29291/07

R55 624.18341 549 U-1 2007

TUGAS AKHIR - PS 1380 USULAN METODA STRUT-AND-TIE UNTUK MEMPREDIKSI LEBAR RETAK PADA BALOK BETON BERTULANG

SUGIARTO NRP 3103 100 020

Dosen Pembimbing : TAVIO, ST. MT. PhD JANUARTI J.E, ST. MT

FEREUSTAKAAN T-S 28 - 2 - 2007 Tgl. Terims Terima Dori No. Agenda Prp.

JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2007

TUGAS AKHIR - PS 1380

A PROPOSED STRUT-AND-TIE METHOD FOR PREDICTING CRACK WIDTH IN REINFORCED CONCRETE BEAMS

SUGIARTO NRP 3103 100 020

Dosen Pembimbing : TAVIO, ST. MT. PhD JANUARTI J.E, ST. MT

JURUSAN TEKNIK SIPIL Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember Surabaya 2007

USULAN METODA STRUT-AND-TIE UNTUK MEMPREDIKSI LEBAR RETAK PADA BALOK BETON BERTULANG

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Struktur Program Studi S-1 Jurusan Teknik Sipil Fakultas Teknik Sipil Dan Perencauaan Institut Teknologi Sepuluh Nopember Surabaya

> Oleh : SUGIARTO NRP. 3103.100.020

SURABAYA FEBRUARI, 2007

USULAN METODA STRUT-AND-TIE UNTUK MEMPREDIKSI LEBAR RETAK PADA BALOK BETON BERTULANG

Nama Mahasiswa	: Sugiarto
NRP	: 3103.100.020
Jurusan	: Teknik Sipil
Dosen Pembimbing	: Tavio ST. MT. PhD
Co-Dosen Pembimbing	: Januarti J.E, ST. MT

Abstrak

Dalam perancangan beton bertulang dikenal kondisi layan (serviceability) yang membahas lebar retak maksimum yang diijinkan. Lebar retak perlu dibatasi, sehubungan dengan pencegahan korosi terhadap tulangan, keawetan beton dan juga perasaan 'nyaman' bagi pemakai struktur.

Peraturan beton yang ada saat ini, seperti ACI 318-02 dan SNI 03-2847-2002 memperkirakan lebar retak yang terjadi dengan pendekatan rumus empiris dari serangkaian percobaan di laboratorium. Untuk itu, dirasa perlu melakukan suatu pendekatan yang lebih konseptual dalam memperkirakan lebar retak yang mungkin terjadi.

Pendekatan yang diambil adalah dengan menerapkan metoda Strut-and-Tie pada balok beton bertulang. Melalui metoda strut-and-tie ini, dapat diketahui tegangan tarik maksimum yang terjadi pada balok yang dibebani. Selain itu dalam metoda ini digunakan perumusan dalam memperkirakan luas penampang saat beton telah mengalami retak yaitu luas efektif.

Hasil evaluasi dari usulan metoda ini adalah urutan penyelesaian dalam memprediksi lebar retak pada balok beton bertulang, usulan perumusan luas efektif penampang saat beton telah mengalami retak.

Kata kunci: Balok beton bertulang, Lebar retak, Luas efektif penampang, Metoda *Strut-and-Tie*, Serviceability.

A PROPOSED STRUT-AND-TIE METHOD FOR PREDICTING CRACK WIDTH IN REINFORCED CONCRETE BEAMS

Name	: Sugiarto
NRP	: 3103.100.020
Department	: Civil Enginering
Supervisors	: Tavio ST. MT. PhD
Co-Supervisors	: Januarti J.E, ST. MT

Abstract

In the reinforced concrete design, one of the serviceability requirements is the crack width control. Crack width is necessary to be limited for corrosion protection of reinforcement, durability of concrete, and aesthetic requirements.

The existing concrete codes, such as ACI 318-02, and SNI 03-2847-2002, provide an empirical formula to predict the crack width of reinforced concrete elements. The formula was mainly derived from the experimental data. hence, it is deemed necessary to the author to propose a more conceptual approach for predicting the actual crack width in concrete elements.

One possible way for predicting crack width in reinforced concrete beams is using the Strut-and-Tie method. In this method, the maximum tensile stress occured in the beam subjected to gravity loading can be predicted. The method also uses an effective cross-sectional area to account for the effects of progressive cracking in beams under gravity loading.

This final assignment provides a step-by-step procedure for computing crack width in reinforced concrete beams under gravity loading that takes into account the effects of progressive cracking.

Keyword: Crack width, Effective cross-sectional area, Reinforced concrete beams, Serviceability, Strutand-Tie method.

KATA PENGANTAR

Puji syukur saya panjatkan kehadirat Tuhan YME atas segala karunia-Nya sehingga tugas akhir yang berjudul "Usulan Metoda *Strut-And-Tie* Untuk Memprediksi Lebar Retak Pada Balok Beton Bertulang" dapat terselesaikan.

Tugas Akhir ini merupakan salah satu syarat akademik bagi mahasiswa Jurusan Teknik Sipil, Fakultas Teknik Sipil dan Perencanaan – Institut Teknologi Sepuluh Nopember Surabaya, dalam menyelesaikan jenjang S-1.

Atas terselesaikannya Tugas Akhir ini, saya menyadari bahwa tidak akan berhasil tanpa adanya bimbingan, dorongan, doa dan bantuan dari berbagai pihak. Oleh karena itu saya ucapkan terima kasih yang sebesar - besarnya kepada:

Bapak Tavio, ST. MT. PhD selaku Dosen Pembimbing 1 yang selalu memberikan semangat dan dorongan.

Ibu Januarti JE, ST. MT selaku Dosen Pembimbing 2 yang banyak memberikan koreksi dan saran.

Bapak Prof. Dr. Ir. IGP Raka selaku Dosen Wali selama saya belajar di ITS.

Bapak Ir. Indrasurya B. Mochtar MSc, PhD selaku Ketua Jurusan Teknik Sipil, FTSP-ITS.

Orang tua tercinta yang selalu memberikan dorongan moral dan doa.

Dan rekan - rekan mahasiswa Teknik Sipil ITS.

Semoga Tugas Akhir ini dapat memberikan tambahan ilmu yang bermanfaat bagi penulis khususnya dan bagi semua pihak pada umumnya.

Salam damai.

Surabaya, 4 Februari 2007

(Sugiarto)

DAFTAR ISI

LEMBAR PENGESAHAN	
ABSTRAK	
KATA PENGANTAR	i
DAFTAR ISI	ii
DAFTAR GAMBAR	ix
DAFTAR TABEL	xvi
DAFTAR NOTASI	xx
BAB I PENDAHULUAN	
1.1. LATAR BELAKANG	1
1.2. PERMASALAHAN	2
1.3. TUJUAN	3
1.4. BATASAN MASALAH	3
BAB II TINJAUAN PUSTAKA	
2.1. DASAR TEORI	5
2.1.1 Retak Lentur	5
2.1.1(a) Lebar Retak Menurut Gergely	
dan Lutz (1968)	6
2.1.1(b) Lebar Retak Menurut CEB-FIP Code	
(1978)/ Comite Euro International du	
Beton-Federation Internationale de la	
Precontrainte	7
2.1.1(c) Lebar Retak Menurut British Standard	
BS 8110-2 (1985)	9
2.1.1(d) Lebar Retak Menurut Byung Hwan Oh	
dan Young Jin Kang (ACI Struktural	
Journal no 84-S10/1987)	10
2.1.1(e) Lebar Retak Menurut SNI 03-2847-	-1-6
2002	12
2.1.2 Metoda Strut-and-tie	13
2.2. METODA PERHITUNGAN	
2.2.1 Kekuatan Strut	18

2.2.2 Kekuatan Tie	19
2.2.3 Kekuatan Nodal Zone	20
2.2.4 Luas Penampang Tie	20
BAB III METODOLOGI	
3.1. SKEMA PENELITIAN	23
3.2. URAIAN PELAKSANAAN	25
BAB IV ANALISA PERHITUNGAN	
4.1. UMUM	27
4.2. DATA EKSPERIMEN	27
4.3. ANALISA DATA EKSPERIMEN	30
4.3.1 Perhitungan Beban	30
4.3.1.1 Beban Berat Sendiri (Beton +	
Tulangan)	30
4.3.1.1(a) Berat Tulangan	30
4.3.1.1(b) Berat Beton	32
4.3.1.2 Beban Luar P (Terpusat)	33
4.3.2 Perencanaan Model Rangka	36
4.3.2.1 Permodelan Rangka Balok ST-2B	36
4.3.2.2 Permodelan Rangka Balok ST-6B	44
4.3.3 Perhitungan Pembebanan	52
4.3.3.1 Pembebanan Untuk Balok ST-2B	52
4.3.3.1(a) Pembebanan pada Balok ST-	
2B Untuk Model Rangka Sudut	
25 ⁰	53
4.3.3.1(b) Pembebanan pada Balok ST-	
2B Untuk Model Rangka Sudut	
35 ⁰	54
4.3.3.1(c) Pembebanan pada Balok ST-	
2B Untuk Model Rangka Sudut	
45 ⁰	55
4.3.3.1(d) Pembebanan pada Balok ST-	
2B Untuk Model Rangka Sudut	
50 ⁰	56

4.3.3.1(e) Pembebanan pada Balok ST- 2B Untuk Model Rangka Sudut	
55 ⁰	57
4.3.3.1(f) Pembebanan pada Balok ST- 2B Untuk Model Rangka Sudut	
60 ⁰	58
4.3.3.1(g) Pembebanan pada Balok ST- 2B Untuk Model Rangka Sudut	
65%	59
4.3.3.2 Pembebanan Untuk Balok ST-6B 4.3.3.2(a) Pembebanan pada Balok ST- 6B Untuk Model Rangka Sudut	60
25 [°]	61
4.3.3.2(b) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
35 [°]	62
4.3.3.2(c) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
45 [°]	63
4.3.3.2(d) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
50 ⁰	64
4.3.3.2(e) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
55 ⁰	65
4.3.3.2(f) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
60 ⁰	66
4.3.3.2(g) Pembebanan pada Balok ST-	
6B Untuk Model Rangka Sudut	
65°	67
4 3 4 Perhitungan Gaya Dalam	68
4 3 4 1 Gava Dalam Aksial Tarik pada	
Balok ST-2B	69
4.3.4.1(a) Model Rangka Sudut 25°	69

4.3.4.1(b) Model Rangka Sudut 35°	70	
4.3.4.1(c) Model Rangka Sudut 45°	71	
4.3.4.1(d) Model Rangka Sudut 50°	72	
4.3.4.1(e) Model Rangka Sudut 55°	73	
4.3.4.1(f) Model Rangka Sudut 60°	74	
4.3.4.1(g) Model Rangka Sudut 65 [°]	75	
4.3.4.2 Gaya Dalam Aksial Tarik pada		
Balok ST-6B	76	
4.3.4.2(a) Model Rangka Sudut 25 [°]	76	
4.3.4.2(b) Model Rangka Sudut 35°	77	
4.3.4.2(c) Model Rangka Sudut 45°	78	
4.3.4.2(d) Model Rangka Sudut 50 ⁰	79	
4.3.4.2(e) Model Rangka Sudut 55°	80	
4.3.4.2(f) Model Rangka Sudut 60°	81	
4.3.4.2(g) Model Rangka Sudut 65 ⁰	82	
4.3.5 Perhitungan Luas Penampang Gross	83	
4.3.5.1 Umum	83	
4.3.5.2 Luas Penampang Gross untuk		
Balok ST-2B	83	
4.3.5.3 Luas Penampang Gross untuk		
Balok ST-6B	85	
4.3.6 Perhitungan Tegangan dan Prediksi		
Lebar Retak Berdasarkan Luas		
Penampang Gross	88	
4.3.6.1 Tegangan Berdasarkan Luas		
Penampang Gross	88	
4.3.6.2 Regangan berdasarkan luas		
penampang gross	89	
4.3.6.3 Prediksi Lebar Retak	89	
4.3.6.3.1 Prediksi Lebar Retak pada		
Balok ST-2B	91	
4.3.6.3.1(a) Prediksi Lebar Retak pada		
Balok ST-2B Untuk Model		
Rangka Sudut 25 ⁰	91	

4.3.6.3.1(b) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	
Rangka Sudut 35°	91
4.3.6.3.1(c) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	~ .
Rangka Sudut 45°	91
4.3.6.3.1(d) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	
Rangka Sudut 50°	91
4.3.6.3.1(e) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	
Rangka Sudut 55°	92
4.3.6.3.1(f) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	
Rangka Sudut 60 [°]	92
4.3.6.3.1(g) Prediksi Lebar Retak pada	
Balok ST-2B Untuk Model	
Rangka Sudut 65°	92
4.3.6.3.2 Prediksi Lebar Retak pada	
Balok ST-6B	103
4.3.6.3.2(a) Prediksi Lebar Retak pada	
Balok ST-6B Untuk Model	
Rangka Sudut 25 [°]	103
4.3.6.3.2(b) Prediksi Lebar Retak pada	
Balok ST-6B Untuk Model	
Rangka Sudut 35 ⁰	103
4.3.6.3.2(c) Prediksi Lebar Retak pada	
Balok ST-6B Untuk Model	
Rangka Sudut 45°	104
4.3.6.3.2(d) Prediksi Lebar Retak pada	
Balok ST-6B Untuk Model	
Rangka Sudut 50°	104
4.3.6.3.2(e) Prediksi Lebar Retak pada	
Balok ST-6B Untuk Model	
Rangka Sudut 55 ⁰	104
0	

vi

 4.3.6.3.2(f) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 60⁰ 4.3.6.3.2(g) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 65⁰ 	104 104
	0
BAB V – ANALISA USULAN LUAS PENAMPAN EFEKTIF	G
5.1. UMUM	117
5.2. PENENTUAN KOEFISIEN 'a'	117
5.2.1 Penentuan Koefisien a Untuk	
Balok ST-2B	118
5.2.1(a)Nilai Koefisien a Dengan Trial	
and error	118
5.2.1(b)Perhitungan Lebar Retak	
Dengan Luas Efektif	119
5.2.1(c)Perhitugnan Lebar Retak	
Menurut Perumusan SNI (03-	
2847-2002)	120
5.2.2 Penentuan Koefisien a Untuk	
Balok ST-6B	134
5.2.2(a)Nilai Koefisien a Dengan Trial	
and error	134
5.2.2(b)Perhitungan Lebar Retak	
Dengan Luas Efektif	134
5.2.2(c)Perhitugnan Lebar Retak	
Menurut Perumusan SNI (03-	
2847-2002)	134
5.3. HUBUNGAN PARAMETER L, H, A_g ,	
dan A_s TERHADAP KOEFISIEN 'a'	147
5.3.1 Hubungan Parameter L dengan	
Koefisien a	147
5.3.2 Hubungan Parameter L , dan H	
dengan Koefisien a	148

5.3.3 Hubungan Parameter L, H, A_g dan A_s dengan Koefisien a	
BAB VI KESIMPULAN DAN SARAN	
6.1 UMUM	153
6.2 KESIMPULAN	153
6.3 SARAN	155
DAFTAR PUSTAKA	157
LAMPIRAN	159
BIODATA PENILLIS	

TTS STATES

DAFTAR GAMBAR

Gbr.2.1.	Lentur dari suatu panjang balok	6
Gbr.2.2.	Parameter Penampang dalam	
	Perhitungan Lebar Retak Menurut	
	Gergely-Lutz	7
Gbr.2.3.	Definisi dari A_{cef} , d_b dan s	8
Gbr.2.4.	Parameter Perhitungan Lebar Retak	
	Menurut British Standard 8110-2	10
Gbr.2.5.	Parameter Penampang dalam	
	Menghitung Lebar Retak Menurut	
	Byung Hwan Oh dan Young Jin Kang	11
Gbr.2.6.	Parameter Penampang dalam	
	Perhitungan Lebar Retak Menurut SNI	
	03-2847-2002	13
Gbr.2.7.	Pola Retak pada Balok Akibat Beban F	14
Gbr.2.8.	Kontur Tegangan	14
Gbr.2.9.	Arah Aliran Tegangan	15
Gbr.2.10.	Analogi Rangka	16
Gbr.2.11.	(a) Trayektori Tegangan Akibat Beban	
	Merata	
	(b) Analogi Rangka	16
Gbr.2.12.	Elemen dari Strut-and-tie	18
Gbr.2.13.	Penentuan a Minimum dalam Luas	
	Penampang Tie	21
Gbr.3.1.	Bagan Prosedur Penelitian	23
Gbr.4.1.	Penampang Balok ST-2B	28
Gbr.4.2.	Penampang Balok ST-6B	28
Gbr.4.3.	Posisi Pembebanan	29
Gbr.4.4.	Grafik Hasil Pengukuran Lebar Retak	29
Gbr.4.5.	Ukuran Tulangan Balok ST-2B	31
Gbr.4.6.	Ukuran Tulangan Balok ST-6B	32
Gbr.4.7.	Model Pembebanan Balok	33
Gbr.4.8.	Tinggi Rangka Untuk Balok ST-2B	36

Gbr.4.9.	Penentuan Bentang Utama pada	
	Permodelan Rangka Sudut 45°	38
Gbr.4.10.	Penambahan Bentang Utama pada	
	Ujung dan Tengah Rangka Sudut 45°	39
Gbr.4.11.	Permodelan Akhir Rangka Sudut 45°	
	Untuk Setengah Bentang Balok	40
Gbr.4.12.	Model Rangka Sudut 25°, dan 35°	
	Untuk Balok ST-2B	41
Gbr.4.13.	Model Rangka Sudut 45°, dan 50°	
	Untuk Balok ST-2B	42
Gbr.4.14.	Model Rangka Sudut 55°, 60°, dan 65°	
	Untuk Balok ST-2B	43
Gbr.4.15.	Tinggi Rangka Untuk Balok ST-6B	44
Gbr.4.16.	Penentuan Bentang Utama pada	
	Permodelan Rangka Sudut 55°	46
Gbr.4.17.	Penambahan Bentang Utama pada	
	Ujung dan Tengah Rangka Sudut 55°	47
Gbr.4.18.	Permodelan Akhir Rangka Sudut 55°	
	Untuk Setengah Bentang Balok	48
Gbr.4.19.	Model Rangka Sudut 25°, dan 35°	
	Untuk Balok ST-6B	49
Gbr.4.20.	Model Rangka Sudut 45°, dan 50°	
	Untuk Balok ST-6B	50
Gbr.4.21.	Model Rangka Sudut 55°, 60°, dan 65°	
	Untuk Balok ST-6B	51
Gbr.4.22.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 25° pada	
	Setengah Bentang Balok	53
Gbr.4.23.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 35° pada	
	Setengah Bentang Balok	54
Gbr.4.24.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 45° pada	
	Setengah Bentang Balok	55

х

Gbr.4.25.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 50° pada	
	Setengah Bentang Balok	56
Gbr.4.26.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 55° pada	
	Setengah Bentang Balok	57
Gbr.4.27.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 60 ⁰ pada	
	Setengah Bentang Balok	58
Gbr.4.28.	Pembebanan Balok ST-2B Untuk	
	Model Rangka Sudut 65 ⁰ pada	
	Setengah Bentang Balok	59
Gbr.4.29.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 25 ⁰ pada	
	Setengah Bentang Balok	61
Gbr.4.30.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 35 ⁰ pada	
	Setengah Bentang Balok	62
Gbr.4.31.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 45° pada	
	Setengah Bentang Balok	63
Gbr.4.32.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 50° pada	
	Setengah Bentang Balok	64
Gbr.4.33.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 55° pada	
	Setengah Bentang Balok	65
Gbr.4.34.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 60° pada	
	Setengah Bentang Balok	66
Gbr.4.35.	Pembebanan Balok ST-6B Untuk	
	Model Rangka Sudut 65° pada	
	Setengah Bentang Balok	67
Gbr.4.36.	Penentuan a Minimum Dalam Luas	
	Penampang Tie	83
Gbr.4.34. Gbr.4.35. Gbr.4.36.	Pembebanan Balok ST-6B Untuk Model Rangka Sudut 60 ⁰ pada Setengah Bentang Balok Pembebanan Balok ST-6B Untuk Model Rangka Sudut 65 ⁰ pada Setengah Bentang Balok Penentuan a Minimum Dalam Luas Penampang <i>Tie</i>	66 67 83

Gbr.4.37.	Penentuan Luas Penampang Gross pada	
	Balok ST-2B	84
Gbr.4.38.	Penentuan Luas Penampang Gross pada	
	Balok ST-6B	85
Gbr.4.39.	Luas Parsial A4	85
Gbr.4.40.	Luas Parsial A1	86
Gbr.4.41.	Luas Parsial A2	87
Gbr.4.42.	Luas Parsial A3	87
Gbr.4.43.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 25° pada	
	Balok ST-2B	100
Gbr.4.44.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 35° pada	
	Balok ST-2B	100
Gbr.4.45.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 45° pada	
	Balok ST-2B	101
Gbr.4.46.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 50° pada	
	Balok ST-2B	101
Gbr.4.47.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 55° pada	
	Balok ST-2B	102
Gbr.4.48.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 60° pada	
	Balok ST-2B	102
Gbr.4.49.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 65° pada	
	Balok ST-2B	103
Gbr.4.50.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 25° pada	
	Balok ST-6B	112
Gbr.4.51.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 35° pada	
	Balok ST-6B	112

Gbr.4.52.	Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 45 ⁰ pada Balak ST-6B	112
Gbr 4 53	Grafik Lehar Retak Dengan Behan P	115
001.4.55.	Untuk Model Rangka Sudut 50 ⁰ pada	
	Balok ST_6R	112
Gbr 4 54	Grafik Lehar Retak Dengan Behan P	115
001.1.01.	Untuk Model Rangka Sudut 55 ⁰ pada	
	Balok ST-6B	114
Gbr.4.55.	Grafik Lebar Retak Dengan Behan P	111
	Untuk Model Rangka Sudut 60 ⁰ pada	
	Balok ST-6B	114
Gbr.4.56.	Grafik Lebar Retak Dengan Beban P	
	Untuk Model Rangka Sudut 65 [°] pada	
	Balok ST-6B	115
Gbr.5.1.	Perhitungan Icr Untuk Balok ST-2B	120
Gbr.5.2.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A, dan Aeff pada Model	
	Rangka Sudut 25° Untuk Balok ST-2B.	130
Gbr.5.3.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi,	
	Menggunakan A_g dan A_{eff} pada Model	
	Rangka Sudut 35° Untuk Balok ST-2B.	130
Gbr.5.4.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan Ag dan Aeff pada Model	
	Rangka Sudut 45° Untuk Balok ST-2B.	131
Gbr.5.5.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan Ag dan Aef pada Model	
	Rangka Sudut 50 ⁰ Untuk Balok ST-2B.	131
Gbr.5.6.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	

	Menggunakan A_g dan A_{eff} pada Model	
	Rangka Sudut 55 [°] Untuk Balok ST-2B.	132
Gbr.5.7.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan Ag dan Aeff pada Model	
	Rangka Sudut 60° Untuk Balok ST-2B.	132
Gbr.5.8.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	
	Rangka Sudut 65° Untuk Balok ST-2B.	133
Gbr.5.9.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	
CI F 10	Rangka Sudut 25° Untuk Balok ST-6B.	143
Gbr.5.10.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	1.40
01 6 1 1	Rangka Sudut 35° Untuk Balok ST-6B.	143
Gbr.5.11.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	1.4.4
C1 6 12	Rangka Sudut 45° Untuk Balok SI-6B.	144
GDr.3.12.	Grafik Perbandingan Hasil Lebar Ketak	
	Aktual dengan Lebar Retak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	144
C1 5 12	Rangka Sudut 50° Untuk Balok SI-6B.	144
GDT.3.13.	Grafik Perbandingan Hasil Lebar Retak	
	Aktual dengan Lebar Ketak Prediksi	
	Menggunakan A_g dan A_{eff} pada Model	145
Ch. 5 14	Kangka Sudut 55 Untuk Balok SI-6B.	145
Gor. 5.14.	Altrial dangen Laber Datak Dredike	
	Managunakan 4 dan 4 nada Madal	
	Panaka Sudut 60 ⁰ Untuk Palak ST 6P	145
	Rangka Sudut ov Untuk Balok S1-6B.	145

