29383/11/07





RSM 620,1126 Kar a-1 200:

PERPUSTARAAN

TS

28-4-700

228058

Tel. Terime

Terima Dar

No. Agenda Prp.

TUGAS AKHIR (Desain) - RM1522

ANALISA FAKTOR INTENSITAS TEGANGAN MENGGUNAKAN METODE LANGSUNG DAN J-INTEGRAL PADA CORNER CRACK DENGAN VARIASI LEBAR SPESIMEN

DHITA PROVIE KARTINI NRP. 2104 109 607

Dosen Pembimbing / Penguji Utarna, WIWIEK HENDROWATI,ST.MT.

JURUSAN TEKNIK MESIN Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 2007



FINAL PROJECT (Design) - RM1522

## STRESS INTENSITY FACTOR ANALYSIS USING DIRECT METHODE AND J-INTEGRAL ON CORNER CRACK WITH WIDE VARIATION

DHITA PROVIE KARTINI NRP. 2104 109 607

Advisor Lecturer WIWIEK HENDROWATI,ST.MT.

MECHANICAL ENGINERING DEPARTMENT Industrial Faculty of Technology Sepuluh November Institute of Technology Surabaya 2007

## ANALISA FAKTOR INTENSITAS TEGANGAN MENGGUNAKAN METODE LANGSUNG DAN INTEGRAL-J PADA CORNER CRACK DENGAN VARIASI LEBAR SPESIMEN

## **TUGAS AKHIR**

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada Bidang Studi Desain Program Studi S-1 Jurusan Teknik Mesin Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : DHITA PROVIE K. Nrp. 2104 109 607



SURABAYA JANUARI, 2007

#### ANALISA FAKTOR INTENSITAS TEGANGAN MENGGUNAKAN METODE LANGSUNG DAN INTEGRAL-J PADA CORNER CRACK DENGAN VARIASI LEBAR SPESIMEN

| Nama Mahasiswa          | : DHITA PROVIE K.         |  |
|-------------------------|---------------------------|--|
| NRP                     | : 2104 109 607            |  |
| Jurusan                 | : Teknik Mesin FTI-ITS    |  |
| <b>Dosen Pembimbing</b> | : Wiwiek Hendrowati,ST.MT |  |

#### Abstrak

Kelelahan pada material dapat didefinisikan sebagai patahnya material setelah mengalami pembebanan berulang dalam sejumlah siklus. Mekanisme patah lelah secara umum meliputi tiga tahapan, yaitu: awal terjadinya retakan, perambatan retakan dan patah statik. Faktor intensitas tegangan (K) sebagai salah satu parameter untuk memprediksi pertumbuhan retak dapat dihitung secara analitis, numeris, maupun eksperimental. Dengan memprediksi pertumbuhan retak maka umur dari suatu komponen yang memiliki retakan juga dapat diprediksi.

Tugas akhir ini mengemukakan validasi software ANSYS dalam menghitung faktor intensitas tegangan pada spesimen aluminium 2024 T3 dengan variasi arah lebar dengan retak berupa seperempat elips atau corner crack. Faktor intensitas tegangan dianalisa menggunakan Linier Elastic Fracture Mechanics (LEFM) dan Elastic Plastic Fracture Mechanics (EPFM). Pada kondisi EPFM parameter yang digunakan dalam analisa adalah integral J. Pembebanan menggunakan beban vang bergerak tegak lurus dengan permukaan retak. Harga faktor intensitas tegangan yang dianalisa hanya pada tahapan perambatan retak. Pemodelan spesimen menggunakan elemen isoparametrik 8 node untuk daerah bukan di ujung retak dan elemen heksahedron isoparametrik 20 node pada daerah di ujung retak. Faktor intensitas tegangan yang dihitung adalah  $\Delta Ka$ ,  $\Delta Kc$ , dan  $\Delta K$  fungsi  $\theta$  dimana faktor intensitas tegangan itu dihitung dengan memperhatikan pertambahan panjang retakan. Disamping itu dihitung pula laju perambatan retak arah a (da/dN) dan arah c (dc/dN).

Hasil yang didapat menunjukkan bahwa rasio a/B dan c/W mempengaruhi nilai faktor intensitas tegangan, dimana semakin tinggi a/B dan c/W harga faktor intensitas tegangan semakin besar. Demikian juga laju perambatan retak arah tebal lebih cepat dibandingkan arah lebar. Harga faktor intensitas tegangan pada crack front mempunyai nilai yang berbeda, dimana pada permukaan spesimen mempunyai harga faktor intensitas tegangan yang lebih besar dibandingkan dengan yang berada di tengah spesimen. Analisa faktor intensitas tegangan dengan menggunakan metoda EPFM mempunyai error yang lebih kecil daripada metode LEFM.

Kata kunci : faktor intensitas tegangan, Integral-J, perambatan retak, Corner crack, metode elemen hingga

## STRESS INTENSITY FACTOR ANALYSIS USING DIRECT METHODE AND J-INTEGRAL ON CORNER CRACK WITH WIDE VARIATION

| Name             | : DHITA PROVIE K.               |
|------------------|---------------------------------|
| NRP              | : 2104 109 607                  |
| Major            | : Mechanical Enginering IFT-ITS |
| Advisor lecturer | : Wiwiek Hendrowati,ST.MT       |

#### Abstract

Fatigue at material can be defined as broken material after experiencing of fluctuating load in a number of cycles. Fracture mechanism in general cover three step, that is: Crack Initiation, Crack Propagation and Final Fracture. Stress intensity factor (K) as one of the parameter for predicting crack growth can be calculated analytically, numeric, and also experimental. From predicting crack growth we can predict life of a component with crack.

This Final project tell ANSYS software validating in calculating stress intensity factor at aluminium 2024 T3 specimen with wide direction variation with quarter ellipse crack corner. Stress intensity factor analyzed use Linear Elastic Fracture Mechanics (LEFM) and Elastic Plastic Fracture Mechanics (EPFM). At EPFM condition parameter which is used in analysis is J integral. Static load which work in upright way with crack's surface are used. Analyzed Stress intensity factor only at crack propagation step. Specimen's modeling using isoperimetric 8 node element for not in the crack front region and hexahedron isoperimetric 20 node element for the crack front region. On this final project the calculation of stress intensity factor are concentrate in  $\Delta Ka$ ,  $\Delta Kc$ , and  $\Delta K$  along crack front where it counted with concern in the increase of crack's dimension. The crack growth in a direction (da/dN) and c direction (dc/dN) are also calculated.

The result shown that dimension ratio a/B and c/W influence stress intensity factor value, when a / B and c / W increase, stress intensity factor are increase. It also shown that crack growth in thick direction is quicker then wide direction. Stress intensity factor at crack front have different value, where at surface of specimen have larger value compared to middle of specimen. Stress intensity factor analysis by using EPFM method have smaller error than LEFM method. Keyword: tension intensity factor, Integral-J, crack growth, Crack Corner, finite element method

## KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kehadirat Tuhan YME yang telah melimpahkan rahmat dan nikmat-Nya, sehingga terselesaikannya laporan Tugas Akhir dengan judul "Analisa Faktor Intensitas Tegangan Menggunakan Metode Langsung dan Inegral-J pada Corner Crack dengan Variasi Lebar Spesimen". Pada kesempatan ini, tiada yang pantas penulis sampaikan ungkapan dan ucapan terima kasih yang sebesar-besarnya kepada pihak-pihak yang telah membantu sehingga terselesaikannya penyusunan tugas akhir ini. Ucapan terima kasih penulis sampaikan kepada :

- 1. Dr.Ing Herman Sasongko, selaku Ketua Jurusan Teknik Mesin ITS
- 2. Wiwiek Hendrowati ST,MT, selaku pembimbing yang telah banyak memberikan arahan dan bimbingan dalam penyusunan tugas akhir ini.
- 3. Dr.Ir.Wajan Berata, DEA, Dr.Ir. Soeharto, DEA, Ir.Arie Joewono, Dr.Ir.Agus Sigit P,DEA, Ir.Julendra B. Ariatedja, MT dan Achmad Syaifuddin, ST yang telah memberikan kritik saran dan masukan dalam penulisan tugas akhir.
- 4. Semua pihak yang telah memberikan dukungan dalam pembuatan tugas akhir ini yang tidak bisa penulis sebutkan satu persatu.

Penulis berharap semoga laporan akhir ini dapat bermanfaat bagi para pembaca khususnya mahasiswa Teknik Mesin ITS. Untuk lebih sempurnanya laporan akhir ini, penulis mengharap saran dan kritik yang bersifat membangun dari berbagai pihak yang telah membaca laporan ini.

Surabaya, Januari 2007

Penulis

# DAFTAR ISI

| HALA | MAN    | JUDUL    |                                        | i    |
|------|--------|----------|----------------------------------------|------|
| LEME | BAR PE | ENGESA   | HAN                                    | ii   |
| ABST | RAK    |          |                                        | iii  |
| ABST | RACT   |          |                                        | iv   |
| KATA | A PENC | GANTAR   |                                        | v    |
| DAFT | AR IS  |          |                                        | vi   |
| DAFT | AR GA  | MBAR     |                                        | viii |
| DAFT | AR TA  | BEL      |                                        | ix   |
| BAB  | I PEN  | DAHUL    | UAN                                    |      |
|      | 1.1    | Latar Be | elakang                                | 1    |
|      | 1.2    | Perumus  | san Masalah                            | 2    |
|      | 1.3    | Batasan  | Masalah                                | 2    |
|      | 1.4    | Tujuan   |                                        | 2    |
|      | 1.5    | Manfaat  | Tugas Akhir                            | 3    |
| BAB  | II TIN | JAUAN    | PUSTAKA                                |      |
|      | 2.1    | Tinjauar | n Pustaka                              | 5    |
|      | 2.2    | Mekanis  | me Patah Lelah                         | 6    |
|      |        | 2.2.1    | Mode Pembukaan Retak                   | 6    |
|      |        | 2.2.2    | Faktor Intensitas Tegangan             | 7    |
|      |        | 2.2.3    | Daerah Plastis Di Ujung Retak          | 9    |
|      |        | 2.2.4    | Tegangan Bidang Dan Regangan Bidang    | 11   |
|      |        | 2.2.5    | Perambatan Retak                       | 11   |
|      |        | 2.2.6    | Jenis Tegangan Uji Lelah               | 13   |
|      |        | 2.2.7    | Integral J dan Ketidak-tergantungannya |      |
|      |        |          | terhadap Lintasan                      | 14   |
|      |        | 2.2.8    | Kriteria Rnergi                        | 15   |
|      | 2.3    | Metode   | Elemen Hingga                          | 17   |
|      |        | 2.3.1    | Konsep Elemen Hingga                   | 17   |
|      |        | 2.3.2    | Pemodelan Perambatan Retak             | 18   |
|      |        | 2.3.3    | Evaluasi Faktor Intensitas Tegangan    |      |
|      |        |          | Kondisi LEFM                           | 21   |
|      |        | 2.3.4    | Evaluasi Faktor Intensitas tegangan    |      |
|      |        |          | Kondisi EPFM                           | 22   |



| BAB III MI  | ETODOLOGI PENELITIAN                                |    |
|-------------|-----------------------------------------------------|----|
| 3.1         | Diagram Alir Penulisan                              | 27 |
| 3.2         | Simulasi Menggunakan ANSYS                          | 28 |
| 3.3         | Komparasi Hasil                                     | 31 |
| BAB IV AN   | ALISA DAN PEMBAHASAN                                |    |
| 4.1         | Hasil Eksperimen                                    | 33 |
| 4.2         | Faktor Intensitas Tegangan terhadap Dimensi Retak   | 36 |
| 4.3         | Faktor Intensitas Tegangan terhadap Rasio Dimensi   |    |
|             | Retak dan Dimensi Spesimen                          | 37 |
| 4.4         | Faktor Intensitas Tegangan terhadap Laju Perambatan |    |
|             | Retak                                               | 39 |
| 4.5         | Persamaan Paris                                     | 41 |
| 4.6         | Perbandingan Hasil Perhitungan ANSYS                |    |
|             | dengan Eksperimen                                   | 43 |
| 4.7         | Rentang Faktor Intensitas Tegangan terhadap Posisi  | 47 |
| BAB V KES   | IMPULAN DAN SARAN                                   |    |
| 5.1         | Kesimpulan                                          | 51 |
| 5.2         | Saran                                               | 52 |
| DAFTAR PL   | JSTAKA                                              | 53 |
| Lampiran A. | Listing Program ANSYS                               | 55 |
| Lampiran B. | Pemodelan Kondisi                                   | 65 |
| Lampiran C. | Hasil Perhitugan                                    | 67 |



v

## DAFTAR GAMBAR

| Gambar 2.1  | Mode Pembebanan                                   | 6  |
|-------------|---------------------------------------------------|----|
| Gambar 2.2  | Distribusi Tegangan Disekitar Retakan             | 7  |
| Gambar 2.3  | (a) Perkiraan Ukuran Daerah Plastis               |    |
|             | (b) Sebagai Fungsi θ                              | 10 |
| Gambar 2.4  | Kurva Laju Perambatan Retak                       | 13 |
| Gambar 2.5  | Kontur lintasan                                   | 15 |
| Gambar 2.6  | (a) Elemen heksehedron isoparametrik 20 node,     |    |
|             | (b) Elemen heksahedron quarter-point 20 node      | 19 |
| Gambar 2.7  | Prosedur standar Metode Elemen Hingga             | 27 |
| Gambar 3.1  | Langkah-langkah Evaluasi                          | 31 |
| Gambar 3.2  | Langkah-langkah analisa dengan ANSYS              |    |
|             | untuk metode langsung                             | 28 |
| Gambar 3.3  | Langkah-langkah analisa dengan ANSYS              |    |
|             | untuk metode J-integral                           | 29 |
| Gambar 3.4  | Geometri model Corner Crack                       | 30 |
| Gambar 4.1  | Grafik faktor intensitas tegangan terhadap        |    |
|             | dimensi retak                                     | 37 |
| Gambar 4.2  | Faktor intensitas tegangan terhadap rasio dimensi | 38 |
| Gambar 4.3  | Grafik laju perambatan retak LEFM                 | 39 |
| Gambar 4.4  | Grafik laju perambatan retak EPFM                 | 40 |
| Gambar 4.5  | Kurva Paris arah tebal                            | 41 |
| Gambar 4.6  | Kurva Paris arah lebar                            | 42 |
| Gambar 4.7  | Grafik perbandingan arah tebal                    | 44 |
| Gambar 4.8  | Grafik perbandingan arah lebar                    | 45 |
| Gambar 4.9  | Rentang faktor tiap kondisi                       | 46 |
| Gambar 4.10 | A2006G42R01                                       | 48 |
| Gambar 4.11 | A1606G42R01                                       | 48 |
| Gambar 4.12 | A1206G42R01                                       | 48 |
| Gambar B.1  | A2006G42R01                                       | 65 |
| Gambar B.2  | A1606G42R01                                       | 65 |
| Gambar B.3  | A1206G42R01                                       | 66 |

