distribusi tegangan yang lebih mendekati dari keadaan yang sebenarnya.
- 2. Perlu dilakukan analisa kekuatan struktur global *semi-submersible* melintang.
- 3. Kajian terhadap kekuatan struktur perlu diperhitungkan adanya tali tambat sebagai redaman.

DAFTAR PUSTAKA

- American Institute of Steel Construction (AISC), 1989, Manual of Steel Construction Allowable Stress design, 9th Ed.
- Arda, 2012, Studi Pengaruh Gerak Semi-submersible Drilling Rig dengan Variasi Pre-tension Mooring Line Terhadap Keamanan Drilling Riser, Tugas Akhir Jurusan Teknik Kelautan, ITS Surabaya, Indonesia.
- Arifin, Fahmi., Djatmiko, E.B., dan Soedjono, J.J., 2006, "Kajian Kekuatan Struktur Semi-Submersible Akibat Eksitasi Gelombang Haluan", Tugas Akhir, Institut Teknologi Sepuluh Nopember, Surabaya.
- Chakrabarti, S.K., 1987, "Hydrodinamics of Offshore Structures", Computional Mechanics Publications Southampton, Boston, USA.
- Chan, H.S., 1990, "A Three-Dimensional Technique for Predicting First and Second-Order Order Hydrodinamic Forces on a Marine Vehicle Advancing in Waves", PhD Thesis, Department of NA&OE, University of Glasglow, UK.
- Djatmiko, E.B., 1995, "Identifikasi Respon Struktur Global Kapal SWATH dengan Model Fisik", Laporan Penelitian, Lembaga Penelitian ITS, Surabaya.
- Djatmiko, E.B., 2004, "Analisa Respon Dinamis Gerakan Heave dan Pitch pada Semi-Submersible Catamaran Hull", Jurnal Teknologi Kelautan, Vol. 08, No. 02, Juli.
- Djatmiko, E.B., 2007, "Analisa Beban Gelombang dalam Perancangan Struktur Global Kapal SWATH", Jurnal Teknologi Kelautan, Vol. 11, No. 01, Januari.
- Djatmiko, E.B., 2012, "Perilaku dan Operabilitas Bangunan Laut di Atas Gelombang Acak", ITS Press, Surabaya.
- Haselman, et al, 1973, "Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)", Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe, A(8) (Nr. 12), p.95, 1973.
- Indiyono, P. 2004, "Hidrodinamika Bangunan Lepas Pantai", Penerbit SIC, Surabaya.
- Murdjito, 2003, "Pengantar Kuliah Perancangan Bangunan Lepas Pantai III", Jurusan Teknik Kelautan Institut Teknologi Sepuluh Nopember, Surabaya.
- Murtedjo, M., 1990, Teori Gerak, Fakultas Teknologi Kelautan, ITS Surabaya.
- Naess, A., 1985, "Fatigue Handbook Offshore Steel Structure", Trondheim. PT. Global Maritim, 2007, Data semi-submersible Essar Wildcat.

- Nurfadiyah, 2011, Analisis Kekuatan Konstruksi Aft & Bow Chain Stooper Akibat Konversi Motor Tanker Menjadi Mooring Storage Tanker (MST), Tugas Akhir Jurusan Teknik Kelautan, ITS Surabaya, Indonesia.
- Patel, M.H., dan Witz, J.A., 1991, "Compliant Offshore Structures", Butterworth, Heinemann.
- Randall, R,E., 1997, "Elements of Ocean Engineering 1st edition", The Society of Naval Architects and Marine Engineers, Texas, USA.
- Rawson, K.J., dan Tupper, E.C., 2001, "Basic Ship Theory-5th edition", Butterworth-Heinemann, Jordan Hill, Oxford.
- Soedjono, J.J., 1998, "Diktat Mata Kuliah Konstruksi Bangunan Laut II", Jurusan Teknik Kelautan, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
- Zhang Da-gang, et al, "An Introduction to Hull Design Practices for Deepwater Floating Structures", Jurnal of Marine Science and Application, Harbin Engineering University, China.

BIODATA PENULIS

Ahmad Adilah dilahirkan di Manado, 11 Oktober 1992. Pendidikan SD, SMP dan SMA ditempuh di Jakarta, dan lulus dari SMA Negeri 22 Jakarta pada tahun 2010. Setelah itu penulis mengikuti Seleksi Penerimaan Mahasiswa Baru melalui jalur Mandiri dan diterima di Jurusan Teknik Kelautan, Fakultas Teknologi Kelautan, Institut Teknologi Sepuluh Nopember (ITS) Surabaya. Selama kuliah, penulis sempat aktif di beberapa organisasi kemahasiswaan intra kampus. Penulis juga

aktif di berbagai kegiatan sebagai panitia maupun peserta. Berbagai pelatihan dan seminar pernah diikutinya dalam rangka untuk pengembangan dirinya, seperti Seminar Nasional Teori dan Aplikasi Teknologi Kelautan, dan lain-lain. Penulis memiliki minat di bidang hidrodinamika dan struktur lepas pantai terapung sehingga tugas akhir yang diambil berhubungan dengan kekuatan struktur bangunan apung.

DAFTAR LAMPIRAN

- LAMPIRAN A INPUT PEMODELAN DI MOSES
- LAMPIRAN B INPUT HIDROSTATIK DI MOSES
- LAMPIRAN C DATA PERALATAN ESSAR WILDCAT
- LAMPIRAN D DISTRIBUSI BERAT, CENTRE OF GRAVITY
- LAMPIRAN E INPUT RAO DI MOSES
- LAMPIRAN F GENERAL ARRANGEMENT
- LAMPIRAN G OUTPUT HIDROSTATIK DI MOSES
- LAMPIRAN H OUTPUT RAO DI MOSES
- LAMPIRAN I TABEL DAN GRAFIK SHEAR FORCE DAN BENDING MOMENT

LAMPIRAN A INPUT PEMODELAN DI MOSES

• Input Permodelan MOSES

\$#########	***************************************	#####
\$#		#
\$#	Pemodelan Semi-submersible DREIVAR	#
\$#	Tugas Akhir Ahmad Adilah (4310100012)	#
\$#		#
\$########	*******	#####
\$		
\$	Set Dimension	
&dimen -sav	re meters m-tons	
&device -cec	cho y -mecho n -prim screen	
&title Model	l Semi-Submersible DREIVAR	
\$	Control Parameters	
&set demo	= .false.	
\$	Macro for Plotting	
&MACRO SU	JPLOT NAMES	
&SELEC :N	I -SEL %NAMES	
&IF %DEM	IO &THEN	
&DEVICE ·	-PRIMARY SCREEN	
&SUBTITL	E %SUBT	
&PICT ISO) -parent :N	
&LOCAL D	DUM = &GET(YES/NO)	
&IF &STRI	ING(MATCH %DUM% YES) &THEN	
&ENDIF		
&SUBTITL	E %SUBT	
&PICT TO	Р	
&LOCAL D	DUM = &GET(YES/NO)	
&IF &STRI	ING(MATCH %DUM% YES) &THEN	
&ENDIF		
&SUBTITL	E %SUBT	
&PICT BO	W	
&LOCAL D	DUM = &GET(YES/NO)	
&IF &STRI	ING(MATCH %DUM% YES) &THEN	
&ENDIF		
&SUBTITL	E %SUBT	
&PICT STA	ARB	
&LOCAL D	DUM = &GET(YES/NO)	
&IF &STRI	ING(MATCH %DUM% YES) &THEN	
&ENDIF		
&ELSE		
&DEVICE ·	-PRIMARY DEVICE	
&SUBTITL	E %SUBT	
&PICT ISO) -parent :N	
&SUBTITL	E %SUBT	
&PICT TO	Р	
&SUBTITL	E %SUBT	
&PICT BO	W	
&SUBTITL	E %SUBT	
&PICT STA	ARB	
&ENDIF		
&ENDMAC	RO	
\$	Generate Surface	
&surface		

```
$ -----Defining Blocks-----
$Pontoon
block pontoon -location 0 28.15 0 0 0 0
$
PLANE 0
                          -CART 0 0 4.51 0 4.51 6.71
PLANE 0.3
                          -CART 0 0 5.16 0 5.16 6.71
PLANE 0.6
                          -CART 0 0 5.37 0 5.37 6.71
PLANE 0.9
                          -CART 0 0 5.44 0 5.44 6.71
PLANE 1.2
                          -CART 0 0 5.45 0 5.45 6.71
PLANE 53.5
                          -CART 0 0 5.45 0 5.45 6.71
PLANE 90.36
                          -CART 0 0 5.49 0 5.49 6.71
PLANE 105.8
                          -CART 0 0 5.49 0 5.49 6.71
PLANE 106.1
                          -CART 0 0 5.44 0 5.44 6.71
PLANE 106.4
                          -CART 0 0 5.37 0 5.37 6.71
PLANE 106.7
                          -CART 0 0 5.16 0 5.16 6.71
PLANE 107
                          -CART 0 0 4.51 0 4.51 6.71
END
$
$-----Large Kolom------
Ś
block Lkolom1 -location 26.75 28.15 6.71 0 -90 0
plane -0.5 26.7 -rect -4.4 4.4 8.8 1 3 1
end
$
move block Lkolom1 Lkolom2 26.75 0 0 0 0 0
&set subt = kolom
$
move_block Lkolom2 Lkolom3 26.75 0 0 0 0 0
&set subt = kolom
$
$----- Horizontal Outside Brace------
block horout1 -location 26.75 23.6 10.71 0 0 -90
plane -0.75 47.7 -circ 0 0 1 0 30 100
end
$
move_block horout1 horout2 53.5 0 0 0 0 0
$
$----- Horizontal Inside Brace------
block horin1 -location 53.5 23.6 10.71 0 0 -90
plane -0.75 47.7 -circ 0 0 1 0 30 100
end
$
$----- Horizontal Diagonal Brace------
block hordia1 -location 27.503 1.5 10.71 0 0 50
plane -0.7 36.28 -circ 0 0 1 0 30 100
end
$
block hordia2 -location 27.503 -1.5 10.71 0 0 -50
plane -0.7 36.28 -circ 0 0 1 0 30 100
end
$
block hordia3 -location 79.496 1.5 10.71 0 0 130
plane -0.7 36.28 -circ 0 0 1 0 30 100
end
$
```

block hordia4 -location 79.496 -1.5 10.71 0 0 -130 plane -0.7 36.28 -circ 0 0 1 0 30 100 end \$ \$----- Vertical Diagonal Brace-----block verdia1 -location 26.75 23.6 14.312 0 -39 -90 plane -0.75 30.424 -circ 0 0 1 0 30 100 end Ś block verdia2 -location 26.75 -23.6 14.312 0 -141 -90 plane -0.75 30.424 -circ 0 0 1 0 30 100 end \$ &subtitle union verdia1 verdia2 verdia3 delete_block verdia1 verdia2 &set subt = verdia3 \$ move block verdia3 verdia4 53.5 0 0 0 0 0 Ś \$----- Vertical Deck------\$block Deck -location 38.235 0 26.2 0 0 -90 \$plane 0 3.54 -rect -3.96 3.96 7.92 1 3 1 Send \$ \$----- Union Kolom------&subtitle union Lkolom1 Lkolom2 LkolomG1 delete_block Lkolom1 Lkolom2 &set subt = Large kolom \$ &subtitle union LkolomG1 Lkolom3 LkolomG2 delete_block LkolomG1 Lkolom3 &set subt = Kolom Gabungan \$ \$------ Reflect Kolom dan Pontoon-----reflect_block LkolomG2 kolomPort y &set subt = reflection \$ reflect_block pontoon pontoonPort y &set subt = reflection \$------ Union Kolom dan Pontoon------&subtitle union LkolomG2 kolomPort kolomFIX delete_block LkolomG2 kolomPort &set subt = Kolom Gabungan &subtitle union pontoon pontoonPort pontoonFIX delete_block pontoon pontoonPort &set subt = Pontoon Gabungan