Gbr.5.15.	Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model	
Gbr.5.16	Rangka Sudut 65° Untuk Balok ST-6B. Hubungan Antara Panjang L dengan	146
	Koefisien a.	148
Gbr.5.17.	Hubungan Antara L/H dengan	
	Koefisien a.	149
Gbr.5.18.	Hubungan Antara L/H dengan	
	Koefisien $\frac{a}{(A_g / A_s)}$.	150
Gbr.5.19.	Hubungan Antara L/H dengan	
	Koefisien $\frac{a}{\left(A_g / A_s\right)^{1/5}}$.	151
Gbr.L.1.	Contoh Soal Prediksi Lebar Retak	
	dengan Metoda Strut-and-tie.	159
Gbr.L.2.	Penentuan Tinggi Model Rangka (H).	161
Gbr.L.3.	Penentuan Bentang Utama pada	
	Permodelan Rangka Sudut 45°.	162
Gbr.L.4.	Penambahan Bentang Utama pada	
	Tengah Rangka Sudut 45 [°] .	163
Gbr.L.5.	Permodelan Akhir Rangka Sudut 45°	
	Untuk Setengah Bentang Balok.	164
Gbr.L.6.	Pembebanan Balok Model Rangka	
	Sudut 45° pada Setengah Bentang	
	Balok.	165
Gbr.L.7.	Potongan I-I	166
Gbr.L.8.	Penentuan a minimum dalam luas	
	penampang tie.	166
Gbr.L.9.	Penentuan Luas Penampang Gross Ag.	167
Gbr.L.10.	Luas Parsial A1.	167
Gbr.L.11.	Luas Parsial A2.	168

DAFTAR TABEL

Tbl.4.1.	Tabel Momen, Beban P dan Lebar	
	Retak (w) Untuk Balok S1-2B dan S1- 6B	34
Tbl.4.2.	Panjang Bentang Utama Untuk Model	37
Th1 4 3	Paniang Bentang Utama Untuk Model	57
101.1.0.	Rangka Balok ST-6B	45
Tbl.4.4.	Beban Luar P yang Bekerja pada Balok ST-2B	52
Tbl.4.5.	Beban Luar P yang Bekerja pada Balok ST-6B	60
Tbl.4.6.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 25 ⁰ pada Balok	(0)
T1147	ST-2B	69
101.4.7.	Model Rangka Sudut 35 [°] pada Balok	70
Tbl.4.8.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 45 [°] pada Balok	71
Th1 1 0	SI-2B Gave Akrial Tarik Terbesar Untuk	/1
101.4.9.	Model Rangka Sudut 50 [°] pada Balok	
	ST-2B	72
Tbl.4.10.	Gaya Aksial Tarik Terbesar Untuk	
	Model Rangka Sudut 55° pada Balok ST-2B	73
Tbl.4.11.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 60 ⁰ pada Balok	
	ST-2B	74
Tbl.4.12.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 65 ⁰ pada Balok	
	ST-2B	75

xvi

A MA

Tbl.4.13.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 25 ⁰ pada Balok ST-6B	76
Tbl.4.14.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 35 ⁰ pada Balok ST-6B	77
Tbl.4.15.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 45 ⁰ pada Balok	70
Tbl.4.16.	Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 50 ⁰ pada Balok	76
Tbl.4.17.	ST-6B Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 55 ⁰ pada Balok	79
Tbl.4.18.	ST-6B Gaya Aksial Tarik Terbesar Untuk	80
Tbl.4.19.	ST-6B Gaya Aksial Tarik Terbesar Untuk	81
	Model Rangka Sudut 65 ⁰ pada Balok ST-6B	82
Tbl.4.20.	Prediksi Lebar Retak Model Rangka Sudut 25 ⁰ pada Balok ST-2B Prediksi Lebar Retak Model Rangka	93
Tbl.4.22.	Sudut 35 [°] pada Balok ST-2B Prediksi Lebar Retak Model Rangka	94
Tbl.4.23.	Sudut 45 [°] pada Balok ST-2B Prediksi Lebar Retak Model Rangka	95
Tbl.4.24.	Sudut 50° pada Balok SI-2B Prediksi Lebar Retak Model Rangka Sudut 55° pada Balok ST-2B	96
Tbl.4.25.	Prediksi Lebar Retak Model Rangka Sudut 60 ⁰ pada Balok ST-2B	98
Tbl.4.26.	Prediksi Lebar Retak Model Rangka Sudut 65 ⁰ pada Balok ST-2B	99

Tbl.4.27.	Prediksi Lebar Retak Model Rangka	
	Sudut 25° pada Balok ST-6B	105
Tbl.4.28.	Prediksi Lebar Retak Model Rangka	
	Sudut 35° pada Balok ST-6B	106
Tb1.4.29.	Prediksi Lebar Retak Model Rangka	
	Sudut 45° pada Balok ST-6B	107
Tbl.4.30.	Prediksi Lebar Retak Model Rangka	
	Sudut 50° pada Balok ST-6B	108
Tbl.4.31.	Prediksi Lebar Retak Model Rangka	
	Sudut 55° pada Balok ST-6B	109
Tbl.4.32.	Prediksi Lebar Retak Model Rangka	
	Sudut 60° pada Balok ST-6B	110
Tbl.4.33.	Prediksi Lebar Retak Model Rangka	
	Sudut 65° pada Balok ST-6B	111
Tbl.5.1.	Nilai Koefisien a Untuk Balok ST-2B	118
Tbl.5.2.	Hasil Perhitungan Lebar Retak Pada	
	Balok ST-2B Dengan Perumusan SNI	122
Tbl.5.3.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 25° pada Balok	
	ST-2B dengan Luas Penampang Efektif	123
Tbl.5.4.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 35° pada Balok	
	ST-2B dengan Luas Penampang Efektif	124
Tbl.5.5.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 45° pada Balok	
	ST-2B dengan Luas Penampang Efektif	125
Tbl.5.6.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 50° pada Balok	
	ST-2B dengan Luas Penampang Efektif	126
Tbl.5.7.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 55° pada Balok	
	ST-2B dengan Luas Penampang Efektif	127
Tbl.5.8.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 60° pada Balok	
	ST-2B dengan Luas Penampang Efektif	128

xviii

STI

Tbl.5.9.	Hasil Perhitungan Lebar Retak Untuk	
	ST-2B dengan Luas Penampang Efektif	120
Th1 5 10	Nilai Koefisien a Untuk Balok ST-6B	127
Tb1.5.10.	Hagil Derhiturgen Laber Detal: Dade	134
101.3.11.	Palak ST (P. Dansan Parumusan SMI	125
Th1 5 12	Balok SI-OB Dengan Perunusan SNI	155
101.3.12.	Hasil Pernitungan Lebar Retak Untuk	
	Model Rangka Sudut 25° pada Balok	105
	SI-6B dengan Luas Penampang Etektif	136
ТЫ.5.13.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 35 [°] pada Balok	
	ST-6B dengan Luas Penampang Efektif	137
Tbl.5.14.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 45 ⁰ pada Balok	
	ST-6B dengan Luas Penampang Efektif	138
Tbl.5.15.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 50° pada Balok	
	ST-6B dengan Luas Penampang Efektif	139
Tbl.5.16.	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 55 ⁰ pada Balok	
	ST-6B dengan Luas Penampang Efektif	140
Tbl.5.17	Hasil Perhitungan Lebar Retak Untuk	
	Model Rangka Sudut 60 ⁰ pada Balok	
	ST-6B dengan Luas Penampang Efektif	141
Th1 5 18	Hasil Perhitungan Lehar Retak Untuk	
101.9.10.	Model Pangka Sudut 65 ⁰ pada Balak	
	ST 6R dengen Luce Penempang Efeldif	142
Th1 5 10	Uubungan Daniang L dangan Vaafisian	142
101.3.19.	Hubungan Fanjang L dengan Koensien	147
TH 5 20		147
101.5.20.	Hubungan Panjang L dan Tinggi H	140
711501	dengan Koefisien a	148
161.5.21.	Hubungan L/H , dan A_g/A_s dengan	1.50
	Koefisien a	150
Tbl.5.22.	Hubungan L/H , dan $(A_g/A_s)^{1/3}$ dengan	
	Koefisien a	151

DAFTAR NOTASI

A	Luas efektif beton yang melingkupi tulangan dalam inci ²
a	Koefisien pangkat dalam perumusan luas efektif
a'	Jarak dari bidang tekan ke titik retak
A ,	Luas efektif beton daerah tarikan baja= $b \times h_{i}/m$
A	Luas cross-section di ujung strut
Acet	Luas beton efektif sekeliling tulangan yang
cej	mempengaruhi lebar retak
a	Jarak titik retak terhadap titik yang regangannya nol
Art	Luas penampang efektif beton
Aa	Luas penampang gross
A,	Luas gross parsial
Aps	Luas tulangan pratekan
As	Luas tulangan baja
Asl	Luas satu tulangan baja
Ast	Luas tulangan tarik beton
A_n	Luas area dipermukaan nodal zone dari arah dimana
	F _u bekerja
b_t	Lebar balok
β	Perbandingan jarak-jarak ke sumbu netral dari serat
	yang tertarik ekstrim dan dari sentroid $A_s = (h_2/h_1)$
С	Tebal selimut beton yang diukur terhadap titik berat
	tulangan sampai permukaan terluar beton (surface)
d	Kedalaman efektif
d_b	Diameter tulangan
d_c	Penutup beton diukur dari serat tertarik terluar
	terhadap sumbu batang, dalam inci.
E_c	Modulus elastis beton
E_s	Modulus elastis baja
З	Regangan pada beton dengan luas penampang gross
ε_1	Regangan pada titik retak
Ecr	Regangan batas retak beton

\mathcal{E}_{m}	Regangan beton rata-rata pada daerah retak
Es	Regangan baja teoritis
f	Gaya tarik maksimum pada frame model rangka batang
fc	Kuat tekan beton
fcu	Tegangan efektif tekan
F_n	Kekuatan nominal dari komponen strut atau tie atau nodal zone
fr	Tegangan batas retak beton
f_s	Tegangan baja dalam Ksi
fse	Tegangan efektif dalam tulangan pratekan setelah
F	Gava dalam komponen strut atau tie atau gava pada
1 11	salah satu sisi nodal zone akibat beban luar
fy	Tegangan leleh tulangan
H	Tinggi model rangka batang
h	Tinggi balok
h2	jarak dari garis netral ke serat tarik terluar balok
h1	jarak dari garis netral ke titik berat tulangan tarik
I_g	Momen Inersia gross
I_{cr}	Momen Inersia penampang retak
K_{I}	Koefisien dari karakteristik lekatan pada tulangan
K_2	Koefisien untuk memperhitungkan tingkat regangan sekitar daerah A_{cef}
L	Panjang frame yang mengalami gaya tarik maksimum dalam model rangka batang
m	Jumlah tulangan
M_d	Momen akibat berat sendiri
M_L	Momen akibat beban luar P
n	Rasio antara modulus baja dengan modulus beton
S	Spasi antar tulangan diukur dari as ke as tulangan
Sh	Spasi tulangan horizontal
S_m	Spasi rata-rata retakan
Sv	Spasi tulangan vertikal

0	Lehar retak maksimum
w	Hasil analisa perhitungan rumus lehar retak
wa	managunakan 4
	menggunakan Aeff
We	Data eksperimen lebar retak dari literatur atau jurnal
W_k	Lebar retak karakteristik
Wm	Lebar retak rata-rata
x	Kedalaman sumbu netral
Ya	Hasil analisa perhitungan rumus atau teori
Ye	Data eksperimen dari percobaan di laboratorium
θ	Sudut antara strut diagonal dengan tie horisontal
	dalam rangka batang
φ	Faktor reduksi kekuatan
$\Delta \mathrm{fp}$	Tegangan tambahan dalam tendon pratekan akibat
	Taktor beban
λ	Jarak bentang utama dalam model rangka batang
σ	Tegangan tarik yang terjadi
ΣR^2	Jumlah kwadrat selisih antara data analisa dengan data eksperimen

BAB I PENDAHULUAN

1.1 LATAR BELAKANG

Tujuan perhitungan tegangan di dalam perencanaan beton bertulang adalah untuk meyakinkan bahwa struktur cukup kuat untuk melaksanakan fungsinya. Selain cukup kuat menahan beban, struktur juga harus memenuhi kriteria kondisi layan (*serviceability*). Di dalam kondisi layan itu dibahas masalah lendutan dan lebar retak maksimum yang boleh terjadi.

Pada struktur beton bertulang, retakan hingga batas tertentu adalah wajar dan dapat diterima. Walaupun tidak membahayakan bagi pengguna, tetapi retak dapat mempermudah proses korosi terhadap tulangan baja jika lebarnya terlalu besar di samping menimbulkan perasaan 'tidak nyaman' bagi penghuni struktur itu sendiri. Dalam peraturan ACI (ACI-10.6.4-2002), lebar retak dihitung dengan mengacu pada rumus pendekatan oleh Gergely-Lutz. Rumus itu didasarkan pada pendekatan empiris dari serangkaian percobaan yang dilakukan di laboratorium.

Tata Cara Perhitungan Struktur Beton Untuk Bangunan Gedung (SNI 03-2847-2002) juga mengadopsi perumusan Gergely-Lutz menjadi $\omega = 11 \times 10^{-6} .\beta .f_s \sqrt[3]{d_c.A}$. Nilai lebar retak dibatasi 0,4 mm untuk penampang dalam ruangan dan 0,3 mm untuk penampang yang dipengaruhi cuaca luar.

Pada dasarnya ada 2 macam pendekatan yang dapat diambil dalam menurunkan sebuah perumusan yaitu:

- pendekatan empiris
- pendekatan teoritis (model)

Saat ini rumus lebar retak yang ada dalam peraturan beton di Indonesia (SNI 03-2847-2002) hanya didasarkan pada rumus pendekatan empiris yang diadopsi dari perumusan Gergely-Lutz. Meskipun cara ini pada umumnya telah menghasilkan perhitungan yang aman dan konservatif, pendekatan berdasarkan model lebih disukai karena mempunyai beberapa kelebihan dibandingkan pendekatan empiris, antara lain:

- Flow (aliran) dari beban menjadi lebih jelas. Sebagai akibatnya perilaku struktur yang sebenarnya juga lebih mudah dipahami dan tidak semata-mata memasukkan angka ke dalam rumus yang ada.
- Lebih bersifat general (tidak terbatas pada kondisi tertentu).

Mengingat hal diatas, pada saat ini dan khususnya masa mendatang ada trend perumusan empiris mulai digantikan dengan perumusan yang didasarkan model (Bruggeling, 1991).

Salah satu pendekatan teoritis (model) yang dapat dipakai dalam memprediksi lebar retak adalah dengan 'Metoda *Strut-and-tie*' yang telah diperkenalkan oleh Ritter(1899) dan Morsch(1902). Dalam tugas akhir ini, diusulkan penggunaan metoda *strut-and-tie* untuk memprediksi lebar retak sebagai alternatif perhitungan dari rumus-rumus lebar retak yang sudah ada. Selain itu, diusulkan juga perumusan untuk menghitung luas efektif beton dalam menahan tegangan tarik setelah tegangan ijin tarik beton dilampaui. Luas efektif ini berada diantara luas netto tulangan baja (A_s) dan luas penampang gross beton (A_{α}) .

1.2 PERMASALAHAN

Dalam tugas akhir ini permasalahan yang akan dibahas dapat dijabarkan sebagai berikut:

- 1. Bagaimana menentukan model *strut-and-tie* yang paling cocok pada balok beton bertulang dalam memprediksi lebar retak berdasarkan pendekatan yang sudah ada.
- 2. Bagaimana menentukan proporsi antara luas penampang gross (A_g) dan luas netto tulangan baja

 (A_s) dalam menghitung luas efektif penampang saat retak sudah terjadi.

3. Bagaimana memprediksi lebar retak dengan pendekatan metoda *strut-and-tie* selain percobaan empiris yang dilakukan di laboratorium.

1.3 TUJUAN

Adapun tujuan yang ingin dicapai dari pembahasan tugas akhir ini dapat diuraikan sebagai berikut:

- Memberi alternatif lain bagi perencana struktur dalam memprediksi lebar retak pada balok beton bertulang dengan memakai perumusan yang berdasarkan model yang jelas dan tidak semata-mata memakai perumusan empiris murni.
- Menentukan model *strut-and-tie* yang paling cocok pada balok beton bertulang dalam memprediksi lebar retak.
- Menentukan proporsi yang tepat antara luas gross (Ag) dan luas netto baja (As) dalam mencari luas efektif penampang saat retak terjadi.
- 4. Menyusun urutan penyelesaian perhitungan lebar retak dengan metoda.*strut-and-tie*.

1.4 BATASAN MASALAH

Dalam tugas akhir ini penulis membatasi permasalahan pada:

- 1. Pendekatan lebar retak terbatas hanya pada balok beton bertulang.
- Retakan yang terjadi diasumsikan hanya akibat beban berat sendiri balok dan beban luar (retak lentur), bukan akibat pengaruh susut dan rangkak pada beton.
- 3. Beban luar yang bekerja adalah beban vertikal gravitasi saja (tidak ada gaya normal) dan bersifat monotonik.

Data-data lain tentang balok beton bertulang menyesuaikan dengan data dari literatur yang dipakai.

"Halaman ini sengaja dikosongkan"

BAB II TINJAUAN PUSTAKA

2.1 DASAR TEORI 2.1.1 Retak Lentur

Bagian-bagian konstruksi yang mengalami lentur pada umumnya memperlihatkan suatu rangkaian retak-retak lentur (*flexural cracking*) yang tersebar, walaupun hanya pada saat beban kerja. Retak-retak ini tidak mencolok dan tidak merugikan kecuali bila lebarnya menjadi melebihi batas, sehingga penampilan struktur terganggu dan tulangan juga terbuka terhadap pengaruh korosi.

Mekanisme retak lentur dapat digambarkan dengan meninjau perilaku dari suatu bagian konstruksi yang mengalami momen merata. Suatu panjang balok yang diperlihatkan dalam Gambar 2.1 mula-mula akan berperilaku elastis seluruhnya, sampai momen merata yang diberikan naik. Bila batas regangan tarik beton tercapai, maka akan terjadi retak, dan daerah tarik yang berdekatan tidak akan dipengaruhi lebih jauh lagi oleh gaya-gaya tarik langsung.

Akan tetapi, kelengkungan balok akan menyebabkan tegangan-tegangan tarik langsung bekerja lebih jauh untuk menimbulkan retak pada suatu jarak dari retak semula, untuk mempertahankan keseimbangan dalam. Hal ini menyebabkan terjadinya retak-retak lebih lanjut, dan proses ini akan berlanjut sampai jarak antara retak-retak tidak memungkinkan lagi tegangan tarik yang cukup untuk menyebabkan retak selanjutnya.

Begitu momen yang diberikan meningkat, terjadinya retak akan banyak dipengaruhi oleh tulangan. Tegangan – tegangan tarik dalam beton yang mengelilingi batang tulangan akibat lekatan, akan menyebabkan timbulnya retak-retak lebih lanjut di antara retak-retak yang telah terbentuk.

6

Gambar 2-1. Lentur dari suatu panjang balok

Aksi ini akan berlanjut sampai lekatan antara beton dan baja tidak mampu lagi menimbulkan tarikan di dalam beton yang cukup untuk menimbulkan retak selanjutnya.

Lebar retak yang sesungguhnya di dalam konstruksi beton bertulang sangat bervariasi dan tidak dapat ditaksir secara tepat. Untuk itu muncul banyak usulan rumus lebar retak, diantaranya seperti yang diuraikan berikut:

2.1.1(a) Lebar Retak Menurut Gergely dan Lutz (1968)

ACI Code (318-83) melakukan pembatasan retak berdasarkan perumusan lebar retak dari penelitian Gergely dan Lutz. Lebar retak yang diusulkan oleh mereka didasarkan atas perumusan empiris hasil dari serangkaian percobaan yang dilakukan di laboratorium. Pendekatan dari Gergely dan Lutz ini merupakan perumusan sederhana yang melibatkan tiga variabel, yaitu tegangan baja tulangan pada retakan , tebal selimut beton dan luas beton di sekeliling baja tulangan (Gambar 2.2) menurut Persamaan 2.1:

 $\omega = 0,076.\beta f_s \sqrt[3]{d_c.A}$ (2.1)

dimana: ω = lebar retak maksimum yang diharapkan dalam satuan 0,001 inci

- β = perbandingan jarak-jarak ke sumbu netral dari serat yang tertarik ekstrim dan dari sentroid A_s = (h₂/h₁)
- f_s = tegangan baja dalam Ksi
- d_c = penutup beton diukur dari serat tertarik terluar terhadap sumbu batang, dalam inci.
- A = luas efektif beton yang melingkupi tulangan dalam inci²

Gambar 2.2 Parameter Penampang dalam Perhitungan Lebar Retak Menurut Gergely-Lutz

2.1.1(b) Lebar Retak Menurut CEB-FIP Code (1978)/ Comite Euro International du Beton-Federation Internationale de la Precontrainte

CEB-FIP Code menyatakan bahwa spasi rata-rata retakan adalah ditentukan berdasarkan Persamaan (2.2).

$$S_m = 2\left(c + \frac{s}{10}\right) + K_1 \cdot K_2 \cdot \frac{d_b}{\rho_{ef}}$$
(2.2)

dimana (Gambar 2.3):

- S_m = spasi rata-rata retakan
- c = tebal bersih dari selimut beton
- s = spasi maksimum antara tulangan longitudinal < 15 d_b

 d_b = diameter tulangan

$$\rho_{ef} = \frac{A_s}{A_{ef}}$$

- A_s = luas baja tulangan yang dianggap efektif melekat pada beton
- A_{cef} = luas beton efektif sekeliling tulangan yang mempengaruhi lebar retak
- K_1 = koefisien dari karakteristik lekatan pada tulangan = 0,4 untuk baja tulangan ulir
 - = 0,8 untuk baja tulangan polos
- K_2 = koefisien untuk memperhitungkan tingkat regangan sekitar daerah A_{cef}

$$= \frac{0,25(\varepsilon_1 + \varepsilon_2)}{2.\varepsilon_1} \text{ dimana } \varepsilon_1 \text{ dan } \varepsilon_2 = \text{ regangan tarik}$$

terbesar dan terkecil pada daerah Acef

Gambar 2.3 Definisi dari A_{cef} , d_b dan s

8

dimana: W_k = lebar retak karakteristik W_m = lebar retak rata-rata \mathcal{E}_{cf} = regangan tarik S_m = spasi rata-rata retakan

2.1.1(c) Lebar Retak Menurut British Standard BS 8110-2 (1985)

British Standard memberikan perumusan lebar retak menurut Persamaan (2.5):

$$W_{maks} = \frac{3.a_{cr} \cdot \varepsilon_m}{1 + 2\left(\frac{a_{cr} - c_{\min}}{h - x}\right)} \qquad (2.5)$$
$$\varepsilon_m = \varepsilon_1 - \frac{b_t \cdot (h - x)(a' - x)}{3.E_s \cdot A_s(d - x)} \qquad (2.6)$$

dimana (Gambar2.4):

 a_{cr} = jarak titik retak terhadap titik yang regangannya nol

 \mathcal{E}_m = regangan beton rata-rata pada daerah retak

 c_{\min} = penutup minimum untuk tulangan

- h = tinggi struktur
- x =kedalaman sumbu netral
- \mathcal{E}_1 = regangan pada titik retak
- $b_t = \text{lebar balok}$

a' = jarak dari bidang tekan ke titik retak

Gambar 2.4. Parameter Perhitungan Lebar Retak Menurut British Standard 8110-2

2.1.1(d) Lebar Retak Menurut Byung Hwan Oh dan Young Jin Kang (ACI Struktural Journal no 84-S10/1987)

Melalui penelitian yang telah dilakukan, Byung Hwan Oh dan Young Jin Kang menyimpulkan bahwa spasi retakan pada balok beton bertulang sangat dipengaruhi oleh regangan aksial dan diameter tulangan baja yang digunakan. Maka dalam perumusan matematis yang mereka usulkan, terdapat parameter regangan baja (ε_s), diameter tulangan (D) serta parameter-parameter non dimensional seperti yang dapat dilihat dalam persamaan berikut ini:

 $W_{max} = a_0 (\varepsilon_s - 0,0002).R.D$ (2.7) dimana (Gambar 2.5):

$$a_0 = 159.\left(\frac{t_b}{h_2}\right)^{4.5} + 2,83.\left(\frac{A_1}{A_{s1}}\right)^{1/3}$$

R

 ε_s = regangan baja teoritis

- D =diameter tulangan
- t_b = tebal selimut beton

$$h_1$$
 = tinggi ekivalen = $\frac{h_2^3}{(3.h_3)^2}$

- h_2 = jarak netral dari serat bawah penampang
- h_3 = jarak garis netral dan cgs
- A_1 = luas efektif beton daerah tarikan baja=b.h₁/m
- m =jumlah tulangan

 A_{sl} = luas satu tulangan baja

Gambar 2.5. Parameter Penampang dalam Menghitung Lebar Retak Menurut Byung Hwan Oh dan Young Jin Kang

Meskipun demikian, perumusan yang diusulkan ini masih menghasilkan lebar retak yang cukup besar dari kenyataannya (lebar retak aktual). Hal ini menunjukkan dalam penurunan rumus diatas mengandung faktor keamanan (*safety factor*) yang besar, sehingga terkesan perencanaan struktur yang berlebihan (*over desain*).