## DAFTAR TABEL

| Tabel 3.1 | Dimensi Spesimen                            | 30 |
|-----------|---------------------------------------------|----|
| Tabel 4.1 | Faktor intensitas tegangan hasil eksperimen | 33 |
| Tabel C.1 | A2006G42R01 LEFM                            | 67 |
| Tabel C.2 | A2006G42R01 EPFM                            | 67 |
| Tabel C.3 | A1606G42R01 LEFM                            | 68 |
| Tabel C.4 | A1606G42R01 EPFM                            | 68 |
| Tabel C.5 | A1206G42R01 LEFM                            | 69 |
| Tabel C.6 | A1206G42R01 EPFM                            | 67 |

## BAB I PENDAHULUAN

#### 1.1 Latar Belakang

Desain berkembang semakin kompleks dan pembebanan peralatan kriteria desain juga berkembang dari konsep umur tak hingga ke umur berhingga. Hal ini menuntut perancang untuk dapat memprediksi umur komponen yang menerima beban fluktuatif (beban operasinya bervaratif terhadap waktu baik dalam bentuk maupun nilainya).

Kelelahan pada material dapat didefinisikan sebagai patahnya material setelah mengalami pembebanan berulang dalam sejumlah siklus. Fase terakhir kelelahan pada sebuah elemen mesin yang mendapat beban siklik ditandai dengan munculnya sebuah titik retak tertentu. Mekanisme patah lelah secara umum meliputi tiga tahapan, yaitu: awal terjadinya retakan (*Crack Initiation*), perambatan retakan (*Crack Propagation*), patah statik (*Final Fracture*).

Deformasi plastis pada ujung retak hanya terjadi di daerah sempit yang dikelilingi atau dibatasi oleh daerah elastis yang jauh lebih besar. Komponen tersebut secara keseluruhan masih berperilaku elastis. Karena daerah yang terdeformasi plastis berpotensi untuk terjadi awal retakan, maka umur komponen tersebut diharapkan dapat diprediksi.

Untuk keperluan keamanan, banyak dilakukan penelitian untuk mengetahui perilaku perambatan retak, baik secara empiris maupun simulasi numerik (menyangkut surface crack ataupun corner crack). Penelitian yang dilakukan antara lain dilaksanakan untuk menyelidiki pengaruh variasi dimensi, bentuk retakan, pembebanan siklik, spesifikasi bahan terhadap perambatan retak. Eksperimen dalam bentuk-bentuk sederhana (*Compact Tension Specimen*) dilakukan untuk mengetahui perilaku perambatan retak, karena eksperimen membutuhkan biaya dan waktu lebih banyak dalam pelaksanaannya maka banyak pengembangan menggunakan simulasi. Setelah simulasi pada bentuk sederhana dapat dikatakan akurat, maka dilakukan simulasi untuk bentuk yang lebih rumit pada spesimen maupun retakan. Penelitian tentang perilaku corner crack didasari pada kenyataan bahwa banyak terjadi retakan pada komponen yang masuk kategori corner crack (misalnya pada akar roda gigi, sudut pertemuan antara badan dan kepala baut).

#### 1.2 Perumusan Masalah

Tugas akhir ini memodelkan perilaku perambatan corner crack berbentuk seperempat elips dalam ANSYS. Kajian yang dilakukan adalah analisa perambatan corner crack akibat variasi lebar spesimen dalam faktor intensitas tegangan baik dalam kondisi LEFM maupun EPFM pada crack front. Dengan membuat pemodelan metode elemen hingga, dimana pada derah di ujung retak elemen yang digunakan yaitu elemen heksahedron isoparametrik 20 node dan untuk di daerah bukan di ujung retak menggunakan elemen heksahesron 8 node. Kemudian hasil yang didapat dibandingkan dengan hasil eksperimen.

#### 1.3 Batasan Masalah

Batasan masalah yang digunakan dalam tugas akhir ini adalah sebagai berikut:

- Kondisi Pembebanan dalam mode I dengan beban statik merata.
- Spesimen diasumsikan homogen, isotropic.
- Pengaruh lingkungan diabaikan.

#### 1.4 Tujuan

Tujuan dari tugas akhir ini adalah sebagai berikut :

- Mendapatkan harga faktor intensitas tegangan dalam analisa LEFM dengan menggunakan metode elemen hingga.
- Mendapatkan harga faktor intensitas tegangan dalam analisa EPFM melalui integral-J dengan menggunakan metode elemen hingga.

- Mengetahui pengaruh variasi lebar spesimen terhadap faktor intensitas tegangan baik menggunakan metode LEFM maupun EPFM.
- Mengetahui kevalidan penggunaan metode elemen hingga pada hasil perhitungan faktor intensitas tegangan dengan ANSYS dan melihat perbandingan hasil analisa dengan hasil eksperimen yang ada.

## 1.5 Manfaat Tugas Akhir

Tugas akhir ini memberikan manfaat sebagai berikut:

- Untuk perancangan struktur yang memiliki resiko tinggi terhadap kerusakan, maka software metode elemen hingga dapat digunakan sebagai alat komparasi hasil pengujian suatu spesimen.
- Dapat diketahui laju perambatan retak pojok pada suatu jenis material sehingga dapat diprediksi umur material tersebut.



## BAB II TINJAUAN PUSTAKA

## 2.1 Tinjauan Pustaka

Analisa terhadap perambatan retak yang terjadi pada suatu komponen harus dilakukan jika ingin memprediksi umur pemakaian suatu komponen. Karena faktor intensitas tegangan sangat berpengaruh pada perambatan retak, maka metode dalam menentukan faktor intensitas tegangan berkembang dengan pesat baik melalui metode analitis, eksperimen, maupun numerik. Dengan metode analitis akan didapatkan harga faktor intensitas tegangan yang akurat, tetapi untuk geometri spesimen, pola pembebanan dan pola retak yang rumit akan menemui kesulitan. Sedangkan untuk eksperimen, kendalanya adalah mahalnya biaya dan lamanya waktu yang diperlukan dalam pengujian. Sehingga banyak dikembangkan metode numerik.

Penelitian tentang corner crack pada bahan aluminium dilakukan oleh Curtin, Adey dan Brussat (2000). Spesimen yang digunakan berbentuk clevis yang terdiri dari 2 lug yang berlubang sebagai tempat pin yang dikenai pembebanan. Penelitian dilakukan untuk memperkirakan faktor intensitas tegangan dari laju perambatan retak yang dipengaruhi oleh toleransi pin-lubang. Nilai faktor intensitas tegangan yang diperoleh dari eksperimen dibandingkan dengan analisa numerik menggunakan software BEASY dan NASGRO. Hasil menunjukkan bahwa harga faktor intensitas tegangan dari 3 cara yang ditempuh hampir sama, dan nilai faktor intensitas tegangan bertambah dengan bertambahnya toleransi.

Pramono, Berata dan Kurniawan (2001) menggunakan software ANSYS untuk menghitung faktor intensitas tegangan pada *Compact Tension Specimen* (CTS). Pemodelan menggunakan elemen quadrilateral isoparanetrik 8 node untuk CTS 2D dan elemen isoparametrik 20 node untuk CTS 3D. Hasil yang didapat ternyata memberikan hasil faktor intensitas tegangan yang dekat (error = 3,203%) dengan eksperimen.

Berata, Pramono dan Irfan (2002) menggunakan perameter J-Integral untuk memperoleh harga factor intensitas tegangan. Penelitian yang dilakukan meliputi analisa perambatan retak untuk material Ti-6Al-4V dalam bentuk *Compact Tension Specimen*. Perhitungan dilakukan secara numeris dengan menggunakan metode elemen hingga memanfaatkan software ANSYS. Hasil penelitian juga menunjukkan bahwa harga faktor intensitas yang diperoleh mendekati hasil eksperimen (error = 1.5%).

#### 2.2 Mekanisme Patah Lelah

Kelelahan pada material dapat didefinisikan sebagai patahnya material setelah mengalami pembebanan berulang dalam sejumlah siklus. Mekanisme patah lelah secara umum terdiri dari tiga tahapan, yaitu: awal terjadinya retakan (*Crack Initiation*), perambatan retakan (*Crack Propagation*), patah statik (*Final Fracture*). Patah akan terjadi bila distribusi tegangan disekitar ujung retak yang ditentukan oleh faktor intensitas tegangan (K) telah mencapai suatu harga kritis.

#### 2.2.1. Mode Pembukaan Retak

Distribusi tegangan pada ujung retak dapat dibebani dalam tiga macam mode pembebanan. Mode I beban bergerak tegak lurus, dimana permukaan retak lagsung bergerak terpisah. Mode II perambatan yang terjadi sejajar dengan arah pembebanan. Mode III diakibatkan oleh gaya puntir pada bidang. Dimana pembebanan mode I merupakan kasus yang paling sering terjadi.



Gambar 2.1 Mode Pembebanan

## 2.2.2. Faktor Intensitas Tegangan

Tegangan disekitar ujung retakan dapat ditulis sebagai berikut:

$$\sigma_{y} = \frac{K_{I}}{\sqrt{2.r.\cos\omega}} \cos\frac{\theta}{2} \left( 1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right) + \frac{K_{II}}{\sqrt{2.r.\cos\omega}} \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} (2.1)$$
$$\sigma_{x} = \frac{K_{I}}{\sqrt{2.r.\cos\omega}} \cos\frac{\theta}{2} \left( 1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2} \right) - \frac{K_{II}}{\sqrt{2.r.\cos\omega}} \sin\frac{\theta}{2} \left( 2 + \cos\frac{\theta}{2}\cos\frac{3\theta}{2} \right) (2.2)$$
$$\sigma_{z} = 2\theta \left( \frac{K_{I}}{\sqrt{2.r.\cos\omega}} \cos\frac{\theta}{2} - \frac{K_{II}}{\sqrt{2.r.\cos\omega}} \sin\frac{\theta}{2} \right)$$

$$\tau_{xy} = \frac{K_I}{\sqrt{2r.\cos\omega}} \left(\sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) + \frac{K_{II}}{\sqrt{2r.\cos\omega}}\cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) (2.3)$$
$$\tau_{xz} = \frac{K_{III}}{\sqrt{2r.\cos\omega}}\sin\frac{\theta}{2}$$

$$\tau_{yz} = \frac{K_{III}}{\sqrt{2.r.\cos\omega}}\cos\frac{\theta}{2}$$



Gambar 2.2 Distribusi Tegangan Disekitar Retakan Dari persamaan diatas dapat dilihat bahwa tegangan disekitar ujung retak sangat ditentukan oleh harga K, sedangkan suku lain menyatakan posisi. Harga K disebut faktor intensitas tegangan yang merupakan fungsi dari dimensi retakan dan tegangan. Contoh sederhana yang sering dijadikan referensi adalah kasus retak tembus sepanjang 2a yang berada di tengah plat, dibebani dengan tegangan tarik sebesar o. Sehingga secara umum faktor intensitas tegangan dapat ditulis:

$$K = \beta \sigma \sqrt{\pi a} \tag{2.4}$$

Dimana,

 $\beta$  = faktor koreksi bentuk

 $\beta = 1$ , untuk lebar pelat tak berhingga maka faktor koreksi bentuk

 $\sigma$  = tegangan yang bekerja pada benda uji

a = panjang retakan

Dengan mengingat persamaan Irwin untuk laju pelepasann energi

$$G = \frac{\pi . \sigma^2 . a}{E} \tag{2.5}$$

Maka

$$K = \sqrt{E.G}$$

Dimana.