\$----- Union Brace-----

\$ &subtitle union verdia3 verdia4 verdia delete block verdia3 verdia4 &set subt = vertical diagonal brace \$ &subtitle union hordia1 hordia2 hordiaX delete_block hordia1 hordia2 &set subt = horizontal brace 1 \$ &subtitle union hordia3 hordia4 hordiaY delete_block hordia3 hordia4 &set subt = horizontal brace 2 \$ &subtitle union hordiaX hordiaY hordia delete block hordiaX hordiaY &set subt = horizontal brace \$ &subtitle union horout1 horout2 horoutFIX delete block horout1 horout2 &set subt = Horizontal Brace \$ &subtitle union horoutFIX Horin1 horlatFIX delete_block horoutFIX Horin1 &set subt = Horizontal Brace \$ &subtitle union horlatFIX Hordia horFIX delete_block horlatFIX Hordia &set subt = Horizontal Brace \$ &subtitle union horFIX verdia braceFIX delete block horFIX verdia &set subt = Brace Gabungan \$ &subtitle union braceFIX kolomFIX horkolom delete_block horFIX kolomFIX &set subt = Kolom Brace Gabungan \$ &subtitle union pontoonFIX horkolom Dreivar delete block pontoonFIX horkolom &set subt = Semi Full Body suplot Dreivar \$ \$----- Final----rename Dreivar &set subt = 'SEMI-SUBMERSIBLE DREIVAR' suplot Dreivar emit Dreivar -body Dreivar emit Dreivar -piece ' -diftyp 3ddif' \$ end &dimen –remember &finish

LAMPIRAN B INPUT HIDROSTATIK DI MOSES

• Input Hidrostatik MOSES

title Hydrostatic Property of Semi-submersible &devi -cecho yes -oecho NO -PRIMA DEV -auxin coba5.ppo inmo &DIMEN -DIMEN METERS M-TONS &apply @ hstati CFORM 21.34 0 0 REPORT end CFORM 6.599 0 0 REPORT end &fini

LAMPIRAN C

DATA PERALATAN ESSAR WILDCAT

MARINE OPERATIONS

Operating Conditions Draft 21.3335 m

ITEM	WEIGHT	LCG	TCG	VCG	ILONG	ITVAR
DECKLOAD						
Drilling col. & heave w	2	-2.29	3.50	60.96	0	0
Drillpipe	16	-2.29	3.50	60.96	0	0
BOP 18 3/4 "	147	9.11	0.00	39.62	0	0
Mud in act. t'ks	330	31.68	-0.92	37.80	0	0
Mud sack materials	60	3.00	18.00	39.10	0	0
Mud bulk materials	35	3.00	18.00	39.10	0	0
Cement b materials	5	-11.40	20.00	39.10	0	0
Cement liq. additives	11	-14.80	10.00	42.60	0	0
Misc. drilling tools opr.	30	-9.00	-11.50	38.10	0	0
Misc. drilling tools con.	50	-9.00	-11.50	38.10	0	0
Cutting disp. system	0	40.00	30.00	41.60	0	0
THIRD PARTY EQ.						
Cem. unit	39	-19.40	21.50	38.10	0	0
ROV	23	3.60	-15.00	37.60	0	0
El. logg unit, etc.	32	-34.20	-4.40	39.40	0	0
Mud logg unit	16	16.50	20.80	42.50	0	0
Well test eq.	29	-31.50	-15.00	37.60	0	0
Drilling col. & heavy w	98	-23.00	4.00	38.10	0	0
Drillpipe	104	-23.00	4.00	38.10	0	0
Riser 21"	62	-23.00	4.00	38,10	0	0
Casing	110	-23.00	4.00	38.10	0	0
Helifuel	6	9.10	26.50	40.10	0	0
Drilling tool store	25	-23.00	14.00	37.60	0	0
Various deckload	71	-23.00	-11.50	37.60	0	0
TENSION					_	
Riser	100	-2.29	0.00	43.60	0	0
POD & Guideline	11	-2.29	0.00	43.60	0	0
Cutting disp. system	4	40.00	30.00	41.60	0	0
SUBTOTAL DECKLOAD	1416	-1.55	1.68	39.51	0	0
Oilbased mud col. 2SB	165	11.41	28.00	18.50	0	0
Oilbased mud col. 3SB	430	-11.41	28.00	21.90	0	0
Barite	300	34.30	-26.80	21.95	0	0
Bentonite	50	34,30	26.80	21.95	0	0
Cement	200	-34.30	26.80	21.95	0	0
SUBTOTAL COLUMN LOAD	1145	1.85	13.38	21.43	0	0

ESSAR WILDCAT ISSUE: 01 REV: 1 EFFECTIVE DATE: 01.02.2007 PAGE: 10F 8 CHAPTER NO.: 11 – STABILIY CONDITIONS

MARINE OPERATIONS

Operating Conditions Draft 21.3335 m

ITEM	WEIGHT	LCG	TCG	VCG	ILONG	ITVAR
Lanno	240	34 27	25 45	3 35	0	130
Fuel 13 P & SB	830	-22.85	0.00	3 35	ñ	390
Brine 4 SB	509	22.85	30.93	3 35	õ	195
FW	497	22.85	-30.93	3 35	i i i i i i i i i i i i i i i i i i i	195
Drillwater	691	-11.42	-1.18	3.63	õ	260
SUBTOTAL PONTOON LOAD	2767	1.57	2.05	3.42	õ	200
SUBTOTAL PAY LOAD	5328				•	, i i i i i i i i i i i i i i i i i i i
WATER BALLAST	6018	-5.80	-4.69	3.38	0	1850
MOORING						
Chain onb. & tension	560	0.00	0.00	12.56	0	· 0
Chain chaser	12	0.00	0.00	8.00	0	0
Chaser wire	9	0.00	0.00	33.00	0	0
LIGHTWEIGHT	12246	0.84	-0.71	26.28	0	0
TOTAL DISPLACEMENT	24173	-0.57	0.00	17.70	Õ	3020
FREE SURFACE COR.				0.13	-	
CORRECTED VCG		0.00		17.83		
KM				20.57		
G'M				2.74		

.

ESSAR WILDCAT ISSUE: 01 REV: 1 EFFECTIVE DATE: 01.02.2007 PAGE: 20F 8 CHAPTER NO.: 11 – STABILIY CONDITIONS

•

MARINE OPERATIONS

Operating Conditions Draft 21.335 m

ITEM	WEIGHT	LCG	TCG	VCG	ILONG	ITVAR
WATER BALLAST						
Tank 1 P (451T)	435	42.91	-28.19	3.35	0	0
Tank 1 S (451T)	0	42.91	28.19	3.35	0	0
Tank 2 P (340T)	314	34.27	-30.93	3.35	0	0
Tank 2 S (340T)	314	34.27	30.93	3.35	0	0
Tank 5 P (887T)	0	23.15	-23.69	3.35	0	0
Tank 5 S (887T)	0	23.15	23.69	3.35	0	0
Tank 6 P (340T)	314	11.42	-30.93	3.35	0	0
Tank 6 S (340T)	314	11.42	30.93	3.35	0	0
Tank 7 & 18 P (631T)	0	11.43	-25.45	6.46	0	0
Tank 7 & 18 S (631T)	0	11.43	25.45	6.46	0	0
Tank 9 P (866T)	823	0.00	-23.74	3.43	0	795
Tank 9 S (866T)	83	0.00	23.74	3.43	0	795
Tank 10 P (340T)	314	-11.42	-30.93	3.35	0	0
Tank 10 S (340T)	324	-11.42	30.93	3.35	0	0
Tank 12 P (509T)	493	-22.85	-30.93	3.35	0	0
Tank 12 S (509T)	493	-22.85	30.93	3.35	0	0
Tank 14 P (340T)	195	-34.27	-30.93	3.35	0	130
Tank 14 S (340T)	230	-34.27	30.93	. 3.35	0	130
Tank 15 P (718T)	686	-28.56	-23.28	3.45	0	0
Tank 15 S (718T)	686	-28.56	23.28	3.45	0	0
SUBTOTAL WATERBALLAST FUEL OIL	6018	-5.80	-4.69	3.38		
Tank 13 P (419T)	415	-22.85	-25.45	3.35	0	195
Tank 13 S (419T)	415	-22.85	25.45	3.35	0	195
SUBTOTAL FUEL OIL	830	-22.85	0.00	3.35		
DRILLWATER						
Tank 11 P (331T) **	331	-11.42	-25.45	3.35	0	130
Tank19 P (285T) **	29	-11.43	-28.19	10.06	0	0
Tank 11 S (331T) **	331	-11.42	25.45	3.35	0	130
Tank 19 S 285T) **	0	-11.43	28.19	10.06	0	0
SUBTOTAL DRILLWATER	691	-11.42	-1.18	. 3.63		
TOTAL	7856	-8.09	-3.89	3.40	0	2500

** NOTE. TANKS ALWAYS CONNECTED ESSAR WILDCAT ISSUE: 01 REV: 1 EFFECTIVE DATE: 01.02.2007 PAGE: 30F 8 CHAPTER NO.: 11 – STABILIY CONDITIONS LAMPIRAN D DISTRIBUSI BERAT, *CENTRE OF GRAVITY*

No.	Station	Struktur	Deck Eq	DWT Ponton	DWT Column	Mass
		ton	ton	ton	ton	ton
1	AP-1	260,28	0,00	216,53	0,00	476,81
2	1-2	234,51	0,00	216,53	0,00	451,04
3	2-3	234,51	0,00	216,53	0,00	451,04
4	3-4	234,51	0,00	216,53	0,00	451,04
5	4-5	234,51	0,00	216,53	0,00	451,04
6	5-6	300,39	0,00	216,53	0,00	516,92
7	6-7	306,08	0,00	216,53	0,00	522,62
8	7-8	306,08	30,50	216,53	0,00	553,12
9	8-9	445,33	97,64	438,93	0,00	981,90
10	9-10	439,91	67,14	533,82	0,00	1040,88
11	10-11	447,88	67,14	533,82	0,00	1048,85
12	11-12	455,13	106,14	433,10	0,00	994,37
13	12-13	315,89	67,14	197,03	0,00	580,05
14	13-14	315,89	67,14	197,03	0,00	580,05
15	14-15	315,89	78,14	197,03	0,00	591,05
16	15-16	315,89	5,00	197,03	0,00	517,91
17	16-17	315,89	80,00	197,03	0,00	592,91
18	17-18	315,89	0,00	197,03	0,00	512,91
19	18-19	448,26	0,00	450,41	235,92	1134,59
20	19-20	336,20	129,00	558,52	336,58	1360,30
21	20-21	336,20	0,00	558,52	336,58	1231,30
22	21-22	448,26	118,00	419,95	235,92	1222,13
23	22-23	315,89	0,00	95,18	0,00	411,06
24	23-24	315,89	153,00	95,18	0,00	564,06
25	24-25	315,89	0,00	95,18	0,00	411,06
26	25-26	315,89	0,00	95,18	0,00	411,06
27	26-27	315,89	16,00	95,18	0,00	427,06
28	27-28	315,89	0,00	95,18	0,00	411,06
29	28-29	455,13	0,00	77,92	0,00	533,04
30	29-30	447,88	0,00	70,55	0,00	518,43
31	30-31	439,91	0,00	70,55	0,00	510,46
32	31-32	445,33	330,00	80,46	0,00	855,79
33	32-33	306,08	0,00	103,70	0,00	409,78
34	33-34	306,08	0,00	103,70	0,00	409,78
35	34-35	300,39	4,00	103,70	0,00	408,09
36	35-36	234,51	0,00	103,70	0,00	338,21
37	36-37	234,51	0,00	103,70	0,00	338,21
38	37-38	234,51	0,00	125,63	0,00	360,13
39	38-39	234,51	0,00	193,94	0,00	428,45
40	39-FP	260,28	0,00	193,94	0,00	454,22
Total		13157,79	1416,00	8744,00	1145,00	24462,79