AIR MERLUSTIANS ITS

2.1.1(e) Lebar Retak Menurut SNI 03-2847-2002

Dalam SNI 2847 dijelaskan bahwa kontrol retak tidak diperlukan bila tulangan tarik yang digunakan mempunyai tegangan leleh dibawah 300 MPa. Bila tegangan leleh dari tulangan melebihi 300 MPa, maka penampang harus didesain sedemikian rupa sehingga nilai z yang diberikan oleh:

$$z = f_s. \sqrt[3]{d_c.A} \tag{2.8}$$

tidak melebihi 30 MN/m untuk penampang dalam ruangan dan 25 MN/m untuk penampang yang dipengaruhi cuaca luar. Tegangan pada tulangan akibat kerja f_s (MPa) harus dihitung sebagai momen maksimum tak terfaktor dibagi dengan hasil kali luas tulangan baja dengan lengan momen dalam. Bila tidak dihitung dengan cara diatas, f_s boleh diambil sebesar 60% dari kuat leleh f_v yang diisyaratkan.

Sebagai alternatif terhadap perhitungan nilai z, dapat dilakukan perhitungan lebar retak yang diberikan oleh:

$$\omega = 11 \times 10^{-6} . \beta f_{3} d_{a} A$$

.....(2.9)

dimana (Gambar 2.6):

 d_c = penutup beton dari batang terluar dengan luas A_s diukur terhadap sumbu batang

A = luas efektif beton yang melingkupi tulangan

Nilai lebar retak tidak boleh melebihi 0,4 mm untuk penampang dalam ruangan dan 0,3 mm untuk penampang yang dipengaruhi cuaca luar.

Gambar 2.6 Parameter Penampang dalam Perhitungan Lebar Retak Menurut SNI 03-2847-2002

2.1.2 Metoda Strut-and-tie

"Strut-and-tie Model" berawal dari "Truss-analogimodel" yang pertama kali dicetuskan oleh Hennebique lebih dari satu abad yang lampau. Model ini kemudian diperkenalkan oleh Ritter (1899), Morsch (1902).

Sebenarnya, ide dasar dari model strut-and-tie ini adalah adanya aliran tegangan yang timbul akibat beban luar yang diberikan. Dalam gambar 2.7 ditunjukkan bahwa akibat beban F, balok mengalami tegangan tarik di bagian serat bawah. Hal ini dibuktikan dengan munculnya retak lentur di tengah bentang.

Berdasarkan analisa, seperti pada analisa elemen hingga kita dapat menurunkan kontur tegangan pada balok akibat beban F (Gambar 2.8). Tegangan yang diperoleh merupakan tegangan normal atau tegangan utama. Kontur tegangan menghubungkan daerah yang sama tegangannya. Berdasarkan kontur tegangan, dapat ditentukan aliran tegangan yang terjadi. Aliran tegangan ini kemudian disebut *trayektori tegangan*.

Dari trayektori tegangan kita dapat memperoleh dua informasi yaitu: jenis trayektori tegangan yaitu trayektori tegangan tekan (compressive stress trajectories) yang disimbolkan dengan garis putus-putus (-----) dan teyektori tegangan tarik (*tensile stress trajectories*) yang disimbolkan dengan garis penuh (----) serta arah aliran tegangan (Gambar 2.9).

Gambar 2.7. Pola Retak pada Balok Akibat Beban F

Gambar 2.9. Arah Aliran Tegangan

Dengan memperhatikan pola dan arah tegangan yang terjadi, dicoba untuk menganalogikan aliran itu dengan menggunakan rangka batang atau truss (Gambar 2.10 dan 2.11). Rangka batang tersebut berupa elemen struktur yang hanya bisa menerima gaya pada arah aksial. Batang yang menerima gaya aksial tekan disebut *strut* dan yang menerima gaya aksial tarik disebut *tie*. Sedangkan titik pertemuan antar batang disebut *nodal*.

Rangka batang yang diusulkan bisa terdiri dari batang tekan dan tarik, sejajar dengan arah memanjang dari balok, atau batang tekan diagonal dengan sudut tertentu dan batang tarik vertikal. Batang tekan dan batang tarik yang sejajar diperlukan untuk memikul momen lentur, yang kita peroleh dari standar penulangan lentur. Batang tarik vertikal adalah penulangan geser yang dipasang untuk memikul gaya lintang, sedangkan batang tekan diagonal akan dipikul oleh betonnya sendiri.

Gambar 2.11. (a) Trayektori Tegangan Akibat Beban Merata (b) Analogi Rangka

Sampai saat ini belum ada kepastian yang jelas mengenai berapa besarnya sudut antara batang tekan diagonal dengan batang tarik horisontal dalam *strut-tie*. Beberapa peneliti dan peraturan memberikan kisaran sudut yang dapat dibuat seperti:

- 1. Rogowsky, Ramirez, dan Mac Gregor: $25^{\circ} < \theta < 65^{\circ}$
- 2. Thurliman & Swiss code (1976): $0,5 < \tan \theta < 2$ atau 26,6° < $\theta < 63,4^{\circ}$

- 3. CEB-FIP Code (1978): $31^{\circ} < \theta < 59^{\circ}$
- 4. ACI 318-02: $\theta > 25^{\circ}$

Truss analogi dari kemudian dikembangkan/ disempurnakan oleh Rusch (1964), Kupfer (1964), Leonhardt (1965), Elfgren (1972), Nielsen (1978), Mueller (1978), Collins dan Mitchell (1980), Hsu (1982), Thurlimann (1983), Marti (1985), MacGregor (1986), Hardjasaputra (1987), Reineck (1990), dan Collins (1991) serta peneliti-peneliti lainnya.

Karena keunggulan dan kesederhanaannya untuk menganalisa, metode ini sudah diadopsi oleh banyak peraturan perencanaan di berbagai negara, salah satunya adalah peraturan ACI 318-02. Untuk mendesain struktur beton dengan menggunakan metoda strut-tie diperlukan beberapa tahap analisa yang secara umum dapat dikelompokkan menjadi:

- 1. Pemodelan struktur, yaitu pembuatan model yang sesuai dengan keadaan aktual struktur.
- Optimasi model, yaitu memilih model yang paling baik berdasarkan kriteria optimasi dari beberapa model yang diusulkan.
- Penentuan dimensi komponen-komponen struktur menurut keadaan batas struktur dan kriteria kekuatan batas yang diisyaratkan.
- 4. Desain tulangan yang dibutuhkan berdasarkan prinsip kesetimbangan dan pembuatan detilnya.

2.2 METODA PERHITUNGAN

Dalam peraturan ACI 318-02 dijelaskan syarat kekuatan dari masing-masing elemen dalam model strut-and-tie seperti yang ditunjukkan dalam Gambar 2.12.

Dalam desain untuk komponen strut, tie dan nodal zone harus memenuhi kriteria (ACI-A.2.6):

$$\phi \cdot F_n \ge F_u \tag{2.10}$$

dimana:

- F_u = gaya dalam komponen strut atau tie atau gaya pada salah satu sisi nodal zone akibat beban luar
- F_n = kekuatan nominal dari komponen strut atau tie atau nodal zone
- ϕ = faktor reduksi kekuatan (ACI-9.3.2.6) = 0.75

Gambar 2.12. Elemen dari Strut-and-tie

2.2.1 Kekuatan Strut

Nilai nominal dari kekuatan tekan strut dihitung dengan rumus (ACI-A.3.1):

$$F_{ns} = f_{cur} A_c \tag{2.11}$$

dimana:

 $A_c =$ luas cross-section di ujung strut

 f_{cu} = tegangan efektif tekan yang diambil dari nilai terendah antara:

1. Tegangan efektif tekan strut (ACI-A.3.2):

$$f_{cu} = 0.85. \beta_s. f_c'$$
 (2.12)

2. Tegangan efektif tekan nodal zone (ACI-A.5.2):

$$f_{cu} = 0,85. \beta_n. f_c$$
'(2.13)

nilai β_s dalam Persamaan (2.12) diambil:

- (ACI-A.3.2.1) Untuk strut dengan luas cross-section sama di sepanjang komponen strut $\beta_s = 1$
- (ACI-A.3.2.2) Untuk strut dengan luas cross-section membesar ditengah komponen strut atau bentuk strut botol (bottle-shaped strut):
 - (a) dengan tulangan $\dots \beta_s = 0.75$
 - (b) tanpa tulangan $\dots \beta_s = 0.6 \lambda$

dimana λ dapat dilihat dalam ACI.11.7.4.3

- (ACI-A.3.2.3) Untuk strut dalam	komponen tension atau
komponen tension flanges	$\beta_s = 0,4$
- (ACI-A.3.2.4) Untuk kasus lain	$\beta_s = 0,6$
nilai β_n dapat dilihat dalam sub bab	2.2.3

2.2.2 Kekuatan Tie

Nilai nominal dari kekuatan tarik tie dihitung dengan rumus (ACI-A.4.1):

dimana:

Ast = luas tulangan tarik beton

- fy = tegangan leleh tulangan
- Aps =luas tulangan pratekan (bila ada)
- *fse* = tegangan efektif dalam tulangan pratekan setelah kehilangan gaya prategang

 Δfp = tegangan tambahan dalam tendon pratekan akibat faktor beban

2.2.3 Kekuatan Nodal Zone

Nilai nominal dari kekuatan nodal zone dihitung dengan rumus (ACI-A.5.1):

$$F_{nn} = f_{cu}A_n \tag{2.15}$$

dimana:

 A_n = luas area dipermukaan nodal zone dari arah dimana F_u bekerja

= tegangan etektif nodal zone diambil (ACI-A.5.2):

$$f_{cu} = 0,85. \beta_n. f_c'$$
(2.16)

nilai β_n dalam persamaan (2.16) diambil:

2.2.4 Luas Penampang Tie

Luas penampang tie dalam menahan tegangan tarik dihitung dengan rumus (ACI-RA.4.2):

dimana:

 $F_{nt} = F_u/\phi$ = kekuatan nominal dari komponen tie f_{cu} = tegangan efektif nodal zone Selain itu, perumusan luas penampang tie juga dapat dihitung menggunakan usulan oleh Hsu (2003)yaitu:

Gambar 2.13. Penentuan a Minimum dalam Luas

dimana:

 $A_s =$ luas tulangan baja

- c = tebal selimut beton terhadap titik berat tulangan
- s =spasi antar tulangan

"Halaman ini sengaja dikosongkan"

BAB III METODOLOGI

Dalam bab ini akan diuraikan mengenai seluruh prosedur penelitian yang digunakan dalam penyelesaian tugas akhir ini, sehingga penyelesaian tugas akhir ini dapat lebih jelas dan terarah.

3.1 SKEMA PENELITIAN

Tahapan dalam penyusunan tugas akhir ini secara sederhana dapat digambarkan dengan skema alir dalam Gambar 3.1

Gambar 3.1 Bagan Prosedur Penelitian

Gambar 3.1 Lanjutan

3.2 URAIAN PELAKSANAAN

Langkah-langkah yang diambil dalam penyusunan tugas akhir ini seperti yang ditunjukkan dalam Gambar 3.1 dapat dijelaskan sebagai berikut:

- 1. Studi literatur dengan mengambil data-data hasil eksperimen lebar retak dalam beberapa literatur dan jurnal.
- 2. Permodelan balok ke dalam bentuk rangka batang dengan beberapa pilihan besar sudut.
- 3. Perhitungan pembebanan dengan mengambil data berat balok yang terdapat dalam literatur. Perhitungan pembebanan ini nantinya akan menjadi input dalam mencari gaya dalam aksial.
- 4. Perhitungan gaya dalam dilakukan menggunakan bantuan program SAP 2000. Didapatkan gaya dalam aksial tarik maksimum pada frame rangka di tengah bentang. Setelah itu dilakukan perhitungan luas penampang gross menggunakan usulan rumus dari Hsu (2003). Setelah mendapatkan luas gross, dilanjutkan dengan perhitungan tegangan berdasarkan luas gross.
- 5. Perhitungan tegangan batas retak. Rumus diambil dari peraturan ACI 9.6.2.3
- Perbandingan tegangan berdasarkan luas gross dengan tegangan batas retak. Jika tegangan yang terjadi lebih besar dari tegangan batas retak maka retak telah terjadi dan dilanjutkan dengan perhitungan luas efektif.
- 7. Dalam menghitung luas efektif, dilakukan dengan cara trial and erorr untuk mencari nilai koefisien a. Cara trial and erorr ini dilakukan dengan menggunakan bantuan program exell sampai didapatkan nilai ΣR^2 paling minimum. Nilai ΣR^2 adalah kwadrat selisih antara lebar retak prediksi dengan lebar retak dari data.

- 8. Mencari hubungan antara nilai koefisien a dalam perumusan luas efektif dengan parameter dari balok (model rangka) seperti: H, L, A_g dan A_s .
- 9. Mengambil kesimpulan mengenai perumusan luas penampang efektif beserta nilai koefisien a.

BAB IV ANALISA PERHITUNGAN

4.1 UMUM

Dalam perhitungan lebar retak pada balok beton bertulang akibat beban lentur yang bekerja, ada banyak perumusan yang dapat digunakan. Rumus-rumus tersebut dapat dilihat pada beberapa peraturan beton bertulang seperti: ACI 318, CEB-FIP Code 1978, British Standard 8110-2.

Peraturan beton bertulang di Indonesia juga mempunyai perumusan lebar retak yang diadopsi dari perumusan lebar retak dalam ACI 318. Selain menggunakan perumusan yang ada, lebar retak pada balok beton bertulang juga dapat diprediksi menggunakan pendekatan 'metoda *Strutand-tie*'.

4.2 DATA EKSPERIMEN

Data eksperimen yang digunakan dalam perhitungan, tidak didapatkan melalui percobaan pengukuran lebar retak secara langsung di laboratorium. Data ini diperoleh dari penelitian terdahulu yang terdapat pada literatur.

Data yang dipakai dalam perhitungan antara lain:

Data beton:

- Data berat:	- berat semen	= 340 kg
	- berat agregat	= 1022 kg
	- berat pasir	= 880 kg
	- berat air	= 170 kg
- Data kuat teka	n: $f'_c = 46 \text{ MPa}$	14
- Data modulus	Elastisitas: $E_c = 30$ GF	Pa 🤇
Data Baja tulang	gan:	18.5/
Tulangan tekan	D 10 mm	
Tulangan Tarik	D 15,9 mm	/ 🔊 🛛 Y
Tulangan sengka	ang $\phi 10 \mathrm{mm}$	1000
f_y tulangan	= 480 MPa	
		\sim

27

 f_u tulangan = 600 MPa E tulangan = 200 GPa Data yang lain dapat dilihat dalam Gambar 4.1 – 4.4

Gambar 4.2. Penampang Balok ST-6B

Gambar 4.3 Posisi Pembebanan

Selain itu dapat dilihat juga data hasil pengukuran lebar retak dari eksperimen dalam Gambar 4.4 dibawah.

(a) Grafik lebar retak balok ST-2B Gambar 4.4 Grafik Hasil Pengukuran Lebar Retak (w) terhadap pembebanan P (KN)

(b) Grafik lebar retak balok ST-6B

Gambar 4.4 Lanjutan

4.3 ANALISA DATA EKSPERIMEN

4.3.1 Perhitungan Beban

Sebagai masukan atau input dalam analisa perhitungan, diperlukan besarnya beban yang bekerja pada balok. Beban yang bekerja terdiri dari beban berat sendiri dan beban luar P.

4.3.1.1 Beban Berat Sendiri (Beton + Tulangan)

4.3.1.1(a) Berat Tulangan:

1. Untuk balok ST-2B

Volume tulangan:

- tulangan tarik bawah:

 $(1/4.\pi.0,0159^2) \times 2buah \times 3m$

 $= 1,1907351.10^{-3} \text{ m}^{3}$

- tulangan tekan atas:

 $(1/4.\pi.0,01^2) \times 2buah \times 3m$

 $= 0,471.10^{-3} \text{ m}^3$

- tulangan sengkang:

 $(1/4. \ \pi.0,01^2) \times 28$ bush $\times 2.(0,23+0,13)$ m= 1.58256.10⁻³ m³ = 3,2442951.10⁻³ m³

30

Berat tulangan: = Volume x berat jenis baja = 3,2442951.10⁻³ m³ × 7,83.10³ kg/m³ = 25,403 kg = 25,403kg/3m = 8,467 kg/m

2. Untuk balok ST-6B Volume tulangan: - tulangan tarik bawah: $(1/4.\pi.0,0159^2) \times 6buah \times 3m$ = 3,5722053.10⁻³ m³ - tulangan tekan atas: $(1/4.\pi.0,01^2) \times 2buah \times 3m$ = 0,471.10⁻³ m³ - tulangan sengkang: $(1/4.\pi.0,01^2) \times 28buah \times 2.(0,23+0,13)m = 1.58256.10^{-3} m^3$ = 5,6257653.10⁻³ m³

Berat tulangan:

= Volume x berat jenis baja = $5,6257653.10^{-3} \text{ m}^3 \times 7,83.10^3 \text{ kg/m}^3$ = 44,0497 kg= 44,0497 kg/3m= 14,683 kg/m **4.3.1.1(b) Berat Beton:** Untuk berat per m³: - berat semen = 340 kg- berat agregat = 1022 kg- berat pasir = 880 kg- berat air = 170 kg

 $= 2412 \text{ kg/m}^3$

Untuk berat per meter panjang: (a) Balok ST-2B = 2412 kg/m³ × volume beton = 2412 kg/m³ × (0,2.0,3-3,2442951.10⁻³)m² = 136,895 kg/m (b) Balok ST-6B = 2412 kg/m³ × volume beton = 2412 kg/m³ × (0,2.0,3-5,6257653.10⁻³)m² = 131,151 kg/m

Jadi beban berat sendiri (terbagi r	ata) total:
Untuk balok ST-2B	= 136,895 + 8,467
	= 145,362 kg/m
Untuk balok ST-6B	= 131,151 + 14,683
	= 145.834 kg/m

4.3.1.2 Beban Luar P (Terpusat)

Untuk besarnya beban P dapat diambil dari Gambar 4.4. Hubungan antara variabel momen maksimum dengan beban P dapat dijelaskan sebagai berikut:

Gambar 4.7 Model Pembebanan Balok

Tabel 4.1 Tabel Momen, Beban P dan Lebar Retak (w) Untuk Balok ST-2B dan ST-6B

D 1			07		
Hal		-	S		ы.
Dal	U)	•		-2	D
2000		-	~ .		~

No	M (KN-m)	P (KN)	w (mm)
1	16.45213	13.1617	0
2	19.13375	15.307	0.061803
3	22.5	18	0.112564
4	25	20	0.148608
5	27.5	22	0.18721
6	30	24	0.215099
7	32.5	26	0.237438
8	35	28	0.256933
9	37.5	30	0.276946
10	40	32	0.292324
11	42.5	34	0.32896
12	45	36	0.370607
13	46.54188	37.2335	0.397741
14	47.5	38	0.462281
15	50	40	0.620428
16	51.25	41	0.703255
17	52.5	42	0.794658
18	53.75	43	0.872125

Tabel 4.1 Lanjutan

Balok ST-6B

No	M (KN-m)	P (KN)	w (mm)
1	21.815	17.452	0
2	25	20	0.052699
3	27.5	22	0.095184
4	30	24	0.134154
5	32.5	26	0.174009
6	34.02913	27.2233	0.196674
7	35	28	0.197783
8	37.5	30	0.19832
9	40	32	0.19976
10	42.5	34	0.229787
11	45	36	0.272322
12	46.47275	37.1782	0.297659
13	47.5	38	0.298776
14	50	40	0.300207
15	52.5	42	0.301646
16	53.4365	42.7492	0.303639
17	55	44	0.326314
18	57.5	46	0.367955
19	59.33138	47.4651	0.392479
20	60	48	0.394409
21	62.5	50	0.396742
22	65	52	0.398182
23	65.79925	52.6394	0.401032
24	67.5	54	0.431783
25	70	56	0.473424
26	71.52675	57.2214	0.495196
27	72.5	58	0.498092
28	75	60	0.500416
29	77.5	62	0.503642

4.3.2 Perencanaan Model Rangka

Permodelan rangka ini dibatasi untuk sudut rangka seperti yang diusulkan oleh Schlaich, Thurliman, Collins, dan Mac Gregor (Hardjasaputra, 2002) yaitu $25^{\circ} < \theta < 65^{\circ}$. Dengan demikian model rangka yang akan direncanakan meliputi besar sudut: 25° , 35° , 45° , 50° , 55° , 60° , dan 65° untuk masing-masing balok (balok ST-2B dan balok ST-6B).