E = modulus elastisitas

G = laju pelepasan energi

Dimana untuk corner crack berbentuk seperempat elips, nilai kan analisa numerik. K

$$K = \sigma . F \sqrt{\frac{\pi . a}{Q}}$$
(2.7)

Dimana Q adalah parameter bentuk retakan berdasarkan penyelesian integral elips. F adalah konstanta geometri, yang menurut Anderson dapat ditulis:

$$F = \left[ M1 + M2 \left(\frac{a}{B}\right)^{2} + M3 \left(\frac{a}{B}\right)^{4} \right] g1.g2.f_{\phi}.f_{w}(2.8)$$

$$M1 = 1,08 - 0,03 \left(\frac{a}{c}\right)$$

$$M2 = -0,44 + \frac{1,06}{0,3 + \frac{a}{c}}$$

$$M3 = -0,5 - 0,25 \left(\frac{a}{c}\right) + 14,8 \left(1 - \frac{a}{c}\right)^{15}$$

$$g_{1} = 1 + \left[0,08 + 0,4 \left(\frac{a}{B}\right)^{2}\right] (1 - \sin\phi)^{3}$$

$$g_{2} = 1 + \left[0,08 + 0,15 \left(\frac{a}{B}\right)^{2}\right] (1 - \cos\phi)^{3}$$

$$f_{\phi} = \left[ \left(\frac{a}{c}\right)^{2} \cos^{2}\phi + \sin^{2}\phi \right]^{\frac{1}{2}}$$

$$f_{w} = \left[ \sec\left(\frac{\pi c}{2W}\sqrt{\frac{a}{B}}\right) \right]^{\frac{1}{2}}$$

$$Q = 1 + 1,464 \left(\frac{a}{c}\right)^{1.65}$$
(2.9)

## 2.2.3. Daerah Plastis di Ujung Retakan

Mengacu pada peramaan (2..1), (2.2), (2.3) untuk kasus pembebanan mode I dengan  $\theta = 0^0$ , akan muncul tegangan yang bernilai tak berhingga saat r mendekati nol. Pada kenyataannya hal ini tidak mungkin terjadi karena material pada ujung retakan akan mengalami deformasi plastik, jika tegangan yang bekerja lebih besar daripada tegangan luluhnya. Estimasi daerah plastis dapat dilakukan dengan mengasumsikan batas antara elastis dan plastis adalah kondisi yield. Sehingga daerah plastis di ujung retakan didapat:

$$\sigma_{yy} = \sigma_{yeild} = \frac{K}{\sqrt{2.\pi r}}$$
(2.10)



## Gambar 2.3 (a) Perkiraan Ukuran Daerah Plastis (b) Sebagai Fungsi θ

Ukuran daerah plastis untuk kondisi plane stress:

$$r_{y} = \frac{1}{2.\pi} \left[ \frac{K}{\sigma_{yield}} \right]^{2}$$
(2.11)

Untuk kondisi plane strain karena adanya efek tegangan 3 dimensi, maka ukuran daerah plastis menjadi lebih kecil:

$$r_{y} = \frac{1}{6.\pi} \left[ \frac{K}{\sigma_{yield}} \right]^{2}$$
(2.12)

Daerah plastis pada ujung retak dapat dijumpai dalam bentuk lain, dimana ukuran daerah plastis bervariasi terhadap  $\theta$ . Bila ukuran daerah plastis pada ujung retak ditentukan untuk kasus umum, dimana  $\sigma_x$ ,  $\sigma_y$  dan  $\sigma_z$  digambarkan sebagai fungsi r dan  $\theta$ , maka didapat daerah plastis yang diasumsikan berbentuk kupu-kupu (Gambar2.3 b).

$$r_{y} = \frac{K^{2}}{6\pi\sigma_{ys}^{2}} \cdot \cos^{2}\left(\frac{\theta}{2}\right) \left[1 + 3 \cdot \sin^{2}\left(\frac{\theta}{2}\right)\right]$$
(2.13)

## 2.2.4 Tegangan Bidang Dan Regangan Bidang

Bila daerah plastis yang dikelilingi daerah elastis yang luas mendapat beban tegangan (misal 2 arah atau 3 arah), maka pengembangan regangan di daerah plastis berupa regangan tekan. Kondisi tegangan bidang (plane stress) terjadi pada plat tipis dimana  $\sigma_z$  tidak cukup besar dalam arah ketebalan sehingga tegangan yang berlaku hanya dalam 2 arah. Misalnya sebuah beban diberikan dalan arah Y yang akan menyebabkan regangan positif arah Y dan regangan negatif arah X dan Z, agar volume konstan. Sedangkan  $\sigma_x$ bekerja untuk menghalangi kontraksi daerah plastis arah X, dan regangan negative arah Z ditiadakan oleh tegangan tarik yang ditimbulkan  $\sigma_z$ . Bila tidak ada tegangan normal terhadap permukaan bebas, maka tegangan yang menembus ketebalan harus sama dengan nol pada kedua permukaan. Pada spesimen yang memiliki ketebalan tegangan  $\sigma_z$  berkembang sehingga tegangan tarik 3 arah bekerja pada ujung retakan dan menghambat peregangan arah Z. Kondisi regangan bidang (plane strain) ini dapat ditunjukkan untuk mengembangkan suatu tegangan kearah ketebalan. Kondisi tegangan bidang dan regangan bidang pada suatu pembebanan dapat ditentukan dengan membandingkan ukuran daerah plastis pada ujung retak terhadap

tebal spesimen. Jika  $\frac{r_y}{B} \ge 1$  maka kondisi plane stress, jika  $\frac{r_y}{B} \le \frac{1}{10}$  maka kondisi plane strain, dimana B adalah tebal spesimen.

#### 2.2.5. Perambatan Retak

Patah lelah merupakan salah satu kategori kegagalan pada struktur atau material. Permukaan patah lelah mempunyai ciri-ciri khusus yang pada dasarnya dibagi menjadi dua daerah, yaitu daerah patah lelah dan daerah patah static yang dibatasi oleh garis pantai.



Untuk pembebanan yang memiliki amplitude konstan, laju perambatan retak merupakan fungsi dari factor intensitas tegangan. Hubungan tersebut digambarkan dalam kurva log-log yang dapat dibagi menjadi tiga bagian:

Daerah I, merupakan daerah ambang dimana daerah tersebut menunjukkan nilai ambang ( $\Delta K_{threshold}$ ). Dibawah harga tersebut retak sangat sulit merambat, dan pada daerah ini mulai timbul retak mikro (*Crack Initiation*).

Daerah II, pada daerah ini retak mikro membesar dan jika pembebenan tetap berlanjut maka retak akan merambat (*Crack propagation*). Hubungan log laju perambatan dan log faktor intensitas tegangan mempunyai hubungan linier. Persamaan Paris menunjukkan hubungan antara laju perambatan retak dengan faktor intensitas tegangan dalam fungsi eksponensial

$$\frac{da}{dN} = C(\Delta K)^m \tag{2.14}$$

Dimana C dan m adalah parameter material.

614 199 PH

Daerah III, pada daerah ini retak telah merambat cukup jauh dan besar, sehingga perambatan retak dipengaruhi oleh ketahanan patah. Jika pembebanan tetap dilakukan, beban yang bekerja hanya akan didukung oleh penampang sisa yang belum retak sampai akhirnya patah (*Final fracture*).



Gambar 2.4 Kurva Laju Perambatan Retak

## 2.2.6. Jenis Tegangan Uji Lelah

Perkiraan umur lelah biasanya dinyatakan sebagai sejumlah siklus tegangan yang dicapai sampai komponen patah. Dalam hal ini umur total tersebut mencakup tahap awal retakan, perambatan retak, dan akhirnya patah. Beban berulang yang diterima oleh struktur dapat berupa tegangan tarik, tekan, ataupun bending. Notasi yang biasa dipakai dalam kondisi beban berulang adalah:

2

Rasio tegangan 
$$R = \frac{\sigma_{\min}}{\sigma_{\max}}$$
 (2.15)

Amplitudo tegangan 
$$\sigma_a = \frac{\sigma_{\text{max}} - \sigma_{\text{min}}}{2}$$
 (2.16)  
Tegangan rate rate  $\sigma_a = \frac{\sigma_{\text{max}} + \sigma_{\text{min}}}{2}$  (2.17)

 $\sigma_m =$ 

Tegangan rata-rata

2.17

dimana  $\sigma_{\max}$  = tegangan maksimum

 $\sigma_{\min}$  = tegangan minimum

## 2.2.7 Integral J dan Ketidak-tergantungannya terhadap Lintasan

Integral J merupakan parameter lain disamping Faktor Intensitas Tegangan, yang dikembangkan untuk mendefinisikan kondisi deformasi elastik dan plastik di sekitar retak. Rice mengajukan suatu integral kontur yang bersifat tidak tergantung pada lintasan ( path independence ) dengan berdasarkan atas prinsip kelestarian energi. Bentuk dari integral tersebut dapat ditulis sebagai:

$$J = \int_{\Gamma} \left( W.dy - T\frac{\partial u}{\partial x}.ds \right) = 0$$
(2.18)  
Dimana:  $W = \int_{\Gamma}^{\varepsilon} \sigma.d\varepsilon$ (2.19)

W adalah energi regangan per unit volume. Integral tersebut di atas dinamakan integral J.

Rice, pada kesempatan lain membuktikan bahwa harga integral J tidak dipengaruhi oleh lintasan. Meskipun tidak nampak secara langsung, integral tersebut sebenarnya menunjukkan prinsip kelestarian energi dalam bentuk tegangan. Pada benda dengan retak, di buat suatu kontur tertutup (ABCDEF) disekeliling ujung retak. Menurut persamaan (2.18), harga integral di sepanjang kontur ini sama dengan nol. Integral terdiri dari jumlah empat bagian, yaitu:

$$\int_{-1}^{-1} + \int_{-CD}^{-1} + \int_{-\Gamma_2}^{-1} + \int_{-FA}^{-1} = 0$$
 (2.20)

Dimana:

 $\Gamma$  : sembarang lintasan di sekeliling ujung retak.

ds : elemen kecil lintasan  $\Gamma$ .

- T : vektor tegangan yang tegak lurud lintasan  $\Gamma$ .
- u : perpindahan.



(b) Gambar 2.5. Kontur Integral (a) Bodi dengan retak (b) Kontur tidak bergantung lintasan

Di sepanjang permulaan retak tidak bekerja traksi dan komponen dy = 0, maka integral tersebut di atas menjadi :

$$\int_{\Gamma_1} + \int_{\Gamma_2} = 0 \text{ atau } \int_{\Gamma_1} = -\int_{\Gamma_2}$$
(2.21)

Terlihat bahwa kontribusi lintasan ABC sama tapi berlawanan tanda dengan kontribusi lintasan DEF. Satu berarah clockwise dan lainnya counterclockwise, sehingga untuk lintasan  $\Gamma 1$ dan  $\Gamma 2$  yang searah akan berharga sama. Karena lintasan  $\Gamma 1$  dan  $\Gamma 2$ adalah sembarang lintasan yang berawal dan berakhir pada permukaan retak yang berlawanan, maka dengan demikian nilai integral tersebut tidak bergantung lintasan dan selalu berharga sama.

## 2.2.8. Kriteria Energi

Persoalan Fracture Mechanics dapat dianalisa menggunakan prinsip kelestarian energi dengan terlebih dahulu meninjau energienergi yang terlibat didalamnya, yaitu: energi regangan / energi elastik di dalam benda U, kerja yang dilakukan beban luar F dan energi untuk membentuk retak baru W. Pertambahan retak sepanjang da akan terjadi jika tersedia cukup energi untuk membentuk retak sepanjang da. Secara

matematis dituliskan :  

$$\frac{d}{da}(F-U) = \frac{dW}{da}$$
(2.22)

Dapat ditunjukkan bahwa ruas kiri adalah laju energi regangan itu sendiri, sehingga :

$$\frac{dU}{da} = \frac{dW}{da} \tag{2.23}$$

Yang secara langsung menunjukkan kriteria energi. Persamaan (2.23) dipakai sebagai kriteria energi pada analisa Fracture Mechanics, baik LEFM maupun EPFM.

Persamaan kriteria energi untuk kondisi elastik-plastik adalah :

$$\frac{\pi\beta^2\sigma^2 a}{E} + \frac{H\sigma^{n+1}a}{F} = \frac{dW}{da}$$
(2.24)  
$$\frac{\pi\beta^2\sigma^2 a}{E} + \frac{H\sigma^{n+1}a}{F} = J_R$$
(2.25)

$$J_{el} + J_{pl} = J_R$$
 (2.26)

Dimana:

- $\beta$  : faktor geometri spesimen
- H : faktor koreksi geometri
- E : Modulus Elastisitas
- F : Modulus Plastisitas
- n : strain hardening exponent
- a : panjang retak

J<sub>R</sub> : laju energi untuk membuat retak baru

Harga  $J_R$  identik dengan G (laju pelepasan energi Irwin) pada kondisi LEFM, maka

$$J_R = G = \frac{{K_I}^2}{\overline{E}}$$

$$K_I = \sqrt{J_R \cdot \overline{E}}$$

Dimana

 $K_{I}$  = faktor intensitas teganganmode I  $\overline{E}$  = E (plain stress) =  $\frac{E}{1-\nu^{2}}$  (plain strain)

2.3 Metode Elemen Hingga

2.3.1. Konsep Elemen Hingga

Dalam analisa untuk menentukan gaya atau tegangan yang terjadi pada setiap titik dalam suatu benda pejal, dibutuhkan fungsi tegangan atau fungsi perpindahan yang harus memenuhi persamaan kesetimbangan, hubungan tegangan-regangan dan kompabilitas pada setiap titik. Untuk geometri benda kompleks, pembentukan fungsifungsi tersebut akan sangat kompleks pula sehingga pemecahan masalahnyapun sulit.

Pada Metode Elemen Hingga, sebuah benda dibagi-bagi menjadi elemen-elemen kecil berhingga yang memiliki bentuk geometri yang lebih sederhana, sehingga mengubah suatu masalah yang memiliki derajat kebebasan tak berhingga menjadi sejumlah derajat kebebasan berhingga. Metode ini merupakan analisa pendekatan terhadap nilai perpindahan dan tegangan pada elemen, dengan memasukkan beban-beban yang terjadi pada elemen. Oleh karena itu langkah-langkah yang ditempuh adalah:

- 1. Bagilah kontinum menjadi sejumlah elemen yang berhingga dengan bentuk geometri yang sederhana.
- Pilihlah titik-titik pada elemen yang diperlakukan sebagai titik nodal dimana syarat keseimbangan dan kompatibilitas harus dipenuhi.
- 3. Asumsikan fungsi peralihan pada setiap elemen sedemikian rupa sehingga peralihan pada setiap titik sembarang dipengaruhi oleh nilai titik nodalnya.

