25385/H/0B

TESIS

STUDI NUMERIK PENGARUH ANGKA REYNOLDS TERHADAP UNJUK KERJA SUSUNAN TUBE ALIGNED DAN STAGGERED BERSIRIP TUNGGAL

PROGRAM STUDI MAGISTER BIDANG KEAHLIAN REKAYASA KONVERSI ENERGI JURUSAN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2005 STUDI NUMERIK PENGARUH ANGKA REYNOLDS TERHADAP UNJUK KERJA SUSUNAN TUBE ALIGNED DAN STAGGERED BERSIRIP TUNGGAL

> Tesis ini disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (M.T) Di Institut Teknologi Sepuluh Nopember Surabaya

> > Olch :

JENNY DELLY Nrp. 2103.202.005

Disetujui oleh Tim Penguji Tesis :

Tanggal Ujian : 1 Agustus 2005 Periode Wisuda : September 2005

1. Dr.Eng.Prabowo, M.Eng NIP. 131 902 444

(Pembimbing)

2. Dr.Ir.Triyogi Yuwono, DEA NIP. 131 652 212

3. Dr.Ir.Sutardi, M.Eng NIP. 131 918 689

4. Dr.Ing.Herman Sasongko NIP. 131 577 243 (Penguji)

(Penguji)

(Penguji)

Direktur Program Pascasarjana,

Prof.Ir.Happy Ratna S., M.Sc.PhD NIP. 130 541 829

STUDI NUMERIK PENGARUH ANGKA REYNOLDS TERHADAP UNJUK KERJA SUSUNAN TUBE ALIGNED DAN STAGGERED BERSIRIP TUNGGAL

Oleh : Jenny Delly Pembimbing : Dr. Eng. Ir. Prabowo, M. Eng.

ABSTRAK

Pada compact heat exchanger, salah satu usaha untuk memperluas permukaan perpindahan panas adalah dengan menggunakan sirip. Masalah yang akan dikaji adalah bagaimana pengaruh perubahan geometri sirip terhadap unjuk kerja pada penukar panas tipe Compact. Unjuk kerja penukar panas ditunjukkan oleh angka Nusselt, koefisien konveksi (h), effisiensi sirip (η_0), effisiensi overall (η_0). Bentuk sirip yang digunakan pada penelitian ini adalah sirip tunggal dan datar dengan susunan tube aligned dan staggered.

Pada penelitian ini dikaji secara numerik unjuk kerja penukar panas sebagai fungsi dari aliran fluida dan geometri sirip. Untuk mengetahui pengaruh aliran fluida terhadap unjuk kerja penukar panas dilakukan variasi pada angka Reynolds (Re) yang memasuki benda uji (Re =500, 750, 1000). Fluida dingin yang digunakan adalah udara sedangkan untuk fluida panas diganti dengan heater untuk menjaga fluks panas tetap konstan sepanjang tube. Variasi Reynolds diperoleh dengan mengatur kecepatan udara yang memasuki terowongan angin.

Diperoleh hasil, penukar panas dengan sirip tunggal (single fin) pada Reynolds rendah (pada Re = 500) menghasilkan efisiensi sirip, efisiensi overall tertinggi untuk susunan tube aligned dan sedangkan pada Reynolds tinggi (Re=1000) dihasilkan angka Nusselt yang tinggi dan koefisien perpindahan panas yang besar.

Kata kunci : staggered, aligned ,angka Reynolds, angka Nusselt, koefisien konveksi, efisiensi sirip, efisiensi overall,

AN NUMERICAL STUDY ON THE EFFECT OF REYNOLDS NUMBER ON THE PERFORMANCE OF ALIGNED AND STAGGERED TUBES-SINGLE FINS FORMATION

By: Jenny Delly Under Supervisor : Dr. Eng. Ir. Prabowo, M. Eng.

ABSTRACT

On a compact heat exchanger, one way to increase heat transfer area is by fin addition. The problem that will be studied is the effect of geometric changing on performances of heat exchanger. Performances of heat exchanger are presented in the form of heat transfer rate (q), heat flux (q"), coefficient of heat transfer (h), fin efficiency (η_f), and overall efficiency (η_o). Fin geometry that has been used in this experiment is single flat, and tube formation is aligned and staggered.

This research studies numerically the fluid stream on performances of a heat exchanger. Fluid stream effect is studied through three variations of Reynolds number (Re) i.e. 500, 750, 1000. Cooling fluids is air and hot fluid was replaced by heater to keep constant heat flux a long the tube. Reynolds number variations are obtained by controlling fluid velocity in the wind tunnel.

The result of this research show that fin efficiency and overall efficiency on the lowest Reynolds number (Re = 500) is the highest for aligned and staggered configuration. The highest Reynolds number (Re = 1000) result in highest Nusselt number and convection heat transfer coefficient.

Keywords: compact heat exchanger, aligned, staggered, Reynolds number, Nusselt number, convection heat transfer coefficient, fin efficiency, overall efficiency

KATA PENGANTAR

Puji dan syukur ke hadirat Tuhan atas berkat dan karunian-Nya, sehingga thesis dengan judul; Study Numerik Pengaruh Angka Reynolds Terhadap Unjuk Kerja Susunan Tube Aligned dan Staggered bersirip Tunggal, dapat kami rampungkan.

Penulisan tesis ini adalah dalam rangka memenuhi salah satu persyaratan akademis yang harus diselesaikan setiap mahasiswa Program Pasca Sarjana S-2, Teknik Mesin FTI-ITS untuk berhak menyandang gelar Magister Teknik.

Proses penyusunan thesis ini tidak terlepas dari bantuan dan dukungan berbagai pihak, baik secara langsung maupun tidak langsung. Berkenaan dengan hal tersebut penulis menyampaikan terima kasih kepada :

- Bapak Dr. Eng. Ir. Prabowo, selaku dosen wali sekaligus dosen pembimbing, yang dengan penuh kesabaran dan dedikasi telah memberikan bimbingan, motivasi dan dukungan selama penulis menempuh kuliah S-2 di jurusan Teknik Mesin FTI-ITS.
- Bapak Dr. Ing. Herman Sasongko selaku dosen penguji sekaligus sebagai ketua jurusan Teknik Mesin FTI - ITS, atas segala sumbangsih ilmu, dukungan, saran dan kritik yang telah diberikan kepada penulis.
- Bapak Dr. Ir. Triyogi Yuwono, DEA. Selaku dosen penguji sekaligus sebagai staff pengajar Teknik Mesin FTI-ITS, atas segala sumbangsih ilmu, dorongan dan masukan yang diberikan kepada penulis.

- Bapak Dr. Ir. Sutardi, M.Eng, selaku dosen penguji sekaligus staff pengajar Teknik Mesin FTI-ITS, atas segala sumbangsih ilmu, dorongan dan masukan yang sangat berarti yang diberikan kepada penulis.
- Semua Staff Pengajar Program Pasca Sarjana jurusan Teknik Mesin FTI-ITS, atas semua bimbingan dan masukan ilmu, yang telah diberikan kepada penulis selama menempuh kuliah S-2 di Jurusan Teknik Mesin FTI-ITS.
- Bapak Dr. Ing. I Made Londen Batan, M.Eng. Selaku ketua program studi S-2 Jurusan Teknik Mesin FTI-ITS, yang telah memberikan dukungan semangat dan fasilitas bagi penulis dalam menyelesaikan thesis ini.
- 7. Pak Wawan Aries, Giri ; atas bantuan dan masukannya selama mengerjakan thesis ini
- Rekan-rekan mahasiswa Pasca Sarjana : Eva, Irham, Mangkona, Faisal ;
 Bantuan dan Solidaritas anda semua sangat berarti. Semoga sukses selalu
- Pak Sumiadi, Mbak Aulia, Mas Totok, Mas Dani serta semua karyawan jurusan Teknik Mesin FTI -ITS.
- Kedua Anakku-Gabriella Monalisa dan Gilbert Inoca ; Doa, pengorbanan dan pengertian kalian menjadi cambuk dan kekuatan dalam menyelesaikan thesis ini.
- Semua pihak yang telah membantu penulis selama ini, yang tak dapat penulis sebut satu-persatu.

Penulis sadar sepenuhnya bahwa karya ilmiah ini masih banyak diwarnai kekurangan dan kelemahan, sehingga koreksi dan saran ke arah penyempurnaan akan sangat membantu penulis. Akhirnya dengan penuh kerendahan hati, penulis

berharap kiranya dalam kekurangan dan kelemahannya karya ini dapat bermanfaat.

Keputih, Agustus 2005

Penulis

DAFTAR ISI

Hal

HALAMAN JUDUL
LEMBAR PENGESAHANi
ABSTRAK
KATA PENGANTARiv
DAFTAR ISI
DAFTAR GAMBAR
DAFTAR TABEL
NOMENKLATUR
BAB I. PENDAHULUAN
I.1 Latar Belakang
I.2 Perumusan Masalah4
I.3 Batasan Masalah5
I.4 Tujuan Penelitian5
I.5 Metode Penelitian
BAB II. TINJAUAN PUSTAKA
II.1 Penelitian Terdahulu7
II.2 Aliran Viscous dan Non Viscous
II.3 Aliran Laminar dan Turbulen
II.4 Aliran Internal dan Eksternal
II.5 Perkembangan Lapisan Batas Aliran15
II.6 Lapisan Batas Termal

II.7 Aliran Melintasi Pembuluh19
II.8 Prinsip Dasar Perpindahan Panas20
II.8.1 Konduksi
II.8.1.1 Konduksi Satu Dimensi pada Dinding Datar
II.8.1.2 Konduksi pada Silinder
II.8.1.3 Perpindahan Panas dari Permukaan yang Diperluas24
II.8.2 Konveksi
II.8.3 Radiasi
II.9 Konsep Kesetimbangan Energi
II.9.1 Fluks Panas Bangkitan Oleh Pemanas (Heater)
II.9.2 Panas yang diterima oleh Udara
II.10 Laju Perpindahan Panas
II.11 Unjuk Kerja Sirip34
II.12 Korelasi Perpindahan Panas dengan Faktor j Colburn
BAB III. METODOLOGI PENELITIAN
III.1 Variabel Penelitian

]	III.3 Metode Numerik	42
]	III.3 Metode Numerik	42

BAB IV. ANALISA DAN DISKUSI

ł

4.1	Pola Aliran Pengaruh dari Angka Reynolds dan Jarak Sirip	
	Susunan Tube Aligned	58
4.2	Pola Aliran Pengaruh dari Angka Reynolds dan Jarak Sirip	
	Susunan Tube Staggered	68

4.3 Analisa Pengaruh Jarak Sirip dan Angka Reynolds Terhadap	angka
Nusselt Lokal dan Kecepatan Lokal	77
4.4 Analisa Pengaruh Jarak Sirip dan Angka Reynolds Terhadap	
angka Nusselt Lokal dan Kecepatan Lokal	84
4.5 Analisa Pengaruh Jarak Sirip Terhadap Koefisien Konveksi	90
4.6 Analisa Pengaruh Jarak Sirip dan Angka Reynolds Terhadap	
Efisiensi Sirip	93
4.7 Analisa Pengaruh Jarak Sirip dan Angka Reynolds Terhadap	
Efisiensi Permukaan Menyeluruh	98
BAB V. PENUTUP	
V.1 Kesimpulan	102
V.2 Saran	103
DAFTAR PUSTAKA	
LAMPIRAN	
Lampiran A	
Lampiran B	
Lampiran C	