4.3.2.1 Permodelan Rangka Balok ST-2B

Tinggi rangka direncanakan sebagai jarak antara pusat titik berat tulangan tekan atas sampai titik berat tulangan tarik bawah (Gambar 4.8). Dengan demikian, tinggi rangka untuk balok ST-2B adalah:

H = tinggi balok-2 × tebal selimut beton-2 × diameter, sengkang- $\frac{1}{2}$ diameter tulangan tekan atas- $\frac{1}{2}$ diameter tulangan tarik bawah.

$$= 300-2 \times 30-2 \times 10-\frac{1}{2} 10-\frac{1}{2} 15,9$$

= 207,05 mm ≈ 208 mm

Untuk besar sudut 25°, direncanakan jarak bentang utama $\lambda = \frac{H}{\tan(25^\circ)} = \frac{208}{\tan(25^\circ)} = 446 \text{ mm}$

Untuk besar sudut yang lain, maka panjang bentang utama dapat dilihat pada tabel di bawah ini

Tabel	4.2	Panjang	Bentang	Utama	Untuk	Model	Rangka
		Balok ST	Г-2В				

Balok	Sudut	H (mm)	λ (mm)
ST-2B	25°	208	446
	35°	208	297
	45°	208	208
	50°	208	175
	55°	208	146
	60°	208	120
	65°	208	97

Penempatan jarak bentang utama ini dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada ujung rangka (Gambàr 4.9). Jika pada ujung rangka masih terdapat sisa panjang bentang yang lebih besar dari panjang bentang utama ini, maka dapat ditambahkan lagi panjang bentang utama (Gambar 4.10) dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada ujung rangka masih memenuhi syarat besarnya sudut $(25^{\circ} < \theta < 65^{\circ})$.

Demikian juga dengan bentang yang dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada tengah bentang. Jika masih terdapat panjang bentang yang lebih besar dari panjang bentang utama, maka dapat ditambahkan lagi panjang bentang utama dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada tengah bentang masih memenuhi syarat besarnya sudut $(25^{\circ} < \theta < 65^{\circ})$.

Contoh permodelan rangka untuk besar sudut 45°:

Gambar 4.9 Penentuan Bentang Utama pada Permodelan Rangka Sudut 45⁰

Dari Gambar 4.9 dapat dilihat bahwa untuk bentang 210 mm dan 250 mm masih mungkin ditambahkan bentang utama karena sudut yang terbentuk masih memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$.

tidak memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka tidak bisa ditambahkan bentang utama

Gambar 4.10 Penambahan Bentang Utama pada Ujung dan Tengah Rangka Sudut 45⁰

Dari Gambar 4.10 dapat dilihat untuk sudut $89,4^{\circ}$ tidak memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka pada bentang dengan panjang 210 mm tidak dapat ditambahkan lagi bentang utama. Demikian juga untuk sudut $78,6^{\circ}$ tidak memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka pada bentang dengan panjang 250 mm tidak dapat ditambahkan lagi bentang utama.

Gambar 4.11 Permodelan Akhir Rangka Sudut 45⁰ Untuk Setengah Bentang Balok

Dengan dipenuhinya syarat sudut $25^{\circ} < \theta < 65^{\circ}$ didapatkan model rangka sudut 45° pada balok ST-2B seperti yang ditunjukkan dalam Gambar 4.11.

Untuk permodelan akhir dari rangka batang dengan sudut yang lain dapat dilihat pada gambar 4.12 - 4.14.

Gambar 4.12 Model Rangka Sudut 25°, dan 35° Untuk Balok ST-2B

Gambar 4.13 Model Rangka Sudut 45°, dan 50° Untuk Balok ST-2B

42

Keterangan: ukuran dalam mm,

Gambar 4.14 Model Rangka Sudut 55°, 60°, dan 65° Untuk Balok ST-2B

4.3.2.2 Permodelan Rangka Balok ST-6B

Tinggi rangka direncanakan sebagai jarak antara pusat titik berat tulangan tekan atas sampai titik berat tulangan tarik bawah (Gambar 4.15). Dengan demikian, tinggi rangka untuk balok ST-6B adalah:

H = tinggi balok-2 × tebal selimut beton-2 × diameter

sengkang- $\frac{1}{2}$ diameter tulangan tekan atas- diameter

tulangan tarik - $\frac{1}{2}$ spasi vertikal antar tulangan tarik.

$$= 300-2 \times 30-2 \times 10 - \frac{1}{2} 10 - 15,9 - \frac{1}{2} 30.$$

= 184,1 mm \approx 185 mm

Gambar 4.15. Tinggi Rangka Untuk Balok ST-6B

Untuk besar sudut 25°, direncanakan jarak bentang utama $\lambda = \frac{H}{\tan(25^\circ)} = \frac{185}{\tan(25^\circ)} = 396 \text{ mm}$

Untuk besar sudut yang lain, maka panjang bentang utama dapat dilihat pada tabel di bawah ini

Balok	Sudut	H(mm)	λ (mm)
ST-6B	25°	185	396
	35°	185	264
	45°	185	185
	50°	185	155
	55°	185	130
	60°	185	107
	65°	185	87

Tabel 4.3 Panjang Bentang Utama Untuk Model Rangka Balok ST-6B

Penempatan jarak bentang utama ini dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada ujung rangka (Gambar 4.16). Jika pada ujung rangka masih terdapat sisa panjang bentang yang lebih besar dari panjang bentang utama ini, maka dapat ditambahkan lagi panjang bentang utama (Gambar 4.17) dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada ujung rangka masih memenuhi syarat besarnya sudut $(25^{\circ} < \theta < 65^{\circ})$.

Demikian juga dengan bentang yang dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada tengah bentang. Jika masih terdapat panjang bentang yang lebih besar dari panjang bentang utama, maka dapat ditambahkan lagi panjang bentang utama dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada tengah bentang masih memenuhi syarat besarnya sudut $(25^{\circ} < \theta < 65^{\circ})$.
Contoh permodelan rangka untuk besar sudut 55°:

Gambar 4.16 Penentuan Bentang Utama pada Permodelan Rangka Sudut 55⁰

Dari Gambar 4.16 dapat dilihat bahwa untuk bentang 210 mm dan 250 mm masih mungkin ditambahkan bentang utama karena sudut yang terbentuk masih memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$.

Gambar 4.17 Penambahan Bentang Utama pada Ujung dan Tengah Rangka Sudut 55⁰

Dari Gambar 4.17 dapat dilihat untuk sudut $66,6^{\circ}$ tidak memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka pada bentang dengan panjang 210 mm tidak dapat ditambahkan lagi bentang utama. Tetapi untuk sudut 57,[°] masih memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka pada bentang dengan panjang 250 mm dapat ditambahkan lagi bentang utama.

Gambar 4.18 Permodelan Akhir Rangka Sudut 55⁰ Untuk Setengah Bentang Balok

Dengan dipenuhinya syarat sudut $25^{\circ} < \theta < 65^{\circ}$ didapatkan model rangka sudut 55° pada balok ST-6B seperti yang ditunjukkan dalam Gambar 4.18.

Untuk permodelan akhir dari rangka batang dengan sudut yang lain dapat dilihat pada gambar 4.19 - 4.21.

California California

Keterangan: ukuran dalam mm

Gambar 4.20 Model Rangka Sudut 45°, dan 50° Untuk Balok ST-6B

Gambar 4.21 Model Rangka Sudut 55°, 60°, dan 65° Untuk Balok ST-6B

4.3.3 Perhitungan Pembebanan

4.3.3.1 Pembebanan Untuk Balok ST-2B

Dari hasil perhitungan beban yang bekerja pada balok ST-2B seperti yang dapat dilihat pada Pasal 4.3.1, didapat:

- Beban berat sendiri (terbagi rata) total: 145,362 kg/m
- Beban luar P seperti yang terdapat dalam Tabel 4.4

Tabel 4.4 Beban Luar P yang Bekerja pada Balok ST-2B

No	M (KN-m)	P (KN)	w (mm)
1	16.45213	13.1617	0
2	19.13375	15.307	0.061803
3	22.5	18	0.112564
4	25	20	0.148608
5	27.5	22	0.18721
6	30	24	0.215099
7	32.5	26	0.237438
8	35	28	0.256933
9	37.5	30	0.276946
10	40	32	0.292324
11	42.5	34	0.32896
12	45	36	0.370607
13	46.54188	37.2335	0.397741
14	47.5	38	0.462281
15	50	40	0.620428
16	51.25	41	0.703255
17	52.5	42	0.794658
18	53.75	43	0.872125

Gambar 4.22 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 25⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,358 = 26,019798 \text{ kg} = 255,2542184 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,358 + \frac{1}{2} \times 145,362 \times 0,446$$

$$= 58,435524 \text{ kg} = 573,2524904 \text{ N}$$

$$P3 = 145,362 \times 0,446 = 64,831452 \text{ kg} = 635,9965441 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,446 + \frac{1}{2} \times 145,362 \times 0,25$$

$$= 50,585976 \text{ kg} = 496,2484246 \text{ N}$$

$$P5 = 145,362 \times 0,25 = 36,3405 \text{ kg} = 356,500305 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+P3+P4+P+\frac{P5}{2}$$

Gambar 4.23 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 35⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,359 = 26,092479 \text{ kg} = 255,967219 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,359 + \frac{1}{2} \times 145,362 \times 0,297$$

$$= 47,678736 \text{ kg} = 467,7284002 \text{ N}$$

$$P3 = 145,362 \times 0,297 = 43,172514 \text{ kg} = 423,5223623 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,297 + \frac{1}{2} \times 145,362 \times 0,25$$

$$= 39,756507 \text{ kg} = 390,0113337 \text{ N}$$

$$P5 = 145,362 \times 0,25 = 36,3405 \text{ kg} = 356,500305 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+2 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.1(c) Pembebanan pada Balok ST-2B Untuk Model Rangka Sudut 45⁰

Gambar 4.24 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 45⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,21 = 15,26301 \text{ kg} = 149,730128 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,21 + \frac{1}{2} \times 145,362 \times 0,208$$

$$= 30,380658 \text{ kg} = 298,034255 \text{ N}$$

$$P3 = 145,362 \times 0,208 = 30,235296 \text{ kg} = 296,6082538 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,208 + \frac{1}{2} \times 145,362 \times 0,25$$

$$= 33,287898 \text{ kg} = 326,5542794 \text{ N}$$

$$P5 = 145,362 \times 0,25 = 36,3405 \text{ kg} = 356,500305 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1 + P2 + 4 \times P3 + P4 + P + \frac{P5}{2}$$

55

Gambar 4.25 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 50⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,2 = 14,5362 \text{ kg} = 142,600122 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,2 + \frac{1}{2} \times 145,362 \times 0,175$$

$$= 27,255375 \text{ kg} = 267,3752288 \text{ N}$$

$$P3 = 145,362 \times 0,175 = 25,43835 \text{ kg} = 249,5502135 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,175 + \frac{1}{2} \times 145,362 \times 0,25$$

$$= 30,889425 \text{ kg} = 303,0252593 \text{ N}$$

$$P5 = 145,362 \times 0,25 = 36,3405 \text{ kg} = 356,500305 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+5 \times P3+P4+P + \frac{P5}{2}$$

4.3.3.1(e) Pembebanan pada Balok ST-2B Untuk Model Rangka Sudut 55⁰

Gambar 4.26 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 55⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,228 = 16,571268 \text{ kg} = 162,5641391 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,228 + \frac{1}{2} \times 145,362 \times 0,146$$

$$= 27,182694 \text{ kg} = 266,6622281 \text{ N}$$

$$P3 = 145,362 \times 0,146 = 21,222852 \text{ kg} = 208,1961781 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,146 + \frac{1}{2} \times 145,362 \times 0,104$$

$$= 18,17025 \text{ kg} = 178,2501525 \text{ N}$$

$$P5 = 145,362 \times 0,104 = 15,117648 \text{ kg} = 148,3041269 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+7 \times P3+P4+P+\frac{P5}{2}$$

2

4.3.3.1(f) Pembebanan pada Balok ST-2B Untuk Model Rangka Sudut 60⁰

Gambar 4.27 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 60⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,17 = 12,35577 \text{ kg} = 121,2101037 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,17 + \frac{1}{2} \times 145,362 \times 0,12$$

$$= 21,07749 \text{ kg} = 206,7701769 \text{ N}$$

$$P3 = 145,362 \times 0,12 = 17,44344 \text{ kg} = 171,1201464 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,12 + \frac{1}{2} \times 145,362 \times 0,13$$

$$= 18,17025 \text{ kg} = 178,2501525 \text{ N}$$

$$P5 = 145,362 \times 0,13 = 18,89706 \text{ kg} = 185,3801586 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+9 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.1(g) Pembebanan pada Balok ST-2B Untuk Model Rangka Sudut 65⁰

Gambar 4.28 Pembebanan Balok ST-2B Untuk Model Rangka Sudut 65⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,362 \times 0,183 = 13,300623 \text{ kg} = 130,4791116 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,362 \times 0,183 + \frac{1}{2} \times 145,362 \times 0,097$$

$$= 20,35068 \text{ kg} = 199,6401708 \text{ N}$$

$$P3 = 145,362 \times 0,097 = 14,100114 \text{ kg} = 138,3221183 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,362 \times 0,097 + \frac{1}{2} \times 145,362 \times 0,153$$

$$= 18,17025 \text{ kg} = 178,2501525 \text{ N}$$

$$P5 = 145,362 \times 0,153 = 22,240386 \text{ kg} = 218,1781867 \text{ N}$$

$$P = \text{mengikuti Tabel 4.4}$$

$$R = P1+P2+11 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.2 Pembebanan Untuk Balok ST-6B

Dari hasil perhitungan beban yang bekerja pada balok ST-6B seperti yang dapat dilihat pada Pasal 4.3.1, didapat:

- Beban berat sendiri (terbagi rata) total: 145,834 kg/m
- Beban luar P seperti yang terdapat dalam Tabel 4.5

Tabel 4.5 Beban Luar P yang Bekerja pada Balok ST-6B

No	M (KN-m)	P (KN)	w (mm)
1	21.815	17.452	0
2	25	20	0.052699
3	27.5	22	0.095184
4	30	24	0.134154
5	32.5	26	0.174009
6	34.02913	27.2233	0.196674
7	35	28	0.197783
8	37.5	30	0.19832
9	40	32	0.19976
10	42.5	34	0.229787
11	45	36	0.272322
12	46.47275	37.1782	0.297659
13	47.5	38	0.298776
14	50	40	0.300207
15	52.5	42	0.301646
16	53.4365	42.7492	0.303639
17	55	44	0.326314
18	57.5	46	0.367955
19	59.33138	47.4651	0.392479
20	60	48	0.394409
21	62.5	50	0.396742
22	65	52	0.398182
23	65.79925	52.6394	0.401032
24	67.5	54	0.431783
25	70	56	0.473424
26	71.52675	57.2214	0.495196
27	72.5	58	0.498092
28	75	60	0.500416
29	77.5	62	0.503642

4.3.3.2(a) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 25⁰

$$P1 = \frac{1}{2} \times 145,834 \times 0,458 = 33,395986 \text{ kg} = 327,6146227 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,458 + \frac{1}{2} \times 145,834 \times 0,396$$

$$= 62,271118 \text{ kg} = 610,8796676 \text{ N}$$

$$P3 = 145,834 \times 0,396 = 57,750264 \text{ kg} = 566,5300898 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,396 + \frac{1}{2} \times 145,834 \times 0,25$$

$$= 47,104382 \text{ kg} = 462,0939874 \text{ N}$$

$$P5 = 145,834 \times 0,25 = 36,4585 \text{ kg} = 357,657885 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+P3+P4+P+\frac{P5}{2}$$

4.3.3.2(b) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 35⁰

Gambar 4.30 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 35⁰ pada Setengah Bentang Balok

P1 =
$$\frac{1}{2}$$
 x 145,834 x 0,194 = 14,145898 kg = 138,7712594 N
P2 = $\frac{1}{2}$ x 145,834 x 0,194 + $\frac{1}{2}$ x 145,834 x 0,264
= 33,395986 kg = 327,6146227 N
P3 = 145,834 x 0,264 = 38,500176 kg = 377,6867266 N
P4 = $\frac{1}{2}$ x 145,834 x 0,264 + $\frac{1}{2}$ x 145,834 x 0,25
= 37,479338 kg = 367,6723058 N
P5 = 145,834 x 0,25 = 36,4585 kg = 357,657885 N
P = mengikuti Tabel 4.5
R = P1+P2+3 x P3+P4+P+ $\frac{P5}{2}$

4.3.3.2(c) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 45⁰

Gambar 4.31 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 45⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,834 \times 0,14 = 10,20838 \text{ kg} = 100,1442078 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,14 + \frac{1}{2} \times 145,834 \times 0,185$$

$$= 23,698025 \text{ kg} = 232,4776253 \text{ N}$$

$$P3 = 145,834 \times 0,185 = 26,97929 \text{ kg} = 264,6668349 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,185 + \frac{1}{2} \times 145,834 \times 0,25$$

$$= 31,718895 \text{ kg} = 311,16236 \text{ N}$$

$$P5 = 145,834 \times 0,25 = 36,4585 \text{ kg} = 357,657885 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+5 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.2(d) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 50⁰

Gambar 4.32 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 50⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,834 \times 0,165 = 12,031305 \text{ kg} = 118,0271021 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,165 + \frac{1}{2} \times 145,834 \times 0,155$$

$$= 23,33344 \text{ kg} = 228,9010464 \text{ N}$$

$$P3 = 145,834 \times 0,165 = 24,06261 \text{ kg} = 236,0542041 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,155 + \frac{1}{2} \times 145,834 \times 0,095$$

$$= 18,22925 \text{ kg} = 178,8289425 \text{ N}$$

$$P5 = 145,834 \times 0,095 = 13,85423 \text{ kg} = 135,9099963 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+7 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.2(e) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 55⁰

Gambar 4.33 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 55⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,834 \times 0,21 = 15,31257 \text{ kg} = 150,2163117 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,21 + \frac{1}{2} \times 145,834 \times 0,13$$

$$= 24,79178 \text{ kg} = 243,2073618 \text{ N}$$

$$P3 = 145,834 \times 0,13 = 18,95842 \text{ kg} = 185,9821002 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,13 + \frac{1}{2} \times 145,834 \times 0,12$$

$$= 18,22925 \text{ kg} = 178,8289425 \text{ N}$$

$$P5 = 145,834 \times 0,12 = 17,50008 \text{ kg} = 171,6757848 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+8 \times P3+P4+P+\frac{P5}{2}$$

4.3.3.2(f) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 60⁰

Gambar 4.34 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 60⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,834 \times 0,18 = 13,12506 \text{ kg} = 128,7568386 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,18 + \frac{1}{2} \times 145,834 \times 0,107$$

$$= 20,927179 \text{ kg} = 205,295626 \text{ N}$$

$$P3 = 145,834 \times 0,107 = 15,604238 \text{ kg} = 153,0775748 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,107 + \frac{1}{2} \times 145,834 \times 0,143$$

$$= 18,22925 \text{ kg} = 178,8289425 \text{ N}$$

$$P5 = 145,834 \times 0,143 = 20,854262 \text{ kg} = 204,5803102 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+10 \times P3+P4+P+\frac{P5}{2}$$

66

4.3.3.2(g) Pembebanan pada Balok ST-6B Untuk Model Rangka Sudut 65⁰

Gambar 4.35 Pembebanan Balok ST-6B Untuk Model Rangka Sudut 65⁰ pada Setengah Bentang Balok

$$P1 = \frac{1}{2} \times 145,834 \times 0,119 = 8,677123 \text{ kg} = 85,12257663 \text{ N}$$

$$P2 = \frac{1}{2} \times 145,834 \times 0,119 + \frac{1}{2} \times 145,834 \times 0,087$$

$$= 15,020902 \text{ kg} = 147,3550486 \text{ N}$$

$$P3 = 145,834 \times 0,087 = 12,687558 \text{ kg} = 124,464944 \text{ N}$$

$$P4 = \frac{1}{2} \times 145,834 \times 0,087 + \frac{1}{2} \times 145,834 \times 0,163$$

$$= 18,22925 \text{ kg} = 178,8289425 \text{ N}$$

$$P5 = 145,834 \times 0,163 = 23,770942 \text{ kg} = 233,192941 \text{ N}$$

$$P = \text{mengikuti Tabel 4.5}$$

$$R = P1+P2+13 \times P3+P4+P+\frac{P5}{2}$$

4.3.4 Perhitungan Gaya Dalam

Perhitungan gaya dalam yang terjadi pada rangka batang akibat beban yang bekerja, dilakukan menggunakan program bantu SAP 2000. Perhitungan dalam program bantu SAP 2000 dilakukan dengan memodelkan rangka-rangka batang yang telah direncanakan sebelumnya (Pasal 4.3.2) kedalam model *frame*. Setelah itu input beban yang bekerja pada balok didapatkan dari perhitungan pada Pasal 4.3.3.

Mengingat pada rangka batang hanya boleh terjadi gaya dalam aksial saja, dan tidak terjadi momen maka pada pemodelan rangka frame dilakukan *release* pada semua titik simpul rangka sebelum program SAP di *running*. Gaya dalam yang didapat dari perhitungan menggunakan program bantu SAP 2000 berupa gaya aksial (normal) tarik atau tekan.

Untuk memprediksi lebar retak lentur yang terjadi pada balok, maka yang diperlukan dari *output* SAP adalah gaya dalam tarik terbesar yaitu pada *frame* rangka di tengah bentang.

Berikut diberikan hasil gaya dalam aksial tarik pada frame rangka di tengah bentang untuk model rangka sudut 25° , 35° , 45° , 50° , 55° , 60° , dan 65° pada balok ST-2B dan ST-6B.

4.3.4.1 Gaya Dalam Aksial Tarik pada Balok ST-2B 4.3.4.1(a) Model Rangka Sudut 25⁰

Gaya dalam aksial tarik terbesar pada frame 4 (Gambar 4.12).

	No	+P (KN)	Fu (N)
	1	13.1617	86809.4
	2	15.307	99701.93
	3	18	115885.8
	4	20	127905.1
	5	22	139924.3
	6	24	151943.5
	7	26	163962.8
	8	28	175982
	9	30	188001.2
	10	32	200020.4
	11	34	212039.7
	12	36	224058.9
	13	37.2335	231471.8
	14	38	236078.1
	15	40	248097.4
	16	41	254107
	17	42	260116.6
1	18	43	266126.2

Tabel 4.6 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 25⁰ pada Balok ST-2B

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+P3+P4+\frac{P5}{2}) \ge 2$

4.3.4.1(b) Model Rangka Sudut 35°

Gaya dalam aksial tarik terbesar pada frame 5 (Gambar 4.12).

Tabel 4.7 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 35⁰ pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+2 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.1(c) Model Rangka Sudut 45°

Gaya dalam aksial tarik terbesar pada frame 7 (Gambar 4.13).

Tabel 4.8 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 45[°] pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+4 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.1(d) Model Rangka Sudut 50°

Gaya dalam aksial tarik terbesar pada frame 8 (Gambar 4.13).

Tabel 4.9 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 50⁰ pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+5 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.1(e) Model Rangka Sudut 55°

Gaya dalam aksial tarik terbesar pada frame 10 (Gambar 4.14).

Tabel 4.10 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 55[°] pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+7 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.1(f) Model Rangka Sudut 60°

Gaya dalam aksial tarik terbesar pada frame 12 (Gambar 4.14).

Tabel 4.11 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 60⁰ pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+9 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.1(g) Model Rangka Sudut 65°

Gaya dalam aksial tarik terbesar pada frame 14 (Gambar 4.14).