	Titik Berat Terhadap							
No.	Nama Komponen	Berat (Ton)	Midship X (m)	Center Line Y (m)	keel (m)	M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
1	Drilling Col & heave w	2,00	-2,29	3,5	60,96	-4,58	7,00	121,92
2	Drillpipe	16,00	-2,29	3,5	60,96	-36,64	56,00	975,36
3	BOP 18 3/4"	147,00	9,11	0	39,62	1339,17	0,00	5824,14
4	Mud in act t'ks	330,00	31,68	-0,92	37,80	10454,40	-303,60	12474,00
5	Mud sack materials	60,00	3,00	18	39,10	180,00	1080,00	2346,00
6	Mud bulk materials	35,00	3,00	18	39,10	105,00	630,00	1368,50
7	Cement b materials	5,00	-11,40	20	39,10	-57,00	100,00	195,50
8	Cement liq. Additives	11,00	-14,80	10	42,60	-162,80	110,00	468,60
9	Misc. drilling tools opr.	30,00	-9,00	-11,5	38,10	-270,00	-345,00	1143,00
10	Misc drilling tools con.	50,00	-9,00	-11,5	38,10	-450,00	-575,00	1905,00
11	Cutting disp. System	0,00	40,00	30	41,60	0,00	0,00	0,00
12	Cem. Unit	39,00	-19,40	21,5	38,10	-756,60	838,50	1485,90
13	ROV	23,00	3,60	-15	37,60	82,80	-345,00	864,80
14	El. Logg unit, etc.	32,00	-34,20	-4,4	39,40	-1094,40	-140,80	1260,80
15	Mud logg unit	16,00	16,50	20,8	42,50	264,00	332,80	680,00
16	Well test eq.	29,00	-31,50	-15	37,60	-913,50	-435,00	1090,40
17	Drilling col. Heavy w.	98,00	-23,00	4	38,10	-2254,00	392,00	3733,80
18	Drillpipe	104,00	-23,00	4	38,10	-2392,00	416,00	3962,40
19	Riser 21"	62,00	-23,00	4	38,10	-1426,00	248,00	2362,20
20	Casing	110,00	-23,00	4	38,10	-2530,00	440,00	4191,00
21	Helifuel	6,00	9,10	26,5	40,10	54,60	159,00	240,60
22	Drilling tool store	25,00	-23,00	14	37,60	-575,00	350,00	940,00
23	Various deck load	71,00	-23,00	-11,5	37,60	-1633,00	-816,50	2669,60
24	Riser	100,00	100,00	0	43,60	10000,00	0,00	4360,00
25	POD & Guideline	11,00	11,00	0	43,60	121,00	0,00	479,60
26	Cutting disp. system	4,00	4,00	30	41,60	16,00	120,00	166,40
	Subtotal deckload	1416,00				8061,45	2318,40	55309,52
						-1,55	1,68	39,51

Pontoon structure load

			Tit	ik Berat Terhadap			3.4.437) (±7
No.	Nama Komponen	Berat (Ton)	Midship X (m)	Center Line Y (m)	keel (m)	M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
1	Pontoon 1 Plate	1302,58815	0	28,15	3,36206	0	36667,856	4379,380
2	Pontoon 1 Girder	1087,9435	0	28,15	3,36206	0	30625,610	3657,731
3	Pontoon 2 Plate	1302,58815	0	-28,15	3,36206	0	-36667,856	4379,380
4	Pontoon 2 Girder	1087,9435	0	-28,15	3,36206	0	-30625,610	3657,731
	Subtotal Pontoon Structure Load	4781,0633				0	0	16074,22168
						0	0	3,36206

	Nama Komponen		Titi	k Berat Terhadap		M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
No.		Berat (Ton)	Midship X (m)	Center Line Y (m)	keel (m)			
1	Column 1 Plate	345,34894	26,75	28,15	19,81	9238,084	9721,573	6841,363
2	Column 1 Girder	350,3382	26,75	28,15	19,81	9371,547	9862,020	6940,200
3	Column 2 Plate	345,34894	0	28,15	19,81	0	9721,573	6841,363
4	Column 2 Girder	350,3382	0	28,15	19,81	0	9862,020	6940,200
5	Column 3 Plate	345,34894	-26,75	28,15	19,81	-9238,084	9721,573	6841,363
6	Column 3 Girder	350,3382	-26,75	28,15	19,81	-9371,547	9862,020	6940,200
7	Column 4 Plate	345,34894	26,75	-28,15	19,81	9238,084	-9721,573	6841,363
8	Column 4 Girder	350,3382	26,75	-28,15	19,81	9371,547	-9862,020	6940,200
9	Column 5 Plate	345,34894	0	-28,15	19,81	0	-9721,573	6841,363
10	Column 5 Girder	350,3382	0	-28,15	19,81	0	-9862,020	6940,200
11	Column 6 Plate	345,34894	-26,75	-28,15	19,81	-9238,084	-9721,573	6841,363
12	Column 6 Girder	350,3382	-26,75	-28,15	19,81	-9371,547	-9862,020	6940,200
	Subtotal Column Structure Load	4174,12284				0,000	0,000	82689,373
						0,000	0,000	19,810

Column structure load

Deck structure load

		Berat (Ton)	Titi	k Berat Terhadap		M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
No.	Nama Komponen		Midship X (m)	Center Line Y (m)	keel (m)			
1	Main Deck Plate	1374,4915	0	0	32,66	0,000	0,000	44890,892
2	Main Deck All Girder	285,0178	0	0	33,035	0,000	0,000	9415,563
3	Upper Deck Plate	1374,4915	0	0	33,41	0	0,000	45921,761
4	Upper Deck All Girder	285,0178	0	0	33,785	0	0,000	9629,326
	Subtotal Deck Structure Load	3319,0186				0,000	0,000	109857,543
						0,000	0,000	33,099

Water ballast,	dll	load
----------------	-----	------

			Titik Berat Terhadap					
No.	Nama Komponen	onen Berat (Ton) Midship X (m)		Center Line Y (m)	keel (m)	M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
2	Column 2 Load	572,5	0	28,15	19,81	0	16115,875	11341,225
5	Column 5 Load	572,5	0	-28,15	19,81	0	- 16115,875	11341,225
7	Tank 1 P (451T)	435	50,432	-26,156	3,36206	21937,92	-11377,86	1462,4961
8	Tank 1 S (451T)	0	50,432	26,156	3,36206	0	0	0
9	Tank 2 P (340T)	314	39,4	-28,882	3,36206	12371,6	-9068,948	1055,68684
10	Tank 2 S (340T)	314	39,4	28,882	3,36206	12371,6	9068,948	1055,68684
11	Tank 3 P	0	39,4	-23,432	3,36206	0	0	0
12	Tank 3 S	0	39,4	23,432	3,36206	0	0	0
13	Tank 4 P	0	26,75	-29,84	3,36206	0	0	0
14	Tank 4 S	240	26,75	23,919	3,36206	6420	5740,56	806,8944
15	Tank 5 P (887T)	0	26,75	-23,919	3,36206	0	0	0
16	Tank 5 S (887T)	0	26,75	23,919	3,36206	0	0	0
17	Tank 6 P (340T)	314	13,375	-28,882	3,36206	4199,75	-9068,948	1055,68684
18	Tank 6 S (340T)	314	13,375	28,882	3,36206	4199,75	9068,948	1055,68684
19	Tank 7 P (631T)	0	13,375	-23,432	3,36206	0	0	0
20	Tank 7 S (631T)	0	13,375	23,432	3,36206	0	0	0
21	Tank 8 P	497	0	-28,394	3,36206	0	- 14111,818	1670,94382
22	Tank 8 S	497	0	28,394	3,36206	0	14111,818	1670,94382
22	Tank Q D (866T)	873	0	-23 010	3 36206	0	- 10685 337	2766 07528
23	Tank 9 S (866T)	825	0	23,919	3,30200	0	1985 277	279 05098
25	Tank 10 P (340T)	314	-13 375	-28 882	3 36206	-4199 75	-9068 948	1055 68684
26	Tank 10 S (340T)	324	-13.375	28.882	3.36206	-4333.5	9357.768	1089.30744
27	Tank 11 P (331T)	331	-13,375	-23,432	3,36206	-4427,125	-7755,992	1112,84186
28	Tank 11 S (331T)	331	-13,375	23,432	3,36206	-4427,125	7755,992	1112,84186
29	Tank 12 P (509T)	493	-26,75	-28,394	3,36206	-13187,75	- 13998,242	1657,49558
30	Tank 12 S (509T)	493	-26,75	28,394	3,36206	-13187,75	13998,242	1657,49558
31	Tank 13 P (419T)	415	-26,75	-23,919	3,36206	-11101,25	-9926,385	1395,2549
32	Tank 13 S (419T)	415	-26,75	23,919	3,36206	-11101,25	9926,385	1395,2549
33	Tank 14 P (340T)	195	-39,4	-28,824	3,36206	-7683	-5620,68	655,6017
34	Tank 14 S (340T)	230	-39,4	28,824	3,36206	-9062	6629,52	773,2738
35	Tank 15 P (718T)	686	-39,4	-23,489	3,36206	-27028,4	- 16113,454	2306,37316
36	Tank 15 S (718T)	686	-39,4	23,489	3,36206	-27028,4	16113,454	2306,37316
	Subtotal Water Ballast,Dll Load	9889				-75266,68	-22039,7	52080,30264
	.,					-7.61	-2.23	5.27

Total load

	Nama Komponen	Berat (Ton)	Titi	k Berat Terhadap		M*X (ton.m)	M*Y (ton.m)	M*Z (Ton.m)
No.			Midship X (m)	Center Line Y (m)	keel (m)			
1	Subtotal deckload	1416,00	-1,55	1,68	39,51	-2194,8	2378,88	55946,16
2	Subtotal Pontoon Structure Load	4781,0633	0	0	3,36206	0	0	16074,22168
3	Subtotal Column Structure Load	4174,12284	0,000	0,000	19,810	0	0	82689,37346
4	Subtotal Deck Structure Load	3319,0186	0,000	0,000	33,099	0	0	109857,5428
5	Subtotal Water Ballast, Dll Load	9889	-7,61	-2,23	5,27	-75266,68	-22039,7	52080,30264
	TOTAL LOAD	23579,20				-77461,48	-19660,82	316647,6006

LCG	=	-3,29	dari midship
TCG	=	-0,83	dari centre line
VCG	=	13,43	dari keel
Кхх	=	14,43208945	
Куу	=	14,73477104	
Kzz	=	9,633630378	

LAMPIRAN E INPUT RAO DI MOSES

• Input RAO MOSES

&title SEMI-SUBMERSIBLE RAO MOTION &subtitle Engineer : Ahmad Adilah &devi -cecho yes -AUXIN coba5.ppo -oecho no -PRIMA DEV inmo &DIMEN -DIMEN METERS M-TONS &instate Dreivar -condi 21.335 0.0 0.0 &weight -compute Dreivar 13.43 13.45 13.83 3.39 \$ &pltmodel vessel pic iso pic starboard pic bow pic top end \$ hstati equi -num 500 -echo yes \$ &stat -hard END \$ \$&set per = -period \$&loop i 1 55 \$ &set per = %per% &number(real 2.5+0.5*%i) \$&endloop \$ hydro \$¶ -m_dist 5 g_press -speed 0.0 -heading 0 45 90 135 180 &DIMEN -DIMEN METERS K-NTS V MDRIFT REPORT END end \$ freq_resp rao -heading 0 45 90 135 180 \$ &subti VESSEL MOTIONS &DIMEN -DIMEN METERS K-NTS fp_std &BODY(CG Dreivar) equ_sum MATRICES -FILE YES REPORT END &finish

LAMPIRAN F GENERAL ARRANGEMENT

LAMPIRAN G OUTPUT HIDROSTATIK DI MOSES

• Output Hidrostatik MOSES

Page	1	Licensee - Global Maritime	Rev 7.00.018	Ser614	
	***	***************************************	**********	*********	*****
	*	***	10SES ***		*
	*			6 April, 2014	*
	*	Hydrostatic Pr	operty of Semi-submersible		*
	*				*
	***	******	******	******	*****

+++ HYDROSTATIC PROPERTIES +++

For Body Dreivar

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

/--- Condition ---//- Displac-//-- Center Of Buoyancy --// W.P. / /C. Flotation / /---- Metacentric Heights ----/ Draft Trim Roll ---X--- ---Z--- Area ---X--- --Y--- --KMT- -KML- -BMT- -BML-

21.34 0.00 0.00 24028.28 53.55 0.00 6.79 484. 53.50 0.00 22.81 16.96 16.02 10.17

Р	age	2	Licensee - Global Maritime	Rev 7.00.018	Ser614	
******	****	*****	************	* * * * * * * * * * * * * * * * * * * *	******	* *
*			*** MOSES ***			*
*					6 April, 2014	*
*			Hydrostatic Property of Semi	-submersible		*
*						*
*****	****	*****	******	******	*****	**