Lampiran D

DAFTAR GAMBAR

Gambar 1.1	Jenis-jenis Compact Heat Exchanger1		
Gambar 2.1	Hubungan Cp dan Cf terhadap D/l susunan staggered7		
Gambar 2.2	Hubungan stream wise dan spanwise susunan staggered (E.R		
	Meinders, K Hanjalic [2002])8		
Gambar 2.3	Hubungan angka Nusselt dan power fan (Tamotsu Igarasi,		
	Hajime Nakamura, Taketo Fukuoka [2004])9		
Gambar 2.4	Pengaruh angka Reynolds terhadap faktor j Colburn dan friction		
	factor, Hasil penelitian Kays dan London10		
Gambar 2.5	Pengaruh Re terhadap laju perpindahan panas dengan v_{udara} =1,31		
	m/s, $T_{udara in} = 21^{\circ}$ C, $T_{air in} = 54^{\circ}$ C (Zao,X; 1995)12		
Gambar 2.6	Aliran melalui saluran pipa14		
Gambar 2.7	Aliran melalui silinder ellips 14		
Gambar 2.8	Perkembangan lapis batas aliran 16		
Gambar 2.9	Lapisan batas termal 17		
Gambar 2.10	Konfigurasi pembuluh aligned dan staggered19		
Gambar 2.11	Aliran melintasi susunan pembuluh aligned20		
Gambar 2.12	Skema proses perpindahan panas		
Gambar 2.13	Distribusi suhu pada dinding		
Gambar 2.14	Konduksi pada silinder23		
Gambar 2.15	Konfigurasi sirip		
Gambar 2.16	Perpindahan panas konveksi melintasi plat datar		

Gambar 2.17	Skema konsep keseimbangan energi	30
Gambar 2.19	Pengaruh $L_c^{3/2} (\frac{h}{k \cdot A_p})^{1/2}$ terhadap Efisiensi Sirip	
	untuk Circular Fin	35
Gambar 2.20	Susunan sirip	. 38
Gambar 3.1	Skema instalasi penelitian	42
Gambar 3.2	Saluran uji (wind tunnel) yang digunakan (samping)	43
Gambar 3.3	Peletakan benda uju pada saluran uji	44
Gambar 3.4	Benda uji Aligned	44
Gambar 3.5	Benda uji staggered	45
Gambar 3.6	Pengukuran kecepatan dengan anemometer	46
Gambar 3.7	Skema variabel penelitian	47
Gambar 3.8	Titik penempatan thermocouple (aligned)	48
Gambar 3.9	Titik penempatan thermocouple (staggered)	49
Gambar 3.10	Digital display Thermometer	51
Gambar 3.11	Bentuk grid pada meshing model	55
Gambar 3.12	Flowchart simulasi numerik	61
Gambar 3.13	Control volume sekeliling node P	62
Gambar 3.14	Control volume Upwind differecing scheme	64
Gambar 4.1	Pengaruh Jarak Sirip terhadap Koefisien Perpindahan Panas	
	Konveksi (Eksperimen)	71
Gambar 4.2	Pengaruh Re terhadap Koefisien Perpindahan Panas Konveksi	
	(Eksperimen)	72
Gambar 4.3	Pengaruh Jarak Sirip terhadap Efisiensi sirip (Eksperimen)	73

Gambar 4.4	Pengaruh Re terhadap Efisiensi sirip (Eksperimen)74
Gambar 4.5	Pengaruh Jarak Sirip terhadap Efisiensi Overall (Eksperimen)
Gambar 4.6	Pengaruh Re terhadap Efisiensi Overall (Eksperimen)
Gambar 4.7	Kontur temperatur dan pola aliran Re 500, Pf3 susunan tube
	aligned78
Gambar 4.8	Kontur temperatur dan pola aliran Re 750, Pf3 susunan tube
	aligned79
Gambar 4.9	Kontur temperatur dan pola aliran Re 1000, Pf3 susunan tube
	aligned
Gambar 4.10	Kontur temperatur dan pola aliran Re 500, Pf5 susunan tube
	aligned
Gambar 4.11	Kontur temperatur dan pola aliran Re 750, Pf5 susunan tube
	aligned82
Gambar 4.12	Kontur temperatur dan pola aliran Re 1000, Pf5 susunan tube
	aligned
Gambar 4.13	Kontur temperatur dan pola aliran Re 500, Pf7 susunan tube
	aligned
Gambar 4.14	Kontur temperatur dan pola aliran Re 750, Pf7 susunan tube
	aligned
Gambar 4.15	Kontur temperatur dan pola aliran Re 1000, Pf7 susunan tube
	aligned

Gambar 4.16	Kontur temperatur dan pola aliran Re 500, Pf3 susunan tube
	staggered
Gambar 4.17	Kontur temperatur dan pola aliran Re 750, Pf3 susunan tube
	staggered
Gambar 4.18	Kontur temperatur dan pola aliran Re 1000, Pf3 susunan tube
	staggered
Gambar 4.19	Kontur temperatur dan pola aliran Re 500, Pf5 susunan tube
	staggered
Gambar 4.20	Kontur temperatur dan pola aliran Re 750, Pf5 susunan tube
	staggered
Gambar 4.21	Kontur temperatur dan pola aliran Re 1000, Pf5 susunan tube
	staggered
Gambar 4.22	Kontur temperatur dan pola aliran Re 500, Pf7 susunan tube
	staggered
Gambar 4.23	Kontur temperatur dan pola aliran Re 750, Pf7 susunan tube
	staggered
Gambar 4.24	Kontur temperatur dan pola aliran Re 1000, Pf7 susunan tube
	staggered
Gambar 4.25	Grafik angka Nusselt local pada $pf = 3mm$, tube 196
Gambar 4.26	Grafik angka Nusselt local pada pf = 5mm, tube 197
Gambar 4.27	Grafik angka Nusselt local pada $pf = 7mm$, tube 1
Gambar 4.28	Grafik angka Velocity magnitude pada $pf = 3mm$, tube 1
Gambar 4.29	Grafik angka Velocity magnitude pada $pf = 5mm$, tube 1

Gambar 4.30	Grafik angka Velocity magnitude pada $pf = 7mm$, tube 1
Gambar 4.31	Grafik angka Nusselt local pada pf = 3mm, tube 2100
Gambar 4.32	Grafik angka Nusselt local pada pf = 5mm, tube 2100
Gambar 4.33	Grafik angka Nusselt local pada pf = 7mm, tube 2101
Gambar 4.34	Grafik angka Velocity magnitude pada $pf = 3mm$, tube 2101
Gambar 4.35	Grafik angka Velocity magnitude pada $pf = 5mm$, tube 2102
Gambar 4.36	Grafik angka Velocity magnitude pada pf = 7mm, tube 2102
Gambar 4.37	Grafik angka Nusselt local pada pf = 3mm, tube 1 susunan
	staggered
Gambar 4.38	Grafik angka Nusselt local pada pf = 5mm, tube 1 susunan
	staggered
Gambar 4.39	Grafik angka Nusselt local pada pf = 7mm, tube 1 susunan
	staggered
Gambar 4.40	Grafik angka Velocity magnitude local pada $pf = 3mm$, tube 1
	susunan staggered104
Gambar 4.41	Grafik angka Velocity magnitude pada $pf = 5mm$, tube 1 susunan
	staggered
Gambar 4.42	Grafik angka Velocity magnitude pada $pf = 7mm$, tube 1 susunan
	staggered
Gambar 4.43	Grafik angka Nusselt local pada pf = 5mm, tube 1 susunan
	staggered
Gambar 4.44	Grafik angka Nusselt local pada $pf = 5mm$, tube 3 susunan
	staggered

Gambar 4.45	Grafik angka Nusselt local pada $pf = 5mm$, tube 5 susunan			
	susunan staggered			
Gambar 4.46	Grafik angka Nusselt local pada pf = 7mm, tube 1 susunan			
	staggered			
Gambar 4.47	Grafik angka Nusselt local pada pf = 7mm, tube 3 susunan			
	staggered			
Gambar 4.48	Pengaruh Jarak Sirip terhadap Koefisien Perpindahan Panas			
	Konveksi (Numerik)			
Gambar 4.49	Pengaruh Re terhadap Koefisien Perpindahan Panas Konveksi			
	(Numerik)			
Gambar 4.50	Pengaruh Jarak Sirip terhadap Fisiensi sirip (Numerik)113			
Gambar 4.51	Pengaruh Reterhadap Fisiensi sirip (Numerik)116			
Gambar 4.52	Pengaruh Jarak Sirip terhadap Efisiensi Overall (Numerik)			
Gambar 4.53	Pengaruh Jarak Re terhadap Efisiensi Overall (Numerik)			

DAFTAR TABEL

Tabel 2.1 Tabel Spesifikasi Hasii Penentian Kays dan London	Tabel 2.1	Tabel Spesifikasi	i Hasil Penelitian	Kays dan London		10
---	-----------	-------------------	--------------------	-----------------	--	----

 Tabel 3.2
 Metode Diskritisasi dan Nilai Faktor Under Relaksasi
 68

Hai

NOMENKLATUR

A _b	Luas permukaan perpindahan panas pembuluh (tube), m ²
$\mathbf{A}_{\mathbf{f}}$	Luas permukaan perpindahan panas sirip (fin), m ²
A_{ff}	Luas aliran bebas (free flow area) dari model compact heat exchanger, m ²
A_{fr}	Luasan yang tegak lurus arah aliran (frontal), m ²
Ap	Luasan profil sirip, m ²
A _t	Luasan total permukaan perpindahan panas, m ²
c _p	Panas spesifik tekanan konstan, $\frac{J}{kg^0 K}$
Dt	Diameter pembuluh (tube), m
D_{h}	Diameter hidrolis, m
G	Mass velocity (Kg/m ² .s)
h	Koefisien perpindahan panas konveksi, $\frac{W}{m^2 K}$
Ι	Arus listrik, ampere
jн	Faktor j Colburn
k	Konduktivitas thermal material, $\frac{W}{m^2 K}$
L _c	Panjang karakteristik sirip, m
$L_{\rm f}$	Panjang/Lebar sirip (fin), m
m	Laju alir massa udara, kg/s.
N_{f}	Jumlah sirip
Nu_{θ}	Angka Nusselt lokal

xvii

- Nu_L Angka Nusselt rata-rata
- P Keliling terbasahi (wetted perimeter), m
- P_b Panjang pembuluh, m
- P_f Jarak (pitch) sirip, m
- Pr angka Prandlt
- q Laju perpindahan panas, watt.
- q" Fluks panas, W/m²
- R Thermal Resistance (K/W)
- Re angka Reynold
- St angka Stanton
- t_f Tebal sirip, m
- T_b Suhu pembuluh lokal, ^OC
- $\overline{T_b}$ Suhu pembuluh rata-rata, ^OC
- $\overline{T_{ex}}$ Suhu rerata permukaan luar penukar panas, ^oC
- T_f Suhu sirip lokal, ^OC
- $\overline{T_f}$ Suhu sirip rata-rata, ^OC
- T_{ui} Suhu udara masuk, ^OC
- T_{uo} Suhu udara keluar, ^OC
- T_u Suhu udara rerata, ^oC
- v Kecepatan udara, m/s
- V Voltase, volt
- Vt Volume total penukar panas, m³

A DAMUK PERPUSTIKAN

xviii

- α Luas permukaan perpindahan panas/volume total penukar panas, m²/m³
- $\eta_{\rm f}$ Efisiensi sirip (single fin)
- η_o Efisiensi permukaan menyeluruh (overall surface efficiency).

BABI

PENDAHULUAN

Perkembangan industri terutama dalam bidang teknologi, pada umumnya banyak membutuhkan suatu alat untuk memindahkan sejumlah energi panas dari sistem ke lingkungan atau antara bagian-bagian yang berbeda di dalam suatu sistem. Alat utama yang digunakan untuk memindahkan panas dari fluida panas ke fluida dingin disebut penukar panas (*heat exchanger*). Secara umum fluida tersebut terpisahkan oleh suatu dinding sehingga terjadi perpindahan panas secara konveksi dari sisi masing-masing fluida dan konduksi pada dinding. Jenis-jenis penukar panas tersebut dapat dikelompokkan menurut geometri kontruksi dari penukar panas (*tubes, plates, dan extended surface* atau *compact*), proses perpindahannya (*direct* dan *indirect contact*), serta konfigurasi aliran fluida (*parallel, counter* dan *cross flow*).