Tabel 4.12 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 65[°] pada Balok ST-2B

No	+P (KN)	Fu (N)
1	13.1617	86809.4
2	15.307	99701.93
3	18	115885.8
4	20	127905.1
5	22	139924.3
6	24	151943.5
7	26	163962.8
8	28	175982
9	30	188001.2
10	32	200020.4
11	34	212039.7
12	36	224058.9
13	37.2335	231471.8
14	38	236078.1
15	40	248097.4
16	41	254107
17	42	260116.6
18	43	266126.2

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+11 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.2 Gaya Dalam Aksial Tarik pada Balok ST-6B 4.3.4.2(a) Model Rangka Sudut 25⁰

Tabel 4.13 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 25⁰ pada Balok ST-6B

Gaya dalam aksial tarik terbesar pada frame 4 (Gambar 4.19).

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+P3+P4+\frac{P5}{2}) \ge 2$

4.3.4.2(b) Model Rangka Sudut 35⁰

Gaya dalam aksial tarik terbesar pada *frame* 6 (Gambar 4.19). Tabel 4.14 Gaya Aksial Tarik Terbesar Untuk Model Rangka

Sudut 3	Sudut 35° pada Balok ST-6B			
No	+P(KN)	Fu (N)		
1	17.452	126620		
2	20	143834.9		
3	22	157348.4		
4	24	170862		
5	26	184375.5		
6	27.2233	192641		
7	28	197889		
8	30	211402.5		
9	32	224916		
10	34	238429.5		
11	36	251943		
12	37.1782	259903.8		
13	38	265456.5		
14	40	278970.1		
15	42	292483.6		
16	42.7492	297545.7		
17	44	305997.1		
18	46	319510.6		
19	47.4651	329409.9		
20	48	333024.1		
21	50	346537.6		
22	52	360051.1		
23	52.6394	364371.4		
24	54	373564.7		
25	56	387078.2		
26	57.2214	395330.9		
27	58	400591.7		
28	60	414105.2		
29	62	427618.7		

Catatan: pembebanan sudah termasuk berat sendiri = $(P1+P2+3 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.2(c) Model Rangka Sudut 45°

Gaya dalam aksial tarik terbesar pada *frame* 8 (Gambar 4.20). Tabel 4.15 Gaya Aksial Tarik Terbesar Untuk Model Rangka

Sudut 45° pada Balok ST-6B				
No	+P(KN)	Fu (N)		
1	17.452	126620		
2	20	143834.9		
3	22	157348.4		
4	24	170862		
5	26	184375.5		
6	27.2233	192641		
7	28	197889		
8	30	211402.5		
9	32	224916		
10	34	238429.5		
11	36	251943		
12	37.1782	259903.8		
13	38	265456.5		
14	40	278970.1		
15	42	292483.6		
16	42.7492	297545.7		
17	44	305997.1		
18	46	319510.6		
19	47.4651	329409.9		
20	48	333024.1		
21	50	346537.6		
22	52	360051.1		
23	52.6394	364371.4		
24	54	373564.7		
25	56	387078.2		
26	57.2214	395330.9		
27	58	400591.7		
28	60	414105.2		
29	62	427618.7		

Catatan: pembebanan sudah termasuk berat sendiri =

 $(P1+P2+5 \times P3+P4+\frac{P5}{2}) \times 2$

4.3.4.2(d) Model Rangka Sudut 50⁰

Gaya dalam aksial tarik terbesar pada *frame* 10 (Gambar 4.20). Tabel 4.16 Gaya Aksial Tarik Terbesar Untuk Model Rangka

Sudut 5	Sudut 50° pada Balok ST-6B			
No	+P(KN)	Fu (N)		
1	17.452	126620		
2	20	143834.9		
3	22	157348.4		
4	24	170862		
5	26	184375.5		
6	27.2233	192641		
7	28	197889		
8	30	211402.5		
9	32	224916		
10	34	238429.5		
11	36	251943		
12	37.1782	259903.8		
13	38	265456.5		
14	40	278970.1		
15	42	292483.6		
16	42.7492	297545.7		
17	44	305997.1		
18	46	319510.6		
19	47.4651	329409.9		
20	48	333024.1		
21	50	346537.6		
22	52	360051.1		
23	52.6394	364371.4		
24	54	373564.7		
25	56	387078.2		
26	57.2214	395330.9		
27	58	400591.7		
28	60	414105.2		
29	62	427618.7		

Catatan: pembebanan sudah termasuk berat sendiri =

$$(P1+P2+7 \times P3+P4+\frac{P5}{2}) \times 2$$

ATTS

4.3.4.2(e) Model Rangka Sudut 55°

Gaya dalam aksial tarik terbesar pada *frame* 11 (Gambar 4.21). Tabel 4.17 Gaya Aksial Tarik Terbesar Untuk Model Rangka Sudut 55⁰ pada Balok ST-6B

Suult 33 paua Dalok SI-0D			
No	+P(KN)	Fu (N)	
1	17.452	126620	
2	20	143834.9	
3	22	157348.4	
4	24	170862	
5	26	184375.5	
6	27.2233	192641	
7	28	197889	
8	30	211402.5	
9	32	224916	
10	34	238429.5	
11	36	251943	
12	37.1782	259903.8	
13	38	265456.5	
14	40	278970.1	
15	42	292483.6	
16	42.7492	297545.7	
17	44	305997.1	
18	46	319510.6	
19	47.4651	329409.9	
20	48	333024.1	
21	50	346537.6	
22	52	360051.1	
23	52.6394	364371.4	
24	54	373564.7	
25	56	387078.2	
26	57.2214	395330.9	
27	58	400591.7	
28	60	414105.2	
29	62	427618.7	

Catatan: pembebanan sudah termasuk berat sendiri =

$$(P1+P2+8 \times P3+P4+\frac{P5}{2}) \times 2$$

4.3.4.2(f) Model Rangka Sudut 60°

Gaya dalam aksial tarik terbesar pada *frame* 13 (Gambar 4.21). Tabel 4.18 Gaya Aksial Tarik Terbesar Untuk Model Rangka

Sudut ov pada Balok SI-6B			
No	+P(KN)	Fu (N)	
1	17.452	126620	
2	20	143834.9	
3	22	157348.4	
4	24	170862	
5	26	184375.5	
6	27.2233	192641	
7	28	197889	
8	30	211402.5	
9	32	224916	
10	34	238429.5	
11	36	251943	
12	37.1782	259903.8	
13	38	265456.5	
14	40	278970.1	
15	42	292483.6	
16	42.7492	297545.7	
17	44	305997.1	
18	46	319510.6	
19	47.4651	329409.9	
20	48	333024.1	
21	50	346537.6	
22	52	360051.1	
23	52.6394	364371.4	
24	54	373564.7	
25	56	387078.2	
26	57.2214	395330.9	
27	58	400591.7	
28	60	414105.2	
29	62	427618.7	

Catatan: pembebanan sudah termasuk berat sendiri =

$$(P1+P2+10 \times P3+P4+\frac{P5}{2}) \times 2$$
4.3.4.2(g) Model Rangka Sudut 65°

Gaya dalam aksial tarik terbesar pada *frame* 16 (Gambar 4.21). Tabel 4.19 Gaya Aksial Tarik Terbesar Untuk Model Rangka

Sudut 65° pada Balok ST-6B								
No	+P(KN)	Fu (N)						
1	17.452	126620						
2	20	143834.9						
3	22	157348.4						
4	24	170862						
5	26	184375.5						
6	27.2233	192641						
7	28	197889						
8	30	211402.5						
9	32	224916						
10	34	238429.5						
11	36	251943						
12	37.1782	259903.8						
13	38	265456.5						
14	40	278970.1						
15	42	292483.6						
16	42.7492	297545.7						
17	44	305997.1						
18	46	319510.6						
19	47.4651	329409.9						
20	48	333024.1						
21	50	346537.6						
22	52	360051.1						
23	52.6394	364371.4						
24	54	373564.7						
25	56	387078.2						
26	57.2214	395330.9						
27	58	400591.7						
28	60	414105.2						
29	62	427618.7						

Catatan: pembebanan sudah termasuk berat sendiri = P5

$$(P1+P2+13 \times P3+P4+\frac{15}{2}) \times 2$$

4.3.5 Perhitungan Luas Penampang Gross 4.3.5.1 Umum

Sebelum terjadi retak, luas penampang beton yang digunakan adalah penampang gross. Batasan retak yang digunakan adalah tegangan retak beton yaitu:

$$f_r = 7,5\sqrt{f'_c}$$

.....ACI 9.6.2.3

dimana f_c dalam psi atau

$$f_r = 0,62 \sqrt{f'_c}$$

dimana f'c dalam MPa.

Untuk luas penampang gross digunakan usulan dari Hsu (2003) yaitu:

Gambar 4.36. Penentuan a Minimum Dalam Luas

Penampang Tie

dimana:

 $A_s =$ luas tulangan baja

- c = tebal selimut beton yang diukur terhadap titik berat tulangan sampai permukaan terluar beton (*surface*)
- s = spasi antar tulangan diukur dari as ke as tulangan

4.3.5.2 Luas Penampang Gross Untuk Balok ST-2B Penentuan luas penampang gross pada balok ST-2B dapat dilihat dalam Gambar 4.37.

Gambar 4.37 Penentuan Luas Penampang Gross pada Balok ST-2B

a1=
$$\sqrt{50.A_s} = \sqrt{50.198,456} = 99,613 \text{ mm}$$

a2= 2.c = 2 × (30+10+ $\frac{15,9}{2}$) = 95,9 mm
a3= s = 200-2×30-2×10-15,9 = 104 mm

diambil a = 95,9 mm $A_g' = 2 \times (95,9 \times 95,9) = 18393,62 \text{ mm}^2$ $A_g = A_g' + (n-1) \times A_s$ dimana:

$$n = \frac{E_s}{E_c} = \frac{200GPa}{30GPa} = 6,67$$

Jadi luas penampang gross untuk balok ST-2B adalah: $A_g = 18393,62+(6,67-1) \times 2 \times 198,456 = 20644,11 \text{ mm}^2$

4.3.5.3 Luas Penampang Gross Untuk Balok ST-6B

Penentuan luas penampang gross pada balok ST-2B dapat dilihat dalam Gambar 4.38, dimana luas gross ini dipecah menjadi luas-luas parsial sisi dalam dan sisi luar.

Gambar 4.38 Penentuan Luas Penampang Gross pada Balok ST-6B

sv= spasi vertikal = 30+15,9 = 45,9 mm sh= spasi horizontal = (200-2×30-2×10-15,9)/2 = 52,05 mm Untuk luas parsial sisi dalam yaitu luas A4, penentuan dimensinya seperti yang tampak dalam Gambar 4.39.

Gambar 4.39 Luas Parsial A4

a1= $\sqrt{50.A_s} = \sqrt{50.198,456} = 99,613 \text{ mm}$ a2= sv= 45,9 mm = sh= 52,05 mm diambil a = 45,9 mm (untuk sisi vertikal) dan 52,05 mm (untuk sisi horizontal) $A_g 4' = 45,9 \times 52,05 = 2389,095 \text{ mm}^2$

Untuk luas parsial sisi luar, dibagi menjadi luas A1, A2, dan A3 dimana penentuan dimensinya seperti yang tampak dalam Gambar 4.40, 4.41, dan 4.42.

Gambar 4.40 Luas Parsial A1

a1= $\sqrt{50.A_s} = \sqrt{50.198,456} = 99,613 \text{ mm}$ a2= c = 30+10+ $\frac{15,9}{2}$ = 47,95 mm (untuk sebelah luar) a3= $\frac{1}{2}sh = \frac{1}{2} \times 52,05 = 26,025 \text{ mm}$ (untuk sebelah dalam horisontal) = sv = 45,9 mm (untuk sebelah dalam vertikal)

diambil a = 45,9 mm (untuk sisi vertikal) dan (47,95+26,025) mm (untuk sisi horizontal)

didapat $A_g I' = 45.9 \times 73.975 = 3395.4525 \text{ mm}^2$

Gambar 4.41 Luas Parsial A2 a1= $\sqrt{50.A_s} = \sqrt{50.198,456} = 99,613$ mm a2= $c = 30+10+\frac{15,9}{2} = 47,95$ mm (untuk sebelah luar) a3= $\frac{1}{2}sh = \frac{1}{2} \times 52,05 = 26,025$ mm (untuk sebelah dalam horisontal) 1

 $= \frac{1}{2} sv = 22,95 \text{ mm (untuk sebelah dalam vertikal)}$ diambil a = (47,95+22,95) mm (untuk sisi vertikal) dan

(47,95+26,025) mm (untuk sisi horizontal)didapat $A_g 2' = 70,9 \times 73,975 = 5244,8275 \text{ mm}^2$

Gambar 4.42 Luas Parsial A3

87

a1=
$$\sqrt{50.A_s} = \sqrt{50.198,456} = 99,613 \text{ mm}$$

a2= c = 30+10+ $\frac{15,9}{2}$ = 47,95 mm (untuk sebelah luar)
a3= sh = 52,05 mm (untuk sebelah dalam horisontal)
= $\frac{1}{2}$ sv = 22,95 mm (untuk sebelah dalam vertikal)
diambil a = (47,95+22,95) mm (untuk sisi vertikal) dan 52,05
mm (untuk sisi horizontal)
didapat $A_g 3' = 70,9 \times 52,05 = 3690,345 \text{ mm}^2$
maka $A_g' = 2 \times A_g 1' + 2xA_g 2' + A_g 3' + A_g 4'$
=2×3395,4525+2×5244,8275+3690,345+2389,095
= 23360 mm^2
 $A_g = A_g' + (n-1) \times A_s$

dimana:

$$n = \frac{E_s}{E_c} = \frac{200GPa}{30GPa} = 6,67$$

Jadi luas penampang gross untuk balok ST-6B adalah: $A_g = 23360+(6,67-1) \times 6 \times 198,456 = 30111,47 \text{ mm}^2$

4.3.6 Perhitungan Tegangan dan Prediksi Lebar Retak Berdasarkan Luas Penampang Gross

4.3.6.1 Tegangan Berdasarkan Luas Penampang Gross

Tegangan diperoleh dari membagi gaya dalam tarik yang terjadi dengan luas penampang gross. Perumusan tegangan yaitu:

$$\sigma = \frac{F}{A_{\sigma}} \tag{4.1}$$

dimana:

 σ = tegangan pada beton dengan luas penampang gross F = gaya dalam tarik yang terjadi

 A_g = luas penampang gross yang dihitung pada Pasal 4.3.5

88

Tegangan tarik maksimum yang terjadi pada masing-masing model rangka batang untuk tiap balok dapat dilihat pada Tabel 4.20-4.33

4.3.6.2 Regangan Berdasarkan Luas Penampang Gross Regangan diperoleh dari membagi tegangan yang terjadi dengan modulus beton. Perumusan regangan yaitu:

$$\varepsilon = \frac{\sigma}{E_c} \tag{4.2}$$

dimana:

 ε = regangan pada beton dengan luas penampang gross σ = tegangan tarik yang terjadi

 E_c = modulus beton yang dapat dilihat pada Pasal 4.2 Regangan tarik maksimum yang terjadi pada masing-masing model rangka batang untuk tiap balok dapat dilihat pada Tabel 4.20-4.33

4.3.6.3 Prediksi Lebar Retak

Secara teori, untuk mengetahui apakah beton sudah mengalami retak atau belum dapat dilihat dari batasan tegangan retak beton. Tegangan retak beton ini dirumuskan seperti pada Pasal 4.3.5.1 yaitu:

$$f_r = 0,62\sqrt{f'_c}$$
(4.3)

dimana f'_c dalam MPa

Dari tegangan retak ini, dapat diketahui regangan batas retak beton yaitu dengan membagi regangan retak dengan modulus beton. Jika pada beton terjadi regangan tarik yang melebihi batas regangan retak ini maka beton telah mengalami retak. Begitu pula sebaliknya jika regangan tarik belum melewati batas regangan retak maka beton belum mengalami retak. Tegangan retak dan regangan retak beton dapat dihitung sebagai berikut:

$$f_r = 0.62 \sqrt{f'_c} = 0.62 \sqrt{46} = 4.205045 \text{ MPa}$$

$$\varepsilon_{cr} = \frac{f_r}{E_c} = \frac{4,205045}{30000} = 0,0001402$$
(4.4)

Selanjutnya lebar retak diperoleh dari regangan yang terjadi dikurangi dengan regangan batas retak kemudian dikali dengan jarak sepanjang *frame* yang ditinjau yaitu frame pada tengah rangka yang mengalami regangan tarik terbesar. Perumusannya sebagai berikut:

$$w = (\varepsilon - \varepsilon_{r}) \times L$$

.....(4.5)

dimana:

w = prediksi lebar retak yang terjadi

 ε = regangan tarik yang terjadi

 ε_{cr} = regangan tarik batas retak = $\frac{f_r}{E_c}$

L = panjang frame yang ditinjau yaitu pada tengah rangka

Contoh perhitungan: untuk balok ST-2B model rangka sudut 25°

Akibat berat sendiri+ P (=13,1617 KN) didapat: Fu = gaya aksial tarik pada frame 4 = 86809.4 N $A_g = 20644,11 \text{ mm}^2$ $\sigma = \frac{86809,4}{20644,11} = 4.2050444 \text{ MPa}$, $\varepsilon = \frac{4,2050444}{30000} =$ $0.00014017 < \varepsilon_{cr} = 0,0001402$ w = 0 (belum terjadi retak) Akibat berat sendiri+ P (=18 KN) didapat: Fu = gaya aksial tarik pada frame 4 = 115885.8 N $A_g = 20644,11 \text{ mm}^2$ $\sigma = \frac{115885,8}{20644,11} = 5.6135053 \text{ MPa}$, $\varepsilon = \frac{5,6135053}{30000} =$ $0.0001871 > \varepsilon_{cr} = 0,0001402$ $w = (0,0001871 - 0,0001402) \times 500 = 0.023474 \text{ mm}$

90

Prediksi lebar retak dengan menggunakan penampang gross pada masing-masing model rangka batang untuk tiap balok dapat dilihat pada Tabel 4.20 - 4.33.

4.3.6.3.1 Prediksi Lebar Retak pada Balok ST-2B 4.3.6.3.1(a) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 25⁰

Pada model rangka sudut 25^{0} frame yang mengalami regangan tarik terbesar adalah frame 4 (Gambar 4.12) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.20 dan Gambar 4.43.

4.3.6.3.1(b) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 35⁰

Pada model rangka sudut 35° frame yang mengalami regangan tarik terbesar adalah frame 5 (Gambar 4.12) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.21 dan Gambar 4.44.

4.3.6.3.1(c) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 45⁰

Pada model rangka sudut 45° frame yang mengalami regangan tarik terbesar adalah frame 7 (Gambar 4.13) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.22 dan Gambar 4.45.

4.3.6.3.1(d) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 50⁰

Pada model rangka sudut 50° frame yang mengalami regangan tarik terbesar adalah frame 8 (Gambar 4.13) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.23 dan Gambar 4.46.

4.3.6.3.1(e) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 55⁰

Pada model rangka sudut 55° frame yang mengalami regangan tarik terbesar adalah frame 10 (Gambar 4.14) dengan panjang L = 208 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.24 dan Gambar 4.47.

4.3.6.3.1(f) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 60⁰

Pada model rangka sudut 60° frame yang mengalami regangan tarik terbesar adalah frame 12 (Gambar 4.14) dengan panjang L = 260 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.25 dan Gambar 4.48.

4.3.6.3.1(g) Prediksi Lebar Retak pada Balok ST-2B Untuk Model Rangka Sudut 65⁰

Pada model rangka sudut 65° frame yang mengalami regangan tarik terbesar adalah frame 14 (Gambar 4.14) dengan panjang L = 306 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.26 dan Gambar 4.49.

P	and the second	a server and the serv	and the second second second second second second	A CALLER AND	×	A	and a state of the
			2	σ		w	w
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm ²)	3	analisa(mm)	eksp(mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.010409	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.023474	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.033178	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.042881	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.052585	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.062288	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.071992	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.081695	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.091399	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.101102	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.110806	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.116791	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.12051	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.130213	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.135065	0.703255

Tabel 4.20 Prediksi Lebar Retak Model Rangka Sudut 25⁰ pada Balok ST-2B

		37536 6233		σ	a the second	W	w
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp (mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.010409	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.023474	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.033178	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.042881	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.052585	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.062288	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.071992	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.081695	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.091399	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.101102	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.110806	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.116791	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.12051	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.130213	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.135065	0.703255

Tabel 4.21 Prediksi Lebar Retak Model Rangka Sudut 35° pada Balok ST-2B

				σ	~	W	W
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisa(mm)	eksp (mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.010409	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.023474	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.033178	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.042881	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.052585	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.062288	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.071992	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.081695	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.091399	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.101102	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.110806	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.116791	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.12051	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.130213	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.135065	0.703255

Tabel 4.22 Prediksi Lebar Retak Model Rangka Sudut 45° pada Balok ST-2B

P	and the second second second in the second s			and the second s	2		
				σ		W	W
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp (mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.010409	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.023474	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.033178	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.042881	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.052585	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.062288	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.071992	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.081695	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.091399	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.101102	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.110806	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.116791	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.12051	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.130213	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.135065	0.703255

Tabel 4.23 Prediksi Lebar Retak Model Rangka Sudut 50° pada Balok ST-2B

	and a second data was a second as a second second data as a second data as a second data as a second data as a				×	A	the second s
No	+ P (KN)	Fu (N)	$Aq(mm^2)$	σ (N/mm ²)	8	w analisis(mm)	w eksp (mm)
1	13 1617	86809 4	20644 11	4 2050444	0.00014017	0	
2	15 207	00701 02	20044.11	4.2000444	0.00014017	0.00422	0.0619024
2	15.307	99701.93	20044.11	4.0290002	0.000161	0.00433	0.0010034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.009765	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.013802	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.017839	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.021875	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.025912	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.029949	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.033985	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.038022	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.042059	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.046095	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.048585	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.050132	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.054169	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.056187	0.703255

Tabel 4.24 Prediksi Lebar Retak Model Rangka Sudut 55° pada Balok ST-2B

No	+P (KN)	EU (N)	$Aq(mm^2)$	σ (N/mm ²)	E	W analisa(mm)	W eksp(mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.005412	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.012207	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.017252	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.022298	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.027344	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.03239	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.037436	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.042482	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.047527	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.052573	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.057619	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.060731	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.062665	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.067711	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.070234	0.703255

Tabel 4.25 Prediksi Lebar Retak Model Rangka Sudut 60° pada Balok ST-2B

				σ		W	w
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisa(mm)	eksp(mm)
1	13.1617	86809.4	20644.11	4.2050444	0.00014017	0	0
2	15.307	99701.93	20644.11	4.8295582	0.000161	0.00637	0.0618034
3	18	115885.8	20644.11	5.6135053	0.0001871	0.014366	0.112564
4	20	127905.1	20644.11	6.1957164	0.0002065	0.020305	0.148608
5	22	139924.3	20644.11	6.7779279	0.0002259	0.026243	0.18721
6	24	151943.5	20644.11	7.360139	0.0002453	0.032182	0.215099
7	26	163962.8	20644.11	7.9423501	0.0002647	0.038121	0.237438
8	28	175982	20644.11	8.5245612	0.0002842	0.044059	0.256933
9	30	188001.2	20644.11	9.1067723	0.0003036	0.049998	0.276946
10	32	200020.4	20644.11	9.6889834	0.000323	0.055936	0.292324
11	34	212039.7	20644.11	10.271195	0.0003424	0.061875	0.32896
12	36	224058.9	20644.11	10.853406	0.0003618	0.067813	0.370607
13	37.2335	231471.8	20644.11	11.212484	0.0003737	0.071476	0.397741
14	38	236078.1	20644.11	11.435617	0.0003812	0.073752	0.462281
15	40	248097.4	20644.11	12.017828	0.0004006	0.07969	0.620428
16	41	254107	20644.11	12.308934	0.0004103	0.08266	0.703255

Tabel 4.26 Prediksi Lebar Retak Model Rangka Sudut 65⁰ pada Balok ST-2B

Gambar 4.43 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 25⁰ pada Balok ST-2B

Gambar 4.44 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 35⁰ pada Balok ST-2B

CONSERVICE.