+++ HYDROSTATIC COEFFICIENTS+++

For Body Dreivar

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

Wetted Load To Change /----- For 0 KG -----/ /--- Condition ---/ Displacement Surface Draft 1 MM Moment To Change .01 Deg Draft Trim Roll ------ ---- ---- Heel --- --- Trim ---

21.34 0.00 0.00 24028.28 12371.7 0.50 67.18 42.64

	Page	3	Licensee ·	 Global Maritime 		Rev 7.00.018	Ser	614	
*****	******	******	*******	*****	* * * * * * * * * * * * * * * * * *	*****	*******	*********	****
*				*** MOSE	S ***				*
*								6 April, 2014	*
*			ŀ	Hydrostatic Property	y of Semi-submer	sible			*
*									*
*****	******	******	*******	* * * * * * * * * * * * * * * * * *	******	****	******	****	****

+++ HYDROSTATIC PROPERTIES +++

For Body Dreivar

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

6.60 0.00 0.00 15803.82 53.58 0.00 3.30 2336. 53.58 0.00 124.89 147.75 121.59 144.45

	Page	4	Licensee - Global Maritime	Rev 7.00.018	Ser614	
* * * * * * * * * * * *	*****	*****	******	*******	*******	******
*			*** MOSES ***			*
*					6 April, 2014	*
*			Hydrostatic Property of Se	emi-submersible		*
*						*
******	******	*****	*****	****	****	******

+++ HYDROSTATIC COEFFICIENTS+++

For Body Dreivar

Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified

Wetted Load To Change /----- For 0 KG -----/ /--- Condition ---/ Displacement Surface Draft 1 MM Moment To Change .01 Deg Draft Trim Roll ------ ---- ---- Heel --- --- Trim ---

6.60 0.00 0.00 15803.82 5424.5 2.39 335.37 398.43

LAMPIRAN H OUTPUT RAO DI MOSES

· Hasil Output RAO MOSES

Page Licensee - Global Maritime Rev 7.00.018 Ser614 1 *** MOSES *** * -----18 May, 2014 * * SEMI-SUBMERSIBLE RAO MOTION * * Engineer : Ahmad Adilah +++ BUOYANCY AND WEIGHT FOR SEMIFIX+++ _____ Process is DEFAULT: Units Are Degrees, Meters, and M-Tons Unless Specified Results Are Reported In Body System Draft = 21.33 Roll Angle = 0.00 Pitch Angle = 0.00 Wet Radii Of Gyration About CG K-X = 13.45 K-Y = 13.83 K-Z = 3.39 GMT = 9.38 GML = 3.53 /-- Center of Gravity ---/ Sounding % Full Name ----- Part DREIVAR ------LOAD GRO 24025.8 53.55 0.00 13.43 24025.8 53.55 Total 0.00 13.43 Buoyancy 24025.8 53.55 0.00 6.79

*	**********	*********	*****	*********	******	*** MOCEC	***	*********	* * * * * * *	*********	******	*	
*						PROSES				10 M	20	14 *	
*	CEMT		P P30 1	IOTTON	-					10 M	ay, 20	14 *	
*	VESS	EL MOTIONS	E RAO I	NOTION								*	
*	Draft = 21	3 Meters		-	Prim Ar	$\sigma l = 0.0$	Deg		CMT =	9.38 Met	ore	*	
*	Boll Cy Ba	dine = 13	5 Motor	re I	Ditch (v Radius a	= 13 9	Motore	Vaw Cu	/ Radius =	3 4	Motors *	
*	Heading =	0 00 Deg	5 Meter	10 1	Forward	Speed = (00 87	onte	Lines:	ization Ba	r.c no bee	1/20 *	
***	*********	**********	******	* * * * * * * * * * *	******	***********	******	**********	*******	*********	******	**********	
			+++ M (σπτοΝ	RES	PONSE	OPE	RATOR	S +++				
		0:	f Point	t On Body DE	REIVAR	At X = 53	3.6 Y =	= 0.0 Z ·	= 13.	4			
		Process	is DEM	FAULT: Units	Are I	egrees, Met	ers, a	and KN Un	less St	pecified			
ENCO	UNTER	Surge /		Swav /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	v Period	/	/	/	/	/	/	/	/	/	/	/	/
(Rad/Sec) (Sec) -	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0.251	3 25.00	0.961	114	0.009	3	1.547	10	0.080	-46	1.113	-87	0.015	-170
0.314	2 20.00	0.858	118	0.009	-133	0.222	73	0.010	-4	1.140	-57	0.014	30
0.330	7 19.00	0.845	123	0.006	-122	0.317	55	0.006	-5	1.147	-56	0.010	35
0.349	1 18.00	0.828	127	0.005	-112	0.369	53	0.005	-7	1.161	-54	0.007	40
0.369	6 17.00	0.806	132	0.004	-102	0.390	55	0.004	-11	1.180	-51	0.005	43
0.392	7 16.00	0.780	138	0.003	-92	0.391	60	0.003	-16	1.202	-46	0.003	42
0.418	9 15.00	0.747	145	0.002	-81	0.377	67	0.003	-23	1.224	-40	0.002	29
0.433	3 14.50	0.728	149	0.001	-77	0.365	71	0.003	-27	1.234	-37	0.002	18
0.448	8 14.00	0.706	154	0.001	-77	0.350	76	0.004	-31	1.242	-33	0.002	6
0.465	4 13.50	0.682	158	0.000	0	0.333	82	0.004	-34	1.248	-28	0.003	-2
0.483	3 13.00	0.655	164	0.001	155	0.314	89	0.005	-37	1.249	-24	0.004	-5
0.502	7 12.50	0.623	169	0.001	152	0.293	97	0.005	-39	1.243	-18	0.005	-5
0.523	6 12.00	0.587	176	0.002	158	0.271	106	0.007	-40	1.229	-12	0.006	-2
0.546	4 11.50	0.545	-176	0.003	165	0.248	115	0.008	-41	1.197	-6	0.008	1
0.571	2 11.00	0.497	-168	0.005	172	0.225	126	0.009	-43	1.152	1	0.009	13
0.598	4 10.50	0.441	-159	0.007	179	0.195	137	0.012	-45	1.083	9	0.011	24
0.628	3 10.00	0.376	-149	0.009	-173	0.157	149	0.014	-47	0.974	19	0.013	31
0.661	4 9.50	0.303	-139	0.012	-163	0.102	163	0.017	-43	0.833	29	0.014	45
0.698	1 9.00	0.222	-124	0.014	-154	0.047	-164	0.021	-41	0.643	44	0.017	51
			-104	0.017	-141	0.038	-73	0.023	-40	0.448	65	0.017	56
0.739	2 8.50	0.143	-104									0.016	
0.7392	2 8.50 4 8.00	0.143	-104	0.019	-125	0.060	-27	0.027	-32	0.290	96	0.016	80
0.7392	2 8.50 4 8.00 8 7.50	0.143 0.077 0.018	-80	0.019	-125 -103	0.060	-27 5	0.027	-32 -22	0.290	96 120	0.016	80 107
0.7392 0.7854 0.8372 0.8979	2 8.50 4 8.00 8 7.50 6 7.00	0.143 0.077 0.018 0.047	-104 -80 -86 170	0.019 0.021 0.027	-125 -103 -89	0.060 0.059 0.045	-27 5 52	0.027 0.029 0.036	-32 -22 -10	0.290 0.150 0.004	96 120 -43	0.016 0.016 0.015	80 107 122
0.7392 0.7854 0.8372 0.8970 0.9660	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50	0.143 0.077 0.018 0.047 0.075	-104 -80 -86 170 -168	0.019 0.021 0.027 0.023	-125 -103 -89 -82	0.060 0.059 0.045 0.034	-27 5 52 108	0.027 0.029 0.036 0.036	-32 -22 -10 -3	0.290 0.150 0.004 0.090	96 120 -43 -2	0.016 0.016 0.015 0.012	80 107 122 135
0.739 0.785 0.837 0.837 0.897 0.966 1.047	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50 2 6.00	0.143 0.077 0.018 0.047 0.075 0.063	-104 -80 -86 170 -168 -120	0.019 0.021 0.027 0.023 0.011	-125 -103 -89 -82 -60	0.060 0.059 0.045 0.034 0.013	-27 52 108 172	0.027 0.029 0.036 0.036 0.020	-32 -22 -10 -3 12	0.290 0.150 0.004 0.090 0.055	96 120 -43 -2 52	0.016 0.016 0.015 0.012 0.008	80 107 122 135 81
0.739 0.785 0.837 0.897 0.966 1.047 1.142	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50 2 6.00 4 5.50	0.143 0.077 0.018 0.047 0.075 0.063 0.035	-104 -80 -86 170 -168 -120 -46	0.019 0.021 0.027 0.023 0.011 0.004	-125 -103 -89 -82 -60 16	0.060 0.059 0.045 0.034 0.013 0.007	-27 52 108 172 -173	0.027 0.029 0.036 0.036 0.020 0.020	-32 -22 -10 -3 12 47	0.290 0.150 0.004 0.090 0.055 0.020	96 120 -43 -2 52 -144	0.016 0.016 0.015 0.012 0.008 0.011	80 107 122 135 81 75
0.7392 0.7852 0.8376 0.8976 0.9660 1.0472 1.1422 1.2560	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50 2 6.00 4 5.50 6 5.00	0.143 0.077 0.018 0.047 0.075 0.063 0.035 0.016	-104 -80 -86 170 -168 -120 -46 -127	0.019 0.021 0.027 0.023 0.011 0.004 0.003	-125 -103 -89 -82 -60 16 92	0.060 0.059 0.045 0.034 0.013 0.007 0.007	-27 52 108 172 -173 -99	0.027 0.029 0.036 0.036 0.020 0.020 0.009 0.005	-32 -22 -10 -3 12 47 82	0.290 0.150 0.004 0.090 0.055 0.020 0.039	96 120 -43 -2 52 -144 39	0.016 0.016 0.015 0.012 0.008 0.011 0.005	80 107 122 135 81 75 100
0.7392 0.7852 0.8376 0.8976 0.9660 1.0472 1.1422 1.2560 1.3962	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50 2 6.00 4 5.50 6 5.00 3 4.50	0.143 0.077 0.018 0.047 0.075 0.063 0.035 0.016 0.072	-104 -80 -86 170 -168 -120 -46 -127 -26	0.019 0.021 0.027 0.023 0.011 0.004 0.003 0.002	-125 -103 -89 -82 -60 16 92 153	0.060 0.059 0.045 0.034 0.013 0.007 0.019 0.015	-27 52 108 172 -173 -99 23	0.027 0.029 0.036 0.036 0.020 0.009 0.005 0.003	-32 -22 -10 -3 12 47 82 164	0.290 0.150 0.004 0.090 0.055 0.020 0.020 0.039 0.006	96 120 -43 -2 52 -144 39 -127	0.016 0.015 0.012 0.008 0.011 0.005 0.001	80 107 122 135 81 75 100 21
0.7392 0.7854 0.8374 0.8974 0.9664 1.0472 1.1424 1.2564 1.3965 1.5702	2 8.50 4 8.00 8 7.50 6 7.00 6 6.50 2 6.00 4 5.50 6 5.00 3 4.50 8 4.00	0.143 0.077 0.018 0.047 0.075 0.063 0.035 0.016 0.016 0.072 0.046	-104 -80 -86 170 -168 -120 -46 -127 -26 134	0.019 0.021 0.027 0.023 0.011 0.004 0.003 0.002 0.002 0.001	-125 -103 -89 -82 -60 16 92 153 -64	0.060 0.059 0.045 0.034 0.013 0.007 0.019 0.015 0.003	-27 52 108 172 -173 -99 23 175	0.027 0.029 0.036 0.036 0.020 0.020 0.009 0.005 0.003 0.003	-32 -22 -10 -3 12 47 82 164 -52	0.290 0.150 0.004 0.090 0.055 0.020 0.039 0.006 0.020	96 120 -43 -2 52 -144 39 -127 136	0.016 0.016 0.015 0.012 0.008 0.011 0.005 0.001 0.001 0.003	80 107 122 135 81 75 100 21 -118