Gambar 1.1 Jenis --jenis Compact Heat Exchanger.
a) Fin-tube (flat tube, continuous plate fins).
b) Fin-tube (circular-tube, continuous plate fins).
c) Fin-tube (circular tube, circular fins).
d) Plate-fin (single pass) e) Plate-fin (multipass).

Pendahuluan

Untuk mendapatkan unjuk kerja penukar panas yang optimal, maka laju perpindahan panas yang terjadi (aktual) harus sebesar mungkin dan penurunan tekanan (pressure drop) yang terjadi relatif kecil. Untuk memaksimalkan laju perpindahan panas aktual, maka salah satunya dapat diwujudkan dengan menambah luas permukaan singgung (kontak) perpindahan panas. Salah satu cara untuk menambah luas permukaan singgung perpindahan panas adalah dengan menggunakan *fin* (sirip) sebagai luasan tambahan (*extended surface*). Untuk mendapatkan efisiensi sirip yang tinggi, maka perlu diperhatikan material sirip yang digunakan, geometri sirip, dan lingkungan dimana sirip tersebut digunakan.

I.1 Latar Belakang

Beberapa hal yang harus diperhatikan dalam mendesain sirip adalah *jarak* antar sirip (L), ketebalan sirip (t), dan luasan efektif sirip (A). Jarak antar sirip yang terlalu renggang menyebabkan perpindahan panas yang terjadi kurang maksimal, sedangkan jika terlalu rapat menyebabkan penurunan tekanan yang besar sehingga unjuk kerja (*performance*) penukar panas tidak optimal. Tebal sirip yang berlebihan menyebabkan persinggungan dengan udara akan berkurang, sedangkan jika terlalu tipis temperatur sirip akan turun drastis pada ujung sirip sehingga laju perpindahan panas kurang maksimal. Sedangkan susunan pembuluh (*tube*) sebagai *base* bagi sirip (yang dialiri fluída panas) akan mempengaruhi aliran fluida dingin yang memasuki sistem, sehingga mempengaruhi besar laju perpindahan panas aktualnya.

Penelitian terdahulu yang mendasari penelitian ini adalah penelitian Kays

Pendahuluan

dan London(1993) yang menghasilkan pengaruh angka Reynolds terhadap faktor j Colburn dari model penukar panas (compact heat exchanger) dengan susunan pembuluh (tube) stagger berdiameter luar 10,2 mm dan sirip kontinyu serta dengan spesifikasi model perbandingan luasan total perpindahan panas terhadap volume total (α) 587 m²/m³ dan perbandingan free flow area terhadap frontal area (σ) 0,534. Selain itu Kays dan London juga meneliti untuk bare aligned tube untuk diameter 14,76 mm, $\alpha = 397,627$ m2/m3, $\sigma = 0.333$. Dari penelitian tersebut didapatkan hasil bahwa dengan semakin bertambahnya angka Reynolds aliran, faktor j Colburn model compact heat exchanger menjadi semakin menurun. Selain itu penelitian Kays dan London ini juga menghasilkan kecenderungan friction factor yang semakin menurun sebagai akibat bertambahnya angka Reynolds. Zhao(1995) meneliti dalam thesisnya tentang unjuk kerja single row heat exchanger yang salah satunya menghasilkan laju perpindahan panas yang memiliki trend/gradien yang naik tajam terhadap angka Reynolds rendah. Namun kenaikan grafik (gradien) laju perpindahan panas tersebut menjadi landai dengan bertambahnya angka Reynolds (pada angka Reynolds tinggi).

Melalui studi eksperimental dan numerik kali ini akan dikaji lebih lanjut tentang susunan pembuluh *(tube) aligned* dan staggered bersirip kontinyu sebagai model penukar panas *(compact heat exchanger)* dengan variasi tiga jarak/spasi sirip (3 mm, 5 mm, dan 7 mm) dan tiga variasi angka Reynolds aliran udara sebagai fluida pendingin (500, 750, dan 1000), sehingga nantinya didapatkan suatu kesimpulan terhadap ketiga model tersebut. Dari variasi jarak sirip tersebut

nantinya menghasilkan model penukar panas dengan α dan σ yang berbeda dari penelitian sebelumnya.

I.2 Perumusan Masalah

Perubahan spasi/jarak sirip akan menyebabkan perbedaan luasan permukaan singgung perpindahan panas (luasan efektif) dan struktur aliran fluida pada penukar panas, sehingga proses perpindahaan panas juga akan berubah. Permasalahan yang akan dibahas adalah bagaimana pengaruh dari perubahan jarak/spasi sirip (dengan menjaga konstan faktor panjang, lebar, dan tebal sirip) dan perubahan kecepatan aliran fluida dingin (udara) dengan memvariasikan angka Reynolds terhadap karakteristik model penukar panas (compact heat exchanger) tersebut. Karakteristik model penukar panas dalam penelitian ini nantinya dikaji dalam bentuk efisiensi sirip, efisiensi permukaan menyeluruh (overall efficiency), laju perpindahan panas, fluks panas (heat flux), koefisien perpindahan panas konveksi, angka Nusselt dan pola aliran.

Dari perubahan jarak sirip didapatkan hipotesa awal sesuai teori bahwa dengan semakin lebar jarak sirip, koefisien perpindahan panas konveksi, laju perpindahan panasnya, serta fluks panasnya akan semakin turun. Sementara efisiensi sirip dan efisiensi permukaan menyeluruh *(overall surface efficiency)* akan naik. Sedangkan dengan semakin tinggi angka Reynolds aliran, koefisien perpindahan panas konveksi, laju perpindahan panasnya, serta fluks panasnya akan semakin naik. Sementara efisiensi sirip ,efisiensi permukaan menyeluruh *(overall surface efficiency)*, cenderung menurun seiring bertambahnya angka

Pendahuluan

Reynolds aliran.

I.3 Batasan Masalah

Batasan masalah dan asumsi yang diambil agar penelitian yang dilakukan menjadi lebih fokus adalah sebagai berikut :

1. Pengujian dilakukan dengan membuat model penukar panas berupa empat

(4) buah pembuluh yang tersusun secara *aligned* dan 8 buah pembuluh yang tersusun secara *staggered* dengan sirip tunggal dan tebal tertentu.

- 2. Aliran udara tunak (steady) dan incompressible.
- Kecepatan udara masuk benda uji seragam, yang divariasikan pada angka Reynolds tertentu.
- 4. Fluks panas (heat flux) pada pembuluh yang dipanasi dengan pemanas (heater) konstan
- Analisa hanya dibatasi pada konveksi dari permukaan pembuluh dan sirip dengan udara.

I.4 Tujuan Penelitian

Tujuan dari penelitian ini adalah untuk :

- 1. Mengevaluasi karakteristik perpindahan panas susunan *tube* aligned dan staggered bersirip tunggal dan angka Reynolds.
- 2. Mendapatkan pola aliran untuk angka Reynolds.

I.5 Metoda Penelitian

Untuk mempermudah dalam analisa hasil-hasil penelitian eksperimental, maka disusun aktivitas-aktivitas berikut ini :

O Studi literatur

Permasalahan yang akan timbul dalam penelitian ini dapat dikaji dengan

memahami dan mempelajari buku-buku tentang perpindahan panas, thermodinamika, mekanika fluida, jurnal-jurnal hasil penelitian terdahulu serta referensi lain yang dapat memberikan solusi dalam penelitian ini disamping sebagai data sekunder.

O Studi Numerik

Pembuatan modeling dengan menggunakan program gambit dan dirunning dengan program fluent 6.2 untuk memperoleh data temperature, angka Nusselt dan kecepatan yang dibutuhkan agar dapat dikaji dalam perhitungan untuk mendapatkan karakteristik model tersebut.

O Analisa hasil pengujian

Setelah dilakukan pemodelan terhadap model uji tersebut, maka dilakukan pengambilan data primer yang kemudian dikaji dalam perhitungan untuk mendapatkan karakteristik model uji tersebut dan membuat kesimpulan hasil penelitian ini.

BAB II

TINJAUAN PUSTAKA

II.1 Penelitian Terdahulu

Chin-Hsiang Cheng dan Feng-Liang Liao [2000], melakukan penelitian dengan menggunakan gas yang dilewatkan rectangular cylinder dengan ukuran panjang dan lebar 0.06 m, distribusi C_p , C_f dan C_h dengan variasi Mach number dan Knudsen number sepanjang permukaan rectangular cylinder dengan Knudsen number yang besar , Distribusi dari masing-masing koefisien menjadi uniform pada setiap permukaan

Gambar 2.1 Hubungan Cp dan Cf susunan staggered (E.R.Meinders, K.Hanjalic[2002])

Meinders dan Hanjalic [2002], melakukan studi eksperimental dengan dua kubus disusun secara in-line dan staggered dengan variasi sreamwise (Sx / H) dan spanwise (Sz/H) diperoleh bahwa untuk susunan in-line dengan variasi sreamwise

(Sx / H)memiliki efek yang significant pada struktur aliran disekitar kubus downstream, sedangkan pada susunan staggered dengan variasi sreamwise (Sx / H) dan spanwise (Sz/H) kecil, dimana terlihat struktur aliran tidak simetri untuk distribusi local convektive heat ttransfer yang tidak simetri pula.

Gambar 2.2 Hubungan streamwise (Sx / H) dan spanwise (Sz/H) susunan staggered (*Meinders dan Hanjalic*[2002])

Tamotsu et all [2004], meneliti tentang Pressure drop dan heat transfer untuk satu susunan silinder in-line pada dinding parallel, diperoleh hubungan antara Nusselt number dengan fan power dimana dengan semakin besar fan power maka Nusselt number juga akan semakin besar.

Gambar 2.3 Hubungan angka Nusselt dan power fan (Tamotsu et all [2004].)

Kays and London yang meneliti bank of tube dengan susunan staggered dengan tiga variasi S_L (jarak tube arah longitudinal). Diperoleh grafik hubungan antara friction faktor dan j_H (koefisien perpindahan panas tanpa dimensi) yang menunjukkan bahwa j_H semakin naik dengan S_L yang semakin sempit dan j_H semakin turun dengan kenaikan angka Reynolds (gambar 2.4.a,b,c). Kays and London juga meneliti pada circular tube dengan sirip kontinyu (datar) dengan variasi tertentu yang didapatkan hasil bahwa j_H turun drastis pada Reynolds rendah tetapi pada Reynolds tinggi penurunan j_H tidak terlalu besar (gambar 2.4.d).