Gambar 4.45 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 45⁰ pada Balok ST-2B

Gambar 4.46 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 50⁰ pada Balok ST-2B

Gambar 4.47 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 55⁰ pada Balok ST-2B

Gambar 4.48 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 60⁰ pada Balok ST-2B

103

Gambar 4.49 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 65⁰ pada Balok ST-2B

4.3.6.3.2 Prediksi Lebar Retak pada Balok ST-6B 4.3.6.3.2(a) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 25⁰

Pada model rangka sudut 25° frame yang mengalami regangan tarik terbesar adalah frame 4 (Gambar 4.19) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.27 dan Gambar 4.50.

4.3.6.3.2(b) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 35⁰

Pada model rangka sudut 35° frame yang mengalami regangan tarik terbesar adalah frame 6 (Gambar 4.19) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.28 dan Gambar 4.51.

4.3.6.3.2(c) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 45⁰

Pada model rangka sudut 45° frame yang mengalami regangan tarik terbesar adalah frame 8 (Gambar 4.20) dengan panjang L = 500 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.29 dan Gambar 4.52.

4.3.6.3.2(d) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 50⁰

Pada model rangka sudut 50° frame yang mengalami regangan tarik terbesar adalah frame 10 (Gambar 4.20) dengan panjang L = 190 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.30 dan Gambar 4.53.

4.3.6.3.2(e) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 55⁰

Pada model rangka sudut 55° frame yang mengalami regangan tarik terbesar adalah frame 11 (Gambar 4.21) dengan panjang L = 240 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.31 dan Gambar 4.54.

4.3.6.3.2(f) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 60⁰

Pada model rangka sudut 60° frame yang mengalami regangan tarik terbesar adalah frame 13 (Gambar 4.21) dengan panjang L = 286 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.32 dan Gambar 4.55.

4.3.6.3.2(g) Prediksi Lebar Retak pada Balok ST-6B Untuk Model Rangka Sudut 65⁰

Pada model rangka sudut 65° frame yang mengalami regangan tarik terbesar adalah frame 16 (Gambar 4.21) dengan panjang L = 326 mm. Hasil Prediksi lebar retak dapat dilihat pada Tabel 4.33 dan Gambar 4.56.

				σ		W	w
No	+P(KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp (mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.009528	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.017008	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.024488	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.031968	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.036543	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.039447	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.046927	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.054407	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.061886	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.069366	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.073772	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.076846	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.084326	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.091805	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.094607	0.303639

Tabel 4.27 Prediksi Lebar Retak Model Rangka Sudut 25⁰ pada Balok ST-6B

				σ		W	W
No	+P(KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp(mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.009528	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.017008	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.024488	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.031968	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.036543	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.039447	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.046927	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.054407	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.061886	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.069366	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.073772	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.076846	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.084326	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.091805	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.094607	0.303639

p					0		
No	+P(KN)	Fu (N)	Ag(mm ²)	σ (N/mm ²)	8	w analisis(mm)	w eksp (mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.009528	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.017008	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.024488	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.031968	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.036543	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.039447	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.046927	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.054407	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.061886	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.069366	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.073772	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.076846	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.084326	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.091805	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.094607	0.303639

Tabel 4.29 Prediksi Lebar Retak Model Rangka Sudut 45⁰ pada Balok ST-6B

					0		
No			$\Lambda \alpha (mm^2)$	σ		W apolicis(mm)	W okop(mm)
NU	TF (KN)	FU (N)	Ag(mm)	(19/1111)	3	anansis(mm)	eksp(mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.003621	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.006463	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.009305	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.012148	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.013886	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.01499	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.017832	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.020675	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.023517	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.026359	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.028034	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.029201	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.032044	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.034886	0.301646
16	42 7 4 9 2	2975457	30111 473	9 8814737	0 0003294	0 035951	0.303639

Tabel 4.30 Prediksi Lebar Retak Model Rangka Sudut 50° pada Balok ST-6B

				σ		W	w
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp (mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.004574	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.008164	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.011754	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.015344	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.01754	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.018935	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.022525	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.026115	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.029705	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.033296	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.035411	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.036886	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.040476	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.044067	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.045411	0.303639

Tabel 4.31 Prediksi Lebar Retak Model Rangka Sudut 55° pada Balok ST-6B

	a more than the state of the st	and the second state with more than the second state with		and the second	Manager and the second se	and the second s	and the second second a spectrum second s
				σ		w	w
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm ²)	3	analisis(mm)	eksp (mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.00545	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.009729	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.014007	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.018285	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.020902	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.022564	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.026842	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.031121	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.035399	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.039677	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.042198	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.043956	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.048234	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.052513	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.054115	0.303639

Tabel 4.32 Prediksi Lebar Retak Model Rangka Sudut 60⁰ pada Balok ST-6B

				σ		W	W
No	+P (KN)	Fu (N)	Ag(mm ²)	(N/mm^2)	3	analisis(mm)	eksp (mm)
1	17.452	126620	30111.473	4.2050417	0.00014017	0	0
2	20	143834.9	30111.473	4.7767481	0.0001592	0.006213	0.0526991
3	22	157348.4	30111.473	5.2255311	0.0001742	0.011089	0.095184
4	24	170862	30111.473	5.6743139	0.0001891	0.015966	0.134154
5	26	184375.5	30111.473	6.1230967	0.0002041	0.020843	0.174009
6	27.2233	192641	30111.473	6.3975947	0.0002133	0.023826	0.196674
7	28	197889	30111.473	6.5718798	0.0002191	0.02572	0.197783
8	30	211402.5	30111.473	7.0206625	0.000234	0.030596	0.19832
9	32	224916	30111.473	7.4694453	0.000249	0.035473	0.19976
10	34	238429.5	30111.473	7.9182284	0.0002639	0.04035	0.229787
11	36	251943	30111.473	8.3670111	0.0002789	0.045227	0.272322
12	37.1782	259903.8	30111.473	8.6313891	0.0002877	0.0481	0.297659
13	38	265456.5	30111.473	8.8157939	0.0002939	0.050103	0.298776
14	40	278970.1	30111.473	9.264577	0.0003088	0.05498	0.300207
15	42	292483.6	30111.473	9.7133598	0.0003238	0.059857	0.301646
16	42.7492	297545.7	30111.473	9.8814737	0.0003294	0.061684	0.303639

Tabel 4.33 Prediksi Lebar Retak Model Rangka Sudut 65° pada Balok ST-6B

Gambar 4.50 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 25⁰ pada Balok ST-6B

Gambar 4.51 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 35⁰ pada Balok ST-6B

Gambar 4.52 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 45⁰ pada Balok ST-6B

Gambar 4.53 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 50⁰ pada Balok ST-6B

Gambar 4.54 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 55⁰ pada Balok ST-6B

Gambar 4.55 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 60⁰ pada Balok ST-6B

Gambar 4.56 Grafik Lebar Retak Dengan Beban P Untuk Model Rangka Sudut 65⁰ pada Balok ST-6B

Dari Gambar 4.43-4.49 untuk balok ST-2B dan Gambar 4.50-4.56 untuk balok ST-6B dapat dilihat bahwa prediksi lebar retak menggunakan luas penampang gross belum memberikan hasil yang mendekati data percobaan.

Hal ini terjadi dikarenakan saat beton telah mengalami retak $(f > f_r)$, penampang beton yang mampu menahan tarik telah berkurang sehingga penggunaan luas penampang gross tidak lagi memberikan hasil prediksi yang akurat. Untuk itu diusulkan penggunaan luas penampang efektif dalam BAB V berikut.

"Halaman ini sengaja dikosongkan"

(mm) w

Cambre 4 S& G., fikel and Renke Derigan Behan P. Untuk Machi Kateko Sudut 65 pada Balok ST-65

Dani, Gambar, 4,45,4,49, untuk, balok, ST-2B, dan Cambar, 4,50,4,56, untuk, baiok, ST-6B, dapat dilibat bahwa i radioi lehar tretak, mongalmakan has genemoning gross lettore trethenkut hash over mendelari data percolomo, alaria (e. al) (b a traken soat berea telah mengalami ketak berkutang sohingen percoi yang mampu menahan tarik telah berkutang sohingen penganami huas penampang gross tabla hash mender tilas hash mediksi yang akurat. Untuk in tabla hash ternejarawa (a.s. prompang refectif dalam BAB V)

BAB V ANALISA USULAN LUAS PENAMPANG EFEKTIF

5.1 UMUM

Setelah terjadi retak pada penampang beton, maka sesungguhnya luasan penampang beton dalam menahan tegangan tarik tidak lagi utuh berupa luasan gross. Luasan yang menahan tegangan tarik ini disebut luasan efektif. Luasan efektif ini diperkirakan berada antara luasan penampang beton gross sampai luasan penampang tulangan baja saja (A_s) . Untuk itu diusulkan perumusan luas penampang efektif ini ke dalam bentuk matematis:

dimana:

 A_{eff} = luas penampang efektif beton

 σ_r = tegangan retak beton = $f_r = 0.62 \sqrt{f'_c}$ dalam Mpa

- $\sigma = \text{tegangan yang terjadi pada frame rangka yang ditinjau} = \frac{F_u}{A_o}$
- A_g = luas penampang gross seperti yang dijelaskan dalam pasal 4.3.5
- A_s = luas penampang tulangan baja
- a = koefisien yang akan dicari

5.2 PENENTUAN KOEFISIEN 'a'

Untuk mencari besarnya koefisien *a*, digunakan cara coba-coba atau *trial and error*. Dalam *trial and error* ini akan dicari besarnya koefisien *a* yang paling optimum yaitu koefisien *a* yang memberikan harga ΣR^2 paling minimum. Dalam metoda kwadrat terkecil, didefinisikan:
$\Sigma R^2 = \Sigma \left(y_a - y_e \right)^2 \tag{5.2}$	
dimana:	
ΣR^2 = jumlah kwadrat selisih antara data analisa dengan dat eksperimen	a
y_a = hasil analisa perhitungan rumus atau teori	
y_e = data eksperimen dari percobaan di laboratorium	
5.2.1 Penentuan Koefisien a Untuk Balok ST-2B	
5.2.1 (a) Nilai Koefisien a Dengan Trial and error	
Dalam mencari harga koefisien a pada balok ST-2B, dica	ri
koefisien yang memberikan harga:	
$\Sigma R^2 = \Sigma (w_a - w_e)^2 = \text{minimum} \qquad \dots $	
dimana:	
w_a = hasil analisa perhitungan rumus lebar retak menggunakan A_{eff}	
w_e = data eksperimen lebar retak dari literatur atau jurnal	

Dari hasil *trial and error* didapatkan koefisien *a* untuk model rangka sudut 25[°] pada balok ST-2B yang memenuhi $\Sigma R^2 = \Sigma$ $(w_a - w_e)^2 =$ minimum adalah a = 1,23 dengan $\Sigma R^2 = 0,0968139$. Untuk nilai koefisien *a* pada model rangka dengan sudut yang lain dapat dilihat pada Tabel di bawah ini.

		the second s	
Balok	Sudut	ΣR^2	а
ST-2B	25°	0,0968139	1,23
	35°	0,0968139	1,23
	45°	0,0968139	1,23
	50°	0,0968139	1,23
	55°	0,0868009	2,11
	60°	0,0866384	1,87
	65°	0,0876835	1,71

Tabel 5.1 Nilai Koefisien a Untuk Balok ST-2B

5.2.1 (b) Perhitungan Lebar Retak Dengan Luas Efektif Contoh perhitungan prediksi lebar retak untuk model rangka sudut 25° pada balok ST-2B: Akibat berat sendiri+P (=18 KN) F_{μ} = gaya aksial tarik = 115885,8 N L = 500 mm (frame 4) $Ag = 20644.11 \text{ mm}^2$ $As = 2 \times (\frac{1}{4} \times \pi \times 15,9^2) = 396,912 \text{ mm}^2$ $\sigma = \frac{F_u}{A} = \frac{115885,8}{20644.11} = 5,6135053$ $\sigma_r = 0.62 \sqrt{f'_c} = 0.62 \sqrt{46} = 4.205045 \text{ MPa}$ $A_{eff} = \left(\frac{\sigma_r}{\sigma}\right)^a . A_g + \left[1 - \left(\frac{\sigma_r}{\sigma}\right)^a\right] . A_s$ $= \left(\frac{4,205045}{5,6135053}\right)^{1,23} .20644,11 + \left[1 - \left(\frac{4,205045}{5,6135053}\right)^{1,23}\right] .396,912$ $= 14588.95 \text{ mm}^2$ $\sigma_{eff} = \frac{F_u}{A_{eff}} = \frac{115885,8}{14588,95} = 7,9433964 \text{ MPa}$ $\varepsilon = \frac{\sigma_{eff}}{E} = \frac{7,9433964}{30000} = 0,0002648$ $\varepsilon_{cr} = \frac{f_r}{E} = \frac{4,205045}{30000} = 0,0001402$ $w_a = (\varepsilon - \varepsilon_{r}) \times L$

 $w_a = (0,0002648-0,0001402) \times 500 = 0,062306 \text{ mm}$ $w_e = 0,112564 \text{ mm}$ $R^2 = (w_a - w_e)^2 = (0,062306 - 0,112564)^2 = 0,0025259$ Hasil lebar retak untuk model rangka dengan sudut yang lain dapat dilihat dalam Tabel 5.3-5.9 dan Gambar 5.2- 5.8.

5.2.1 (c) Perhitungan Lebar Retak Menurut Perumusan SNI (03-2847-2002)

Data Balok: b=200 mm, h=300 mm, d=252,05 mm, $n=\frac{E_s}{E_s}=6,67$

Gambar 5.1. Perhitungan Icr Untuk Balok ST2-B

Perhitungan letak garis netral dari serat atas balok $\Rightarrow 200. \frac{x^2}{2} + 890,19(x-45) = 2647,4(252,05-x), \text{ didapat}$ x = 68,26 mm $I_{cr} = \frac{1}{3} (200 \times 68,26^3) + 890,19(68,26-45)^2 + 2647,4(252,05-68,26)^2$ $= 111111019,3 \text{ mm}^4$ $I_g = \frac{1}{12} \times 200 \times 300^3 = 450000000 \text{ mm}^4$ $M_d = (145,362 \times \frac{3}{2})1,5 - \frac{1}{2} \times 145,362 \times 1,5^2 = 163,53225 \text{ kg/m}$

$$M_{cr} = \frac{f_r I_g}{y} = \frac{0.62\sqrt{46.45000000}}{150} = 12615133,77 \text{ N-mm}$$

$$dc = 30 + 10 + 15,9/2 = 47.95 \text{ mm}$$

$$A = (2 \times dc \times b)/2 = 9590 \text{ mm}^2$$

$$\beta = (300 - x)/(252,05 - x) = 1.261$$

$$y \text{ tarik} = d - x = 183,79 \text{ mm}$$

contoh perhitungan untuk balok ST-2B model rangka sudut
25^o dengan beban P = 20 KN=20000N

$$M_L$$
= 1,25P (N-m) \rightarrow dari pasal 4.3.1.2
= 1250.20000 = 25000000 N-mm
 $M = M_L + M_d$ =26604251 N-mm> M_{cr} terjadi retak, pakai I_{eff}
 $I_{eff} = \left(\frac{M_{cr}}{M}\right)^3 J_g + \left[1 - \left(\frac{M_{cr}}{M}\right)^3\right] J_{cr}$
= 147242012 mm⁴
 $f_s = n.\left(\frac{M.y_{tarik}}{I_{eff}}\right) = 221,49657 \text{ N/mm}^2$
 $\omega = 11 \times 10^{-6} .\beta .f_s^3 \sqrt{d_c} .A = 0,2371 \text{ mm}$

Hasil lebar retak menurut perumusan SNI untuk model rangka dengan sudut yang lain pada balok ST-2B dapat dilihat dalam Tabel 5.2 dan Gambar 5.2- 5.8.

No	Akibat	Ml	M tot	I	f _s	w SNI
	+P((0))	(N-mm)	(N-mm)	(mm ⁴)	(N/mm^2)	(mm)
1	13.1617	16452125	18056376	226679986	97.6484	0.1045463
2	15.307	19133750	20738001	187394821	135.66163	0.1452448
3	18	22500000	24104251	159690412	185.03868	0.1981098
4	20	25000000	26604251	147242012	221.49657	0.2371431
5	22	27500000	29104251	138708137	257.2185	0.2753884
6	24	30000000	31604251	132663462	292.0397	0.3126694
7	26	32500000	34104251	128262731	325.95358	0.348979
8	28	35000000	36604251	124982999	359.02798	0.3843898
9	30	37500000	39104251	122488893	391.35869	0.4190043
10	32	40000000	41604251	120558584	423.0457	0.4529297
11	34	42500000	44104251	119041357	454.1824	0.4862659
12	36	45000000	46604251	117832368	484.85139	0.5191013
13	37.2335	46541875	48146126	117207076	503.56465	0.5391365
14	38	47500000	49104251	116857153	515.12367	0.5515121
15	40	50000000	51604251	116061833	545.05932	0.5835624
16	41	51250000	52854251	115718815	559,91701	0.5994696

Tabel 5.2 Hasil Perhitungan Lebar Retak pada Balok ST-2B Dengan Perumusan SNI

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	ε	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	17473.33	5.7059504	0.0001902	0.025015	0.0013534
18	115885.8	0.112564	14588.95	7.9433964	0.0002648	0.062306	0.0025259
20	127905.1	0.148608	12966.76	9.8640679	0.0003288	0.094317	0.0029475
22	139924.3	0.18721	11652.12	12.008483	0.0004003	0.130057	0.0032664
24	151943.5	0.215099	10567.19	14.378796	0.0004793	0.169563	0.0020736
26	163962.8	0.237438	9658.074	16.976755	0.0005659	0.212862	0.000604
28	175982	0.256933	8886.296	19.80375	0.0006601	0.259978	9.275E-06
30	188001.2	0.276946	8223.716	22.860858	0.000762	0.31093	0.0011549
32	200020.4	0.292324	7649.292	26.148882	0.0008716	0.365731	0.0053885
34	212039.7	0.32896	7146.993	29.668374	0.0009889	0.424389	0.0091067
36	224058.9	0.370607	6704.402	33.419671	0.001114	0.48691	0.0135265
37.2335	231471.8	0.397741	6456.868	35,84892	0.001195	0.527398	0.0168109
38	236078.1	0.462281	6311.758	37.402909	0.0012468	0.553298	0.008284

Tabel 5.3 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 25⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	ε	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	17473.33	5.7059504	0.0001902	0.025015	0.0013534
18	115885.8	0.112564	14588.95	7.9433964	0.0002648	0.062306	0.0025259
20	127905.1	0.148608	12966.76	9.8640679	0.0003288	0.094317	0.0029475
22	139924.3	0.18721	11652.12	12.008483	0.0004003	0.130057	0.0032664
24	151943.5	0.215099	10567.19	14.378796	0.0004793	0.169563	0.0020736
26	163962.8	0.237438	9658.074	16.976755	0.0005659	0.212862	0.000604
28	175982	0.256933	8886.296	19.80375	0.0006601	0.259978	9.275E-06
30	188001.2	0.276946	8223.716	22.860858	0.000762	0.31093	0.0011549
32	200020.4	0.292324	7649.292	26.148882	0.0008716	0.365731	0.0053885
34	212039.7	0.32896	7146.993	29.668374	0.0009889	0.424389	0.0091067
36	224058.9	0.370607	6704.402	33.419671	0.001114	0.48691	0.0135265
37.2335	231471.8	0.397741	6456.868	35.84892	0.001195	0.527398	0.0168109
38	236078.1	0.462281	6311.758	37.402909	0.0012468	0.553298	0.008284

Tabel 5.4 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 35⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	3	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	17473.33	5.7059504	0.0001902	0.025015	0.0013534
18	115885.8	0.112564	14588.95	7.9433964	0.0002648	0.062306	0.0025259
20	127905.1	0.148608	12966.76	9.8640679	0.0003288	0.094317	0.0029475
22	139924.3	0.18721	11652.12	12.008483	0.0004003	0.130057	0.0032664
24	151943.5	0.215099	10567.19	14.378796	0.0004793	0.169563	0.0020736
26	163962.8	0.237438	9658.074	16.976755	0.0005659	0.212862	0.000604
28	175982	0.256933	8886.296	19.80375	0.0006601	0.259978	9.275E-06
30	188001.2	0.276946	8223.716	22.860858	0.000762	0.31093	0.0011549
32	200020.4	0.292324	7649.292	26.148882	0.0008716	0.365731	0.0053885
34	212039.7	0.32896	7146.993	29.668374	0.0009889	0.424389	0.0091067
36	224058.9	0.370607	6704.402	33.419671	0.001114	0.48691	0.0135265
37.2335	231471.8	0.397741	6456.868	35.84892	0.001195	0.527398	0.0168109
38	236078.1	0.462281	6311.758	37.402909	0.0012468	0.553298	0.008284

Tabel 5.5 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 45⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	8	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	17473.33	5.7059504	0.0001902	0.025015	0.0013534
18	115885.8	0.112564	14588.95	7.9433964	0.0002648	0.062306	0.0025259
20	127905.1	0.148608	12966.76	9.8640679	0.0003288	0.094317	0.0029475
22	139924.3	0.18721	11652.12	12.008483	0.0004003	0.130057	0.0032664
24	151943.5	0.215099	10567.19	14.378796	0.0004793	0.169563	0.0020736
26	163962.8	0.237438	9658.074	16.976755	0.0005659	0.212862	0.000604
28	175982	0.256933	8886.296	19.80375	0.0006601	0.259978	9.275E-06
30	188001.2	0.276946	8223.716	22.860858	0.000762	0.31093	0.0011549
32	200020.4	0.292324	7649.292	26.148882	0.0008716	0.365731	0.0053885
34	212039.7	0.32896	7146.993	29.668374	0.0009889	0.424389	0.0091067
36	224058.9	0.370607	6704.402	33.419671	0.001114	0.48691	0.0135265
37.2335	231471.8	0.397741	6456.868	35.84892	0.001195	0.527398	0.0168109
38	236078.1	0.462281	6311,758	37,402909	0.0012468	0.553298	0.008284

Tabel 5.6 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 50⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	3	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	15514.28	6.4264604	0.0002142	0.015402	0.0021531
18	115885.8	0.112564	11403.1	10.16266	0.0003388	0.041306	0.0050777
20	127905.1	0.148608	9334.242	13.702779	0.0004568	0.065851	0.0068487
22	139924.3	0.18721	7791.37	17.958881	0.0005986	0.09536	0.0084364
24	151943.5	0.215099	6611.2	22.982743	0.0007661	0.130192	0.0072092
26	163962.8	0.237438	5689.017	28.820928	0.0009607	0.17067	0.0044579
28	175982	0.256933	4955.212	35.51452	0.0011838	0.217079	0.0015883
30	188001.2	0.276946	4362.082	43.098959	0.0014366	0.269664	5.302E-05
32	200020.4	0.292324	3876.068	51.603958	0.0017201	0.328632	0.0013183
34	212039.7	0.32896	3473.014	61.053508	0.0020351	0.394149	0.0042497
36	224058.9	0.370607	3135.184	71.465951	0.0023822	0.466342	0.0091652
37.2335	231471.8	0.397741	2953.437	78.373697	0.0026125	0.514236	0.0135711
38	236078.1	0.462281	2849.323	82.854127	0.0027618	0.5453	0.0068922

Tabel 5.7 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 55⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	ε	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	16025.12	6.2216036	0.0002074	0.017477	0.0019648
18	115885.8	0.112564	12193.28	9.5040766	0.0003168	0.045925	0.0044408
20	127905.1	0.148608	10205.46	12.533	0.0004178	0.072176	0.0058419
22	139924.3	0.18721	8689.015	16.103585	0.0005368	0.103121	0.007071
24	151943.5	0.215099	7504.776	20.246243	0.0006749	0.139024	0.0057874
26	163962.8	0.237438	6561.602	24.988217	0.0008329	0.180121	0.0032853
28	175982	0.256933	5797.726	30.353619	0.0010118	0.226621	0.0009188
30	188001.2	0.276946	5170.054	36.363488	0.0012121	0.278707	3.099E-06
32	200020.4	0.292324	4647.761	43.035868	0.0014345	0.336534	0.0019545
34	212039.7	0.32896	4208.314	50.385894	0.0016795	0.400234	0.00508
36	224058.9	0.370607	3834.925	58.425893	0.0019475	0.469914	0.0098619
37.2335	231471.8	0.397741	3631.906	63.732858	0.0021244	0.515908	0.0139634
38	236078.1	0.462281	3514.872	67.1655	0.0022389	0.545657	0.0069516

Tabel 5.8 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 60⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	3	w(mm)	R ²
13.1617	86809.4	0	20644.11	4.2050444	0.00014017	0	0
15.307	99701.93	0.0618034	16375.23	6.0885827	0.000203	0.019212	0.001814
18	115885.8	0.112564	12751.33	9.0881358	0.0003029	0.049808	0.0039384
20	127905.1	0.148608	10832.96	11.807025	0.0003936	0.07754	0.0050506
22	139924.3	0.18721	9347.197	14.969652	0.000499	0.109799	0.0059925
24	151943.5	0.215099	8170.787	18.595946	0.0006199	0.146787	0.0046665
26	163962.8	0.237438	7221.868	22.70365	0.0007568	0.188686	0.0023768
28	175982	0.256933	6444.239	27.308417	0.0009103	0.235654	0.0004528
30	188001.2	0.276946	5798.226	32.42392	0.0010808	0.287833	0.0001185
32	200020.4	0.292324	5255.129	38.061946	0.0012687	0.34534	0.0028107
34	212039.7	0.32896	4793.754	44.232491	0.0014744	0.40828	0.0062917
36	224058.9	0.370607	4398.153	50.943858	0.0016981	0.476736	0.0112633
37.2335	231471.8	0.397741	4181.534	55.355705	0.0018452	0.521737	0.0153749
38	236078.1	0.462281	4056.134	58.202744	0.0019401	0.550777	0.0078315

Tabel 5.9 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 65⁰ pada Balok ST-2B dengan Luas Penampang Efektif

Gambar 5.2 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan Ag dan A_{eff} pada Model Rangka Sudut 25⁰ Untuk Balok ST-2B.