(2.27)

- Pada setiap elemen khusus yang dipilih harus dipenuhi persyaratan hubungan tegangan-peralihan dan hubungan tegangan-regangannya.
- 5. Tentukan kekakuan dan beban titik nodal ekuivalen untuk setiap elemen dengan menggunakan prinsip usaha atau perinsip energi.
- Turunkan persamaan keseimbangan untuk setiap titik nodal dari diskritisasi kontinum ini sesuai dengan kontribusi elemennnya.
- 7. Selesaikan persamaan keseimbangan ini untuk mencari peralihan titik nodal.
- 8. Hitung tegangan pada titik-titik tertentu dalam elemen tadi.
- 9. Tentukan reaksi perletakan pada titik nodal yang tertahan bila diperlukan.

#### 2.3.2. Pemodelan Perambatan Retak.

Agar dapat merepresentasikan singularitas pada sekitar ujung retak diperlukan meshing yang sangat halus. Pengembangan elemen orde teinggi, seperti elemen isoparametrik ternyata memberikan kasamaan akurasi yang dapat diterima pada pembagian meshing yang agak kasar. Sebuah elemen disebut isoparametrik bila fungsi geometrik dan fungsi bentuk peralihan dari elemen tersebut menggunakan rumus interpolasi yang sama. Sedangkan elemen singular dibentuk dengan menggeser nodal tengah dari elemen isoparametrik ke posisi seperempat panjang sisi elemen dari nodal ujung retak. Singularitas pada ujung retak dapat ditampilkan menggunakan elemen heksakedron isoparametrik 20 node yaitu dengan menggeser node 10, 12,18, dan 20 ke posisi seperempat panjang maka singularitas regangan dapat ditampilkan pada bidang 3-4-8-7. Dari pergeseran tersebut terbentuk suatu elemen yang disebut elemen heksahedron guarter-point seperti yang terlihat pada gambar 2.5.(b)



Gambar 2.6. (a) Elemen heksahedron isoparametrik 20 node (b) Elemen singular heksahedron quarter-point 20 node *Shape function* pada node 3, 10 dan 2 untuk elemen isoparametrik 20 node tiga dimensi adalah sebagai berikut:

$$N_3 = \frac{1}{8} (1+s)(1+t)(1-r)(s+t-r-2)$$
(2.28)

$$N_{10} = \frac{1}{4} \left( 1 - t^2 \right) \left( 1 + s \right) \left( 1 - r \right)$$
(2.29)

$$N_2 = \frac{1}{8} (1+s)(1-t)(1-r)(s-t-r-2)$$
(2.30)

Sepanjang sisi node 2, 10 dan 3 memiliki r = -1 dan s = 1, sehingga:

$$N_3 = \frac{1}{2} \left( t + t^2 \right) \tag{2.31}$$

$$N_{10} = \left(1 - t^2\right) \tag{2.32}$$

$$N_2 = \frac{1}{2} \left( -t + t^2 \right) \tag{2.33}$$

Dari representasi y koordinat pada elemen yaitu:

$$y = \sum_{i} N_{i} y_{i} \tag{2.34}$$

$$y = \frac{1}{2} \left( t + t^2 \right) y_3 + \left( 1 - t^2 \right) y_{10} + \frac{1}{2} \left( -t + t^2 \right) y_2 \quad (2.35)$$

Dengan menempatkan koordinat pada node 3 dan memberikan panjang sisi tersebut sebesar L maka  $y_3=0$ ,  $y_{10}=L/4$  dan  $y_2=L$  maka:

$$y = (1 - t^{2})\frac{L}{4} + \frac{1}{2}(-t + t^{2})L$$
(2.36)

Atau ditampilkan dalam t yaitu :

$$t = 1 + 2\sqrt{\frac{y}{L}} \tag{2.37}$$

Dari salah satu komponen matrik *Jacobian* yaitu  $\frac{\partial y}{\partial t}$  dan

memasukkan harga t dari persamaan diatas akan diperoleh:

$$\frac{\partial y}{\partial t} = \frac{L}{2}(t-1) = \sqrt{Ly}$$
(2.38)

Sehingga matrik *Jacobian* akan singular pada node 3 dimana y = 0. Perpindahan u pada sisi 3-10-2 yaitu:

$$v = \sum_{i} N_{i} v_{i} = \frac{1}{2} t (1+t) v_{3} + (1-t^{2}) v_{10} + \frac{1}{2} (-t) (1-t) v_{2} (2.39)$$

Substitusi t pada persamaan di atas, akan didapat:

$$v \sum_{i} N_{i} v_{i} = \frac{1}{2} \left( 1 + 2\sqrt{\frac{y}{L}} \right) \left( 2 + 2\sqrt{\frac{y}{L}} \right) v_{3} - 4 \left( \sqrt{\frac{y}{L}} + \frac{y}{L} \right) v_{10} + \frac{1}{2} \left( -1 - 2\sqrt{\frac{y}{L}} \right) \left( -2\sqrt{\frac{y}{L}} \right) v_{2}$$
(2.40)

Regangan pada arah y adalah :

$$\varepsilon_{y} = \frac{\partial v}{\partial y} = \frac{\partial t}{\partial y} \frac{\partial v}{\partial t} = \frac{1}{2} \left( \frac{3}{\sqrt{yL}} + \frac{4}{L} \right) v_{3} + \left( -\frac{1}{\sqrt{yL}} - \frac{4}{L} \right) v_{10} + \frac{1}{2} \left( \frac{1}{\sqrt{yL}} + \frac{4}{L} \right) v_{2}$$
(2.41)

Tampak bahwa komponen  $\varepsilon_y$  menunjukkan singularitas  $1/\sqrt{r}$ . Dengan mengganti y dengan jarak radial dari ujung retak r maka perpindahan arah v sepanjang sisi 3-10-2 akan menjadi:

$$v = v_3 + (3v_3 - 4v_{10} + 2v_2)\sqrt{\frac{r}{L}} + (2v_3 - 4v_{10} + 2v_2)\frac{r}{L}$$
(2.42)

Hal yang sama dapat dilakukan pada sisi-sisi yang mempunyai singularitas.

#### 2.3.3. Evaluasi Faktor Intensitas Tegangan Kondisi LEFM

Setelah medan perpindahan dan tegangan seluruh bentuk retak (terutama pada sekitar ujung retak) telah ditentukan, berarti evaluasi faktor intensitas tegangan akan dapat ditemukan. Pendekatan yang paling jelas adalah menghubungkan solusi analitik tegangan dan perpindahan pada ujung retak dari harga yang didapatkan dari metode elemen hingga. Hal ini memerlukan prosedur ekstrapolasi untuk mendapatkan faktor intensitas tegangan pada ujung retak. Variasi perpindahan secara analitis sekitar ujung retak adalah:

$$u = \frac{K_{I}}{4G} \sqrt{\frac{r}{2\pi}} \left\{ (2k-1)\cos\frac{\theta}{2} - \cos\frac{3\theta}{2} \right\} - \frac{K_{II}}{4G} \sqrt{\frac{r}{2\pi}} \left\{ (2k+3)\sin\frac{\theta}{2} + \sin\frac{3\theta}{2} \right\}$$
$$v = \frac{K_{I}}{4G} \sqrt{\frac{r}{2\pi}} \left\{ (2k-1)\sin\frac{\theta}{2} - \sin\frac{3\theta}{2} \right\} - \frac{K_{II}}{4G} \sqrt{\frac{r}{2\pi}} \left\{ (2k+3)\cos\frac{\theta}{2} + \cos\frac{3\theta}{2} \right\}$$

$$w = \frac{K_{III}}{4G} \sqrt{\frac{r}{2\pi} \sin \frac{\theta}{2}}$$

(2.36)

Dimana

 $K_I$  = faktor intensitas tegangan mode I  $K_{II}$  = faktor intensitas tegangan mode II  $K_{III}$  = faktor intensitas tegangan mode III G = modulus geser k = (3 - v) / (1 + v) untuk kondisi plane stress = (3 - 4v) untuk kondisi plane strain

v = poisson's ratio

Sehinga faktor intensitas tegangan dapat dievaluasi dengan menyamakan koefisien  $\sqrt{r}$  pada persamaan diatas dengan  $\theta$  merupakan sudut polar dari sisi elemen 3-10-2, maka akan terlihat bahwa faktor intensitas tegangan akibat pembebanan mode I dapat dihitung dari perpindahan arah u maupun v. Prosedur ekstrapolasi perpindahan dilakukan dengan melihat hubungan dari persamaan perpindahan sehingga:

$$K_{I} \begin{cases} (2K-1)\cos\frac{\theta}{2} - \cos\frac{3\theta}{2} \\ (2K+1)\sin\frac{\theta}{2} - \sin\frac{3\theta}{2} \end{cases} = 4G\sqrt{\frac{2\pi}{r}} \begin{cases} u \\ v \end{cases}$$
(2.43)

Substitusi harga u, v dan r pada titik node sepanjang garis radial pada sekitar ujung retak, dapat diperoleh hubungan antara K dengan jarak radial r. Kemudian dengan menghilangkan hasil pada titik yang sangat dekat dengan ujung retak sehingga solusi dapat diekstrapolasi pada r = 0 dengan memakai regresi linier. Teknik ini dapat dipakai bila digunakan elemen konvensional maupun elemen singular. Perhitungan hanya dikonsentrasikan pada modus I, karena pembebanan yang diberikan adalah tipe modus I.

## 2.3.4 Evaluasi Faktor Intensitas Tegangan Kondisi EPFM

Pada kondisi EPFM membutuhkan tegangan dan regangan dalam penyelesaian mendapatkan faktor intensitas tegangan. Dimana tegangan dan regangan dapat diperoleh melalui langkah-langkah sebagai berikut:



Gambar 2.7. Prosedur Standar Metode Elemen Hingga

Regangan dari elemen terdiri dari 6 komponen yaitu:  $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\varepsilon_z, \gamma_{xy}, \gamma_{yz}, \gamma_{xy}.$  $\begin{bmatrix} \varepsilon_{z} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{xz} \\ \gamma_{yz} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \partial/\partial x & 0 & 0 \\ 0 & \partial/\partial y & 0 \\ 0 & 0 & \partial/\partial z \\ \partial/\partial y & \partial/\partial x & 0 \\ 0 & \partial/\partial z & 0 & \partial/\partial y \\ 0 & \partial/\partial z & 0 & \partial/\partial y \\ \partial/\partial z & 0 & \partial/\partial x \end{bmatrix} \begin{bmatrix} u \\ v \\ w \\ w \end{bmatrix}$ 

(2.44)

(2.45)

Dimana:

 $\{\varepsilon\} = [C]\{\sigma\}$ 

|                     | 1 -         | υ –         | U | 0    | 0    | 0 ]    |
|---------------------|-------------|-------------|---|------|------|--------|
| $[C] = \frac{1}{E}$ | $-\upsilon$ | 1 –         | υ | 0    | 0    | 0      |
|                     | $-\upsilon$ | $-\upsilon$ | 1 | 0    | 0    | 0      |
|                     | 0           | 0           | 0 | 2(1+ | v)0  | 0      |
|                     | 0           | 0           | 0 | 0    | 2(1+ | v) 0   |
|                     | 0           | 0           | 0 | 0    | 0    | 2(1+v) |

Hubungan tegangan-regangan dapat ditulis sebagai berikut:
$$\begin{cases} \sigma_x \\ \sigma_y \\ \sigma_z \\ \tau_{xy} \\ \tau_{yz} \\ \tau_{xz} \end{cases} = \frac{E}{(1+\upsilon)(1-2\upsilon)} \begin{bmatrix} 1-\upsilon & \upsilon & \upsilon & 0 & 0 & 0 \\ \upsilon & 1-\upsilon & \upsilon & 0 & 0 & 0 \\ \upsilon & \upsilon & 1-\upsilon & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1-2\upsilon}{2} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1-2\upsilon}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1-2\upsilon}{2} \end{bmatrix} \begin{bmatrix} \varepsilon_x \\ \varepsilon_y \\ \varepsilon_z \\ \gamma_{xy} \\ \gamma_{yz} \\ \gamma_{xz} \end{bmatrix}$$

Atau  $\{\sigma\} = [E]\{\varepsilon\}$ 

Untuk kasus tegangan bidang ( $\sigma_z = \tau_{xz} = \tau_{yz} = 0$ ):

$$\begin{cases} \sigma_{x} \\ \sigma_{y} \\ \gamma_{xy} \end{cases} = \frac{E}{1 - \upsilon^{2}} \begin{vmatrix} 1 & \upsilon & 0 \\ \upsilon & 1 & 0 \\ 0 & 0 & \frac{1 - \upsilon}{2} \end{vmatrix} \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases}$$

Untuk kasus regangan bidang ( $\tau_{xz} = \tau_{yz} = \varepsilon_z = 0$ ):

$$\begin{cases} \sigma_x \\ \sigma_y \\ \gamma_{xy} \end{cases} = \frac{E}{(1+\upsilon)(1-2\upsilon)} \begin{vmatrix} 1-\upsilon & \upsilon & 0 \\ \upsilon & 1-\upsilon & 0 \\ 0 & 0 & \frac{1-2\upsilon}{2} \end{vmatrix} \begin{cases} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{cases}$$