Tinjauan Pustaka

Gambar 2.4 Pengaruh angka Reynolds terhadap faktor j Colburn dan *friction* factor Penelitian Kays and London (1993)

1 abei 2.1 Spesifikasi mash renentian Auys aan Lonaon untuk empat grafik diat	likasi Hasil Penelitian Kays dan London untuk em	oat grafik diata
---	--	------------------

Specifikasi	Hasil Penelitian Kays dan London (Gb.2.3)			
Spesifikasi	а	b(#1)	c(#2)	d(#3)
Diameter dalam tube (D _i)	-	-	-	-
Diameter luar tube (D _o)	10.2 mm	14.76 mm	9.84 mm	14.76 mm
Jarak Transversal (ST)	-	22.13 mm	14.76 mm	18.46 mm
Jarak Longitudinal (SL)	-	18.46 mm	12.3 mm	18.46 mm
Jumlah sirip (N_f)	315 /m	-	-	-
Panjang/Lebar (Lf)Sirip	-	-	-	-
Diameter hidrolis (D _h)	3.63 mm	7.56 mm	50.59 mm	3.77 mm
Tebal sirip (t_f)	0.3 mm	-	-	-
Free flow area/frontal area (o)	0.534	0.333	0.338	0.2
Heat transfer area/total volume(α)	$587 \text{ m}^2/\text{m}^3$	397.627 m ² /m ³	321.617 m ² /m ³	$321.617 \text{ m}^2/\text{m}^3$
Luas sirip/luas total (Af/Atot)	0.913	$175.85 \text{ m}^2/\text{m}^3$	263.78 m ² /m ³	$211.29 \text{ m}^2/\text{m}^3$

Tesis Teknologi Energi

Dari keempat hasil penelitian Kays dan London diatas didapatkan hasil trend grafik yang hampir sama memiliki kecenderungan turun. Sesuai persamaan 2.34 dan 2.35 dapat dianalisa bahwa dengan naiknya angka Reynolds aliran, koefisien perpindahan panas konveksi dan laju alir massa fluida dingin akan naik. Namun kenaikkan laju alir massa fluida dingin lebih besar dibanding kenaikan koefisien perpindahan panasnya sehingga dengan *free flow area* dan panas spesifik tekanan konstan yang relatif tetap, harga angka Stanton (St) yang menjadi gradien kurva akan cenderung turun yang berakibat turunnya faktor j Colburn dengan angka Prandtl (Pr) yang relatif tetap pula. Secara umum grafik faktor j Colburn pada angka Reynolds rendah memiliki gradien kurva yang cenderung lebih tajam daripada gradien kurva pada angka Reynold tinggi.

Zhao (1995) meneliti dalam *thesis*nya tentang unjuk kerja *single row heat exchanger* dengan laju alir massa air dalam *tube* yang rendah. Dari penelitian ini salah satunya menghasilkan laju perpindahan panas yang memiliki trend/gradien yang naik tajam terhadap angka Reynolds rendah. Namun kenaikan (gradien kurva) grafik laju perpindahan panas tersebut menjadi landai dengan bertambahnya angka Reynolds (pada angka reynolds tinggi). Hal ini dapat dilihat sesuai gambar 2.5 berikut

Tinjauan Pustaka

dengan vudara=1,31 m/s, Tudara in = 21°C, Tair in = 54°C (Zhao, 1995)

II.2 Aliran Viscous dan Non Viscous

Jika ditinjau dari efek viskositas aliran dapat dibedakan menjadi dua yaitu aliran non viscous dan aliran viscous. Suatu aliran dimana efek viskositas diabaikan disebut aliran non viscous. Pada aliran ini, viskositas absolut fluida (μ) diasumsikan nol sehingga gaya geser yang mempengaruhi aliran dianggap tidak ada. Untuk beberapa hal, gaya viscous seringkali diabaikan, sebab dapat menyederhanakan analisa tapi hasilnya beralasan dan masih dapat diterima.

Dalam kenyataannya, tidak ada fluida dengan viskositas berharga nol, artinya kondisi sesungguhnya yang terjadi adalah viskositas suatu fluida sangat mempengaruhi aliran itu sendiri dimana dalam aliran viscous akan diperhitungkan adanya velocity gradient dan shear stress sesuai rumus $\tau_{yx} = \mu(\delta u/\delta y)$, untuk aliran dua dimensi. Dengan adanya gradient kecepatan tersebut maka akan timbul lapisan batas (*boundary layer*) yang akan diterangkan selanjutnya.

II.3 Aliran Laminar dan Turbulen

Pada aliran viscous terdapat dua macam aliran yaitu aliran laminar dan turbulen. Suatu aliran dikatakan laminar apabila struktur dari aliran yang tersusun dari partikel fluida bergerak secara halus dan berlapis-lapis. Sebaliknya jika partikel fluida bergerak secara acak, tiga dimensi dimana partikel-partikel tersebut saling mengisi pada badan aliran, maka aliran ini disebut aliran turbulen. Adanya gerakan partikel fluida yang terjadi ini menyebabkan terjadinya perpindahan momentum melalui *streamline* aliran sehingga meningkatkan tegangan geser efektif. Selain itu adanya perpindahan partikel fluida pada streamline tersebut juga menyebabkan perpindahan energi antar partikel fluida menjadi lebih cepat sehingga otomatis meningkatkan perpindahan panas.

Dengan demikian pada aliran turbulen tidak terdapat korelasi universal antara medan tegangan dan medan kecepatan rata-rata. Oleh karena itu analisanya hanya dapat dilakukan dengan teori semi empirik dan data hasil eksperimen.

II.4 Aliran Internal dan Eksternal

Aliran internal adalah aliran yang seluruhnya dilingkupi oleh permukaan solid yang mengelilinginya. Contoh dari aliran internal adalah aliran di dalam pipa, *diffuser*, *nozzle*, dan lain sebagainya. Berikut ini gambar aliran internal melalui pipa.

Gambar 2.6 Aliran melalui Saluran Pipa

Aliran yang akan memasuki pipa kecepatannya seragam u_{∞} , kemudian profil aliran di dalam pipa menjadi tidak seragam lagi karena alirannya bersifat *viscous* sehingga akan menyebabkan terbentuknya lapisan batas yang dipengaruhi gesekan relatif besar. Lapisan batas ini akan terus berkembang sampai bertemu disatu titik. Pada kondisi ini aliran dapat dikatakan sudah berkembang penuh (*fully developed flow*).

Aliran eksternal adalah aliran yang melintasi suatu *body* yang terbenam dalam fluida tanpa batas (*immersed body*). Contoh aliran ini adalah aliran melalui semi *infinite plate* dan aliran melintasi silinder. Berikut ini adalah penggambaran aliran melalui sebuah silinder ellips.

Jurusan Teknik Mesin FII - FIS

II.5 Perkembangan Lapisan Batas Aliran

Saat aliran dari *free stream* menuju suatu *body*, akan terjadi suatu kondisi dimana aliran yang semula kecepatannya uniform (u_∞) akan menjadi tidak uniform lagi sehingga terbentuk distribusi kecepatan (*velocity distribution*) karena pengaruh kontur *body* yang dilewatinya. Distribusi ini terjadi pada suatu titik dimana kecepatannya nol (*zero velocity*) pada titik di kontur itu sendiri dan semakin bertambah bila menjauhi kontur/*wall* (finite). Harga kecepatan yang semakin bertambah tersebut dapat kembali seperti semula yaitu kecepatan free stream karena *wall* tidak lagi bisa mempengaruhi aliran. Kondisi transisi dimana kecepatan fluida yang tidak sama dengan kecepatan *free stream* menjadi sama dengan *free stream* kembali terjadi pada suatu lapisan tipis (*layer*) yang dekat dengan wall. Oleh Prandtl (1904), lapisan ini disebut *boundary layer* atau *frictional layer* karena pada daerah ini efek friksi sangat besar. Distribusi kecepatan tersebut akan terjadi selama fluida melewati kontur *body* dengan ketebalan lapisan batas (*boundary layer*) yang semakin bertambah dari *leading edge* ke belakang.

Struktur lapisan batas aliran dapat digambarkan dengan mengamati gerakan partikel fluida. Saat mengalir di luar boundary layer partikel mempertahankan bentuk asalnya sambil bergerak translasi namun tidak berotasi dan efek viscositas dapat diabaikan. Kondisi dengan zero vorticity ini dinamakan dengan irrotational. Gangguan mulai terjadi saat partikel memasuki boundary layer karena adanya velocity gradient dan efek viscosity. Akibatnya selama

Jurusan Teknik Mesin FII - FIS

bergerak translasi partikel fluida juga bergerak rotasi. Dengan demikian vorticitinya tidak sama dengan nol (*non zero vorticity*). Kondisi ini dinamakan *rotational*.

Gambar 2.8 Perkembangan Lapis Batas Aliran

Gambar 2.8 diatas menunjukkan suatu pengembangan boundary layer sepanjang permukaan plat datar. Pada daerah ini terjadi dua bentuk aliran, awalnya aliran adalah laminar sepanjang jarak tertentu dari *leading edge*, kemudian terjadi suatu transisi aliran yang akhirnya akan berubah menjadi turbulen. Untuk aliran *incompressible* melewati suatu *smooth flat plate (zero pressure gradient*), perubahan dari laminar ke turbulen sangat dipengaruhi oleh *Reynolds Number*, $Re_x = \rho V.x/\mu$.

II.6 Lapisan Batas Termal

Lapisan batas termal *(thermal boundary layer)* terjadi akibat adanya gradien suhu antara permukaan dengan fluida. Gradien suhu ini menimbulkan adanya perpindahan panas antara permukaan dengan fluida di dalam *boundary layer*. Seperti pada aliran melintasi plat datar yang memiliki suhu seragam. Pada saat aliran menyentuh permukaan pertama kali pada daerah *leading edge*, profil

temperatur masih uniform dimana $T(y) = T_{\infty}$. Kemudian partikel fluida yang kontak dengan permukaan mencapai keseimbangan *thermal* dengan permukaan pelat. Sehingga menyebabkan gradien suhu antara partikel fluida yang menyentuh permukaan dengan partikel fluida diatasnya. Daerah dimana ada gradien suhu disebut dengan *thermal boundary layer*. Ketebalan *boundary layer* (δ_t) untuk pelat datar dihitung untuk arah y dinyatakan sebagai perbandingan [(Ts-T)/(Ts-T_{\infty})]=0,99, seperti gambar berikut ini :

Gambar 2.9 Lapisan Batas Termal

Ketebalan *boundary layer* semakin bertambah apabila semakin jauh dari *leading edge*. Pada jarak x dari *leading edge*, fluks panas lokal diperoleh dengan menggunakan *Hukum Fourier* untuk fluida pada y=0, yaitu :

$$q_s'' = -k_f \frac{\partial T}{\partial y} \Big|_{y=0} \qquad (2.1)$$

Persamaan tersebut dapat digunakan karena pada permukaan tidak ada gerakan fluida akibatnya perpindahan panas yang terjadi adalah melalui mekanisme konduksi antara partikel fluida dengan permukaan. Dengan menggabungkan persamaan di atas dengan *Hukum Pendinginan Newton* diperoleh :

Jurusan Teknik Mesin FII - FIS

Tesis Teknologi Energi

Tinjauan Pustaka

$$h = \frac{-k_f \partial T / \partial y \big|_{y=0}}{T_s - T_\infty} \qquad (2.2)$$

Karena T_s - T_{∞} konstan tidak terpengaruh oleh x sedangkan δ_t naik dengan kenaikan x. Akibat dari kenaikan δ_t tersebut akan menyebabkan $\partial T/\partial y)_{y=0}$ turun dengan kenaikan x yang akan diikuti oleh penurunan q_s " dan h terhadap kenaikan x. Sehingga pada plat datar, harga perpindahan panas akan turun seiring dengan bertambahnya x.

Dengan menggunakan boundary layer similarity, dengan parameter tak berdimensi $y^* = y/L$ (merupakan panjang karakteristik permukaan) dan $T^* = \frac{T - T_s}{T_x - T_s}$, maka persamaan 2.2 menjadi :

$$h = -\frac{k_f \left(T_{\infty} - T_s\right)}{L \left(T_s - T_{\infty}\right)} \frac{\partial T^*}{\partial y^*} \bigg|_{y^* = 0} = +\frac{k_f \left(\partial T^*\right)}{L \left(\partial y^*\right)} \bigg|_{y^* = 0} \qquad (2.3)$$

dari persamaan diatas, parameter dependent tak berdimensi membentuk Nusselt number. Nusselt number (Nu) menyatakan gradien suhu tak berdimensi pada permukaan sesuai persamaan berikut :

$$Nu = \frac{h.L}{k_f} = + \frac{\partial T^*}{\partial y^*}$$
(2.4)

Untuk geometri permukaan yang telah ditentukan (prescribed geometry) dan untuk analisa rata-rata, maka angka Nusselt reratanya adalah sebagai berikut :

$$\overline{Nu} = \frac{\overline{h.L}}{k_f} = f(\operatorname{Re}, \operatorname{Pr}, x^*) \qquad (2.5)$$

Angka Nusselt rerata (Nu) merupakan fungsi dari angka Reynolds (Re), sifat

Jurusan Teknik Mesin FII - FIS

aliran (Pr), dan faktor geometri permukaan (x*) dalam bentuk konstanta.