Gambar 5.3 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 35⁰ Untuk Balok ST-2B.

Gambar 5.4 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 45⁰ Untuk Balok ST-2B.

Gambar 5.5 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 50⁰ Untuk Balok ST-2B.

Gambar 5.6 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 55⁰ Untuk Balok ST-2B.

Gambar 5.7 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 60⁰ Untuk Balok ST-2B.

Gambar 5.8 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 65⁰ Untuk Balok ST-2B.

Dari Gambar 5.2 - 5.8 serta Tabel 5.3 - 5.9 dapat disimpulkan bahwa Hasil prediksi lebar retak dengan menggunakan luas efektif lebih mendekati hasil percobaan atau eksperimen dari pada prediksi lebar retak dengan menggunakan luas gross. Hal ini dapat dilihat dari nilai ΣR^2 yang lebih kecil untuk penggunaan luas efektif. Selain itu, kurva lebar retak yang diprediksi menggunakan perumusan luas efektif penampang lebih dapat mendekati kurva lebar retak hasil eksperimen (hasil regresi yang lebih baik) dibandingkan kurva lebar retak yang dihasilkan dari perumusan SNI.

5.2.2 Penentuan Koefisien *a* Untuk Balok ST-6B 5.2.2 (a) Nilai Koefisien *a* Dengan Trial and error

Dari hasil *trial and error* didapatkan koefisien *a* untuk model rangka sudut 25[°] pada balok ST-6B yang memenuhi $\Sigma R^2 = \Sigma$ $(w_a - w_e)^2 =$ minimum adalah *a* = 0,92 dengan $\Sigma R^2 = 0,1172112$. Untuk nilai koefisien *a* pada model rangka dengan sudut yang lain dapat dilihat pada Tabel di bawah ini.

Balok	Sudut	ΣR^2	a	
ST-6B	25°	0,1172112	0,92	1
	35°	0,1172112	0,92	
	45°	0,1172112	0,92	
	50°	0,2148289	1,89	
inan Rettik	55°	0,1922455	1,63	1
In Ups disks	60°	0,1740907	1,45	
co mpac	65°	0,1603674	1,32	

Tabel 5.10 Nilai Koefisien a Untuk Balok ST-6B

5.2.2 (b) Perhitungan Lebar Retak Dengan Luas Efektif Contoh perhitungan prediksi lebar retak untuk model rangka sudut 25[°] pada balok ST-6B sama/*analog* dengan contoh perhitungan untuk balok ST-2B (dapat dilihat dalam Pasal 5.2.1(b)).

Hasil lebar retak untuk model rangka dengan sudut yang lain dapat dilihat dalam Tabel 5.12-5.18 dan Gambar 5.9- 5.15.

5.2.2 (c) Perhitungan Lebar Retak Menurut Perumusan SNI (03-2847-2002)

Contoh perhitungan lebar retak menurut SNI untuk balok ST-6B sama/analog dengan contoh perhitungan untuk balok ST-2B. Hasil lebar retak menurut perumusan SNI untuk model rangka pada balok ST-6B dapat dilihat dalam Tabel 5.11 dan Gambar 5.9- 5.15.

No	Akibat	Ml	M tot	Ι	f_s	w SNI
	+P (K.N)	(N-mm)	(N-mm)	(mm ⁴)	(N/mm^2)	(mm)
1	17.452	21815000	23424460	240492814	84.405226	0.0875157
2	20	25000000	26609460	228167405	101.06117	0.1047855
3	22	27500000	29109460	221919712	113.6685	0.1178574
4	24	30000000	31609460	217494100	125.94225	0.1305835
5	26	32500000	34109460	214271933	137.94673	0.1430304
6	27.2233	34029125	35638585	212723529	145.17999	0.1505302
7	28	35000000	36609460	211870441	149.73551	0.1552536
8	30	37500000	39109460	210044129	161.35154	0.1672977
9	32	40000000	41609460	208630611	172.82871	0.1791978
10	34	42500000	44109460	207519548	184.19362	0.1909815
11	36	45000000	46609460	206634184	195.46714	0.2026705
12	37.1782	46472750	48082210	206195547	202.0724	0.2095192
13	38	47500000	49109460	205920000	206.66574	0.2142818
14	40	50000000	51609460	205337546	217.80247	0.2258289
15	42	52500000	54109460	204857799	228.88775	0.2373227
16	42.7492	53436500	55045960	204699927	233.02881	0.2416164

Tabel 5.11 Hasil Perhitungan Lebar Retak pada Balok ST-6B Dengan Perumusan SNI

Tabel 5.12 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 25⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual	Aeff				
				σ			
P (KN)	14 -	(mm)	Aeff(mm ²)	(N/mm ²)	3	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	26911.07	5.344824	0.0001782	0.018996	0.0011359
22	157348.4	0.095184	24871.64	6.3264195	0.0002109	0.035356	0.0035794
24	170862	0.134154	23142.93	7.382899	0.0002461	0.052964	0.0065918
26	184375.5	0.174009	21658.24	8.5129475	0.0002838	0.071798	0.010447
27.2233	192641	0.196674	20848.9	9.2398645	0.000308	0.083914	0.0127149
28	197889	0.197783	20368.76	9.7153177	0.0003238	0.091838	0.0112244
30	211402.5	0.19832	19237.96	10.988819	0.0003663	0.113063	0.0072688
32	224916	0.19976	18237.93	12.332317	0.0004111	0.135455	0.0041352
34	238429.5	0.229787	17346.98	13.744724	0.0004582	0.158995	0.0050116
36	251943	0.272322	16547.99	15.224992	0.0005075	0.183666	0.0078599
37.1782	259903.8	0.297659	16114.7	16.128374	0.0005376	0.198722	0.0097885
38	265456.5	0.298776	15827.25	16.772115	0.0005591	0.209451	0.0079789
40	278970.1	0.300207	15173.68	18.385123	0.0006128	0.236335	0.0040797
42	292483.6	0.301646	14578.2	20.063075	0.0006688	0.264301	0.0013947

Akibat	F (N)	w aktual		P	Aeff		
				σ			
P (KN)		(mm)	Aeff(mm ²)	(N/mm^2)	З	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	26911.07	5.344824	0.0001782	0.018996	0.0011359
22	157348.4	0.095184	24871.64	6.3264195	0.0002109	0.035356	0.0035794
24	170862	0.134154	23142.93	7.382899	0.0002461	0.052964	0.0065918
26	184375.5	0.174009	21658.24	8.5129475	0.0002838	0.071798	0.010447
27.2233	192641	0.196674	20848.9	9.2398645	0.000308	0.083914	0.0127149
28	197889	0.197783	20368.76	9.7153177	0.0003238	0.091838	0.0112244
30	211402.5	0.19832	19237.96	10.988819	0.0003663	0.113063	0.0072688
32	224916	0.19976	18237.93	12.332317	0.0004111	0.135455	0.0041352
34	238429.5	0.229787	17346.98	13.744724	0.0004582	0.158995	0.0050116
36	251943	0.272322	16547.99	15.224992	0.0005075	0.183666	0.0078599
37.1782	259903.8	0.297659	16114.7	16.128374	0.0005376	0.198722	0.0097885
38	265456.5	0.298776	15827.25	16.772115	0.0005591	0.209451	0.0079789
40	278970.1	0.300207	15173.68	18.385123	0.0006128	0.236335	0.0040797
42	292483.6	0.301646	14578.2	20.063075	0.0006688	0.264301	0.0013947

Tabel 5.13 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 35⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
P (KN)		(mm)	Aeff(mm ²)	σ (N/mm ²)	8	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	26911.07	5.344824	0.0001782	0.018996	0.0011359
22	157348.4	0.095184	24871.64	6.3264195	0.0002109	0.035356	0.0035794
24	170862	0.134154	23142.93	7.382899	0.0002461	0.052964	0.0065918
26	184375.5	0.174009	21658.24	8.5129475	0.0002838	0.071798	0.010447
27.2233	192641	0.196674	20848.9	9.2398645	0.000308	0.083914	0.0127149
28	197889	0.197783	20368.76	9.7153177	0.0003238	0.091838	0.0112244
30	211402.5	0.19832	19237.96	10.988819	0.0003663	0.113063	0.0072688
32	224916	0.19976	18237.93	12.332317	0.0004111	0.135455	0.0041352
34	238429.5	0.229787	17346.98	13.744724	0.0004582	0.158995	0.0050116
36	251943	0.272322	16547.99	15.224992	0.0005075	0.183666	0.0078599
37.1782	259903.8	0.297659	16114.7	16.128374	0.0005376	0.198722	0.0097885
38	265456.5	0.298776	15827.25	16.772115	0.0005591	0.209451	0.0079789
40	278970.1	0.300207	15173.68	18.385123	0.0006128	0.236335	0.0040797
42	292483.6	0.301646	14578.2	20.063075	0.0006688	0.264301	0.0013947

Tabel 5.14 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 45⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
				σ			
P (KN)		(mm)	Aeff(mm ²)	(N/mm^2)	З	w(mm)	R^2
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	23919.49	6.013293	0.0002004	0.011452	0.0017013
22	157348.4	0.095184	20371.65	7.7238933	0.0002575	0.022286	0.0053141
24	170862	0.134154	17605.69	9.7049302	0.0003235	0.034833	0.0098647
26	184375.5	0.174009	15406.18	11.967631	0.0003989	0.049163	0.0155865
27.2233	192641	0.196674	14275.45	13.494567	0.0004498	0.058834	0.019
28	197889	0.197783	13627.36	14.521449	0.000484	0.065337	0.0175419
30	211402.5	0.19832	12167.67	17.374109	0.0005791	0.083404	0.0132057
32	224916	0.19976	10954.58	20.531687	0.0006844	0.103402	0.0092849
34	238429.5	0.229787	9935.112	23.998674	0.0008	0.12536	0.0109051
36	251943	0.272322	9069.858	27.778056	0.0009259	0.149296	0.0151355
37.1782	259903.8	0.297659	8619.957	30.151407	0.001005	0.164327	0.0177774
38	265456.5	0.298776	8328.985	31.871415	0.0010624	0.17522	0.015266
40	278970.1	0.300207	7689.57	36.279021	0.0012093	0.203135	0.0094229
42	292483.6	0.301646	7133.76	40.999916	0.0013667	0.233034	0.0047076

Tabel 5.15 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 50⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
5 (10)			2	σ			-2
P (KN)		(mm)	Aeff(mm ²)	(N/mm ²)	3	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	24685.43	5.8267139	0.0001942	0.012973	0.0015781
22	157348.4	0.095184	21486.38	7.3231714	0.0002441	0.024945	0.0049335
24	170862	0.134154	18935.76	9.0232407	0.0003008	0.038546	0.009141
26	184375.5	0.174009	16865.19	10.932306	0.0003644	0.053818	0.0144459
27.2233	192641	0.196674	15783.86	12.204938	0.0004068	0.063999	0.0176026
28	197889	0.197783	15158.32	13.054807	0.0004352	0.070798	0.0161252
30	211402.5	0.19832	13732.52	15.394302	0.0005131	0.089514	0.0118387
32	224916	0.19976	12527.67	17.953545	0.0005985	0.109988	0.008059
34	238429.5	0.229787	11499.15	20.734538	0.0006912	0.132236	0.0095162
36	251943	0.272322	10613.23	23.738586	0.0007913	0.156268	0.0134685
37.1782	259903.8	0.297659	10147.35	25.612974	0.0008538	0.171263	0.0159758
38	265456.5	0.298776	9843.987	26.966364	0.0008989	0.182091	0.0136155
40	278970.1	0.300207	9171.229	30.417958	0.0010139	0.209703	0.0081909
42	292483.6	0.301646	8579.014	34.092914	0.0011364	0.239103	0.0039116

Tabel 5.16 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 55⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
				σ			
P (KN)		(mm)	Aeff(mm ²)	(N/mm^2)	З	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	25230.76	5.700777	0.00019	0.014259	0.0014776
22	157348.4	0.095184	22295.84	7.0572989	0.0002352	0.027191	0.004623
24	170862	0.134154	19919.21	8.5777478	0.0002859	0.041686	0.0085503
26	184375.5	0.174009	17962.11	10.264689	0.0003422	0.057769	0.0135118
27.2233	192641	0.196674	16928.84	11.379455	0.0003793	0.068396	0.0164552
28	197889	0.197783	16327.28	12.120142	0.000404	0.075457	0.0149636
30	211402.5	0.19832	14944.72	14.145631	0.0004715	0.094767	0.0107232
32	224916	0.19976	13762.86	16.342244	0.0005447	0.115708	0.0070647
34	238429.5	0.229787	12742.97	18.710666	0.0006237	0.138287	0.0083723
36	251943	0.272322	11855.46	21.251219	0.0007084	0.162507	0.0120594
37.1782	259903.8	0.297659	11385.09	22.828439	0.0007609	0.177543	0.0144278
38	265456.5	0.298776	11077.35	23.963899	0.0007988	0.188368	0.01219
40	278970.1	0.300207	10390.56	26.848409	0.0008949	0.215867	0.0071133
42	292483.6	0.301646	9780.693	29.904176	0.0009968	0.244998	0.003209

Tabel 5.17 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 60⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Akibat	F (N)	w aktual			Aeff		
				σ			
P (KN)		(mm)	Aeff(mm ²)	(N/mm^2)	З	w(mm)	R ²
17.452	126620	0	30111.47	4.2050417	0.00014017	0	0
20	143834.9	0.0526991	25632.46	5.611436	0.000187	0.015283	0.0014
22	157348.4	0.095184	22900.46	6.8709718	0.000229	0.02897	0.0043843
24	170862	0.134154	20663.2	8.2689005	0.0002756	0.044161	0.0080988
26	184375.5	0.174009	18801.76	9.8062857	0.0003269	0.060867	0.0128012
27.2233	192641	0.196674	17811.25	10.815692	0.0003605	0.071836	0.0155846
28	197889	0.197783	17231.91	11.483865	0.0003828	0.079097	0.0140865
30	211402.5	0.19832	15892.43	13.302085	0.0004434	0.098855	0.0098934
32	224916	0.19976	14737.82	15.261141	0.0005087	0.120143	0.0063389
34	238429.5	0.229787	13733.62	17.361005	0.0005787	0.142961	0.0075387
36	251943	0.272322	12853.29	19.601442	0.0006534	0.167308	0.011028
37.1782	259903.8	0.297659	12384.08	20.986923	0.0006996	0.182363	0.0132931
38	265456.5	0.298776	12076.06	21.982044	0.0007327	0.193177	0.0111512
40	278970.1	0.300207	11385.49	24.502244	0.0008167	0.220563	0.0063432
42	292483.6	0.301646	10768.38	27.161326	0.0009054	0.249458	0.0027236

Tabel 5.18 Hasil Perhitungan Lebar Retak Untuk Model Rangka Sudut 65⁰ pada Balok ST-6B dengan Luas Penampang Efektif

Gambar 5.9 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 25⁰ Untuk Balok ST-6B.

Gambar 5.10 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 35⁰ Untuk Balok ST-6B.

Gambar 5.11 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 45⁰ Untuk Balok ST-6B.

Gambar 5.12 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 50⁰ Untuk Balok ST-6B.

Gambar 5.13 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 55⁰ Untuk Balok ST-6B.

Gambar 5.14 Grafik Perbandingan Hasil Lebar Retak Aktual dengan Lebar Retak Prediksi Menggunakan A_g dan A_{eff} pada Model Rangka Sudut 60⁰ Untuk Balok ST-6B.

Dari Gambar 5.9 - 5.15 serta Tabel 5.12 - 5.18 dapat disimpulkan bahwa Hasil prediksi lebar retak dengan menggunakan luas efektif lebih mendekati hasil percobaan atau eksperimen dari pada prediksi lebar retak dengan menggunakan luas gross. Hal ini dapat dilihat dari nilai ΣR^2 yang lebih kecil untuk penggunaan luas efektif. Selain itu, kurva lebar retak yang diprediksi menggunakan perumusan luas efektif penampang lebih dapat mendekati kurva lebar retak hasil eksperimen (hasil regresi yang lebih baik) dibandingkan kurva lebar retak yang dihasilkan dari perumusan SNI.

5.3 HUBUNGAN PARAMETER L, H, A_g , dan A_s TERHADAP KOEFISIEN 'a'

Setelah mendapatkan besarnya nilai koefisien *a* dalam perumusan luas efektif penampang untuk masing-masing model rangka dari tiap balok, maka perlu dicari hubungan antara nilai koefisien *a* dengan parameter lain yang diketahui dari balok maupun model rangka. Parameter-parameter tersebut diantaranya adalah panjang *frame* yang ditinjau (L), tinggi model rangka (H), Luas penampang beton gross (A_g) , serta luas penampang tulangan baja (A_s) .

Semua parameter diatas mempunyai pengaruh dalam menentukan nilai koefisien *a* yang cocok untuk memberikan nilai luas penampang efektif beton dalam menahan tegangan tarik setelah mengalami keretakan.

5.3.1 Hubungan Parameter L dengan Koefisien a

Untuk mendapatkan hubungan atau *trend* dari parameter koefisien a, dapat dilihat dari grafik hasil prediksi lebar retak pada tiap balok untuk semua model rangka. Dari grafik hasil lebar retak itu diketahui bahwa semakin besar panjang L maka semakin kecil nilai koefisien a. Hubungan ini dapat dilihat dalam Gambar 5.16 serta Tabel 5.19 berikut.

ST-2	B	ST-6B		
L (mm)	L (mm) a		а	
500	1.23	500	0.92	
306	1.71	326	1.32	
260	1.87	286	1.45	
208	2.11	240	1.63	
		190	1.89	

Tabel 5.19 Hubungan Panjang L dengan Koefisien a

5.3.2 Hubungan Parameter L, dan H dengan Koefisien a

Dari Pasal 5.3.1 dapat dilihat bahwa hubungan parameter L dengan koefisien a masih berlaku individual untuk masing-masing balok dan belum berlaku secara umum. Untuk itu perlu dicari parameter lain yang mungkin berpengaruh terhadap nilai koefisien a sehingga hubungan antar parameter ini dapat berlaku secara umum.

Parameter yang dimaksud adalah tinggi model rangka (H) dan gambaran mengenai hubungan parameter ini beserta panjang L terhadap nilai koefisien a dapat dilihat dalam Tabel 5.20 serta Gambar 5.17.

Rochsten a							
ST-2B	286	ST-6B					
H=(mm)	208	H=(mm)	185				
L/H	a	L/H	а				
2.403846	1.23	2.702703	0.92				
1.471154	1.71	1.762162	1.32				
1.25	1.87	1.545946	1.45				
1	2.11	1.297297	1.63				
		1.027027	1.89				

Tabel 5.20 Hubungan Panjang L dan Tinggi H dengan

Koefisien a

Gambar 5.17 Hubungan Antara L/H dengan Koefisien a

Dari gambar 5.17 di atas dapat dilihat bahwa hubungan parameter L/H dengan koefisien *a* masih belum berlaku secara umum. Untuk itu perlu dicari hubungan parameter yang lain yaitu A_g dan A_s .

5.3.3 Hubungan Parameter L, H, A_g dan A_s dengan Koefisien a

Besarnya parameter H, A_g dan A_s untuk tiap balok: Balok ST-2B: H = 208 mm $A_g = 20644, 11 \text{ mm}^2$ $A_s = 396,912 \text{ mm}^2$ Balok ST-6B: H = 185 mm $A_g = 30111,47 \text{ mm}^2$ $A_s = 1190,736 \text{ mm}^2$

Hubungan parameter L, H, A_g dan A_s dengan nilai koefisien a dapat dilihat dalam Tabel 5.21 dan Gambar 5.18.

	ST-2	В	ST-6B			
L(mm)	L/H	(a)/(A_/A_s)	L(mm)	L/H	(a)/(A_/A_s)	
500	2.403	0.0236	500	2.702	0.0363	
306	1.471	0.0328	326	1.762	0.0521	
260	1.25	0.0359	286	1.545	0.0573	
208	1	0.0405	240	1.297	0.0644	
88	2		190	1.027	0.0747	

Tabel 5.21 Hubungan L/H, dan A_g/A_s dengan Koefisien a

Dari Gambar 5.18 dapat dilihat bahwa hubungan antara parameter L/H dengan koefisien $a/(A_g/A_s)$ belum memberikan hubungan yang berlaku secara umum. Untuk itu dicari hubungan yang lain seperti yang dapat dilihat pada Tabel 5.22 dan Gambar 5.19 berikut ini.