*****	*********	*********	******	********	******	*********	******	*********	******	*********	******	*********	
*					*	** MOSES	***					*	
*					-					18 M	av, 201	4 *	
*	SEMI	-SUBMERSIBLE	E RAO M	OTION								*	
*	VESS	EL MOTIONS										*	
* [Draft = 21	.3 Meters			Trim Ar	ngle = 0.0	00 Deg.		GMT =	9.38 Mete	ers	*	
* F	Roll Gv. Ra	dius = 13.5	5 Meter	s	Pitch G	v. Radius =	= 13.8	8 Meters	Yaw G	. Radius =	3.4	Meters *	
* F	Heading =	45.00 Deg.			Forward	i Speed = (0.00 Kr	nots	Linear	ization Bas	sed on	1/20 *	
****	*********	*********	******	********	******	********	*****	*********	*****	*********	******	********	
		-	+++ M C	TION	RES	PONSE	ΟPΕ	ERATOR	S +++				
		01	E Point	On Body D	REIVAR	At X = 53	3.6 Y =	= 0.0 Z •	= 13	. 4			
		Process	is DEF	AULT: Unit	s Are I	egrees, Met	ters, a	and KN Un	less Sp	pecified			
ENCOU	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
-(Rad/Sec)-	(Sec)-	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
							_						
0.2513	25.00	0.682	109	0.630	102	1.510	7	0.182	-168	0.805	-95	0.103	-160
0.3142	20.00	0.607	107	0.563	112	0.249	45	0.440	117	0.811	-63	0.094	-167
0.3307	19.00	0.597	111	0.549	114	0.359	37	0.454	118	0.814	-63	0.105	-163
0.3491	18.00	0.584	114	0.532	116	0.413	36	0.473	120	0.823	-63	0.115	-160
0.3696	17.00	0.568	118	0.512	120	0.436	38	0.495	122	0.836	-61	0.125	-156
0.3927	16.00	0.548	122	0.489	123	0.439	41	0.519	125	0.850	-58	0.135	-152
0.4189	15.00	0.524	127	0.461	128	0.426	45	0.544	129	0.862	-54	0.144	-147
0.4333	14.50	0.510	130	0.446	130	0.415	48	0.556	132	0.867	-52	0.149	-144
0.4488	14.00	0.494	133	0.428	133	0.401	51	0.567	135	0.870	-49	0.152	-141
0.4654	13.50	0.477	137	0.409	136	0.384	55	0.577	138	0.870	-47	0.155	-138
0.4833	13.00	0.457	140	0.389	139	0.364	59	0.584	141	0.867	-43	0.157	-135
0.5027	12.50	0.435	144	0.366	143	0.341	63	0.588	145	0.858	-40	0.15/	-132
0.5236	12.00	0.409	149	0.340	147	0.316	68	0.587	150	0.842	-36	0.156	-128
0.5464	11.50	0.381	154	0.312	151	0.28/	/3	0.583	154	0.813	-31	0.152	-124
0.5712	10.50	0.349	160	0.281	156	0.255	/9	0.568	100	0.778	-25	0.138	-122
0.5984	10.50	0.312	172	0.247	161	0.217	80	0.537	171	0.723	-13	0.123	-121
0.0203	9.50	0.270	170	0.210	172	0.1/2	91	0.495	100	0.045	-15	0.033	-122
0.0014	9.50	0.224	-172	0.171	170	0.119	100	0.429	-160	0.540	-5	0.073	-155
0.0301	9.00	0.172	-160	0.152	-175	0.000	141	0.340	-109	0.425	10	0.055	-155
0.7592	0.50	0.122	-140	0.090	-174	0.020	-176	0.255	-130	0.293	20	0.059	145
0.7054	7 50	0.079	-149	0.007	-178	0.017	-150	0.151	-110	0.177	62	0.004	173
0.0576	7.00	0.014	-130	0.040	177	0.013	-53	0.003	-110	0.074	159	0.110	-165
0.0570	6 50	0.023	-121	0.030	-160	0.007	- 55	0.024	79	0.021	-130	0.140	-134
1 0472	6.00	0.025	- 95	0.014	-38	0.005	-100	0.032	120	0.021	130	0.107	-113
1.1424	5.50	0.023	- 33	0.038	- 50	0.005	-10	0.0052	158	0.021	-170	0.119	-96
1.2566	5.00	0.018	69	0.032	56	0.006	111	0.005	-69	0.019	-53	0.042	-91
1.3963	4.50	0.008	-165	0.008	148	0.001	63	0.010	17	0.015	132	0.019	-89
1.5708	4.00	0.008	-44	0.002	-20	0.003	-156	0.004	-50	0.001	134	0.015	18
2.0944	3.00	0.002	148	0.000	_0	0.001	43	0.000	0	0.004	148	0.005	-113
					<u> </u>				÷				

*****	********	*********	******	*********	******	*********	*****	********	******	*********	*****	*********	
*					,	*** MOSES	***					*	
*										18 Ma	av. 20	14 *	
*	SEMT	-SUBMERSIBLE	RAO N	NOTTON							.,,	*	
*	VESS	EL MOTIONS										*	
* D1	aft = 21	.3 Meters			Trim Ar	ngle = 0.0	0 Deg.		GMT =	9.38 Mete	ers	*	
* Ro	oll Gv. Ra	dius = 13.5	5 Meter	rs	Pitch (v. Radius -	13.8	Meters	Yaw Gy	. Radius =	3.4	Meters *	
* He	ading =	90.00 Deg.			Forward	i Speed = (.00 Kn	ots	Linear	ization Bas	ed on	1/20 *	
*****	********	*********	*****	*********	******	*********	*****	********	******	********	*****	*******	
		+	+++ M (στιον	RES	PONSE	ΟΡΕ	RATOR	S +++				
		01	f Point	t On Body Di	REIVAR	At X = 53	8.6 Y =	0.0 Z =	 13. 	. 4			
		Process	is DEB	FAULT: Unit	s Are I	Degrees, Met	ers, a	nd KN Uni	less Sp	ecified			
ENCOUN	ITER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	, Wave	Ampl.	Wave	Ampl.	, Wave	Ampl.	Wave	Ampl.	, Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
- (Rad/Sec) -	-(Sec)-	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase
0 2513	25 00	0 055	174	0 899	89	1 483	0	0 210	-166	0 207	-177	0 040	-138
0.3142	20.00	0.052	-3	0.792	90	0.301	ő	0.649	109	0.109	7	0.024	99
0.3307	19.00	0.040	-5	0.769	90	0.415	õ	0.679	105	0.069	8	0.025	99
0.3491	18.00	0.032	-7	0.742	90	0.471	ő	0.713	102	0.046	10	0.026	98
0.3696	17.00	0.027	-9	0.710	90	0.495	ő	0.753	100	0.029	15	0.027	97
0.3927	16.00	0.023	-11	0.672	90	0.501	ő	0.797	99	0.018	26	0.028	95
0.4189	15.00	0.020	-13	0.625	90	0.491	ŏ	0.845	97	0.010	58	0.030	93
0.4333	14.50	0.019	-14	0.598	90	0.481	õ	0.869	97	0.009	86	0.030	92
0.4488	14.00	0.017	-15	0.568	90	0.467	0	0.892	96	0.011	110	0.030	91
0.4654	13.50	0.016	-16	0.535	90	0.450	0	0.915	96	0.013	124	0.031	89
0.4833	13.00	0.014	-17	0.499	90	0.430	-1	0.935	96	0.016	133	0.031	86
0.5027	12.50	0.012	-16	0.459	90	0.404	-1	0.953	95	0.020	138	0.031	83
0.5236	12.00	0.011	-14	0.414	91	0.375	-3	0.965	95	0.024	142	0.030	80
0.5464	11.50	0.010	-9	0.366	91	0.339	-5	0.969	95	0.027	129	0.030	77
0.5712	11.00	0.008	-7	0.313	92	0.297	-7	0.965	95	0.026	121	0.028	68
0.5984	10.50	0.008	-10	0.256	93	0.246	-11	0.954	95	0.030	120	0.027	60
0.6283	10.00	0.008	-16	0.195	95	0.187	-16	0.932	95	0.034	111	0.025	52
0.6614	9.50	0.009	-19	0.131	98	0.121	-24	0.895	96	0.040	92	0.021	22
0.6981	9.00	0.007	-37	0.063	106	0.055	-39	0.845	97	0.042	64	0.020	-8
0.7392	8.50	0.003	-175	0.016	-145	0.021	-133	0.777	98	0.048	37	0.014	-39
0.7854	8.00	0.009	144	0.078	-93	0.055	178	0.689	99	0.042	6	0.004	-75
0.8378	7.50	0.014	122	0.147	-86	0.082	174	0.561	98	0.041	-20	0.009	-62
0.8976	7.00	0.018	93	0.215	-85	0.095	177	0.397	95	0.036	-53	0.024	-73
0.9666	6.50	0.018	74	0.246	-90	0.099	-176	0.186	87	0.022	-70	0.030	-103
1.0472	6.00	0.016	53	0.203	-96	0.089	-171	0.010	-36	0.013	-48	0.020	-126
1.1424	5.50	0.015	20	0.109	-93	0.056	179	0.102	-88	0.009	-57	0.008	-96
1.2566	5.00	0.008	-12	0.014	-80	0.000	0	0.113	-85	0.008	170	0.007	-74
1.3963	4.50	0.004	-18	0.053	81	0.017	-4	0.046	-97	0.012	165	0.000	0
1.5708	4.00	0.003	-38	0.017	81	0.006	-5	0.005	15	0.008	163	0.004	113
2.0944	3.00	0.000	0	0.001	102	0.001	156	0.001	-88	0.000	0	0.001	87

*****	*********	*********	******	*********	******	*********	******	*********	******	*********	******	*********	
*					*	*** MOSES	***					*	
*					-					18 M	av. 201	.4 *	
*	SEMI	-SUBMERSIBLE	RAO N	OTION						2011	-17 200	*	
*	VESS	EL MOTIONS										*	
* D:	raft = 21	.3 Meters			Trim Ar	ngle = 0.	00 Deg.		GMT =	9.38 Mete	ers	*	
* R	oll Gv. Ra	dius = 13.5	5 Meter	s	Pitch G	y. Radius	= 13.8	8 Meters	Yaw Gy	. Radius =	3.4	Meters *	
* H	eading = 1	35.00 Deg.			Forward	i Speed =	0.00 Kr	nots	Linear	ization Bas	sed on	1/20 *	
****	********	*********	******	********	******	*********	*****	********	******	********	*****	*********	
		+	+++ M C	TION	RES	PONSE	OPE	ERATOR	S +++				
		-											
		01	E Point	: On Body D	REIVAR	At X = 5	3.6 Y =	= 0.0 Z =	= 13.	. 4			
		Process	is DEF	AULT: Unit	s Are I	egrees, Me	ters, a	and KN Uni	less Sp	ecified			
ENCOUI	NTER	Surge /		Sway /		Heave /		Roll /		Pitch /		Yaw /	
		Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.	Wave	Ampl.
Frequency	Period	/	/	/	/	/	/	/	/	/	/	/	/
- (Rad/Sec) -	-(Sec)-	Amp1.	Phase	Amp1.	Phase	Amp1.	Phase	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase
0 2512	25.00	0 670	-100	0 647	75	1 550	- 9	0 107	-157	0 901	96	0.056	_40
0.2515	20.00	0.613	-109	0.562	69	0.272	-44	0.107	-157	0.801	50	0.058	-40
0.3307	19.00	0.603	-111	0.547	66	0.386	-34	0.464	80	0.836	64	0.114	-14
0.3491	18.00	0.588	-115	0.529	64	0.447	-33	0.480	75	0.840	63	0.121	-18
0.3696	17.00	0.570	-119	0.507	60	0.447	-35	0.500	70	0.848	61	0.129	-21
0.3927	16.00	0.547	=124	0.480	57	0.487	-38	0.520	65	0.855	58	0.138	-26
0.4189	15.00	0.518	-129	0.448	52	0.480	-43	0.539	59	0.859	53	0.146	-30
0.4333	14.50	0.501	-133	0.430	50	0.470	-47	0.546	56	0.858	51	0.150	-33
0.4488	14.00	0.481	-136	0.410	47	0.457	-50	0.551	53	0.853	48	0.153	-36
0.4654	13.50	0.458	-140	0.387	44	0.440	-54	0.554	49	0.844	45	0.155	-40
0.4833	13.00	0.433	-144	0.363	40	0.419	-59	0.553	45	0.831	41	0.156	-44
0.5027	12.50	0.405	-149	0.337	37	0.392	-65	0.546	41	0.811	37	0.155	-48
0.5236	12.00	0.374	-154	0.309	33	0.362	-71	0.534	36	0.784	33	0.152	-52
0.5464	11.50	0.341	-159	0.280	29	0.326	-79	0.512	31	0.755	28	0.145	-57
0.5712	11.00	0.307	-165	0.250	24	0.287	-88	0.484	27	0.714	22	0.130	-63
0.5984	10.50	0.273	-171	0.219	19	0.241	-98	0.453	21	0.665	16	0.112	-67
0.6283	10.00	0.239	-179	0.189	13	0.192	-111	0.413	14	0.610	9	0.088	-69
0.6614	9.50	0.202	172	0.156	5	0.138	-126	0.367	6	0.546	0	0.060	-59
0.6981	9.00	0.165	160	0.119	-4	0.087	-142	0.306	-3	0.456	-13	0.056	-33
0.7392	8.50	0.124	144	0.078	-17	0.045	-157	0.226	-16	0.341	-30	0.077	-23
0.7854	8.00	0.081	122	0.036	-28	0.020	-171	0.133	-32	0.212	-52	0.090	-29
0.8378	7.50	0.038	98	0.013	35	0.008	-160	0.037	-40	0.076	-87	0.087	-33
0.8976	7.00	0.009	82	0.029	43	0.008	-170	0.032	89	0.016	143	0.082	-28
0.9666	6.50	0.005	136	0.026	-9	0.013	180	0.061	76	0.025	75	0.101	-25
1.0472	6.00	0.017	12	0.024	-121	0.013	135	0.052	47	0.015	137	0.116	-52
1.1424	5.50	0.030	-42	0.035	155	0.012	103	0.016	26	0.037	138	0.082	-75
1.2566	5.00	0.024	-95	0.029	97	0.006	49	0.006	-167	0.023	83	0.036	-100
1.3963	4.50	0.014	-160	0.010	36	0.004	-71	0.008	122	0.009	175	0.029	-118
1.5708	4.00	0.007	41	0.004	-149	0.002	120	0.004	-75	0.003	-132	0.021	176
2.0944	3.00	0.001	-162	0.000	0	0.001	-63	0.000	0	0.003	-160	0.005	-63