II.7 Aliran Melintasi Susunan Pembuluh

Ada dua konfigurasi pembuluh *(tube)* yang biasa digunakan yaitu *staggered* dan *aligned*. Dengan kecepatan fluida v dan T_{∞} yang melintasi susunan tube *aligned* seperti ditunjukkan gambar 2.10 dibawah ini :

Gambar 2.10 Konfigurasi pembuluh Aligned dan Staggered

Karakteristik konfigurasi dipengaruhi oleh dipengaruhi oleh diameter pembuluh (D), jarak transversal (S_T) dan jarak longitudinal (S_L) yang diukur dari titik tengah *tube*. Kondisi aliran yang melintasi susunan pembuluh didominasi oleh pengaruh separasi *boundary layer* dan olakan fluida, dimana hal ini akan mempengaruhi perpindahan panas secara konveksi. Koefisien perpindahan panas yang melintasi susunan pembuluh tergantung pada posisi pembuluh, dimana untuk pembuluh pada baris pertama hampir sama dengan pembuluh tunggal untuk aliran melintang *(cross flow)*. Koefisien perpindahan panas yang lebih besar akan terjadi pada baris sebelah dalam akibat adanya pengaruh fluida yang terolak oleh

susunan pembuluh (tube) yang ada didepannya.

Kondisi aliran yang melewati susunan pembuluh *aligned* ditunjukkan gambar 2.11, sebagai berikut :

Gambar 2.11 Aliran melintasi susunan pembuluh aligned

Dari gambar diatas dapat dilihat bahwa aliran fluida yang memasuki *row* kedua dan seterusnya terolak oleh susunan pembuluh (*tube*) yang ada didepannya. Dengan terolaknya aliran fluida tersebut, kecepatan fluida yang mengalir didalamnya menjadi bertambah sehingga tentu akan menaikkan angka Reynold yang ada didalamnya yang berakibat pada naiknya koefisien perpindahan panas konveksi fluida yang mengalir dengan laju alir massa tertentu.

II.8 Prinsip Dasar Perpindahan Panas

Perpindahan panas didefinisikan sebagai proses berpindahnya energi yang terjadi karena adanya perbedaan suhu dimana arah perpindahan terjadi dari benda yang mempunyai temperatur tinggi ke benda yang mempunyai temperatur lebih rendah. Secara umum mekanisme perpindahan panas dapat dibagi menjadi tiga , yaitu : konduksi, konveksi dan radiasi, perbedaan skematis proses perpindahan

panas tersebut dapat dilihat pada gambar 2.12 seperti berikut ini :

II.8.1 Konduksi

Konduksi adalah proses perpindahan panas dimana panas mengalir dari daerah yang bersuhu tinggi ke daerah yang bersuhu lebih rendah di dalam suatu media (padat,cair,dan gas) atau beberapa media berlainan yang bersinggungan secara langsung dan tidak ada gerak relatif antara kedua media tersebut.

Konduksi bisa dipandang sebagai perpindahan energi dari partikel yang lebih enerjik ke pertikel yang kurang enerjik akibat interaksi antar partikel. Mekanisme fisik konduksi ditandai dengan aktivitas molekuler didalam bentuk getaran kisi *(latice vibrations)* atau difusi energi akibat dari pergerakan acak molekular.

Gambar 2.13 Distribusi Suhu pada Dinding

II.8.1.1. Konduksi Satu Dimensi pada Dinding Datar

Besarnya laju perpindahan panas konduksi ditentukan dengan menggunakan rumusan hukum Fourier, dimana untuk dinding datar satu dimensi (gambar 2.13) Fourier menyatakan sebagai berikut :

$$q_x'' = -k\frac{dT}{dx} \qquad (2.6)$$

dengan :

 q_x ": laju perpindahan panas konduksi kearah x (W/m²)

k : konduktivitas thermal material (W/m.K)

 $\frac{dT}{dx}$: gradient suhu yang terjadi pada penampang (K/m)

Seperti kondisi yang ditunjukkan gambar 2.13, dimana distribusi temperatur adalah linear, maka gradient suhu dapat dinyatakan sebagai berikut :

$$\frac{dT}{dx} = \frac{T_2 - T_1}{L}$$
(2.7)

Sehingga laju perpindahan panas dinyatakan sebagai berikut :

Jurusan Teknik Mesin FII - FIS

II.8.1.2 Konduksi pada Silinder

Bila terjadi perbedaan suhu antara permukaan dinding dalam dan dinding luar pada silinder berlubang, maka perpindahan panas akan terjadi dalam arah radial. Dalam arah ini luas penampang yang tegak lurus berubah sebagai fungsi jari-jari silinder yaitu :

 $A = 2.\pi . r.L$ (2.9)

dengan :

A : luas penampang perpindahan panas (m^2)

r : jari-jari silinder (m)

L : panjang silinder (m)

Gambar 2.14 Konduksi pada silinder

Besarnya perpindahan panas ke arah radial dapat ditentukan menggunakan persamaan:

Jurusan Teknik Mesin FII - ITS

$$q_r = -k.A.\frac{dT}{dr} = -k.(2.\pi.r.L).\frac{dT}{dr}$$
 (2.10)

Laju perpindahan panas untuk silinder berongga dengan suhu sisi dalam dan sisi luar yang berbeda, dapat dihitung dengan menggunakan persamaan :

$$q_r = \frac{2.\pi.L.k.(T_{s,1} - T_{s,2})}{\ln(r_2/r_1)} \qquad (2.11)$$

II.8.1.3 Perpindahan panas dari permukaan yang diperluas

Istilah permukaan yang diperluas (*extended surface*) biasanya digunakan untuk menunjukkan zat padat yang mengalami perpindahan panas konduksi di dalam batasan benda tersebut dan perpindahan panas konveksi dengan fluida sekelilingnya. Permukaan yang diperluas ini lebih dikenal sebagai sirip (*fin*). Beberapa contoh konfigurasi sirip yang dipakai antara lain seperti yang ditunjukkan gambar berikut :

Gambar 2.15 Konfigurasi sirip, antara lain :

- (a) Sirip Lurus dengan Penampang Melintang Seragam
- (b) Sirip Lurus dengan Penampang Melintang tidak Seragam
- (c) Sirip Berbentuk Ring
- (d) Sirip Paku

Sirip digunakan untuk menambah luas permukaan kontak/singgung perpindahan panas sehingga meningkatkan laju perpindahan panas dari permukaan ke fluida

Jurusan Teknik Mesin FII - FIS

sekeliling. Untuk menentukan laju perpindahan panas yang berhubungan dengan sirip maka perlu didapatkan distribusi suhu sepanjang sirip. Ada empat persamaan distribusi suhu sirip dengan batasannya masing-masing, yaitu :

1. Terjadi perpindahan panas konveksi di ujung sirip; $h\theta_{(L)} = -k \frac{d\theta}{dx}\Big|_{x=L}$

$$\frac{\theta}{\theta_b} = \frac{\cosh m(L-x) + (h/mk)\sinh m(L-x)}{\cosh mL + (h/mk)\sinh mL} \qquad (2.12)$$

2. Kondisi ujung sirip adiabatik; $\frac{d\theta}{dx}\Big|_{x=L} = 0$

$$\frac{\theta}{\theta_b} = \frac{\cosh m(L-x)}{\cosh mL} \qquad (2.13)$$

3. Suhu pangkal dan ujung sirip diketahui; $\theta(L) = \theta_L$

$$\frac{\theta}{\theta_b} = \frac{(\theta_L / \theta_b) \sinh mx + \sinh m(L - x)}{\sinh mL} \qquad (2.14)$$

4. Panjang sirip tak berhingga; $(L \rightarrow \infty)$, $\theta(L) = 0$

$$\frac{\theta}{\theta_b} = e^{-mx} \qquad (2.15)$$

dengan :

$$\theta = T - T_{\infty}$$
; $\theta_b = T_b - T_{\infty}$; $m = \sqrt{\frac{h.P}{k.A_c}}$

II.8.2. Konveksi

Konveksi adalah proses perpindahan panas yang terjadi bila ada perbedaan suhu antara permukaan suatu benda padat dengan fluida bergerak yang melintas di atas permukaan tersebut. Perpindahan panas konveksi dinyatakan dengan hukum

Jurusan Teknik Mesin FII - FIS

Pendinginan Newton melalui persamaan :

dengan :

- q_c : laju perpindahan panas konveksi (W)
- \overline{h} : koefisien konveksi rerata (W/m².K)
- T_s : suhu permukaan (K)
- T_{∞} : suhu fluida aliran bebas (K)

Gambar 2.16 Perpindahan panas Konveksi melintasi Plat Datar

Pada suatu permukaan, besarnya koefisien konveksi tidak konstan tetapi berubah-ubah sepanjang daerah perpindahan panas. Untuk itu dikenal istilah koefisien perpindahan panas konveksi lokal yang menyatakan nilai koefisien ini di posisi tertentu pada permukaan perpindahan panas. Koefisien perpindahan panas konveksi rerata merupakan nilai rata-rata koefisien perpindahan panas konveksi lokal pada seluruh permukaan. Kedua jenis koefisien ini dihubungkan dengan persamaan :

$$\overline{h} = \frac{1}{A_s} \int_{A_s} h dA_s \qquad (2.17)$$

Dalam kasus perpindahan panas konveksi pada plat datar (gambar 2.11), koefisien perpindahan panas konveksi ini bervariasi sepanjang jarak x dari leading edge. Harga koefisien perpindahan panas konveksi reratanya dapat ditentukan menggunakan persamaan:

$$\bar{h} = \frac{1}{L} \int_{0}^{L} h \, dx \qquad (2.18)$$

Ditinjau dari gerakan fluida, konveksi dapat dibagi menjadi dua yaitu konveksi paksa dan konveksi bebas. Batasan yang digunakan untuk membedakan kedua jenis konveksi tersebut adalah dengan membandingkan bilangan Grashof, yang merupakan perbandingan antara gaya apung *(buoyancy force)* dengan gaya viscous terhadap kuadrat bilangan Reynolds sebagai perbandingan antara gaya inersia dengan gaya viscous seperti batasan berikut :

•
$$\frac{G_r}{\text{Re}^2} \langle \langle 1 \rangle$$
, perpindahan panas terjadi secara konveksi paksa.

 $\circ \frac{G_r}{\text{Re}^2} \rangle \rangle 1$, perpindahan panas terjadi secara konveksi bebas.

Dengan angka Grashof (Gr) dan Reynold (Re) sebagai berikut :

$$Gr_L = \frac{g\beta(T_s - T_{\infty})L^3}{\nu^2}$$
 (2.19)

dengan :

 $g = percepatan gravitasi (m/s^2)$

 β = koefisien muai panas volumetric (1/K)

Jurusan Teknik Mesin FII - IIS

 $T_s = suhu permukaan (K)$

 T_{∞} = temperatur udara sekeliling (K)

L = panjang karakteristik aliran (m)

v = viskositas kinematik (m²/s)

$$\operatorname{Re}_{D} = \frac{v.D}{v} \qquad (2.20)$$

dengan :

v = kecepatan aliran udara

D = diameter

Sehingga dari batasan diatas dapat disimpulkan perbedaan kedua jenis konveksi sebagai berikut :

1. Konveksi paksa (forced convection)

Konveksi paksa terjadi karena pengaruh gaya inersia terhadap gerakan fluida jauh lebih besar dibanding dengan gaya apung *(buoyancy force)* fluida, sehingga harga koefisien perpindahan panas konveksi (h) lebih didominasi pengaruh dari kecepatan relatif aliran dengan permukaan. Gaya inersia ini bisa ditimbulkan oleh gaya luar seperti *fan*, *blower*, dll.