# BAB III METODE PENELITIAN

#### 3.1. Diagram Alir Penulisan

Pada evaluasi faktor intensitas tegangan yang dilakukan, terpusat pada penggambaran secara langsung untuk setiap transformasi langkah-langkah dari konsep metode elemen hingga dan analisa retak untuk evaluasi faktor intensitas tegangan dalam software ANSYS dari langkah perhitungan yang telah dijelaskan sebelumnya, dapat dibuat diagram alir sebagai dasar program komputer, dimana garis besar langkah-langkah yang dilakukan adalah:



Gambar 3.1 Langkah-langkah evaluasi

Dalam menggunakan program ANSYS ada beberapa langkah yang ditempuh untuk mendapatkan harga faktor intensitas tegangan. Adapun langkah-langkah yang ditempuh dapat dilihat pada diagram berikut ini:



Gambar 3.2 Langkah-langkah perhitungan dengan ANSYS untuk metode langsung



Gambar 3.3 Langkah-langkah perhitungan dengan ANSYS untuk metode J Integral

# 1. Input Data

Masukan data yang dibutuhkan adalah material properties dari spesimen aluminium 2024 T3:

- Modulus Elastisitas (E) : 73.100 MPa
- Poisson's Ratio (v) : 0.33

2. Pemodelan

Tugas akhir ini mensimulasikan laju perambatan corner crack dengan variasi dimensi lebar. Pemodelan yang dilakukan disesuaikan dengan bentuk eksperimen yang diselesaikan yaitu sebagai berikut:

|    |         | Lebar | Tebal      | Retakan | Retakan | Rasio |
|----|---------|-------|------------|---------|---------|-------|
| No | Kode    | (W)   | <i>(B)</i> | с       | а       | (R)   |
|    | A1206-  |       |            |         |         |       |
| 1  | G42-R01 | 12 mm | 6 mm       | 4 mm    | 2 mm    | 0,1   |
|    | A1606-  |       |            |         |         |       |
| 2  | G42-R01 | 16 mm | 6 mm       | 4 mm    | 2 mm    | 0,1   |
| 3  | A2006-  |       |            |         |         |       |
|    | G42-R01 | 20 mm | 6 mm       | 4 mm    | 2 mm    | 0,1   |





Gambar 3.4 Geometri model Corner Crack

Pemodelan untuk spesimen retak sudut dilakukan dengan setengah bagian struktur karena adanya kesimetrisan model, baik geometri maupun pembebanan. Jenis elemen yang digunakan adalah elemen hekasahedron 8 node untuk daerah bukan di ujung retak dan elemen heksahedron isoparametrik 20 node untuk daerah retak. Model dibuat dengan cara mengidentifikasi posisi node untuk setiap elemen yang membentuk struktur spesimen. Pembuatan elemen (meshing) dilakukan berdasarkan posisi node yang telah ada, sehingga setelah semua elemen terbentuk akan didapat suatu spesimen dengan retak pojok. Dengan mengidentifikasikan node mayor elips dan ratio elips ,bentuk retak pojok (elips) terbentuk secara otomatis.

#### 3. Kondisi batas

Pemodelan spesimen untuk retak pojok menggunakan setengah bagian spesimen dengan kondisi batas pada bidang simetri sumbu y diberikan constrain displacement y = 0, kecuali dari ujung retak dan retak yang telah terjadi dibebaskan.

#### 4. Pembebanan

Pembebanan yang dipakai adalah beban tegangan tarik ststis sebesar 252 MPa yang dibebankan secara merata. Hal ini disebabkan karena tujuan dari tugas akhir ini untuk mencari faktor intensitas tegangan untuk mode I.

# 5. Evaluasi Faktor Intensitas Tegangan

Evaluasi faktor intensitas tegangan yang dilakukan dengan menggunakan software ANSYS, faktor intensitas tegangan yang dihitung adalah  $\Delta K_a$ ,  $\Delta K_c$ , dan  $\Delta K$  fungsi  $\theta$  dimana faktor intensitas tegangan itu dihitung dengan adanya pertambahan panjang retakan. Disamping itu dihitung pula laju perambatan retak arah a (da/dN) dan arah c (dc/dN).

# 3.3. Komparasi hasil

Hasil analisa dari simulasi akan dibandingkan dengan hasil eksperimen dari Hendrowati, Wiwiek (2003) dalam bentuk grafik.



# BAB IV ANALISA DAN PEMBAHASAN

Setelah proses perhitungan dalam ANSYS dilakukan harga faktor intensitas tegangan untuk setiap spesimen dapat diketahui, dengan menggunakan metode langsung maupun menggunakan Integral J. Hasil yang didapat kemudian dibandingkan dengan eksperimen. Data Eksperimen yang digunakan sebagai acuan adalah hasil eksperimen dari Wiwiek Hendrowati yang meneliti tentang perilaku perambatan corner crack dengan rasio pembebanan R = 0,1 dan frekuensi 15 Hz. komparasi ditampilkan dalam berbagai bentuk grafik.

#### 4.1. Hasil Eksperimen

Dari eksperimen yang telah dilakukan Hendrowati, hasil yang didapat yaitu jumlah siklus dan panjang retak (a dan c) tiap siklus. Setelah dilakukan terhadap data-data yang diperoleh untuk tiap spesimen dilakukan perhitungan faktor intensitas tegangan dan laju perambatan retak yang dapat di tampilkan sebagai berikut:

|       | Retakan   |           | Rambatan  |           | Experiment |        |
|-------|-----------|-----------|-----------|-----------|------------|--------|
| N     |           |           |           |           |            |        |
|       | a<br>(mm) | c<br>(mm) | da/dN     | dc/dN     | ∆Ка        | ΔKc    |
| 0     | 2         | 4         | 0         | 0         | 20,895     | 15,152 |
| 2703  | 2         | 4         | 0         | 0         | 20,895     | 15,152 |
| 12706 | 2         | 4         | 0         | 0         | 20,895     | 15,152 |
| 20007 | 2,1       | 4,02      | 1,37E-08  | 2,739E-09 | 21,253     | 15,792 |
| 27712 | 2,3       | 4,06      | 2,596E-08 | 5,191E-09 | 21,902     | 17,038 |
| 32713 | 2,6       | 4,13      | 5,999E-08 | 1,4E-08   | 22,745     | 18,816 |
| 35227 | 2,84      | 4,23      | 9,547E-08 | 3,978E-08 | 23,419     | 21,16  |
| 37760 | 3,26      | 4,45      | 1,658E-07 | 8,685E-08 | 24,513     | 22,365 |
| 38764 | 3,46      | 4,59      | 1,992E-07 | 1,394E-07 | 25,051     | 23,357 |
| 39768 | 3,71      | 4,79      | 2,49E-07  | 1,992E-07 | 25,717     | 24,542 |
| 40715 | 4,02      | 5,08      | 3,273E-07 | 3,062E-07 | 26,535     | 25,922 |

Tabel 4.1 faktor intensitas tegangan hasil eksperimen. (a) A2006G42R01



| 41676    | 4,5       | 5,53      | 4,995E-07                             | 4,683E-07                             | 27,35      | 27,661 |
|----------|-----------|-----------|---------------------------------------|---------------------------------------|------------|--------|
| 42714    | 5,23      | 6,22      | 7,033E-07                             | 6,647E-07                             | 27,036     | 28,746 |
| (b) A160 | 6G42R0    | 1         | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |            | L      |
|          | Retakan   |           | Rambatan                              |                                       | Experiment |        |
| N        | a<br>(mm) | c<br>(mm) | da/dN                                 | dc/dN                                 | ΔКа        | ΔKc    |
| 0        | 2         | 4         | 0                                     | 0                                     | 20,895     | 15,152 |
| 10003    | 2         | 4         | 0                                     | 0                                     | 20,895     | 15,152 |
| 20004    | 2         | 4         | 0                                     | 0                                     | 20,895     | 15,152 |
| 30010    | 2         | 4         | 0                                     | 0                                     | 20,895     | 15,152 |
| 40011    | 2,26      | 4         | 6,498E-09                             | 0                                     | 21,663     | 16,812 |
| 42696    | 2,28      | 4         | 7,449E-09                             | 0                                     | 21,715     | 16,935 |
| 45028    | 2,31      | 4         | 1,286E-08                             | 0                                     | 21,79      | 17,119 |
| 50012    | 2,41      | 4,02      | 2,006E-08                             | 3,999E-10                             | 22,073     | 17,719 |
| 54949    | 2,54      | 4,04      | 2,633E-08                             | 4,051E-09                             | 22,394     | 18,479 |
| 60027    | 2,74      | 4,08      | 3,939E-08                             | 7,877E-09                             | 22,842     | 19,602 |
| 62551    | 2,86      | 4,12      | 4,754E-08                             | 1,585E-08                             | 23,12      | 20,25  |
| 64954    | 2,99      | 4,2       | 5,41E-08                              | 3,329E-08                             | 23,506     | 20,94  |
| 69998    | 3,49      | 4,56      | 9,913E-08                             | 7,137E-08                             | 24,947     | 23,464 |
| 74959    | 4,24      | 5,48      | 1,512E-07                             | 1,854E-07                             | 27,756     | 27,062 |
| 76954    | 4,63      | 6,06      | 1,955E-07                             | 2,907E-07                             | 29,161     | 28,745 |
| 77968    | 4,91      | 6,46      | 2,761E-07                             | 3,945E-07                             | 29,833     | 29,708 |
| 78977    | 5,31      | 7,01      | 3,964E-07                             | 5,451E-07                             | 30,17      | 30,563 |

ALLONDALLAS (1) 

(c) A1206G42R01

|        | Retakan   |           | Rambatan  |           | Experiment |        |
|--------|-----------|-----------|-----------|-----------|------------|--------|
| N      | a<br>(mm) | c<br>(mm) | da/dN     | dc/dN     | ∆Ка        | ΔКс    |
| 0      | 2         | 4         | 0         | 0         | 20,895     | 15,152 |
| 20001  | 2,15      | 4         | 7,50E-09  | 0         | 21,361     | 16,121 |
| 30057  | 2,25      | 4         | 9,94E-09  | 0         | 21,637     | 16,75  |
| 35013  | 2,31      | 4         | 1,21E-08  | 0         | 21,79      | 17,12  |
| 40002  | 2,37      | 4         | 1,20E-08  | 0         | 21,933     | 17,484 |
| 45019  | 2,43      | 4         | 1,20E-08  | 0         | 22,067     | 17,842 |
| 50099  | 2,51      | 4         | 1,57E-08  | 0         | 22,231     | 18,311 |
| 55014  | 2,59      | 4         | 1,63E-08  | 0         | 22,378     | 18,769 |
| 60003  | 2,67      | 4         | 1,60E-08  | 0         | 22,509     | 19,215 |
| 65045  | 2,76      | 4         | 1,79E-08  | 0         | 22,636     | 19,702 |
| 70110  | 2,86      | 4,04      | 1,97E-08  | 5,71E-10  | 22,876     | 20,234 |
| 75048  | 2,98      | 4,25      | 2,43E-08  | 4,25E-08  | 23,652     | 20,904 |
| 80004  | 3,13      | 4,32      | 3,03E-08  | 1,41E-08  | 24,006     | 21,68  |
| 85054  | 3,31      | 4,45      | 3,56E-08  | 2,57E-08  | 24,536     | 22,598 |
| 90027  | 3,53      | 4,7       | 4,42E-08  | 5,03E-08  | 25,438     | 23,738 |
| 95013  | 3,86      | 5,1       | 6,62E-08  | 8,02E-08  | 26,766     | 25,403 |
| 98278  | 4,12      | 5,43      | 7,96E-08  | 1,01E-07  | 27,746     | 26,653 |
| 100005 | 4,28      | 5,69      | 9,26E-08  | 1,51E-07  | 28,503     | 27,449 |
| 102528 | 4,62      | 6,27      | 1,35E-07  | 2,30E-07  | 30,039     | 29,065 |
| 105029 | 5,19      | 7,31      | 2,279E-07 | 4,158E-07 | 32,165     | 31,367 |

# 4.2. Faktor Intensitas Tegangan terhadap Dimensi Retak

Grafik 4.1 menunjukkan grafik faktor intensitas tegangan terhadap dimensi retak. Dari gambar 4.1.a dan b, diketahui hubungan antara faktor intensitas tegangan dengan panjang retak untuk perhitungan kondisi LEFM. Dengan bertambahnya panjang retak maka harga faktor intensitas tegangan juga bertambah, kondisi tersebut berlaku pada arah tebal ( $\Delta K_a$  VS a) maupun arah lebar ( $\Delta K_c$ VS c). Dimana untuk spesimen A2006G42R01 memiliki harga faktor intensitas tegangan terrendah diikuti spesimen A1606G42R01 dan spesimen A1206G42R01. Demikian juga dengan perhitungan kondisi EPFM (gambar 4.1.c dan d), dengan bertambahnya panjang retak maka harga faktor intensitas tegangan juga bertambah. Dimana untuk spesimen A2006G42R01 memiliki harga faktor intensitas tegangan terendah diikuti spesimen A1606G42R01 dan spesimen A1206G42R01. Hal ini disebabkan karena harga faktor intensitas tegangan dipengaruhi oleh panjang retak. Dimana panjang retak berbanding lurus dengan faktor intensitas tegangan seperti yang tertulis pada rumus (2.4). Sehingga jika panjang retak bertambah maka harga faktor intensitas tegangan juga bertambah.