						*** MOCEC	***						
						MOSES				10.14			
	ODWT	CUDAEDOTDI		OTTON						18 M	ay, 20	14 ^	
	VECCI	-SUBMERSIBLE	E RAO M	OTION									
D	VE551	2 Meteres				-1 0 (0 D		CMT -	0.30 Mat			
Drai	t = 21	.3 Meters			Trim AI	igie = 0.0	JU Deg		GMT =	9.38 Met	ers		
KOII	. Gy. кас	11US = 13.3	5 Meter	s	Pitch (y. Radius	= 13.	8 Meters	raw Gy	/. Radius =	3.4	Meters *	
Head	ing = 10	80.00 Deg.			Forward	1 Speed = (0.00 K	nots	Linear	ization Ba	sed on	1/ 20 *	
			M 0	T T O N	D D C	DONCE	0 D 1		°				
			TTT M 0		KE 5	PONSE	0 P		3 111				
		-	f Point	On Body D	DETVAD	Δ+ V = 5	3 6 V	- 0.0.2	= 13	4			
		Process	ie DFF	AULT: Unit	a lra I	Degrees Met	ore i	and KN Un	- 15. 1600 Sr	a field			
ыт	F D	Surgo /	18 DEF	Cupy /	s Are i	Hearro /	Lers,	Poll /	ress of	Ditch /		V /	
		Wave	Amro 1	Sway / Wave	Amrol	Neave /	Amp 1	Wave	Amro 1	Wave	Amrol	Idw / Wave	Amp 1
, P	eriod	/	/	/	/	/	/	/	/	/	/	/	/
	(Sec) -	Ampl.	Phase	Ampl.	Phase	Ampl.	Phase.	Ampl	Phase	Ampl,	Phase	Ampl.	Phase
	(000)												211000
	25.00	0.948	-114	0.013	43	1.621	-12	0.094	-58	1.118	88	0.017	-140
	20.00	0.864	-118	0.009	151	0.242	-69	0.008	-58	1.176	58	0.018	-21
	19.00	0.849	-122	0.006	142	0.348	-51	0.005	-79	1.171	57	0.013	-26
	18.00	0.829	-127	0.005	134	0.412	-49	0.004	-101	1.178	54	0.011	-30
	17.00	0.803	-133	0.004	128	0.445	-51	0.004	-122	1.188	51	0.008	-34
	16.00	0.770	-139	0.003	123	0.457	-56	0.004	-143	1.197	45	0.007	-35
•	15.00	0.727	-147	0.002	122	0.451	-63	0.004	-163	1.199	39	0.005	-32
	14.50	0.701	-151	0.002	124	0.442	-68	0.004	-174	1.195	35	0.005	-28
	14.00	0.672	-156	0.001	128	0.429	-73	0.004	173	1.186	31	0.005	-22
	13.50	0.638	-162	0.001	137	0.411	-79	0.005	160	1.171	26	0.005	-14
	13.00	0.600	-167	0.001	156	0.388	-86	0.005	146	1.148	21	0.005	-6
	12.50	0.558	-174	0.001	-175	0.360	-95	0.005	129	1.117	15	0.006	ő
;	12.00	0.512	178	0.001	-153	0.327	-104	0.005	109	1.075	9	0.007	2
	11.50	0.463	171	0.002	-143	0.288	-116	0.005	81	1.030	2	0.008	1
	11.00	0.412	163	0.004	-138	0.248	-128	0.005	48	0.970	-5	0.010	-10
	10.50	0.360	154	0.006	-144	0.202	-145	0.005	13	0.902	-13	0.012	-18
	10.00	0.309	145	0.008	-156	0.155	-165	0.007	-27	0.830	-23	0.013	-26
	9.50	0.258	135	0.012	-176	0.107	165	0.010	-61	0.748	-34	0.016	-42
	9.00	0.207	122	0.016	164	0.066	125	0.014	-93	0.643	-49	0.018	-58
	8.50	0.154	105	0.021	139	0.045	67	0.020	-128	0.505	-69	0.021	-83
	8.00	0.094	85	0.027	107	0.043	13	0.026	-169	0.345	-93	0.021	-108
	7.50	0.030	78	0.031	64	0.041	-31	0.032	140	0.154	-123	0.021	-144
;	7.00	0.045	170	0.028	8	0.035	-69	0.033	79	0.005	-18	0.016	169
;	6.50	0.094	129	0.017	-57	0.021	-120	0.024	13	0.089	-40	0.005	154
	6.00	0.088	73	0.005	-106	0.010	-149	0.011	-37	0.067	-98	0.012	175
	5.50	0.045	3	0.001	-86	0.012	-175	0.006	-74	0.008	165	0.013	56
	5.00	0.014	151	0.002	-79	0.017	87	0.003	-110	0.026	-51	0.003	-106
		0.062	10	0 003	-152	0 012	-52	0.003	-174	0.013	71	0 001	147
	4.50	0.062	10	0.003	102	0.012	52	0.000		0.010	/ 1	0.001	
	4.50	0.044	-153	0.003	13	0.002	-168	0.001	26	0.020	-153	0.002	-46

LAMPIRAN I

TABEL DAN GRAFIK SHEAR FORCE DANBENDING MOMENT

Penyeb	aran SF dan	BM kondisi stil	l water									
Station	$\sigma(x)$ (MNI)	a (x)rata (MAN)	$f(x) = g(x) \cdot g(x)$ rata	$\nabla f(x)$	$\Sigma\Sigma f(x)$	δSF	SF	mid SF	δΒΜ	BM	correction	BM
Station	q (x) (iviiv)	a (X)rata (IVIN)	f(x) = q(x) - a(x) f a(a)	21(X)	221(X)	b*f(x)	Σ(δSF)			Σ(δΒΜ)		
AP-1	1,75	1,336	0,41	0,41	0,41	1,104	0,000	0,552	1,477	0,000		0,000
1-2	1,65	1,471	0,18	0,60	1,42	0,490	1,104	1,349	3,609	1,477	-20,506	-19,030
2-3	1,65	1,471	0,18	0,78	2,80	0,490	1,594	1,839	4,920	5,085	-41,012	-35,927
3-4	1,65	1,471	0,18	0,96	4,54	0,490	2,084	2,329	6,231	10,005	-61,518	-51,513
4-5	1,65	1,471	0,18	1,15	6,65	0,490	2,574	2,819	7,542	16,236	-82,024	-65,788
5-6	1,90	1,471	0,42	1,57	9,36	1,136	3,064	3,633	9,718	23,778	-102,530	-78,753
6-7	1,92	1,471	0,45	2,02	12,95	1,192	4,201	4,797	12,832	33,495	-123,036	-89,541
7-8	2,03	1,471	0,56	2,57	17,54	1,492	5,393	6,139	16,422	46,327	-143,542	-97,215
8-9	3,60	2,812	0,79	3,36	23,48	2,112	6,885	7,941	21,241	62,749	-164,049	-101,299
9-10	3,82	5,227	-1,41	1,95	28,79	-3,772	8,996	7,110	19,020	83,990	-184,555	-100,564
10-11	3,85	5,251	-1,40	0,55	31,29	-3,758	5,224	3,345	8,948	103,010	-205,061	-102,051
11-12	3,65	2,859	0,79	1,34	33,18	2,107	1,466	2,520	6,740	111,958	-225,567	-113,609
12-13	2,13	1,518	0,61	1,94	36,46	1,629	3,573	4,387	11,736	118,698	-246,073	-127,375
13-14	2,13	1,518	0,61	2,55	40,95	1,629	5,202	6,016	16,092	130,434	-266,579	-136,145
14-15	2,17	1,518	0,65	3,20	46,71	1,737	6,830	7,698	20,593	146,526	-287,085	-140,559
15-16	1,90	1,518	0,38	3,58	53,50	1,019	8,567	9,076	24,279	167,119	-307,591	-140,472
16-17	2,17	1,518	0,66	4,24	61,32	1,755	9,586	10,463	27,989	191,398	-328,097	-136,699
17-18	1,88	1,518	0,36	4,60	70,16	0,970	11,340	11,825	31,633	219,387	-348,603	-129,216
18-19	4,16	2,835	1,33	5,93	80,69	3,546	12,310	14,083	37,673	251,020	-369,109	-118,089
19-20	4,99	5,101	-0,11	5,81	92,43	-0,302	15,856	15,705	42,012	288,693	-389,615	-100,923
20-21	4,52	5,101	-0,59	5,23	103,48	-1,567	15,554	14,771	39,512	330,704	-410,121	-79,417
21-22	4,48	2,835	1,65	6,88	115,58	4,405	13,987	16,190	43,307	370,216	-430,627	-60,411
22-23	1,51	1,518	-0,01	6,86	129,32	-0,029	18,392	18,377	49,159	413,523	-451,134	-37,610
23-24	2,07	1,518	0,55	7,41	143,60	1,472	18,363	19,099	51,089	462,682	-471,640	-8,957
24-25	1,51	1,518	-0,01	7,40	158,42	-0,029	19,834	19,820	53,018	513,771	-492,146	21,625
25-26	1,51	1,518	-0,01	7,39	173,21	-0,029	19,805	19,791	52,940	566,789	-512,652	54,137
26-27	1,57	1,518	0,05	7,44	188,05	0,128	19,776	19,840	53,072	619,729	-533,158	86,571
27-28	1,51	1,518	-0,01	7,43	202,92	-0,029	19,904	19,889	53,204	672,801	-553,664	119,137
28-29	1,95	2,859	-0,90	6,53	216,87	-2,419	19,875	18,665	49,929	726,005	-574,170	151,835
29-30	1,90	5,251	-3,35	3,18	226,57	-8,961	17,456	12,975	34,709	775,934	-594,676	181,258
30-31	1,87	5,227	-3,36	-0,18	229,57	-8,976	8,495	4,007	10,718	810,643	-615,182	195,461
31-32	3,14	2,812	0,33	0,15	229,54	0,874	-0,481	-0,044	-0,118	821,361	-635,688	185,672
32-33	1,50	1,471	0,03	0,18	229,86	0,085	0,393	0,436	1,166	821,243	-656,194	165,049
33-34	1,50	1,471	0,03	0,21	230,25	0,085	0,479	0,521	1,395	822,409	-676,700	145,709
34-35	1,50	1,471	0,03	0,24	230,70	0,069	0,564	0,598	1,601	823,804	-697,206	126,598
35-36	1,24	1,471	-0,23	0,01	230,94	-0,617	0,633	0,325	0,868	825,405	-717,712	107,693
36-37	1,24	1,471	-0,23	-0,22	230,73	-0,617	0,016	-0,292	-0,782	826,273	-738,218	88,055
37-38	1,32	1,471	-0,15	-0,37	230,13	-0,402	-0,601	-0,801	-2,144	825,491	-758,725	66,767
38-39	1,57	1,471	0,10	-0,27	229,48	0,268	-1,002	-0,868	-2,322	823,347	-779,231	44,117
39-FP	1,67	1,336	0,33	0,06	229,26	0,882	-0,734	-0,293	-0,783	821,025	-799,737	21,289
Σ	-89,71	89,657	0,06				0,149			820,243	-820,243	0,000