2. Konveksi bebas (free convection)

Konveksi bebas terjadi karena pengaruh gaya apung (buoyancy force) terhadap gerakan fluida jauh lebih besar dibanding dengan gaya inersianya. Gaya apung ini timbul akibat adanya perbedaan densitas partikel fluida. Gaya apung yang menyebabkan arus konveksi bebas disebut gaya badan (body force).

Apabila pada suatu kasus jika pengaruh antara gaya inersia dengan gaya apung fluida berimbang (Gr/Re² \approx 1), maka perpindahan panas yang terjadi adalah kombinasi/gabungan antara konveksi bebas dan konveksi paksa.

II.8.3. Radiasi

Radiasi adalah proses perpindahan energi (panas) dari suatu permukaan benda bertemperatur lebih tinggi yang memiliki *emisivitas* tertentu ke permukaan di sekitarnya yang bertemperatur lebih rendah melalui pancaran gelombang elektromagnetik ke sekitarnya. Perpindahan panas radiasi terjadi tanpa melalui suatu media perantara. Fluks panas yang diemisikan suatu permukaan dapat dicari dengan persamaan (2.21) :

 $q'' = \varepsilon \sigma \left(T_s^4 - T_{sur}^4\right) \qquad (2.21)$

dimana :

 $\varepsilon = \text{emisivitas panas}$

 σ = konstanta Stefan Boltzman (5,67.10⁻⁸ W / m² K²)

 $T_s =$ Suhu permukaan (K)

 $T_{sur} =$ Suhu permukaan sekeliling (K)

Biasanya dalam radiasi berlangsung juga konveksi, sebagai fluida rambatan.

II.9 Konsep Keseimbangan Energi

Hukum I Thermodinamika menyatakan bahwa zat mempunyai energi dan energi tersebut bersifat kekal (lestari). Dengan berpegang pada volume atur, hukum kekekalan energi yang sangat berguna pada analisa perpindahan panas Tesis Teknologi Energi

dapat dinyatakan sebagai berikut:

" Laju energi panas dan mekanik yang memasuki volume atur, ditambah laju energi panas yang dibangkitkan di dalam volume atur, dikurangi laju energi thermal dan mekanik yang meninggalkan volume atur harus sama dengan laju pertambahan energi yang tersimpan di dalam volume atur".

Penggunaan hukum kekekalan energi pada sistem ditunjukkan pada gambar berikut:

Gambar 2.17 Skema konsep keseimbangan energi

Dari keseimbangan energi tersebut dapat diperoleh korelasi sebagai berikut :

 $\dot{E}_{in} - \dot{E}_{out} + \dot{E}_{g} = \dot{E}_{st}$ (2.22)

dengan :

 \dot{E}_{in} = Energi masuk ke sistem

 \dot{E}_{out} = Energi keluar sistem

 \dot{E}_{st} = Energi tersimpan dalam sistem

 \dot{E}_{g} = Energi bangkitan (panas yang dibangkitkan oleh pemanas)

II.9.1 Fluks Panas Bangkitan oleh Pemanas (heater)

Sumber energi thermal yang digunakan untuk menghasilkan panas bangkitan adalah konversi dari energi listrik yang terjadi akibat tahanan panas

ketika arus listrik mengalir melalui sebuah konduktor. Hal ini terjadi ketika arus listrik I melewati sebuah tahanan R pada kontrol volume, energi listrik didisipasikan menjadi laju I^2R dimana I*R = V , V adalah tegangan listrik. sehingga energi listrik adalah I*V yang berhubungan dengan laju energi panas yang dibangkitkan (\dot{E}_g).

Untuk menghasilkan panas bangkitan pada model digunakan suatu heater dengan mengasumsikan tahanan heater konstan. Adapun persamaan hubungannya adalah sebagai berikut :

$$\frac{\dot{E}_g}{A} = \frac{I.V}{A} = q^{"} \qquad (2.23)$$

dengan :

A = luas permukaan pelepasan panas total

q'' = fluks panas bangkitan oleh *heater*

II.9.2 Panas yang diterima oleh Udara (\dot{E}_{out})

Laju perpindahan panas yang terjadi dalam susunan pembuluh dan sirip ini adalah besarnya panas yang dapat diterima oleh udara sebagai fluida dingin. Untuk kasus ini digunakan persamaan:

 $q = \dot{m}_{c}(h_{c,o} - h_{c,i}) \qquad (2.24)$

dengan :

 $m_c =$ laju alir massa fluida dingin (udara) (kg/s)

 $h_{c,o}$ = enthalpi fluida keluaran (J/kg)

Jurusan Teknik Mesin FII - FIS

 $m_c =$ laju alir massa fluida dingin (udara) (kg/s)

 $h_{c,o}$ = enthalpi fluida keluaran (J/kg)

 $h_{c,i}$ = enthalpi fluida masukan (J/kg)

Jika fluida tidak mengalami perubahan fase dan mempunyai panas spesifik konstan maka persamaan diatas dapat dituliskan

 $q_c = m_c . c_{p,c} (T_{c,o} - T_{c,i})$ (2.25)

dengan :

 $m_c =$ laju alir massa fluida dingin (udara) (kg/s)

 $c_{p,c}$ = panas spesifik tekanan konstan (J/kg.K)

 $T_{c,i}$ = suhu udara masuk (K)

 $T_{c,o}$ = suhu udara keluar (K)

Penelitian sebelumnya tentang pengaruh angka Reynolds (Re) terhadap laju perpindahan panas antara lain oleh Zhao (1995) meneliti dalam *thesis*nya tentang unjuk kerja *single row heat exchanger* dengan laju alir massa air dalam *tube* yang rendah. Dari penelitian ini salah satunya menghasilkan laju perpindahan panas yang memiliki trend/gradien yang naik tajam terhadap angka Reynold rendah. Namun kenaikan (gradien kurva) grafik laju perpindahan panas tersebut menjadi landai dengan bertambahnya angka Reynold (pada angka reynold tinggi). Hal ini dapat dilihat sesuai gambar 2.18 berikut ini :

Gambar 2.18 Pengaruh Re terhadap laju perpindahan panas dengan v_{udara} =1,31 m/s, $T_{udara in}$ = 21°C, $T_{air in}$ = 54°C pada single row heat exchanger (Zhao, 1995)

II.10 Laju Perpindahan Panas

Laju perpindahan panas konveksi dari permukaan sirip dan tube dapat dinyatakan dengan persamaan berikut:

$$q_c = \bar{h}A_{tot}(\bar{T}_{ex} - \bar{T}_{\infty}) \qquad (2.26)$$

dengan :

 \overline{h} = koefisien perpindahan panas konveksi rata-rata.

 A_{tot} = luasan total permukaan perpindahan panas.

 \overline{T}_{∞} = temperatur udara rata-rata.

 \overline{T}_{ex} = temperatur rerata permukaan luar penukar panas.

Karena suhu permukaan luar penukar panas bervariasi dari titik ke titik

ukur yang lain, maka perlu ditaksir harga rerata suhu permukaan luar berdasarkan luas permukaan dengan persamaan sebagai berikut :

$$\overline{T}_{ex} = (A_b \overline{T_b} + A_f \overline{T_f}) / A_{tot} \qquad (2.27)$$

dengan :

 \overline{T}_b = suhu permukaan luar pembuluh rerata.

 \overline{T}_f = suhu permukaan luar sirip rerata.

 $A_f =$ luas permukaan perpindahan panas sirip.

 $A_b =$ luas permukaan perpindahan panas pembuluh.

II.11 Unjuk Kerja Sirip

Untuk meningkatkan laju perpindahan panas dari penukar panas (heat exchanger), salah satu cara yang dapat dipergunakan adalah memperluas permukaan perpindahan panas dengan ditambahkannya sirip. Akan tetapi sirip juga mempunyai tahanan konduksi pada permukaan yang memanjang yang akan menghambat laju perpindahan panas dari penukar panas (heat exchanger). Oleh karena itu, untuk mendesain sirip perlu mempertimbangkan material bahan sirip, geometri sirip, dan lingkungan dimana sirip tersebut digunakan. Material bahan sirip haruslah memiliki konduktivitas thermal yang tinggi, serta perlu dipertimbangkan untuk mengefektifkan luasan sirip. Sebab sirip yang memiliki luasan perpindahan panas total yang besar belum tentu semua luasannya berfungsi secara efektif. Untuk mengevaluasi unjuk kerja sirip dapat diketahui dari seberapa besar efisiensi sirip (η_f) yang didefinisikan dalam persamaan dibawah ini.

$$\eta_f = \frac{q_f}{q_{\max}} = \frac{\overline{h}.A_f.(\overline{T}_f - \overline{T}_{\infty})}{\overline{h}.A_f.(\overline{T}_b - \overline{T}_{\infty})} = \frac{(\overline{T}_f - \overline{T}_{\infty})}{(\overline{T}_b - \overline{T}_{\infty})} \qquad (2.28)$$

dengan :

 η_f = effisiensi sirip tunggal (single fin)

 q_f = laju perpindahan panas sirip tunggal

 $q_{max} = laju$ perpindahan panas maksimum

 \overline{T}_f = suhu sirip rerata

 \overline{T}_t = suhu pembuluh rerata

Dari persamaan diatas dapat diketahui seberapa besar perbandingan panas aktual yang dihantarkan melalui satu sirip terhadap kondisi maksimalnya dimana suhu sirip sama dengan suhu pangkalnya *(base)*, sehingga diketahui seberapa besar peran luasan satu sirip dalam menghantarkan panas. Bentuk grafik efisiensi sirip sebagai fungsi $L_c^{3/2} (\frac{h}{k.A_p})^{1/2}$ dengan panjang karakteristik sirip Lc, dan

luas profil sirip Ap untuk circular fin adalah sebagai berikut :

Jurusan Teknik Mesin FII - FIS

Gambar 2.19 Pengaruh $L_c^{3/2} (\frac{h}{k.A_p})^{1/2}$ terhadap efisiensi sirip untuk

circular fin (Incropera and Dewit, 1999)

Persamaan diatas digunakan untuk menghitung efisiensi dari satu sirip (single fin). Karena pada penukar panas tersusun dari banyak sirip, maka efisiensi yang digunakan adalah overall surface efficiency yang merupakan gabungan bagian permukaan yang tidak bersirip (unfinned area) yang berefisiensi 100% dengan luas permukaan sirip-sirip yang berefisiensi η_f . Secara umum dirumuskan sebagai berikut :

$$\eta_o = \frac{q_{tot}}{q_{\max}} \tag{2.29}$$

Dimana q_{tot} adalah laju perpindahan panas total dari luas permukaan perpindahan panas total (A_{tot}) yang meliputi luas permukaan perpindahan panas sirip (A_f) dan luas permukaan perpindahan panas pembuluh tanpa sirip (A_t) .

Laju perpindahan panas total dari permukaan penukar panas (permukaan dengan fin dan tanpa fin) adalah :

$$q_t = \eta_f \bar{h} N_f A_f \left(\bar{T}_t - \bar{T}_\infty \right) + \bar{h} A_t \left(\bar{T}_t - \bar{T}_\infty \right) \qquad (2.30)$$

Jika koefisien perpindahan panas konveksi (h) diasumsikan seragam pada permukaan penukar panas, maka persamaan (2.30) menjadi :

$$q_t = \left(1 - \frac{N_f A_f}{A_t} (1 - \eta_f)\right) \overline{h} A_t \left(\overline{T}_t - \overline{T}_{\infty}\right) \qquad (2.31)$$

Sedangkan laju perpindahan panas maksimum yang mungkin terjadi apabila

Jurusan Teknik Mesin FII - FIS

MILIK PERPUSTINIANI ITS

٩.

seluruh permukaan perpindahan panas mempunyai temperatur dasar (pembuluh/tube), yaitu :

$$q_{mak} = \bar{h}A_{tot}(\bar{T}_t - \bar{T}_{\infty}) \qquad (2.32)$$

Bila persamaan 2.31 dan 2.32 disubstitusikan ke persamaan 2.29 didapatkan overall surface efficiency (η_{op}) yang dapat dipergunakan untuk menghitung efisiensi penukar panas, yaitu sebagai berikut :

$$\eta_{o} = 1 - \frac{N_{f} \cdot A_{f}}{A_{t}} \left(1 - \eta_{f} \right) \qquad (2.33)$$

Sehingga dengan mengetahui harga η_{o_i} laju perpindahan panas total dari susunan sirip dapat diketahui.