(a) ΔKa LEFM VS a

(b) ΔKc LEFM VS c



#### (c)ΔKa EPFM VS a

#### (d) ΔKc EPFM VS c

Gambar 4.1. Grafik faktor intensitas tegangan terhadap dimensi retak

4.3. Faktor Intensitas Tegangan terhadap Rasio Dimensi Retak dan Dimensi Spesimen

Gambar 4.2. a dan b merupakan grafik faktor intensitas tegangan ( $\Delta$ Ka,  $\Delta$ Kc) tehadap rasio dimensi retak dan dimensi spesimen (a/B, c/W) yang diperoleh dari perhitungan LEFM. Grafik menunjukkan bahwa dengan meningkatnya rasio dimensi maka harga faktor intensitas tegangan ikut meningkat. Pada rasio a/B yang sama ( $\approx 0.9$ ),  $\Delta$ Ka yang dicapai oleh A2006G42R01 memiliki harga paling rendah ( $\pm 40$  MPa $\sqrt{m}$ ) diikuti dengan A1606G42R01 ( $\pm 50$  MPa $\sqrt{m}$ ) dan spesimen A1206G42R01 memiliki harga paling tinggi ( $\pm 70$ MPa $\sqrt{m}$ ). Sedangkan untuk arah lebar, spesimen A2006G42R01 memiliki rasio c/W dan  $\Delta$ Kc sebelum patah paling rendah yaitu 0,3 dan 40 MPa $\sqrt{m}$ . Diikuti A1606G42R01 dengan rasio c/W dan  $\Delta$ Kc yaitu 0,4 dan 55 MPa $\sqrt{m}$ . Dan spesimen A1206G42R01 memiliki rasio c/W dan  $\Delta$ Kc paling tinggi yaitu 0,6 dan 60MPa $\sqrt{m}$ .









Gambar 4.2. Faktor intensitas tegangan terhadap rasio dimensi

Gambar 4.2. c dan d merupakan grafik faktor intensitas tegangan ( $\Delta$ Ka,  $\Delta$ Kc) tehadap rasio dimensi retak dan dimensi spesimen (a/B, c/W) vang diperoleh dari perhitungan EPFM. Grafik menunjukkan bahwa dengan meningkatnya rasio dimensi maka harga faktor intensitas tegangan ikut meningkat. Pada rasio a/B yang sama ( $\approx 0.9$ ),  $\Delta$ Ka yang dicapai oleh A2006G42R01 memiliki harga paling rendah (± 40 MPa√m) diikuti dengan A1606G42R01 (± 50 MPa√m) dan spesimen A1206G42R01 memiliki harga paling tinggi (± 60 MPavm). Sedangkan untuk arah lebar, spesimen A2006G42R01 memiliki rasio c/W dan  $\Delta$ Kc paling rendah yaitu 0,3 dan 40 MPa $\sqrt{m}$ . Diikuti A1606G42R01 dengan rasio c/W dan AKc yaitu 0,4 dan 50 MPa√m. Dan spesimen A1206G42R01 memiliki rasio c/W dan ∆Kc paling tinggi yaitu 0.6 dan 55MPavm.

Hal ini disebabkan pada ratio a/B dan c/W yang lebih kecil, spesimen akan mempunyai energi intensitas tegangan yang lebih kecil, dimana hal ini berkaitan dengan daerah plastis yang terjadi disekitar ujung retakan. Sehingga dengan semakin besar nilai rasio maka harga faktor intensitas tegangan akan semakin besar.

Grafik juga menunjukkan bahwa semakin lebar spesimen. maka spesimen akan cepat patah. Mengingat rumus 2.7. bahwa harga faktor intensitas tegangan dipengaruhi oleh geometri spesimen dan pada rumus 2.8. lebar spesimen berfungsi sebagai pembagi, maka harga faktor intensitas tegangan akan menjadi kecil dengan adanya penambahan lebar. Sehingga dengan memberikan energi

yang kecil, retakan pada spesimen paling lebar lebih mudah merambat dibandingkan dengan yang lainnya.

4.4. Faktor Intensitas Tegangan Terhadap Laju perambatan Retak Data laju perambatan retak pada rentang faktor intensitas tegangan ditunjukkan dalam gambar 4.3 untuk perhitungan LEFM dan gambar 4.4. untuk perhitungan EPFM.



Gambar 4.3. grafik laju perambatan retak VS rentang faktor intensitas tegangan LEFM



Gambar 4.4. grafik laju perambatan retak VS rentang faktor intensitas tegangan EPFM

Dari gambar 4.3.a terlihat bahwa sebaran data dari spesimen A2006G42R01 mempunyai laju perambatan retak arah tebal yang cepat dibandingkan A1606G42R01 lebih dan A1206G42R01. Demikian juga dengan laju perambatan retak arah lebar (gambar 4.3.b), spesimen A2006G42R01 mempunyai laju perambatan retak lebih cepat debandingkan dengan A1606G42R01 vang dan A1206G42R01. Kecenderungan yang sama juga ditunjukkan pada perhitungan EPFM. Dari gambar 4.4.a terlihat bahwa sebaran data dari spesimen A2006G42R01 mempunyai laju perambatan retak arah dibandingkan tebal lebih cepat A1606G42R01 dan vang A1206G42R01. Demikian juga dengan laju perambatan retak arah lebar (gambar 4.4.b), spesimen A2006G42R01 mempunyai laju retak vang lebih cepat debandingkan perambatan dengan A1606G42R01 dan A1206G42R01.

Hal ini disebabkan pada ratio a/B dan c/W yang lebih kecil, spesimen akan mempunyai energi intensitas tegangan yang lebih

kecil, dimana hal ini berkaitan dengan daerah plastis yang terjadi disekitar ujung retakan. Sehingga dengan memberikan energi yang kecil, retakan pada spesimen A2006G42R01 lebih mudah merambat dibandingkan dengan yang lainnya.

# 4.5. Persamaan Paris

Data data yang disertakan untuk pembuatan persamaan paris adalah data yang laju perambatan retaknya bernilai antara10<sup>-8</sup> MPa√m hingga 10<sup>-6</sup>Mpa√m sesuai dengan ASTM.



Gambar 4.5. Kurva Paris arah tebal



Gambar 4.6. Kurva Paris arah lebar

Kurva paris pada gambar 4.8. dan gambar 4.9. merupakan smoothing curve dari sebaran data pada gambar 4.6. dan gambar 4.7. Dimana persamaan Paris untuk setiap spesimen adalah:

• Arah tebal

| A2006G42R01 |                                                              |
|-------------|--------------------------------------------------------------|
| LEFM        | : $da / dN = 4 \times 10^{-14} \times (\Delta K_a)^{4.8049}$ |
| EPFM        | : $da / dN = 1 \times 10^{-15} \times (\Delta K_a)^{5.8856}$ |
| A1606G42R01 |                                                              |
| LEFM        | : $da/dN = 3 \times 10^{-12} \times (\Delta K_a)^{3.115}$    |
| EPFM        | : $da / dN = 8 \times 10^{-13} \times (\Delta K_a)^{3.5006}$ |
| A1206G42R01 |                                                              |
| LEFM        | : $da/dN = 5 \times 10^{-12} \times (\Delta K_a)^{2.7037}$   |
| EPFM        | : $da / dN = 2 \times 10^{-12} \times (\Delta K_a)^{2.972}$  |

| Arah lebar<br>A2006G42R01 |                                                               |
|---------------------------|---------------------------------------------------------------|
| LEFM                      | : $dc/dN = 3 \times 10^{-14} \times (\Delta K_c)^{4.8576}$    |
| EPFM                      | : $dc / dN = 2 \times 10^{-14} \times (\Delta K_c)^{4.9699}$  |
| A1606G42R01               |                                                               |
| LEFM                      | : $dc/dN = 2 \times 10^{-13} \times (\Delta K_{ca})^{3.9635}$ |
| EPFM                      | : $dc/dN = 2 \times 10^{-13} \times (\Delta K_c)^{4.0086}$    |
| A1206G42R01               |                                                               |
| LEFM                      | : $dc / dN = 1 \times 10^{-12} \times (\Delta K_c)^{3.2193}$  |
| EPFM                      | : $dc / dN = 1 \times 10^{-12} \times (\Delta K_c)^{3.2433}$  |
|                           |                                                               |

Persamaan Paris diatas menunjukkan perbedaan yang cukup besar antara hasil eksperimen dan numerik, sedangkan hasil persamaan Paris pada metode numerik yang diperoleh dari perhitungan LEFM dan EPFM tidak menunjukkan perbedaan yang signifikan. Hal ini disebabkan karena pada eksperimen rambatan terjadi ke segala arah (terjadi percabangan) yang menyebabkan perambatan retak yang terjadi menjadi lebih cepat, sedangkan pada pemodelan ANSYS tidak.

4.6. Perbandingan Hasil perhitungan ANSYS Dengan Eksperimen

Untuk melihat kevalidan dari hasil perhitungan ANSYS, perlu dilakukan perbandingan dengan eksperimen yang ada. Perbandingan hasil dari perhitungan ANSYS dan hasil eksperimen ditampilkan dalam gambar berikut.







Gambar 4.8. Grafik Perbandingan  $\Delta K$  hasil eksperimen dan  $\Delta K$  hasil Perhitungan untuk arah lebar.

Dari gambar 4.6. dan gambar 4.7. terlihat bahwa terjadi perbedaan antara ketiga metode tersebut. Terjadi penyimpangan (error) antara hasil eksperimen dan hasil perhitungan ANSYS baik dalam arah lebar maupun tebal, dimana hasil perhitungan ANSYS dengan perhitungan LEFM memiliki error lebih besar dibandingkan dengan metode Integral J. Hal ini disebabkan karena pada perhitungan (Linier Elastic Mechanics) LEFM Fracture mengabaikan munculnya daerah plastis di ujung retak, sedangkan daerah plastis ini akan mengakibatkan adanya kemunculan perlambatan perambatan retak. Sedangkan pada metode Integral J memiliki error yang lebih kecil karena perhitungan dalam kondisi EPFM (Elastic Plastik Fracture Mechanics). Disamping itu dalam pemodelan ANSYS tidak menyertakan pengaruh lingkungan, sedangkan lingkungan berpengaruh terhadap laju perambatan retak seperti hasil penelitian Berata, W (2002).





Dari gambar 4.9.a terlihat bahwa untuk spesimen A2006G42R01 harga faktor intensitas tegangan arah tebal ( $\Delta$ Ka) yang diberikan pada perhitungan plane strain memiliki

penyimpangan lebih kecil yaitu dengan error rata-rata 10.9% untuk perhitungan LEFM dan 7.5% untuk perhitungan EPFM, jika dibandingkan dengan perhitungan plane stress yang mempunyai error rata-rata 15.3% untuk perhitungan LEFM dan 10.3% untuk perhitungan EPFM. Sedangkan untuk AKc harga yang diberikan pada perhitungan plane stress memiliki penyimpangan lebih kecil vaitu dengan error rata-rata 8.5% untuk perhitungan LEFM dan 76.6% untuk perhitungan EPFM, jika dibandingkan dengan perhitungan plane strain yang mempunyai error rata-rata 9.1% untuk perhitungan LEFM dan 7% untuk perhitungan EPFM. Hal serupa juga ditunjukkan pada spesimen A1606G42R01 dan A1206G42R01. Kondisi plane stress dan plane strain ditentukan oleh ketebalan dan daerah plastis yang terbentuk. Untuk retak arah lebar (c) memiliki ketebalan lebih tipis daripada retak arah tebal (a). Sehingga jika kedua arah retak memiliki panjang retak yang sama, maka untuk retak arah lebar hasil perhitungan yang diberikan akan memiliki penyimpangan lebih kecil jika di analisa dalam kondisi plane stress. Dan untuk retak arah tebal akan pemiliki penyimpangan lebih kecil jika di analisa dalam kondisi plane strain, karena adanya faktor ketebalan yang mempengaruhi dan daerah plastis yang terbentuk menjadi lebih kecil.

# 4.7. Rentang Faktor Intensitas Tegangan Terhadap Posisi

Gambar 4.10. sampai dengan gambar 4.12. menunjukkan variasi rentang faktor intensitas tegangan untuk setiap posisi pada sejumlah siklus yang berbeda untuk setiap spesimen. Terlihat harga  $\Delta K$  untuk berbagai posisi angular  $\theta$ , yang bervariasi dari  $\theta = 0^{0}$  (arah lebar) sampai  $\theta = 90^{0}$  (arah tebal). Penyebaran harga  $\Delta K$  cenderung sama untuk ketiga spesimen dengan harga yang tinggi di posisi  $\theta = 0^{0}$ , kemudian menurun sampai  $\theta = 10-30^{0}$ , dan selanjutnya naik sampai posisi  $\theta = 90^{0}$ .









Dari ketiga gambar diatas terlihat bahwa harga faktor intensits tegangan naik dengan kenaikan siklus. Hal ini disebabkan

dengan semakin banyaknya siklus, retakan yang terjadi semakin panjang sehingga harga faktor intensitas tegangan semakin tinggi. Pada awal siklus  $\Delta$ Ka cenderung memiliki nilai lebih kecil daripada  $\Delta$ Kc, tetapi semakin mendekati patah nilainya akan meningkat. Hal tersebut terjadi karena laju perambatan retak arah tebal lebih cepat dari pada arah lebar.  $\Delta$ K untuk kondisi tidak dipermukaan memiliki nilai yang lebih kecil dari  $\Delta$ Ka maupun  $\Delta$ Kc. Hal ini disebabkan karena pada permukaan mengalami kondisi plane stress yang mempunyai daerah plastis yang lebih besar sehingga retak lebih cepat menjalar. Pada daerah ditengah spesimen mengalami kondisi plane strain sehingga daerah plastis yang terbentuk menjadi lebih kecil dan retak menjalar lebih lambat. Kondisi ditengah spesimen akan memiliki harga faktor intensitas tegangan yang lebih kecil dibandingkan dengan kondisi di permukaan.