Penyebar	enyebaran SF dan BM hogging λ w = 107 m											
Chatian		(u) we have $(\mathbf{N}(\mathbf{N}))$		$\Sigma f(x)$	$\Sigma\Sigma f(\omega)$	δSF	SF	mid SF	δΒΜ	BM	correction	BM
Station	q (x) (10110)	a (x)rata (IVIIN)	f(x) = q(x) - d(x) f d(d)	21(X)	221(X)	b*f(x)	Σ(δSF)			Σ(δΒΜ)		
AP-1	2,04	1,336	0,70	0,70	0,70	1,884	0,000	0,942	2,520	0,000		0,000
1-2	1,95	1,471	0,47	1,18	2,59	1,270	1,884	2,519	6,738	2,520	-21,169	-18,649
2-3	1,95	1,471	0,47	1,65	5,42	1,270	3,154	3,789	10,135	9,258	-42,337	-33,080
3-4	1,95	1,471	0,47	2,13	9,20	1,270	4,424	5,059	13,533	19,393	-63,506	-44,113
4-5	1,95	1,471	0,47	2,60	13,93	1,270	5,694	6,329	16,930	32,926	-84,674	-51,749
5-6	2,19	1,471	0,72	3,32	19,86	1,916	6,964	7,922	21,192	49,855	-105,843	-55,988
6-7	2,21	1,471	0,74	4,06	27,23	1,972	8,880	9,866	26,393	71,047	-127,012	-55,964
7-8	2,32	1,471	0,85	4,91	36,20	2,271	10,853	11,988	32,068	97,440	-148,180	-50,740
8-9	3,89	3,254	0,64	5,54	46,65	1,708	13,124	13,978	37,391	129,508	-169,349	-39,841
9-10	4,11	6,274	-2,17	3,38	55,57	-5,793	14,832	11,935	31,926	166,899	-190,517	-23,619
10-11	4,14	6,394	-2,26	1,12	60,07	-6,034	9,038	6,021	16,107	198,825	-211,686	-12,861
11-12	3,94	3,421	0,52	1,64	62,84	1,384	3,004	3,696	9,887	214,932	-232,855	-17,922
12-13	2,42	1,566	0,85	2,49	66,97	2,281	4,388	5,529	14,790	224,820	-254,023	-29,203
13-14	2,42	1,566	0,85	3,35	72,81	2,281	6,669	7,810	20,892	239,610	-275,192	-35,582
14-15	2,46	1,566	0,89	4,24	80,40	2,389	8,951	10,145	27,139	260,502	-296,360	-35,859
15-16	2,19	1,566	0,62	4,86	89,50	1,672	11,340	12,176	32,571	287,641	-317,529	-29,888
16-17	2,47	1,566	0,90	5,76	100,13	2,407	13,012	14,216	38,027	320,211	-338,698	-18,486
17-18	2,17	1,566	0,61	6,37	112,26	1,623	15,419	16,231	43,417	358,238	-359,866	-1,628
18-19	4,45	3,574	0,88	7,25	125,88	2,349	17,042	18,217	48,729	401,655	-381,035	20,620
19-20	5,28	6,535	-1,25	5,99	139,13	-3,357	19,391	17,713	47,381	450,384	-402,204	48,181
20-21	4,81	6,535	-1,73	4,27	149,39	-4,623	16,034	13,723	36,709	497,766	-423,372	74,393
21-22	4,77	3,574	1,20	5,47	159,12	3,208	11,412	13,016	34,817	534,474	-444,541	89,933
22-23	1,80	1,566	0,23	5,70	170,28	0,624	14,620	14,931	39,941	569,291	-465,709	103,581
23-24	2,36	1,566	0,79	6,49	182,47	2,124	15,243	16,305	43,617	609,232	-486,878	122,354
24-25	1,80	1,566	0,23	6,73	195,69	0,624	17,368	17,679	47,292	652,849	-508,047	144,802
25-26	1,80	1,566	0,23	6,96	209,37	0,624	17,991	18,303	48,960	700,141	-529,215	170,926
26-27	1,86	1,566	0,29	7,25	223,58	0,781	18,615	19,005	50,838	749,102	-550,384	198,718
27-28	1,80	1,566	0,23	7,48	238,32	0,624	19,395	19,707	52,716	799,940	-571,552	228,388
28-29	2,25	3,421	-1,17	6,31	252,11	-3,142	20,019	18,448	49,348	852,656	-592,721	259,935
29-30	2,19	6,567	-4,37	1,93	260,35	-11,701	16,877	11,026	29,495	902,004	-613,890	288,115
30-31	2,16	6,448	-4,28	-2,35	259,94	-11,461	5,175	-0,555	-1,484	931,499	-635,058	296,441
31-32	3,43	3,254	0,18	-2,17	255,42	0,471	-6,285	-6,050	-16,183	930,015	-656,227	273,788
32-33	1,79	1,471	0,32	-1,85	251,39	0,865	-5,815	-5,382	-14,396	913,832	-677,395	236,437
33-34	1,79	1,471	0,32	-1,53	248,02	0,865	-4,949	-4,517	-12,082	899,436	-698,564	200,872
34-35	1,79	1,471	0,32	-1,21	245,28	0,849	-4,084	-3,660	-9,789	887,354	-719,733	167,621
35-36	1,53	1,471	0,06	-1,15	242,92	0,163	-3,235	-3,154	-8,436	877,564	-740,901	136,663
36-37	1,53	1,471	0,06	-1,09	240,69	0,163	-3,072	-2,990	-8,000	869,129	-762,070	107,059
37-38	1,61	1,471	0,14	-0,95	238,65	0,378	-2,909	-2,720	-7,275	861,129	-783,238	77,891
38-39	1,86	1,471	0,39	-0,55	237,15	1,048	-2,531	-2,006	-5,367	853,854	-804,407	49,446
39-FP	1,96	1,336	0,62	0,07	236,67	1,662	-1,482	-0,651	-1,742	848,486	-825,576	22,911
Σ	-101,37	101,307	0,07				0,180			846,744	-846,744	0,000

Penyebar	an SF dan BM	VI sagging $\lambda w =$	107 m									
Chatlan				$\Sigma f(\omega)$	556()	δSF	SF	mid SF	δΒΜ	BM	correction	BM
Station	q (x) (IVIN)	a (x)rata (IVIN)	f(x) = q(x) + a(x) rata	21(X)	22f(X)	b*f(x)	Σ(δSF)			Σ(δΒΜ)		
AP-1	1,74	1,336	0,41	0,41	0,41	1,085	0,000	0,543	1,452	0,000		0,000
1-2	1,65	1,471	0,18	0,58	1,39	0,471	1,085	1,321	3,534	1,452	-20,190	-18,738
2-3	1,65	1,471	0,18	0,76	2,73	0,471	1,557	1,793	4,795	4,985	-40,379	-35,394
3-4	1,65	1,471	0,18	0,93	4,43	0,471	2,028	2,264	6,056	9,781	-60,569	-50,788
4-5	1,65	1,471	0,18	1,11	6,47	0,471	2,500	2,736	7,318	15,837	-80,758	-64,921
5-6	1,89	1,471	0,42	1,53	9,11	1,118	2,971	3,530	9,443	23,155	-100,948	-77,794
6-7	1,91	1,471	0,44	1,97	12,61	1,174	4,089	4,676	12,508	32,598	-121,138	-88,540
7-8	2,02	1,471	0,55	2,52	17,09	1,473	5,263	5,999	16,048	45,106	-141,327	-96,221
8-9	3,59	2,845	0,75	3,27	22,88	2,002	6,736	7,737	20,696	61,154	-161,517	-100,363
9-10	3,81	5,387	-1,58	1,69	27,83	-4,219	8,738	6,629	17,731	81,850	-181,706	-99,857
10-11	3,84	5,363	-1,52	0,17	29,69	-4,076	4,519	2,481	6,637	99,581	-201,896	-102,315
11-12	3,64	2,869	0,77	0,94	30,79	2,062	0,443	1,474	3,944	106,218	-222,086	-115,868
12-13	2,12	1,566	0,55	1,49	33,22	1,483	2,505	3,247	8,685	110,162	-242,275	-132,113
13-14	2,12	1,566	0,55	2,05	36,75	1,483	3,988	4,730	12,652	118,847	-262,465	-143,618
14-15	2,16	1,566	0,59	2,64	41,44	1,591	5,471	6,266	16,763	131,499	-282,655	-151,155
15-16	1,89	1,566	0,33	2,97	47,05	0,873	7,062	7,498	20,058	148,262	-302,844	-154,582
16-17	2,17	1,566	0,60	3,57	53,58	1,609	7,935	8,739	23,378	168,320	-323,034	-154,713
17-18	1,87	1,566	0,31	3,88	61,02	0,824	9,544	9,956	26,632	191,698	-343,223	-151,525
18-19	4,15	2,620	1,53	5,41	70,31	4,102	10,368	12,419	33,221	218,331	-363,413	-145,082
19-20	4,98	4,621	0,36	5,77	81,49	0,966	14,470	14,953	40,000	251,552	-383,603	-132,051
20-21	4,51	4,621	-0,11	5,66	92,92	-0,300	15,436	15,286	40,891	291,552	-403,792	-112,240
21-22	4,47	2,620	1,85	7,51	106,09	4,961	15,137	17,617	47,126	332,443	-423,982	-91,539
22-23	1,50	1,566	-0,07	7,45	121,05	-0,175	20,097	20,010	53,527	379,568	-444,171	-64,603
23-24	2,06	1,566	0,50	7,94	136,44	1,326	19,923	20,585	55,066	433,095	-464,361	-31,266
24-25	1,50	1,566	-0,07	7,88	152,26	-0,175	21,248	21,161	56,606	488,161	-484,551	3,611
25-26	1,50	1,566	-0,07	7,81	167,95	-0,175	21,073	20,986	56,138	544,767	-504,740	40,027
26-27	1,56	1,566	-0,01	7,81	183,57	-0,018	20,899	20,889	55,879	600,904	-524,930	75,975
27-28	1,50	1,566	-0,07	7,74	199,12	-0,175	20,880	20,793	55,621	656,784	-545,119	111,664
28-29	1,95	2,869	-0,92	6,82	213,68	-2,463	20,706	19,474	52,093	712,405	-565,309	147,096
29-30	1,89	5,363	-3,47	3,35	223,85	-9,279	18,242	13,603	36,387	764,498	-585,499	178,999
30-31	1,87	5,387	-3,52	-0,17	227,03	-9,422	8,963	4,252	11,373	800,884	-605,688	195,196
31-32	3,13	2,845	0,29	0,11	226,97	0,765	-0,459	-0,077	-0,205	812,258	-625,878	186,380
32-33	1,50	1,471	0,02	0,14	227,22	0,067	0,306	0,339	0,907	812,053	-646,067	165,985
33-34	1,50	1,471	0,02	0,16	227,53	0,067	0,373	0,406	1,086	812,960	-666,257	146,703
34-35	1,49	1,471	0,02	0,18	227,87	0,050	0,439	0,464	1,242	814,046	-686,447	127,599
35-36	1,23	1,471	-0,24	-0,05	228,00	-0,635	0,489	0,172	0,460	815,288	-706,636	108,652
36-37	1,23	1,471	-0,24	-0,29	227,66	-0,635	-0,146	-0,464	-1,240	815,748	-726,826	88,922
37-38	1,31	1,471	-0,16	-0,45	226,91	-0,420	-0,781	-0,991	-2,652	814,507	-747,016	67,492
38-39	1,56	1,471	0,09	-0,36	226,11	0,250	-1,202	-1,077	-2,880	811,855	-767,205	44,650
39-FP	1,66	1,336	0,32	-0,03	225,72	0,864	-0,952	-0,520	-1,391	808,975	-787,395	21,580
Σ	-89,43	89,466	-0,03				-0,088			807,584	-807,584	0,000