II.12 Korelasi Perpindahan Panas dengan Faktor j Colburn (j_H)

Hasil dari perpindahan panas dihubungkan dengan faktor j Colburn (j_H) dan Reynolds number diformulasikan dalam persamaan dibawah ini :

$j_H = S_t \cdot \Pr^{2/3}$	 (2.34)
$St = \frac{h.A_{ff}}{\dot{m}c_{\pi}}$	 (2.35)

dengan :

 j_H = faktor j Colburn

St = angka Stanton

Pr = angka Prandtl

h = koefisien perpindahan panas konveksi udara

Aff = cross sectional area yang tegak lurus terhadap arah aliran

Jurusan Teknik Mesin FII - FIS

 $\dot{m} = 1$ aju alir massa udara

c_p = panas spesifik tekanan konstan

$$\operatorname{Re} = \frac{G.D_h}{\mu} \qquad (2.36)$$

dengan :

Re = angka Reynolds

G = maximum mass velocity

Dh = diameter hidrolis aliran

 μ = viskositas absolut udara

sedangkan maximum mass velocity (G):

$$G = \rho \cdot V_{\max} = \frac{\rho \cdot V \cdot A_{fr}}{A_{fr}} = \frac{\dot{m}}{A_{fr}} = \frac{\dot{m}}{\sigma \cdot A_{fr}} \qquad (2.37)$$

dengan :

 $A_{fr} = frontal area dari penukar panas$

$$\sigma = \text{perbandingan antara } A_{\text{ff}} \text{ terhadap } A_{\text{fr}}$$

Gambar 2.20 Susunan sirip

Untuk benda uji seperti gambar 2.20 maka Dh dapat dirumuskan sebagai berikut:

Jurusan Teknik Mesin FII - MS

$$D_{h} = \frac{4A_{c}}{P} = \frac{4.(L.T - n.L.t)}{[(P_{f} - t) + L] \cdot 2.(n - 1)}$$
(2.38)

dengan :

n = jumlah sirip L = panjang sirip T = jarak baffle yang terpasang sirip t = tebal sirip $P_{f} = \text{jarak antar sirip}$

Koefisien perpindahan panas untuk compact heat exchanger pada sisi luar tube dapat dituliskan:

$$h = j_H \frac{G.c_p}{\Pr^{2/3}}$$
 (2.39)

BAB III

METODOLOGI PENELITIAN

III. 1 VARIABEL PENELITIAN

Untuk melakukan penelitian perlu diketahui variabel – variabel yang berpengaruh dalam suatu eksperimen dalam bntuk bilangan tak berdimensi, yang dapat dilakukan dengan analisa dimensi dengan tujuan untuk mengetahui variable apa saja yang mempengaruhi karakteristik Heat Exchanger.

Langkah - langkah analisa dimensi adalah sebagai berikut :

Menentukan parameter parameter yang mempengaruhi koefisien perpindahan panas :

 $h = f(\mu, k, \rho, V, D_h, p_f, Nu, \text{Re}, \text{Pr}, q, \Delta T, \Delta P)$

Jumlah parameter (n) = 11 parameter

Parameter-parameter tersebut dapat dilihat pada table 1

Tabel 1. Parameter berdimensi yang berpengaruh.

Variabel	Unit	Dimensi
q = laju perpindahan panas	W	ML^2/T^3
ΔT = Selisih temperatur	(⁰ C)	Т
V = Kecepatan aliran udara	(m/s)	L/t
$D_h = Diameter hidrolik$	(mm)	L
$p_f = Jarak antar fin$	(mm)	L
$\rho = Massa jenis udara$	(kg/m^3)	M/L ³
μ = Viskositas absolute udara	(Ns/m^2)	M/Lt
k = Konduktivitas thermal	(W/mK)	M/t ³ T
A = Luas permukaan	(mm)	L
h = Koefisien perpindahan panas	(W/m^2K)	ML/t ³ T
ΔP = Perubahan tekanan	(N/m ²)	M/Lt ²

Dari analisa Pi – Buchingham teori diperoleh :

1. $\Pi_{1} = \frac{q}{\rho V^{3} D_{h}^{2}}$ 2. $\Pi_{2} = \frac{\mu}{\rho V D_{h}}$ 3. $\Pi_{3} = \frac{kT}{\rho V^{3} D_{h}}$ 4. $\Pi_{4} = \frac{hT}{\rho V^{2}}$ 5. $\Pi_{5} = \frac{\Delta P}{\rho V^{2}}$ 6. $\Pi_{6} = \frac{A}{D_{h}^{2}}$ 7. $\Pi_{7} = \frac{p_{f}}{D_{h}}$

Karena pada pengujian AP tidak diukur maka didapat hubungan antar parameter :

 $\Pi_1 = f(\Pi_2, \Pi_3, \Pi_4, \Pi_6, \Pi_7)$

Dari $\Pi_2 \dots \Pi_6$ dapat dibentuk grup tanpa dimensi lain sehingga didapat grup tanpa dimensi yang umum dikenal :

$$\Pi_{8} = \frac{\Pi_{4}}{\Pi_{3}} = \frac{\frac{hT}{\rho V^{3}}}{\frac{kT}{\rho V^{3} D_{h}}} = \frac{hD_{h}}{k} \text{ (Nusselt Number)}$$

Jurusan Teknik Mesin FII - MS

$$\Pi_9 = \frac{\Pi_5 \Pi_2}{\Pi_3} = \frac{\frac{c_p T}{V^2} \frac{\mu}{\rho V D}}{\frac{kT}{\rho V^3 D}} = \frac{c_p \mu}{k} \text{ (Prandtl Number)}$$

Dengan demikian di dapatkan :

 $\Pi_{1} = f(\Pi_{2}, \Pi_{6}, \Pi_{7}, \Pi_{8}, \Pi_{9})$

Dalam prakteknya Nusselt number dan Prandtl number baru dapat diketahui setelah percobaan yaitu setelah dilakukan perhitungan data, sehingga yang terlibat langsung dalam percobaan $\Pi_1 = f(\Pi_2, \Pi_6, \Pi_7)$

III.2 Metode Numerik

Untuk Metode Numerik, penelitian akan dilakukan dengan pemodelan computational aliran konveksi paksa (forced convection) 3-D dengan tahapan prosedur sebagai berikut :

1. **Pembuatan model** dengan menggunakan software Gambit. Model dibuat dengan mengikuti struktur dan dimensi dari model uji.

2. Meshing

Meshing dari model dengan menggunakan software Gambit, dimana meshing dilakukan dengan pembuatan grid yang lebih kecil didaerah permukaan tube dan fin sedangkan grid yang lebih besar pada daerah diluarnya. Ukuran grid yang lebih kecil dipermukaan tube dan fin dimaksudkan agar dapat mengikuti perubahan property udara yang terjadi didaerah tersebut sedangkan ukuran grid yang leih besar diluar daerah tersebut dimaksudkan untuk menghemat memori dari computer dan konvergensi dapat cepat dicapai.

Gambar 3.11 Bentuk grid pada meshing Model, (a) Susunan Alined, (b) Susunan Stagerred

3. Boundary Condition

Pemberian defenisi Boundary Condition dengan software Gambit. Pemberian Boundary Condition dilakukan setelah meshing dari masing – masing komponen dari model sebagai berikut :

- a. Setiap tube dan fin didefenisikan sebagai wall. Diambil batasan wall karena didalam defenisi boundary condition terdapat batasan temperature (isothermal), dimana data yang diambil dari hasil eksperimen berupa heat flux pada permukaan tube dan fin.
- Dinding wind tunnel didefenisikan sebagai simetri supaya pengaruh gesekan (friction) dapat diabaikan.

Hasil meshing uji coba simulasi numeric untuk susunan tube alined dan staggered dengan penerapan model uji tersebut ditunjukkan pada gambar 3.10 dengan boundary condition sebagai berikut :

1. Tube; Isothermal dengan Heat flux ($q^{"}$) = 4458.5987 W/m² untuk

susunan tube aligned dan Heat flux (q") = 2523.1286 W/m² untuk susunan tube staggered.

- 2. Isolated wall; wall thickness = 0.003 m
- 3. Temperatur udara masuk = 26° C = 299 K
- 4. Properties udara :
 - $\rho = 1.104125 \text{ Kg/m}^3$
 - Cp = 1007.6884 J/Kg.K
 - Konduktivitas Thermal (K) = 27.57354 W/m.K
- 5. Gaya Gravitasi ; g = 0
- 6. Gage Presure = 0

Perhitungan Data

Dari data yang diperoleh dari pemodelan numerik kemudian dilakukan perhitungan-perhitungan dengan menggunakan persamaan-persamaan berikut ini:

- 1. Menghitung temperatur rata-rata:
 - Temperatur tube rata-rata $(\overline{T_t})$:

$$\overline{T_t} = \frac{T_{t1} + T_{t2}}{2}$$

• Temperatur sirip rata-rata $(\overline{T_f})$:

$$\overline{T_f} = \frac{T_{f_1} + T_{f^2} + T_{f^3} + T_{f^4}}{4}$$

• Temperatur udara rata-rata $(\overline{T_u})$:

$$\overline{T_u} = \frac{T_{uo} - T_{ui}}{2}$$

2. Menghitung laju perpindahan panas yang diterima udara (qu):

$$q_u = V.I$$

3. Menghitung fluks panas(q"):

$$q'' = \frac{q_u}{A_{tot}}$$

4. Menghitung koefisien perpindahan panas konveksi rerata (\overline{h}) :

$$\overline{h} = \frac{q''}{T_{ex} - T_{\infty}} , \text{ dimana } T_{ex} = \frac{Tt.A_t + T_f.A_f}{(A_t + A_f)}$$

5. Menghitung Nusselt number (Nu):

$$Nu = \frac{h.D_h}{k}$$

6. Menghitung effisiensi sirip (η_f) :

$$\eta_f = \frac{q_f}{q_{\max}} = \frac{\bar{h}A_f(\bar{T}_f - T_{\infty})}{\bar{h}A_f(\bar{T}_f - T_{\infty})}$$

7. Menghitung effisiensi permukaan menyeluruh (η_o):

$$\eta_o = 1 - \frac{A_f}{A_t} (1 - \eta_f)$$

Metodologi Penelitian

Metodologi Penelitian

4. Kriteria Konvergensi ;

Penentuan konvergen sangat dipengaruhi oleh karakteristik aliran. Penyelesaian persamaan *kontinuitas* pada aliran konveksi bebas adalah sebesar 1 x 10^{-6} . Penetuan nilai yang cukup kecil ini dimaksudkan agar diperoleh penggambaran karakteristik aliran yang lebih teliti dan detail. Untuk persamaan *energi* di setting nilai yang sangat kecil yaitu 1 x 10^{-6} karena dibutuhkan ketelitian fenomena perpindahan panas. Sedangkan *x velocity* dan *y velocity* diset dengan nilai yang lebih besar yaitu 1 x 10^{-3} karena cukup sulit untuk tercapainya konvergensi dengan nilai yang sangat kecil.