#### BAB V

#### **KESIMPULAN DAN SARAN**

#### 5.1. Kesimpulan

Dari hasil analisa dan komparasi yang telah dilakukan pada rentang faktor intensitas tegangan ( $\Delta K$ ), dapat ditarik beberapa kesimpulan sebagai berikut:

- Dengan bertambahnya nilai rasio dimensi retak terhadap dimensi spesimen (a/B dan c/W) maka harga faktor intensitas tegangan akan meningkat. Untuk arah tebal, spesimen pada rasio a/B vang sama. terkecil (A1206G42R01) mempunyai nilai DKa yang terbesar, pada arah spesimen terkecil sedangkan lebar (A1206G42R01) mempunyai nilai DKc yang terbesar. Hal tegangan ini disebabkan karena faktor intensitas dipengaruhi oleh dimensi retak dan dimensi spesimen.
- Karena dipengaruhi oleh rasio dimensi retakan dan dimensi spesimen, maka laju perambatan retak arah tebal lebih cepat dibandingkan arah lebar. Sehingga laju perambatan arah tebal lebih cepat dibandingkan arah lebar.
- Semakin lebar spesimen ketahanan patah semakin kecil sehingga retak semakin cepat merambat. Maka spesimen paling lebar lebih cepat patah dibandingkan spesimen yang lainnya.
- Hasil perhitungan ANSYS memberikan hasil yang cukup dekat dengan eksperimen dengan tingkat kesalahan ratarata sebesar 10,33% untuk perhitungan EPFM dan 13,4% untuk perhitungan LEFM. Hasil ini menunjukkan bahwa ANSYS cukup mampu mengevaluasi faktor intensitas tegangan pada retak berbentuk seperempat elips.
- Harga faktor intensitas tegangan sepanjang crack front menunjukkan bahwa pada permukaan memiliki nilai yang lebih besar dibandingkan yang berada di tengah spesimen. Sehingga retak merambat lebih cepat pada permukaan dibandingkan dengan yang berada di tengah spesimen.

# 5.2. Saran

Beberapa saran yang perlu dikemukakan dalam tugas akhir ini adalah sebagai berikut:

- Perlu dilakukan pemodelan pembebanan dinamis pada ANSYS sehingga lebih sesuai dengan kondisi eksperimen.
  - Perlu diperhitungkan adanya pengaruh-pengaruh lingkungan seperti temperatur dan sifat korosif material.

#### **DAFTAR PUSTAKA**

- Anderson, T.L. "Fracture Mechanic: Fundamental and Application, 2<sup>nd</sup> edition", CRC Press, Boca Raton, FL, 2000.
- Ariatedja, Julendra B. "Pengaruh Modulus Plastis dan Rasio Beban SIklis Terhadap Pola Bukaan Permukaan dan Tingkat Pengatupan Retak", Thesis S-2 ITS-Jurusan Teknik Mesin, 2005.
- Berata, Pramono, Irfan. "Analisa J-Integral Pada Compact Tension Specimen (CTs) Ti-6Ai-4V Dengan Menggunakan Metode Elemen Hingga ", Laporan Penelitian, Jurusan Teknik Mesin ITS, 2002.
- Curtin, Thomas J., Adey, R. A., and Brussat, T. R., *Computational and Experimental Fracture Analysis of a Pin-Loaded Lug*", Computational Mechanics Inc. Billerica, MA, <u>www.beasy.com</u>. 2000.
- Hendrowati, Wiwiek. "Studi Eksperimental Perilaku Prambatan Corner Crack Pada Spesimen Uji Aluminium 2024 T3", Thesis S-2 ITS-Jurusan Teknik Mesin, 2003.
- Hertzberg, Richard W, "Deformation and Fracture Mechanic of Engineering Materials, 3<sup>rd</sup> edition", John Wiley & Sons, New York, 1989.
- Muhayat, Nurul. "Faktor Intensitas Tegangan Pada Part Through Crack Untuk Kasus Surface Dan Corner Crack Dengan Metode Elemen Hingga", Thesis S-2 ITS-Jurusan Teknik Mesin,2003.
- Pramono, Berata, Kurniawan. "Analisa faktor Intensitas Tegangan Modus I Pada Compact Tension Specimen 2D dan 3D Dengan Menggunakan Metode Elemen Hingga", Laporan Penelitian, Jurusan Teknik Mesin ITS, 2001.



# LAMPIRAN

Lampiran A

# LISTING PROGRAM ANSYS

PEMODELAN

```
*CREATE,FRACT,MAC
```

! MACRO TO CREATE 3D SOLID95 CRACK TIP ELEMENTS FROM 3D SOLID45 ELEMENTS

! MAKE A COMPONENT CONTAINING THE CRACK TIP NODES (CRACKTIP)

! THE CRACK TIP IS BETWEEN NODES K AND O

! SET ELEMENT TYPE TO POINT TO SOLID95

! SET ARG1 TO N (THE TYPE OF THE ELEMENTS AROUND THE CRACK TIP)

!

/NOPR

NSEL,ALL

```
*GET,N,NODE,,NUM,MAX
```

CMSEL,S,CRACKTIP

ELMI=IEL

```
*IF,ELMI,LE,0,EXIT
```

\*GET,ELTYPE,ELEM,ELMI,ATTR,TYPE

\*IF,ELTYPE,NE,ARG1,CYCLE

N3 = NELEM(ELMI,3)

```
*IF,NSEL(N3),LE,0,CYCLE
```

N7 = NELEM(ELMI,7)

```
*IF,NSEL(N7),LE,0,CYCLE
```

```
N1 = NELEM(ELMI, 1)
```

```
N2 = NELEM(ELMI,2)
```

```
N5 = NELEM(ELMI,5)
```

```
N6 = NELEM(ELMI,6)
```

```
X3 = 0.75 * NX(N3)
```

```
Y_3 = 0.75 * NY(N_3)
```

```
Z3 = 0.75 * NZ(N3)
```

```
X = 0.25*NX(N2) + X3
```

```
Y = 0.25 * NY(N2) + Y3
```

```
Z = 0.25 * NZ(N2) + Z3
```



```
N = N + 1
 N10 = N
 N,N10,X,Y,Z
 X = 0.25 * NX(N1) + X3
 Y = 0.25*NY(N1) + Y3
 Z = 0.25 * NZ(N1) + Z3
 N = N + 1
 N12 = N
 N,N12,X,Y,Z
 X7 = 0.75 * NX(N7)
 Y7 = 0.75 * NY(N7)
 Z7 = 0.75 * NZ(N7)
 X = 0.25 * NX(N6) + X7
 Y = 0.25*NY(N6) + Y7
 Z = 0.25 * NZ(N6) + Z7
 N = N + 1
 N14 = N
 N,N14,X,Y,Z
 X = 0.25 * NX(N5) + X7
 Y = 0.25*NY(N5) + Y7
 Z = 0.25 * NZ(N5) + Z7
 N = N + 1
 N16 = N
 N,N16,X,Y,Z
 N4=N3
 N8=N7
 NSEL,ALL
 TYPE.3
 EN,ELMI,N1,N2,N3,N4,N5,N6,N7,N8
 EMORE.0,N10,0,N12,0,N14,0,N16
 EMORE,
*ENDDO
CMSEL,U,CRACKTIP
NUMMRG.NODE
```

```
NSEL,ALL
```

ESEL.ALL /GOPR \*END /PREP7 SMRT, OFF /COM.\*BY DHITA - A2006G42R01 - a/c=0.5\*\* ANTYPE, STATIC ET,1,SOLID45 ET,2,SOLID45 ET,3,SOLID95 MP.EX.1.73.1E3 MP,NUXY,1,.33 CSYS,1 N.1 NGEN.9.20.1 N.11.1 N,171,1,180 FILL,11,171,7,31,20 CSYS.0 FILL, 1, 11, 9, 2, 1, 9, 20, 1 N.1615.6 N,1675,6,1 FILL, 1615, 1675, 2, 1635, 20 N,14,-2,0,0 N.74,-2,1,0 FILL,14,74,2,34,20 N,13,-1.25,0,0 N.73,-1.25,1,0 FILL, 13, 73, 2, 33, 20 N,12,2,0,0 N,72,2,1,0 FILL, 12, 72, 2, 32, 20 N,2615,6,0,6 Z=t MERUPAKAN TEBAL PELAT N.2675.6.1.6 FILL,2615,2675,2,2635,20

FILL,1615,2615,4,1815,200 FILL,1635,2635,4,1835,200 FILL,1655,2655,4,1855,200 FILL, 1675, 2675, 4, 1875, 200 N.3615.-4.0.6 N.3675.-4.1.6 N.1193,-3.2 N.2993.-4. N,1133,-3.2,1 N,2933,-4,1 FILL,2993,2933,2,2973,-20 FILL, 1193, 1133, 2, 1173, -20 FILL,3615,3675,2,3635,20 FILL,2615,3615,4,2815,200 FILL,2635,3635,4,2835,200 FILL.2655.3655.4.2855.200 FILL,2675,3675,4,2875,200 FILL,1193,2993,8,1393,200 FILL,1173,2973,8,1373,200 FILL,1153,2953,8,1353,200 FILL,1133,2933,8,1333,200 N.198,-3.2,0,1 CS,2993,2,2993,1,198,0.5 NGEN,11,200,1,177,...9 CSYS.0 NGEN,2,10000,71,2071,200,,10.076120467,0,1 NGEN,2,10000,72,2072,200,,10,0,1 NGEN,2,10000,73,2073,200,,10,0,1 NGEN,2,10000,74,2074,200,,10,0,1 NGEN,2,10000,91,2091,200,,10,0,1 NGEN,2,10000,111,2111,200,,10.076120467.0,1 NGEN,2,10000,1675,3675,200,,10,0,1 NGEN,2,10000,1133,2933,200,,10,0,1 NGEN.3.10000,10071,12071,200,,10,0,1.5 NGEN.3,10000,10072,12072,200,,10,0,1.5

# IX=4 MERUPAKAN PANJANG C, SUMBU MAYOR ELIPS

!rasio elips

NGEN.3.10000,10073,12073,200,10,0,1.5 NGEN,3,10000,10074,12074,200,,10,0,1.5 NGEN,3,10000,10111,12111,200,,10,0,1.5 NGEN,3,10000,11675,13675,200,,10,0,1.5 NGEN,3,10000,11133,12933,200,,10,0,1.5 NGEN,3,10000,10091,12091,200,,10,0,1.5 NSEL,S,LOC,X.6 NGEN.6,100000,ALL.,,2, NSEL.ALL **!MESHING ELEMEN CRACKTIP** E.2.22.1.1.202.222.201.201 EGEN,8,20,-1 EGEN, 10, 200, 1, 8 E.2.3.23.22.202.203.223.222 MESHINGELEMENBUKAN CRACKTIP EGEN, 8, 20, -1 EGEN.9.1.-8 EGEN.10.200.81.152 CSYS.0 EGEN, 2, 1, 145, 147 EGEN, 10, 200, 801, 803 E,1615,12,212,1815,1635,32,232,1835 EGEN, 3, 20, -1 EGEN, 10, 200, 831, 833 E,171,13,213,371,151,33,233,351 E,151,33,233,351,131,53,253,331 E,131,53,253,331,111,73,273,311 EGEN.10.200.861.863 E.13,213,214,14,33,233,234,34 EGEN.3.20,-1 EGEN, 10, 200, 891, 893 E.2993.2793.1814.2014.2973.2773.1834.2034 E,2973,2773,1834,2034,2953,2753,1854.2054 E,2953,2753,1854,2054,2933,2733,1874,2074 EGEN.9,-200,921,923 E,214,14,1193,1193,234,34,1173,1173 E,234,34,1173,1173,254,54,1153,1153
E,254,54,1153,1153,274,74,1133,1133 E,1675,1875,272,72,11675,11875,10272,10072 EGEN.10.200.951 E,72,272,271,71,10072,10272,10271,10071 EGEN, 10, 200, 961 E,71,271,291,91,10071,10271,10291,10091 EGEN, 10, 200, 971 E,91,291,311,111,10091,10291,10311,10111 EGEN, 10, 200, 981 E,111,73,273,311,10111,10073,10273,10311 EGEN, 10, 200, 991 E,74,274,273,73,10074,10274,10273,10073 EGEN, 10, 200, 1001 E.2933.2733.1874.2074.12933.12733.11874.12074 EGEN,9,-200,1011 E,274,74,1133,1133,10274,10074,11133,11133 EGEN,3,10000,951,1020 E,1615,1815,101815,101615,1635,1835,101835,101635 EGEN, 5, 200, 1161 EGEN, 5, 100000, 1161, 1165 EGEN, 3, 20, 1161, 1185 E,1675,1875,101875,101675,11675,11875,111875,111675 EGEN, 5, 200, 1236 EGEN, 5, 100000, 1236, 1240 EGEN,3,10000,1236,1260 TYPE,2 **!MODIFY ELEMENT 1TO 80 FROM TYPE1** EMODIF,1 TO TYPE2 \*REPEAT,80,1 NUMMRG,NODE **MERGE COINCIDENT NODES** NSEL, S, NODE, 1, 2001, 200 CM,CRACKTIP,NODE /NERR,0 FRACT,2 **!CONVERSION MACRO, TYPE 2 IS SOILID45** 