ST-2B				ST-	6B
L(mm)	L/H	$(a)/(A_{g}/A_{s})^{(1/5)}$	L(mm)	L/H	$(a)/(A_g/A_s)^{(1/5)}$
500	2.403	0.5580	500	2.702	0.4821
306	1.471	0.7758	326	1.762	0.6918
260	1.25	0.8484	286	1.545	0.7599
208	1	0.9573	240	1.297	0.8542
			190	1.027	0.9905

Tabel 5.22 Hubungan L/H, dan $(A_g/A_s)^{1/5}$ dengan Koefisien a

Gambar 5.19 Hubungan Antara L/H dengan

Koefisien
$$\frac{a}{(A_g / A_s)^{1/5}}$$

Dari Gambar 5.19 dapat dilihat bahwa hubungan antara parameter L/H dengan koefisien $a/(A_g/A_s)^{1/5}$ dapat memberikan hubungan yang berlaku secara umum. Persamaan kurva yang menyatakan hubungan ini yaitu: untuk balok ST-2B:

$$a = [-0,1037 \left(\frac{L}{H}\right)^3 + 0,6138 \left(\frac{L}{H}\right)^2 - 1,4211 \left(\frac{L}{H}\right) + 1,8684] (A_g/A_s)^{1/5}$$

untuk balok ST-6B:

$$a = [-0,0684 \left(\frac{L}{H}\right)^3 + 0,4842 \left(\frac{L}{H}\right)^2 - 1,3477 \left(\frac{L}{H}\right) + 1,9378 \left[(\frac{A_g}{A_s}\right)^{1/5}$$

Dari kedua persamaan di atas, dicari persamaan umum untuk semua balok dengan mengambil nilai rata-rata dari kedua persamaan tersebut.

Persamaan umum yang baru untuk mencari besarnya koefisien a untuk semua harga L/H yaitu:

$$a = [-0,08605 \left(\frac{L}{H}\right)^3 + 0,549 \left(\frac{L}{H}\right)^2 - 1,3844 \left(\frac{L}{H}\right) + 1,9031] (A_g/A_g)^{1/5}$$

BAB VI KESIMPULAN DAN SARAN

6.1 UMUM

Dalam bab 6 ini dibahas secara garis besar semua hasil analisa yang telah dipaparkan pada bab-bab sebelumnya. Selain itu diberikan juga urutan prosedur dalam memprediksi lebar retak menggunakan metoda *strut-and-tie* dalam bentuk contoh soal yang dapat dilihat dalam Lampiran.

6.2. KESIMPULAN

Kesimpulan yang dapat diambil dari usulan metoda *strut-andtie* dalam memprediksi lebar retak adalah sebagai berikut:

- Besarnya sudut dalam model rangka batang tidak berpengaruh pada besarnya gaya aksial tarik maksimum yang terjadi pada *frame* di tengah bentang rangka. Hal ini dapat dimengerti karena berapapun besarnya sudut rangka hanya berpengaruh pada distribusi beban untuk tiap titik simpul rangka, tetapi secara keseluruhan untuk beban pada setengah bentang memberikan harga momen yang sama sehingga menghasilkan gaya aksial tarik (*f*) yang sama juga.
- 2. Faktor yang memiliki pengaruh dalam menentukan besarnya gaya tarik aksial adalah tinggi (H) dari model rangka batang. Hal ini dapat dipahami dari analisa mekanika teknik bahwa semakin besar tinggi dari rangka batang maka gaya aksial tarik maksimum pada *frame* di tengah rangka batang akan semakin kecil.
- 3. Dalam perhitungan lebar retak $w = (\varepsilon \varepsilon_{cr}) \times L$, panjang *frame* yang ditinjau pada tengah bentang rangka mempunyai pengaruh dalam menentukan besarnya w. Panjang L ini dipengaruhi oleh besarnya sudut rangka yang dipilih dan batasan sudut model
rangka dalam strut-and-tie yaitu $25^{\circ} < \theta < 65^{\circ}$ (lihat pasal 4.3.2.1 dan 4.3.2.2). Semakin besar panjang L maka lebar retak yang dihasilkan juga semakin besar.

4. Besarnya tegangan tarik yang dihasilkan juga dipengaruhi oleh besarnya luas penampang gross beton (A_g) . Semakin besar luas A_g ini maka tegangan yang dihasilkan akan semakin kecil dan lebar retak juga akan semakin kecil.

- 5. Luas penampang beton gross (A_g) , menurut perumusan Hsu (2003) dipengaruhi oleh parameter luas tulangan (A_s) , tebal selimut beton terhadap as tulangan (c), dan spasi antar as tulangan (s). Untuk mendapatkan luas gross yang besar dibutuhkan tebal selimut beton yang cukup dan pengaturan spasi antar tulangan agar tulangan dapat tersebar merata dalam penampang beton, sehingga lebar retak yang besar dapat diantisipasi dengan baik.
- Hasil prediksi lebar retak menggunakan luas penampang gross masih jauh dari lebar retak sebenarnya. Hal ini dikarenakan beton telah mengalami retak saat tegangan yang terjadi melewati tegangan batas retak, tetapi luas penampangnya masih utuh (gross).
- 7. Setelah tegangan tarik yang terjadi melebihi batas tegangan tarik beton yaitu $f_r = 0.62 \sqrt{f'_c}$ maka luas penampang gross harus dikoreksi atau direduksi menjadi luas efektif yang memberikan prediksi lebar retak yang lebih mendekati data eksperimen atau sesungguhnya. Luasan efektif ini diperkirakan berada antara luasan penampang beton gross sampai luasan penampang tulangan baja saja(A_s). Untuk perumusan luas penampang efektif dapat dilihat pada Pasal 5.1.
- 8. Hasil prediksi lebar retak menggunakan perumusan lebar retak dalam SNI masih kurang mendekati hasil

eksperimen. Hal ini disebabkan karena perumusan lebar retak dalam SNI hanya efektif untuk beban kerja yang menyebabkan tegangan baja tulangan mencapai 60% dari tegangan lelehnya saja.

- 9. Dalam perumusan luas penampang efektif, besarnya koefisien *a* mempunyai hubungan dengan parameter L/H dan $1/(A_g/A_s)^{1/5}$. Hubungan ini dapat digambarkan dalam Grafik Hubungan antara L/H dengan $a/(A_g/A_s)^{1/5}$ dalam Pasal 5.3.3.
- Urutan prosedur dalam memprediksi lebar retak pada balok beton bertulang dapat dilihat dalam LAMPIRAN beserta contoh soal prediksi lebar retak pada balok beton bertulang.

6.3 SARAN

Untuk mencapai suatu hasil yang lebih baik dan akurat dalam memprediksi lebar retak pada balok beton bertulang, perlu dipertimbangkan saran-saran sebagai berikut:

- Perumusan luas penampang efektif beserta perumusan untuk mencari nilai koefisien a yang dihasilkan dalam tugas akhir ini hanya didasarkan pada hasil percobaan dua buah balok beton oleh peneliti lain yang dipublikasikan dalam beberapa literatur dan jurnal. Untuk mendapatkan perumusan luas penampang efektif dan nilai koefisien a yang lebih teliti dan akurat diperlukan analisa dan penelitian lebih lanjut terhadap beberapa balok lagi.
- Kurangnya informasi mengenai data percobaan lebar retak pada balok beton bertulang yang lebih lengkap dan terpercaya juga perlu diperhatikan. Tersedianya data yang akurat dan terpercaya dapat mendukung penelitian atau studi pustaka dalam penyusunan tugas akhir mahasiswa.

Kami menyadari bahwa usulan metoda strut-and-tie dan perumusan luas penampang efektif beserta koefisiennya ini masih jauh dari sempurna, namun setidaknya akan dapat dijadikan sebagai bahan wacana dan bahan acuan untuk kajian lebih lanjut dan mendalami mengenai perumusan lebar retak pada balok beton bertulang.

DAFTAR PUSTAKA

- 1. Darmawan, M Sigit.,"Studi Perbandingan Geser Lentur Berdasarkan Truss Model", Lembaga Penelitian Fakultas Teknik Sipil dan Perencanaan Institut Teknologi Sepuluh Nopember, Surabaya, 1999.
- Ferguson, Phil M; Sutanto, B.,"Dasar-Dasar Beton Bertulang", Erlangga, Jakarta, 1991.
- Hardjasaputra, H.; Tumilar, S., "Model Penunjang dan Pengikat (Strut-and-Tie Model) pada Perancangan Struktur Beton", Universitas Pelita Harapan, Jakarta, 2002.
- Hughes, Barry P; Cifuentes, Carlos V.,"Comparison of Early-Age Crack Width Formulas for Reinforced Concrete", ACI Structural Journal, Vol 85, No 2, p 159, March-April 1988.
- 5. Imran, Iswandi., "Catatan Kuliah Struktur Beton II", ITB, Bandung, 2005.
- Masmoudi, R; Theriault, M; Benmokrane, B.,"Flexural Behavior of Concrete Beams Reinforced with Deformed Fiber Reinforced Plastic Reinforcing Rods", ACI Structural Journal, Vol 95, No 6, pp 665-675, November-December 1998.
- 7. Mosley, W.H; Bungley, J.H., "Perencanaan Beton Bertulang Edisi Ketiga", Erlangga, Jakarta, 1989.
- Oh, Byung H; Kang, Young J.,"New Formula for Maximum Crack Width and Crack Spacing in Reinforced Concrete Flexural Members", ACI Structural Journal, Vol 84, No 2, pp 103-112, March-April 1987.
- Reineck, Karl-H., "Examples for the Design of Structural Concrete with Strut-and Tie Models", American Concrete Institute, Farmington Hills, 2002.
- 10.SNI 03-2847-2002., "Tata Cara Perencanaan Struktur Beton untuk Bangunan Gedung". 2002.

- 11. Wang, Chu-Kia; Salmon, Charles G.,"Desain Beton Bertulang", Erlangga, Jakarta, 1993.
- 12.Zhu, Ronnie R; Wanichakorn, W; Hsu, Thomas T.C; Vogel, J.,"Crack Width Prediction Using Compatibility-Aided Strut and Tie Model", ACI Structural Journal, Vol 100, No 4, pp 413-421, July-August 2003.

LAMPIRAN

LAMPIRAN

Contoh soal:

Sebuah balok beton bertulang dengan dimensi seperti pada Gambar L.1, menerima beban P terpusat sebesar 25KN. Balok didesain dengan mutu beton fc=35 Mpa, selimut beton 30 mm, dan $E_c = 4700 \sqrt{35} = 27805,57$ Mpa.

Tulangan tekan atas diameter 10 mm, tulangan tarik bawah diameter 16 mm dan sengkang diameter 10 mm, $E_s = 200$ GPa

Gambar L.1 Contoh Soal Prediksi Lebar Retak dengan Metoda Strut-and-tie

Penyelesaian:

1. Perhitungan Beban

Jika diketahui data berat komposisi campuran beton maka beban berat sendiri dihitung berdasarkan data tersebut.

160

Jika tidak diketahui data berat campuran maka digunakan data berat beton bertulang yaitu: 2400 kg/m³.

Maka berat sendiri beton : 2400 × Luas penampang beton

 $:2400 \times (0.4 \times 0.3)$

: 288 kg/m

Beban luar P = 25 KN

2. Permodelan Rangka

Model rangka yang direncanakan mempunyai kisaran sudut antara batang diagonal dengan batang horisontal sebesar $25^{\circ} < \theta < 65^{\circ}$. Tinggi rangka (H) direncanakan sebagai jarak antara pusat titik berat tulangan tekan atas sampai titik berat tulangan tarik bawah (Gambar L.2). Jarak bentang utama direncanakan $\lambda = \frac{H}{\tan(\theta^{\circ})}$.

Penempatan jarak bentang utama ini dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada ujung rangka (Gambar L.3). Jika pada ujung rangka masih terdapat sisa panjang bentang yang lebih besar dari panjang bentang utama ini, maka dapat ditambahkan lagi panjang bentang utama (Gambar L.4) dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada ujung rangka masih memenuhi syarat besarnya sudut $(25^{\circ} < \theta < 65^{\circ})$.

Demikian juga dengan bentang yang dimulai dari titik simpul rangka dimana posisi beban P bekerja sampai pada tengah bentang. Jika masih terdapat panjang bentang yang lebih besar dari panjang bentang utama, maka dapat ditambahkan lagi panjang bentang utama dengan syarat sudut yang terbentuk antara batang diagonal dengan bentang horisontal pada tengah bentang masih memenuhi syarat besarnya sudut ($25^{\circ} < \theta < 65^{\circ}$). Maka perencanaan model rangka:

 $H = \text{tinggi balok-2} \times \text{tebal selimut beton-2} \times \text{diameter sengkang} - \frac{1}{2} \text{diameter tulangan tekan atas} - \frac{1}{2} \text{diameter tulangan tarik bawah.}$

$$= 400-2 \times 30-2 \times 10-\frac{1}{2} 10-\frac{1}{2} 10$$

= 307 mm

Gambar L.2 Penentuan Tinggi Model Rangka (H)

Direncanakan model rangka dengan sudut 45°. Untuk besar sudut 45°, direncanakan jarak bentang utama $\lambda = \frac{H}{\tan(45^\circ)} =$

 $\frac{307}{\tan(45^{\circ})} = 307 \text{ mm}$

Gambar L.3 Penentuan Bentang Utama pada Permodelan Rangka Sudut 45⁰

Dari Gambar L.3 dapat dilihat bahwa untuk bentang 272 mm tidak bisa ditambahkan bentang utama karena lebih kecil dari jarak bentang utama. Sedangkan untuk bentang 400 mm masih dapat ditambahkan bentang utama karena sudut yang terbentuk masih memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$.

Gambar L.4 Penambahan Bentang Utama pada Tengah Rangka Sudut 45[°]

Dari Gambar L.4 dapat dilihat untuk sudut $73,1^{\circ}$ tidak memenuhi syarat $25^{\circ} < \theta < 65^{\circ}$ maka pada bentang dengan panjang 400 mm tidak dapat ditambahkan lagi bentang utama.

Gambar L.5 Permodelan Akhir Rangka Sudut 45⁰ Untuk Setengah Bentang Balok

Dengan dipenuhinya syarat sudut $25^{\circ} < \theta < 65^{\circ}$ didapatkan model rangka sudut 45° pada balok seperti yang ditunjukkan dalam Gambar L.5.

3. Perhitungan Pembebanan Rangka

Perhitungan pembagian beban dapat dilihat dalam Gambar L.6 dibawah ini.

Beban berat sendiri : 288 kg/m Beban luar P = 25 KN

P1 =
$$\frac{1}{2} \times 288 \times 0,272 = 39,168 \text{ kg} = 384,23808 \text{ N}$$

P2 = $\frac{1}{2} \times 288 \times 0,272 + \frac{1}{2} \times 288 \times 0,307$
= 83,376 kg = 817,91856 N
P3 = 288 × 0,307 = 88,416 kg = 867,36096 N

$$P4 = \frac{1}{2} \times 288 \times 0,307 + \frac{1}{2} \times 288 \times 0,4$$

= 101,808 kg = 998,73648 N
P5 = 288 \times 0,4 = 115,2 kg = 1130,112 N
P = 25 KN
R = P1+P2+3 \times P3+P4+P+ $\frac{P5}{2}$ = 30358,032 N

4. Perhitungan Gaya Dalam Aksial Tarik

Perhitungan gaya dalam yang terjadi pada rangka batang akibat beban yang bekerja,dapat dilakukan menggunakan program bantu SAP 2000 atau dengan perhitungan mekanika teknik biasa (Gambar L.7). Dari perhitungan mekanika teknik didapat:

Pada potongan I-I Σ M di titik C = 0 (R-P₁) (1900)- P₂ (1628)-P₃ (1321+1014+707)-(P4+P)400fu(307) = 0 didapat: fu = 138699,1218 N

165

Gambar L.7 Potongan I-I

5. Perhitungan Luas Penampang Gross

Untuk luas penampang gross digunakan usulan dari Hsu(2003) yaitu:

tulangan baja

a minimum= $(\sqrt{50A_s}, 2c, s)$ untuk sisi mengarah ke permukaan = 2cuntuk sisi mengarah ke dalam = s

Gambar L.8. Penentuan a minimum dalam luas penampang tie

dimana:

C

S

 $A_s =$ luas tulangan baja

- = tebal selimut beton yang diukur terhadap titik berat tulangan sampai permukaan terluar beton (*surface*)
 - = spasi antar tulangan diukur dari as ke as tulangan

166

Untuk luas parsial sisi luar, yaitu luas A1, penentuan dimensinya seperti yang tampak dalam Gambar L.10.

Gambar L.10 Luas Parsial AI

As = $\frac{1}{4} \pi D^2 = 0,25 \times 3.14 \times 16^2 = 200,96 \text{ mm}^2$ a1= $\sqrt{50.A_s} = \sqrt{50.200,96} = 100,24 \text{ mm}$ a2= $2c = 2(30+10+\frac{16}{2}) = 96 \text{ mm}$ a3=sh = spasi horisontal = $(300-2\times30-2\times10-16)/2 = 102$ mm diambil a = 96 mm untuk sisi yang mengarah ke permukaan (*surface*) $A_c I' = 96 \times 96 = 9216$ mm²

Untuk luas parsial sisi dalam, yaitu luas A2, penentuan dimensinya seperti yang tampak dalam Gambar L.11.

Gambar L.11 Luas Parsial A2

a1=
$$\sqrt{50.A_s} = \sqrt{50.200,96} = 100,24 \text{ mm}$$

a2= 2c = 2(30+10+ $\frac{16}{2}$)= 96 mm

a3=sh = spasi horisontal = $(300-2\times30-2\times10-16)/2 = 102 \text{ mm}$ diambil a = 102 mm (untuk sisi horizontal yang mengarah ke dalam) dan 96 mm (untuk sisi vertikal yang mengarah ke permukaan)

 $A_{g}2' = 102 \times 96 = 9792 \text{ mm}^{2}$ $A_{g}'=2 \times A_{g}l' + A_{g}2'=2 \times 9216 + 9792 = 28224 \text{ mm}^{2}$ $A_{g}=A_{g}' + (n-1) \times A_{s}$ dimension

dimana:

$$n = \frac{E_s}{E_c} = \frac{200GPa}{27805,57MPa} = 7,19$$

Jadi luas penampang gross untuk balok adalah: $A_g = 28224+(7,19-1) \times 3 \times 200,96 = 31955,83 \text{ mm}^2$

6. Perhitungan Tegangan Berdasarkan Luas Gross

Tegangan diperoleh dari membagi gaya dalam tarik yang terjadi dengan luas penampang gross. Perumusan tegangan yaitu:

$$\sigma = \frac{F}{A_g}$$

.....(L.1)

dimana:

σ	= tegangan pada beton dengan luas penampang gross
F	= gaya dalam tarik yang terjadi
A.	= luas penampang gross

Maka tegangan yang terjadi $\sigma = \frac{138699,1218}{31955,83} = 4,34033858$

 N/mm^2

7. Perhitungan Tegangan Batas Retak

Secara teori, untuk mengetahui apakah beton sudah mengalami retak atau belum dapat dilihat dari batasan tegangan retak beton. Tegangan retak beton ini dirumuskan seperti pada pasal 4.3.5.1 yaitu:

 $f_r = 0,62\sqrt{f'_c}$ (L.2)

dimana f° dalam MPa

 $f_r = 0,62 \sqrt{f'_c} = 0,62 \sqrt{35} = 3,667969 \text{ MPa}$

8. Perbandingan Tegangan Batas Retak dengan Tegangan berdasar ${\rm A_g}$

Perbandingan ini diperlukan sebagai batasan apakah penampang beton telah mengalami retak atau belum. Jika $\sigma > f_r$ maka beton telah mengalami retak, dan luas gross A_g perlu direduksi menjadi luas efektif A_{eff} .

Didapat $\sigma = 4,34033858$ N/ mm² > $f_r = 3,667969$ Mpa maka beton mengalami retak dan luas yang digunakan adalah luas efektif A_{eff} .

9. Perhitungan Luas Efektif

Luasan efektif ini diperkirakan berada antara luasan penampang beton gross sampai luasan penampang tulangan baja saja (A_s) . Perumusan luas penampang efektif dalam bentuk matematis:

dimana:

 A_{eff} = luas penampang efektif beton

 σ_r = tegangan retak beton = $f_r = 0,62 \sqrt{f'_c}$ dalam Mpa

$$\sigma = \text{tegangan yang terjadi pada frame rangka yang}$$

ditinjau = $\frac{F_u}{A_g}$

 A_g = luas penampang gross A_s = luas penampang tulangan baja

$$a = \text{koefisien vang dirumuskan dalam persama}$$

$$a = [-0,08605 \left(\frac{L}{H}\right)^3 + 0,549 \left(\frac{L}{H}\right)^2 - 1,3844 \left(\frac{L}{H}\right) + 1,9031] (A_g/A_s)^{1/5}$$

Maka didapat:

 $L/H = 2 \times 400/307 = 2,6058$ $(A_g/A_s)^{1/5} = (31955,83/602,88)^{1/5} = 2,212$ $a = [-0,08605(2,6058)^3 + 0,549(2,6058)^2 - 1,3844(2,6058) + 1,9031](2,212)$ = 1,11

$$A_{eff} = \left(\frac{3,667969}{4,340338}\right)^{1,11} .31955,83 + \left[1 - \left(\frac{3,667969}{4,340338}\right)^{1,11}\right].602,88$$

 $= 26612,84375 \text{ mm}^2$

10. Perhitungan Regangan Batas Retak

Regangan diperoleh dari membagi tegangan batas retak (f_r) dengan modulus beton. Perumusan regangan yaitu:

$$\varepsilon_{cr} = \frac{f_r}{E_c}$$

.....(L.4)

dimana:

 \mathcal{E}_{cr} = regangan batas retak pada beton

 f_r = tegangan batas retak = 0,62 $\sqrt{f'_c}$

 $E_c =$ modulus beton

Didapat:

 $\varepsilon_{cr} = \frac{3,667969}{27805.57} = 0,0001319149$

11. Prediksi Lebar Retak

Lebar retak diperoleh dari regangan yang terjadi dikurangi dengan regangan batas retak kemudian dikali dengan jarak sepanjang *frame* yang ditinjau yaitu *frame* pada tengah rangka yang mengalami regangan tarik terbesar. Perumusannya sebagai berikut:

dimana:

w = prediksi lebar retak yang terjadi

 ε = regangan tarik yang terjadi

 ε_{cr} = regangan tarik batas retak = $\frac{f_r}{E_c}$

L = panjang *frame* yang ditinjau yaitu pada tengah rangka

Didapat:

$$\sigma_{eff} = \frac{F_u}{A_{eff}} = \frac{138699,1218}{26612,84375} = 5.211736 \text{ MPa}$$

$$\varepsilon = \frac{\sigma_{eff}}{E_c} = \frac{5,211736}{27805,57} = 0,000187435$$

 $L = \text{panjang frame di tengah bentang yaitu } 2 \times 400 = 800 \text{ mm}$ $w = (0.000187435 - 0.0001319149) \times 800 = 0.0444 \text{ mm}$ "Halaman ini sengaja dikosongkan"

BIODATA PENULIS

Penulis dilahirkan di Surabaya, 9 September 1985, merupakan anak pertama dari 2 bersaudara. Penulis telah menempuh pendidikan formal yaitu di TK *Indriansana* Surabaya, SDK *Xaverius 2* Surabaya, SLTPK *Angelus Custos* Surabaya, dan SMAK *Stella Maris* Surabaya, Setelah lulus dari SMA tahun 2003, Penulis melanjutkan pendidikan di Jurusan Teknik Sipil FTSP-ITS Surabaya pada tahun

2003 dan terdaftar dengan NRP 3103.100.020.

MARTINS