Penyebaran SF dan BM hogging λ w = 290 m												
Ctation	$\sigma(x)$ (DADI)	a(x) rate $(N(N))$	$f(y) = \sigma(y) \cdot \sigma(y)$ rate	$\Sigma f(u)$	$\Sigma\Sigma f(u)$	δSF	SF	mid SF	δΒΜ	BM	correction	BM
Station	q (x) (iviiv)	a (x)rata (IVIIV)	f(x) = q(x) - a(x) fata	21(X)	221(X)	b*f(x)	Σ(δSF)			Σ(δΒΜ)		
AP-1	2,17	1,336	0,83	0,83	0,83	2,222	0,000	1,111	2,972	0,000		0,000
1-2	2,07	1,471	0,60	1,43	3,09	1,608	2,222	3,027	8,096	2,972	-21,508	-18,536
2-3	2,07	1,471	0,60	2,03	6,56	1,608	3,831	4,635	12,399	11,068	-43,016	-31,948
3-4	2,07	1,471	0,60	2,63	11,23	1,608	5,439	6,243	16,701	23,467	-64,524	-41,057
4-5	2,07	1,471	0,60	3,24	17,10	1,608	7,048	7,852	21,004	40,168	-86,032	-45,864
5-6	2,31	1,471	0,84	4,08	24,41	2,255	8,656	9,784	26,171	61,172	-107,540	-46,368
6-7	2,33	1,471	0,86	4,94	33,43	2,311	10,911	12,066	32,277	87,343	-129,048	-41,705
7-8	2,45	1,471	0,98	5,92	44,29	2,610	13,222	14,527	38,858	119,621	-150,556	-30,935
8-9	4,02	3,616	0,40	6,32	56,53	1,078	15,831	16,370	43,791	158,479	-172,064	-13,585
9-10	4,24	6,971	-2,74	3,59	66,44	-7,318	16,909	13,250	35,444	202,270	-193,572	8,698
10-11	4,26	7,034	-2,77	0,82	70,84	-7,410	9,591	5,886	15,746	237,714	-215,080	22,634
11-12	4,06	3,727	0,34	1,15	72,81	0,903	2,182	2,633	7,043	253,460	-236,588	16,872
12-13	2,55	1,566	0,98	2,13	76,10	2,620	3,085	4,394	11,755	260,504	-258,096	2,408
13-14	2,55	1,566	0,98	3,11	81,34	2,620	5,704	7,014	18,763	272,259	-279,604	-7,345
14-15	2,59	1,566	1,02	4,13	88,58	2,728	8,324	9,688	25,915	291,022	-301,112	-10,090
15-16	2,32	1,566	0,75	4,88	97,60	2,010	11,052	12,057	32,252	316,937	-322,620	-5,682
16-17	2,59	1,566	1,03	5,91	108,39	2,746	13,062	14,435	38,614	349,190	-344,128	5,062
17-18	2,30	1,566	0,73	6,64	120,94	1,961	15,808	16,788	44,909	387,803	-365,636	22,167
18-19	4,58	3,714	0,86	7,51	135,09	2,312	17,769	18,925	50,625	432,712	-387,144	45,569
19-20	5,41	6,813	-1,41	6,10	148,70	-3,761	20,082	18,201	48,688	483,337	-408,652	74,686
20-21	4,93	6,813	-1,88	4,22	159,02	-5,026	16,321	13,807	36,935	532,025	-430,160	101,865
21-22	4,90	3,714	1,19	5,41	168,65	3,171	11,294	12,880	34,453	568,960	-451,668	117,292
22-23	1,93	1,566	0,36	5,77	179,83	0,962	14,465	14,946	39,982	603,413	-473,176	130,237
23-24	2,49	1,566	0,92	6,69	192,28	2,463	15,427	16,659	44,562	643,395	-494,684	148,711
24-25	1,93	1,566	0,36	7,05	206,02	0,962	17,890	18,371	49,143	687,957	-516,192	171,766
25-26	1,93	1,566	0,36	7,41	220,47	0,962	18,852	19,333	51,717	737,100	-537,700	199,401
26-27	1,98	1,566	0,42	7,83	235,71	1,119	19,814	20,374	54,500	788,817	-559,208	229,610
27-28	1,93	1,566	0,36	8,19	251,72	0,962	20,933	21,414	57,283	843,317	-580,716	262,601
28-29	2,37	3,727	-1,35	6,83	266,73	-3,623	21,895	20,084	53,725	900,600	-602,224	298,377
29-30	2,32	7,327	-5,01	1,82	275,39	-13,396	18,273	11,575	30,962	954,325	-623,732	330,593
30-31	2,29	7,264	-4,97	-3,15	274,06	-13,304	4,876	-1,776	-4,750	985,287	-645,240	340,047
31-32	3,56	3,616	-0,06	-3,21	267,70	-0,159	-8,428	-8,508	-22,758	980,536	-666,748	313,789
32-33	1,92	1,471	0,45	-2,76	261,73	1,204	-8,587	-7,986	-21,362	957,778	-688,256	269,523
33-34	1,92	1,471	0,45	-2,31	256,66	1,204	-7,384	-6,782	-18,141	936,417	-709,764	226,653
34-35	1,91	1,471	0,44	-1,87	252,48	1,187	-6,180	-5,586	-14,944	918,275	-/31,272	187,004
35-36	1,66	1,471	0,19	-1,68	248,94	0,502	-4,993	-4,742	-12,685	903,332	- /52,780	150,552
36-37	1,66	1,471	0,19	-1,49	245,77	0,502	-4,491	-4,240	-11,343	890,647	-//4,287	116,359
37-38	1,74	1,471	0,27	-1,22	243,05	0,717	-3,990	-3,631	-9,714	879,303	-795,795	83,508
38-39	1,99	1,471	0,52	-0,71	241,12	1,387	-3,273	-2,580	-6,900	869,589	-817,303	52,286
39-FP	2,08	1,336	0,75	0,04	240,46	2,001	-1,886	-0,886	-2,370	862,689	-838,811	23,878
Σ	-106,43	106,392	0,04				0,115			860,319	-860,319	0,000

Penyebaran SF dan BM sagging λw = 290 m												
Station		a(x)rata (MNI)	$f(x) = g(x) \cdot g(x)$ rata	$\Sigma f(x)$	$\Sigma\Sigma f(v)$	δSF	SF	mid SF	δΒΜ	BM	correction	BM
Station	q (x) (IVIN)		(x) – (x)-d(x) ata	21(X)	221(X)	b*f(x)	Σ(δSF)			Σ(δΒΜ)		
AP-1	1,74	1,336	0,41	0,41	0,41	1,094	0,000	0,547	1,463	0,000		0,000
1-2	1,65	1,471	0,18	0,59	1,41	0,480	1,094	1,334	3,569	1,463	-20,435	-18,971
2-3	1,65	1,471	0,18	0,77	2,76	0,480	1,574	1,815	4,854	5,033	-40,869	-35,836
3-4	1,65	1,471	0,18	0,95	4,48	0,480	2,055	2,295	6,139	9,887	-61,304	-51,417
4-5	1,65	1,471	0,18	1,13	6,55	0,480	2,535	2,775	7,424	16,026	-81,738	-65,712
5-6	1,89	1,471	0,42	1,55	9,23	1,127	3,015	3,579	9,573	23,450	-102,173	-78,723
6-7	1,91	1,471	0,44	1,99	12,77	1,182	4,142	4,733	12,662	33,023	-122,608	-89,585
7-8	2,02	1,471	0,55	2,54	17,30	1,482	5,325	6,065	16,225	45,685	-143,042	-97,358
8-9	3,60	2,758	0,84	3,38	23,23	2,245	6,806	7,929	21,210	61,910	-163,477	-101,567
9-10	3,81	5,238	-1,42	1,96	28,58	-3,810	9,052	7,146	19,117	83,119	-183,911	-100,792
10-11	3,84	5,269	-1,43	0,53	31,07	-3,816	5,241	3,333	8,916	102,236	-204,346	-102,110
11-12	3,64	2,837	0,81	1,34	32,94	2,156	1,425	2,503	6,696	111,153	-224,781	-113,628
12-13	2,12	1,566	0,56	1,90	36,17	1,492	3,581	4,327	11,574	117,848	-245,215	-127,367
13-14	2,12	1,566	0,56	2,45	40,52	1,492	5,073	5,819	15,565	129,423	-265,650	-136,227
14-15	2,16	1,566	0,60	3,05	46,03	1,600	6,564	7,364	19,699	144,987	-286,084	-141,097
15-16	1,90	1,566	0,33	3,38	52,46	0,882	8,164	8,605	23,018	164,687	-306,519	-141,832
16-17	2,17	1,566	0,60	3,99	59,83	1,618	9,046	9,855	26,362	187,705	-326,954	-139,249
17-18	1,88	1,566	0,31	4,30	68,12	0,833	10,664	11,080	29,640	214,066	-347,388	-133,322
18-19	4,16	2,755	1,40	5,70	78,11	3,752	11,497	13,373	35,772	243,706	-367,823	-124,117
19-20	4,98	4,891	0,09	5,79	89,61	0,250	15,249	15,374	41,125	279,478	-388,257	-108,780
20-21	4,51	4,891	-0,38	5,41	100,82	-1,015	15,499	14,991	40,101	320,602	-408,692	-88,090
21-22	4,48	2,755	1,72	7,14	113,37	4,611	14,483	16,789	44,910	360,704	-429,126	-68,423
22-23	1,50	1,566	-0,06	7,08	127,58	-0,166	19,094	19,011	50,854	405,614	-449,561	-43,948
23-24	2,06	1,566	0,50	7,57	142,23	1,335	18,928	19,595	52,417	456,468	-469,996	-13,528
24-25	1,50	1,566	-0,06	7,51	157,32	-0,166	20,263	20,180	53,980	508,885	-490,430	18,455
25-26	1,50	1,566	-0,06	7,45	172,28	-0,166	20,097	20,013	53,536	562,866	-510,865	52,001
26-27	1,56	1,566	0,00	7,45	187,18	-0,009	19,930	19,926	53,302	616,402	-531,299	85,102
27-28	1,50	1,566	-0,06	7,39	202,01	-0,166	19,921	19,838	53,067	669,703	-551,734	117,969
28-29	1,95	2,837	-0,89	6,50	215,90	-2,370	19,755	18,570	49,675	722,770	-572,169	150,602
29-30	1,90	5,248	-3,35	3,15	225,55	-8,962	17,385	12,905	34,520	772,446	-592,603	179,843
30-31	1,87	5,216	-3,35	-0,20	228,50	-8,956	8,424	3,946	10,555	806,966	-613,038	193,928
31-32	3,13	2,758	0,38	0,18	228,48	1,008	-0,532	-0,028	-0,074	817,521	-633,472	184,049
32-33	1,50	1,471	0,03	0,21	228,86	0,076	0,476	0,514	1,375	817,447	-653,907	163,540
33-34	1,50	1,471	0,03	0,23	229,30	0,076	0,552	0,590	1,577	818,822	-674,342	144,480
34-35	1,49	1,471	0,02	0,26	229,79	0,059	0,628	0,657	1,758	820,400	-694,776	125,623
35-36	1,24	1,471	-0,23	0,02	230,07	-0,627	0,687	0,373	0,998	822,157	-715,211	106,946
36-37	1,24	1,471	-0,23	-0,21	229,88	-0,627	0,060	-0,253	-0,678	823,155	-735,645	87,510
37-38	1,32	1,471	-0,15	-0,37	229,31	-0,411	-0,567	-0,772	-2,066	822,478	-756,080	66,398
38-39	1,57	1,471	0,10	-0,27	228,67	0,259	-0,978	-0,849	-2,270	820,412	-776,515	43,897
39-FP	1,66	1,336	0,33	0,06	228,46	0,873	-0,719	-0,283	-0,757	818,141	-796,949	21,192
Σ	-89,57	89,508	0,06				0,153			817,384	-817,384	0,000