/NERR.DEFA **/OUTPUT** OUTPR.,ALL OUTPR, VENG, ALL NSEL,S,LOC,Y,0 NSEL,R,NODE,,1,2001,200 NSEL,A,NODE,,2,2002,200 NSEL,A,NODE,,3,2003,200 NSEL,A,NODE,,4,2004,200 NSEL,A,NODE,,5,2005,200 NSEL,A,NODE,,6,2006,200 NSEL,A,NODE,,7,2007,200 NSEL,A,NODE,,8,2008,200 NSEL,A,NODE,,9,2009,200 NSEL,A,NODE.,10,2010,200 NSEL,A,NODE,,11,2011,200 NSEL,A,NODE,,12,2012,200 NSEL,A,NODE,,1615,3615,200 NSEL, A, NODE, 102615, 502615, 100000 NSEL, A, NODE, 102415, 502415, 100000 NSEL, A, NODE, 102215, 502215, 100000 NSEL, A, NODE, 102015, 502015, 100000 NSEL,A,NODE,,101815,501815,100000 NSEL, A, NODE, 101615, 501615, 100000 NSEL, A, NODE, 532679, 532967, 32 NSEL,A,NODE.,532677 DSYM,SYMM,Y SIMETRI BC AT Y=0 KECUALI PADA CRACK NODE NSEL,S,LOC,Y,31 SF,ALL,PRES,252 NSEL,ALL ESEL,ALL FINISH /OUTPUT,SCRATCH /SOLU SOLVE

FINISH /OUTPUT /POST1

#### PERHITUNGAN LEFM

C\*\*\* DETERMINE K1 \*\* CS,1193,1,2993,1,198,1 PATH,KI1,3,,80 PPATH,1,1 PPATH,2,532704 PPATH,3,162 KCALC,,,1 \*GET,KI1,KCALC,,K,1 PATH,KI11,3,,80 PPATH,2,532994 PPATH,2,532994 PPATH,3,2162 KCALC,,,1 \*GET,KI11,KCALC,,K,1

#### **PERHITUNGAN EPFM**

ETABLE,SENE,SENE ETABLE,VOLU,VOLU \*CREATE,JIN1 STINFC SEXP,W,SENE,VOLU,1,-1 PATH,SIFUJI,4,50,48 PPATH,1,2 PPATH,2,43 PPATH,3,123 PPATH,4,162 PDEF,W,ETAB,W PCALC,INTG,J,W,YG \*GET,JA,PATH,,LAST,J PDEF,CLEAR PVECT,NORM,NX,NY,NZ PDEF.INTR.SX.SX PDEF, INTR, SY, SY PDEF, INTR, SXY, SXY PCALC, MULT, TX, SX, NX PCALC, MULT, C1, SXY, NY PCALC, ADD, TX, TX, C1 PCALC, MULT, TY, SXY, NX PCALC, MULT, C1, SY, NY PCALC, ADD, TY, TY, C1 \*GET.DX.PATH.LAST.S DX=DX/100 PCALC, ADD, XG, XG, ..., -DX/2 PDEF, INTR, UX1, UX PDEF, INTR, UY1, UY PCALC.ADD.XG.XG...,DX PDEF, INTR, UX2, UX PDEF, INTR, UY2, UY PCALC, ADD, XG, XG, ..., -DX/2 C=(1/DX)

! TX = SX\*NX + SXY\*NY

! TY = SXY\*NX + SY\*NY

PCALC,ADD,C1,UX2,UX1,C,-C PCALC,ADD,C2,UY2,UY1,C,-C PCALC,MULT,C1,TX,C1 PCALC,MULT,C2,TY,C2 !TX\* PCALC,ADD,C1,C1,C2 PCALC,INTG,J,C1,S \*GET,JB,PATH,,LAST,J JINT=2\*(JA-JB) PDEF,CLEAR \*END

CON1=73.1E3/(1-(0.33\*0.33)) FACTOR \*ULIB,JIN1 !TX\*DUX/DX+TY\*DUY/DX

**!J-TO-KICONVERSION** 

\*USE,STINFC,2,43,123,162 KI2=SQRT(CON1\*SIFUJI) \*STATUS,SIFUJI

FINISH

### ! CALCULATE KI FROM J ! VIEW RESULTS







### Lampiran C. Hasil Perhitungan

Tabel C.1. A2006G42R01 LEFM

| Ν         | LEFM (pla      | lain strain) LEFM (plain str |                | in stress)     |
|-----------|----------------|------------------------------|----------------|----------------|
|           | ∆Ka<br>(MPaVm) | ΔKc<br>(MPaVm)               | ∆Ka<br>(MPaVm) | ΔKc<br>(MPaVm) |
| 0         | 19,16          | 15,729                       | 17,076         | 14,016         |
| 2703      | 19,16          | 15,729                       | 17,076         | 14,016         |
| 12706     | 19,16          | 15,729                       | 17,076         | 14,016         |
| 20007     | 19,57          | 16,343                       | 17,436         | 14,563         |
| 27712     | 20,35          | 17,561                       | 18,136         | 15,649         |
| 32713     | 21,48          | 19,346                       | 19,14          | 17,239         |
| 35227     | 22,45          | 20,787                       | 20,003         | 18,523         |
| 37760     | 24,28          | 23,42                        | 21,639         | 20,87          |
| 38764     | 25,3           | 24,758                       | 22,544         | 22,062         |
| 39768     | 26,73          | 26,539                       | 23,818         | 23,649         |
| 40715     | 28,86          | 29,015                       | 25,72          | 25,855         |
| 41676     | 32,88          | 33,365                       | 29,295         | 29,732         |
| 42714     | 42,57          | 41,489                       | 37,935         | 36,973         |
| Tabel C.2 | 2. A2006G42    | R01 EPFM                     | 1              |                |
|           | EPFM (pla      | ain strain)                  | EPFM (pla      | in stress)     |

|       | EPFM (pl       | ain strain)    | EPFM (plain stress) |                |
|-------|----------------|----------------|---------------------|----------------|
| N     | ∆Ka<br>(MPaVm) | ΔKc<br>(MPaVm) | ∆Ka<br>(MPaVm)      | ΔKc<br>(MPaVm) |
| 0     | 19,962         | 15,338         | 19,043              | 14,63          |
| 2703  | 19,962         | 15,338         | 19,043              | 14,63          |
| 12706 | 19,962         | 15,338         | 19,043              | 14,63          |
| 20007 | 20,203         | 15,935         | 19,272              | 15,2           |
| 27712 | 20,639         | 17,121         | 19,689              | 16,33          |
| 32713 | 21,227         | 18,859         | 20,249              | 17,99          |
| 35227 | 21,802         | 20,261         | 20,798              | 19,33          |
| 37760 | 22,98          | 22,82          | 21,921              | 21,77          |
| 38764 | 23,718         | 25,281         | 22,625              | 24,21          |
| 39768 | 24,814         | 25,844         | 23,671              | 24,65          |
| 40715 | 26,524         | 28,24          | 25,302              | 26,94          |
| 41676 | 29,703         | 32,444         | 28,335              | 30,95          |
| 42714 | 36,834         | 40,112         | 35,138              | 38,26          |

| N     | LEFM (pla      | ain strain)    | LEFM (plain stress) |                |
|-------|----------------|----------------|---------------------|----------------|
|       | ∆Ka<br>(MPaVm) | ΔKc<br>(MPaVm) | ∆Ka<br>(MPaVm)      | ΔKc<br>(MPaVm) |
| 0     | 19,42          | 15,9           | 17,304              | 14,169         |
| 10003 | 19,42          | 15,9           | 17,304              | 14,169         |
| 20004 | 19,42          | 15,9           | 17,304              | 14,169         |
| 30010 | 19,42          | 15,9           | 17,304              | 14,169         |
| 40011 | 20,43          | 17,556         | 18,203              | 15,644         |
| 42696 | 20,5           | 17,68          | 18,268              | 15,754         |
| 45028 | 20,6           | 17,853         | 18,359              | 15,909         |
| 50012 | 21             | 18,471         | 18,715              | 16,46          |
| 54949 | 21,51          | 19,285         | 19,163              | 17,184         |
| 60027 | 22,25          | 20,477         | 19,825              | 18,247         |
| 62551 | 22,74          | 21,226         | 20,262              | 18,914         |
| 64954 | 23,38          | 22,08          | 20,833              | 19,675         |
| 69998 | 26,18          | 25,616         | 23,327              | 22,827         |
| 74959 | 33,33          | 32,986         | 29,702              | 29,392         |
| 76954 | 39,15          | 38,112         | 34,886              | 33,963         |
| 77968 | 43,13          | 41,141         | 38,431              | 36,66          |
| 78977 | 49,98          | 54,707         | 48,75               | 44,538         |

Tabel C.3. A1606G42R01 LEFM

## Tabel C.4. A1606G42R01 EPFM

|       | EPFM (plain strain) |           | EPFM (plain stress) |         |
|-------|---------------------|-----------|---------------------|---------|
| N     | ΔKa                 | ΔKc       | ΔKa                 | ΔΚς     |
|       | (IVIPavm)           | (IVIPavm) | (IVIPavm)           | (MPavm) |
| 0     | 20,218              | 15,505    | 19,286              | 14,79   |
| 10003 | 20,218              | 15,505    | 19,286              | 14,79   |
| 20004 | 20,218              | 15,505    | 19,286              | 14,79   |
| 30010 | 20,218              | 15,505    | 19,286              | 14,79   |
| 40011 | 20,716              | 17,115    | 19,762              | 16,33   |
| 42696 | 20,748              | 17,236    | 19,792              | 16,44   |
| 45028 | 20,792              | 17,404    | 19,834              | 16,6    |
| 50012 | 21,004              | 18,006    | 20,037              | 17,18   |
| 54949 | 21,245              | 18,798    | 20,266              | 17,93   |

|       | 1      |        |        |       |
|-------|--------|--------|--------|-------|
| 60027 | 21,605 | 19,959 | 20,609 | 19,04 |
| 62551 | 21,875 | 20,688 | 20,868 | 19,73 |
| 64954 | 22,321 | 21,518 | 21,293 | 20,53 |
| 69998 | 24,408 | 24,952 | 23,284 | 23,8  |
| 74959 | 30,597 | 32,081 | 29,188 | 30,6  |
| 76954 | 35,665 | 37,028 | 34,023 | 35,32 |
| 77968 | 38,746 | 39,791 | 36,961 | 37,96 |
| 78977 | 48,067 | 48,256 | 45,853 | 46,03 |

# Tabel C.5. A1206G42R01 LEFM

|        | LEFM (plain strain) |         | LEFM (plain stress) |         |
|--------|---------------------|---------|---------------------|---------|
|        | ΔKa                 | ΔΚς     | ΔKa                 | ΔKc     |
| N      | (MPaVm)             | (MPaVm) | (MPaVm)             | (MPaVm) |
| 0      | 19,95               | 16,237  | 17,782              | 14,469  |
| 20001  | 20,62               | 17,252  | 18,376              | 15,373  |
| 30057  | 21,06               | 17,927  | 18,763              | 15,975  |
| 35013  | 21,31               | 18,328  | 18,989              | 16,332  |
| 40002  | 21,56               | 18,726  | 19,212              | 16,687  |
| 45019  | 21,81               | 19,122  | 19,431              | 17,039  |
| 50099  | 22,13               | 19,645  | 19,716              | 17,505  |
| 55014  | 22,44               | 20,163  | 19,994              | 17,968  |
| 60003  | 22,74               | 20,678  | 20,265              | 18,426  |
| 65045  | 23,06               | 21,265  | 20,57               | 18,949  |
| 70110  | 23,58               | 21,95   | 21,013              | 19,559  |
| 75048  | 24,76               | 23      | 22,062              | 20,495  |
| 80004  | 25,6                | 24,107  | 22,815              | 21,481  |
| 85054  | 26,87               | 25,602  | 23,942              | 22,814  |
| 90027  | 28,94               | 27,722  | 25,784              | 24,703  |
| 95013  | 32,68               | 31,417  | 29,119              | 27,995  |
| 98278  | 36,29               | 35,041  | 32,337              | 31,028  |
| 100005 | 39,22               | 37,34   | 34,943              | 33,273  |
| 102528 | 47,34               | 44,019  | 42,188              | 39,225  |
| 105029 | 68,98               | 59,843  | 61,472              | 53,325  |

|        | EPFM (plain strain) |                | EPFM (plain stress) |                |
|--------|---------------------|----------------|---------------------|----------------|
| N      | ∆Ka<br>(MPaVm)      | ΔKc<br>(MPaVm) | ∆Ka<br>(MPaVm)      | ∆Kc<br>(MPaVm) |
| 0      | 20,75               | 15,833         | 19,795              | 15,1           |
| 20001  | 21,124              | 16,821         | 20,151              | 16,05          |
| 30057  | 21,349              | 17,509         | 20,366              | 16,7           |
| 35013  | 21,474              | 17,867         | 20,485              | 17,04          |
| 40002  | 21,592              | 18,255         | 20,598              | 17,41          |
| 45019  | 21,704              | 18,64          | 20,704              | 17,78          |
| 50099  | 21,843              | 19,149         | 20,837              | 18,27          |
| 55014  | 21,972              | 19,654         | 20,96               | 18,75          |
| 60003  | 22,09               | 20,155         | 21,073              | 19,23          |
| 65045  | 22,216              | 20,727         | 21,193              | 19,77          |
| 70110  | 22,527              | 21,393         | 21,489              | 20,41          |
| 75048  | 23,681              | 22,414         | 22,59               | 21,38          |
| 80004  | 24,25               | 23,49          | 23,133              | 22,41          |
| 85054  | 25,214              | 24,942         | 24,053              | 23,79          |
| 90027  | 27,003              | 26,681         | 25,759              | 25,45          |
| 95013  | 30,248              | 30,574         | 28,854              | 29,17          |
| 98278  | 33,367              | 33,862         | 31,83               | 32,3           |
| 100005 | 35,981              | 36,295         | 34,323              | 34,62          |
| 102528 | 43,086              | 42,732         | 41,102              | 40,76          |
| 105029 | 60,991              | 57,698         | 58,182              | 55,04          |

Tabel C.6. A1206G42R01 EPFM