5 Pre Prosesing dengan software CFD Fluent

Proses Pre Processing dengan software fluent dilakukan dengan beberapa tahap setelah proses pembuatan model, mesing dan pemberian boundary condition. Secara sekuensial karena bentuk persamaan adalah nonlinier maka dibutuhkan itarasi berulang-ulang untuk mencapai nilai residuals yang paling minimum (mencapai konvergen). Dalam gambar 3.4 diperlihatkan flowchart simulasi numerik.

Gambar 3.12 Flowchart simulasi numerik

Diskritisasi persamaan :

Kesetimbangan massa :

$$\frac{\partial \rho}{\partial t} + div(\rho u) = 0 \tag{3.1}$$

> Kesetimbangan momentum :

$$\frac{\partial(\rho u)}{\partial t} + div(\rho u u) = -\frac{\partial p}{\partial x} + div(\mu \text{ grad } u) + S_x$$
(3.2)

Metodologi Penelitian

$$\frac{\partial(\rho v)}{\partial t} + div(\rho v u) = -\frac{\partial p}{\partial y} + div(\mu \text{ grad } u) + S_y$$
(3.3)

> Kesetimbangan energi :

$$\frac{\partial \rho}{\partial t} + div(\rho hu) = div(k \ grad \ T) + S_h \tag{3.4}$$

Persamaan-persamaan (3.1-3.4) diatas dapat digeneralisasikan menjadi persamaan transport :

$$\frac{\partial(\rho\phi)}{\partial t} + div(\rho\phi u) = div(\Gamma \text{ grad } \phi) + S_{\phi}$$
(3.5)

Integrasi persamaan 3.5 untuk control volume dari gambar 3.5 diperoleh :

$$(\rho u A \phi)_{e} - (\rho u A \phi)_{w} + (\rho u A \phi)_{n} - (\rho u A \phi)_{s} = \left(\Gamma A \frac{\partial \phi}{\partial x}\right)_{e} - \left(\Gamma A \frac{\partial \phi}{\partial x}\right)_{w} + \left(\Gamma A \frac{\partial \phi}{\partial y}\right)_{n} - \left(\Gamma A \frac{\partial \phi}{\partial y}\right)_{s}$$
(3.6)

Gambar 3.13 Control volume sekeliling node P

Sumber ; Versteeg & Malalasekera¹⁴

dan integrasi untuk persamaan momentum diperoleh :

$$(\rho uA)_{e} - (\rho uA)_{w} + (\rho uA)_{n} - (\rho uA)_{s} = 0$$
(3.7)

Untuk memperoleh persamaan diskritisasi untuk kondisi konveksi-diffusi didefinisikan dua-variabel F dan D yang mewakili fluks massa konvektif per satuan luas dan konduktansi diffusi pada permukaan sel :

$$F = \rho u \quad \text{dan} \quad D = \frac{\Gamma}{\delta x} \tag{3.8}$$

sehingga nilai variable F dan D dari permukaan sel dapat ditulis :

$$F_{w} = (\rho u)_{w}, \quad F_{e} = (\rho u)_{e}, \quad F_{n} = (\rho u)_{n}, \quad F_{s} = (\rho u)_{s}$$
 (3.9)

$$D_w = \frac{\Gamma_w}{\delta x_{wp}}, \quad D_e = \frac{\Gamma_e}{\delta x_{p_e}}, \quad D_n = \frac{\Gamma_n}{\delta x_{n^p}}, \quad D_s = \frac{\Gamma_s}{\delta x_{p_s}}$$
 (3.10)

Sehingga persamaan konveksi-diffusi diatas dapat ditulis :

$$F_{e}\phi_{e} - F_{w}\phi_{w} + F_{n}\phi_{n} - F_{s}\phi_{s} = D_{e}(\phi_{E} - \phi_{P}) - D_{w}(\phi_{P} - \phi_{W}) + D_{n}(\phi_{N} - \phi_{P}) - D_{s}(\phi_{P} - \phi_{S})$$
(3.11)

sedangkan untuk persamaan momentum :

$$F_{e} - F_{w} + F_{v} - F_{e} = 0 \tag{3.12}$$

> Upwind Differencing

Digunakan karena konsisten dalam menghitung flux yang mengalir melalui muka sel, koefisien dari persamaan diskrit selalu positif sehingga sesuai dengan persyaratan dan arah aliran dapat ditunjukkan seperti pada gambar 3.6

Dari gambar 3.6, jika arah aliran positif (untuk kasus satu dimensi), $u_w > 0, u_e > 0(F_w > 0, F_e > 0)$, maka upwind scheme diset :

Metodologi Penelitian

$$\phi_w = \phi_W$$
 dan $\phi_e = \phi_P$

Gambar 3.14 Control volume Upwind differecing scheme

Sumber ; Versteeg & Malalasekera 14

dan persamaan (3.11) didiskritkan diperoleh :

$$F_e \phi_P - F_w \phi_W = D_e \left(\phi_E - \phi_P \right) - D_w \left(\phi_P - \phi_W \right)$$
(3.13)

sehingga disederhanakan menjadi :

$$\left(D_{w} + D_{e} + F_{e}\right)\phi_{P} = \left(D_{w} + F_{w}\right)\phi_{W} + D_{e}\phi_{E}$$

$$(3.14)$$

menjadi persamaan :

$$\begin{bmatrix} (D_w + F_w) + D_e + (F_e - F_w) \end{bmatrix} \phi_P = \\ (D_w + F_w) \phi_W + D_e \phi_E$$
(3.15)

Jika arah aliran negative, $u_w < 0, u_e < 0 (F_w < 0, F_e < 0)$, maka upwind scheme diset :

Jurusan Teknik Mesin FII - ITS

Metodologi Penelitian

$$\phi_w = \phi_P \quad \text{dan} \quad \phi_e = \phi_E \tag{3.16}$$

dan persamaan (3.13) didiskritkan diperoleh :

$$F_e \phi_E - F_w \phi_P = D_e \left(\phi_E - \phi_P \right) - D_w \left(\phi_P - \phi_W \right)$$
(3.17)

sehingga disederhanakan menjadi :

$$\begin{bmatrix} D_w + (D_e - F_w) + (F_e - F_w) \end{bmatrix} \phi_P = D_w \phi_W + (D_e - F_e) \phi_E$$
(3.18)

Persamaan (3.15) & (3.18) dapat digeneralisasikan menjadi :

$$a_P \phi_P = a_W \phi_W + a_E \phi_E \tag{3.19}$$

dengan sentral koefisien : $a_P = a_W + a_E + (F_e - F_w)$

Dengan koefisien tetangganya :

	$a_{ m FV}$	a_E
$F_w > 0, F_e > 0$	$D_w + F_w$	D _e
$F_{w} < 0, F_{e} < 0$	D _w	$D_e - F_e$

Metode SIMPLE (Semi Implicit Method for Pressure Linked Equation) Tahap-tahap yang harus dilakukan dalam metode ini adalah :

 Besarnya tekanan coba-coba p* diterka dengan dengan mendiskritisasikan persamaan momentum dalam arah u* dan v* sebagai :

$$a_{i,j}u_{i,j}^* = \sum a_{nb}u_{nb}^* + \left(p_{1-i,j}^* - p_{1,j}^*\right)A_{i,j} + b_{i,j}$$
(3.20)

$$a_{i,j}v_{i,j}^* = \sum a_{nb}u_{nb}^* + \left(p_{1,j-1}^* - p_{1,j}^*\right)A_{1,j} + b_{1,j}$$
(3.21)

2. Mendefinisikan tekanan koreksi P', kecepatan koreksi u' dan v' :

Metodologi Penelitian

$$p = p^* + p' \tag{3.22}$$

$$u = u^* + u'$$
(3.23)
$$v = v^* + v'$$

Subtitusi tekanan koreksi p' ke persamaan momentum diperoleh kecepatan koreksi (u dan v) :

$$a_{i,j}u_{i,j} = \sum a_{nb}u_{nb} - \frac{p_{1,j} - p_{1-i,j}}{\delta x_u} \Delta V_u + \overline{S} \Delta V_u$$

atau $a_{i,j}u_{i,j} = \sum a_{nb}u_{nb} + (p_{i-1,j} - p_{1,j})A_{i,j} + b_{i,j}$ (3.24)

Dengan subtraksi persamaan (3.16) dan (3.21) dari persamaan momentum diperoleh :

$$a_{i,j} \left(u_{i,j} - u_{i,j}^{*} \right) = \sum a_{nb} \left(u_{nb} - u_{nb}^{*} \right) + \left[\left(p_{i,j} - p_{1-i,j}^{*} \right) - \left(p_{i,j} - p_{1,j}^{*} \right) \right] A_{i,j}$$
(3.25)

$$a_{1,j} \left(u_{1,j} - u_{1,j}^{*} \right) = \sum a_{nb} \left(v_{nb} - v_{nb}^{*} \right) \\ + \left[\left(p_{i,j-1} - p_{1,j-1}^{*} \right) - \left(p_{1,j} - p_{1,j}^{*} \right) \right] A_{i,j}$$
(3.26)

Dengan menggunakan formulasi koreksi tekanan dan kecepatan persamaan (3.22) & (3.23) diperoleh :

$$a_{i,j}u_{i,j} = \sum a_{nb}u_{nb} + (p_{1-i,j} - p_{1,j})A_{i,j}$$
(3.27)

$$a_{i,j}v'_{i,j} = \sum a_{nb}v'_{nb} + (p'_{i,j-1} - p'_{1,j})A_{1,j}$$
(3.28)

4. Pada metode ini faktor $\sum a_{nb}u'_{nb}$ dan $\sum a_{nb}v'_{nb}$ dapat dihilangkan dari persamaan (3.27) & (3.28) untuk kecepatan koreksi :

$$a_{i,j}u'_{i,j} = d_{i,j}\left(p'_{1-i,j} - p'_{1,j}\right)A_{i,j}$$
(3.29)

Metodologi Penelitian

$$a_{i,j}v_{i,j} = d_{i,j}\left(p_{i,j-1} - p_{1,j}\right)A_{i,j}$$
(3.30)

dimana :
$$d_{i,j} = \frac{A_{i,j}}{a_{i,j}} \operatorname{dan} d_{i,j} = \frac{A_{1,j}}{a_{1,j}}$$

Persamaan (3.29) & (3.30) digambarkan untuk aplikasi kecepatan koreksi:

$$u'_{i,j} = u^*_{i,j} + d_{i,j} \left(p'_{1-i,j} - p'_{1,j} \right)$$
(3.31)

$$v'_{i,j} = v^*_{i,j} + d_{i,j} \left(p'_{i,j-1} - p'_{1,j} \right)$$
(3.32)

5. Kecepatan harus memenuhi persamaan kontinuitas, diskritisasi dari persamaan kontinuitas untuk scalar control volume :

$$\left[\left(\rho u A \right)_{i+1,j} - \left(\rho u A \right)_{i,j} \right] + \left[\left(\rho v A \right)_{i,j+1} - \left(\rho v A \right)_{i,j} \right] = 0$$
(3.33)

subtitusi persamaan (3.31) & (3.32) untuk diskritisasi persamaan kontinuitas (3.33) menjadi :

$$\begin{bmatrix} \rho_{i+1,j}A_{i+1,j}\left(u_{i+1,j}^{*}+d_{i+1,j}\left(p_{1,j}^{'}-p_{i+1,j}^{'}\right)\right) \\ -\rho_{i,j}A_{i,j}\left(u_{i,j}^{*}+d_{i,j}\left(p_{i-1,j}^{'}-p_{i,j}^{'}\right)\right) \end{bmatrix} \\ + \begin{bmatrix} \rho_{i,j+1}A_{i,j+1}\left(v_{i,j+1}^{*}+d_{i,j+1}\left(p_{1,j}^{'}-p_{i,j+1}^{'}\right)\right) \\ -\rho_{i,j}A_{i,j}^{*}\left(v_{i,j}^{*}+d_{i,j}\left(p_{1,j-1}^{'}-p_{i,j}^{'}\right)\right) \end{bmatrix} = 0$$

$$(3.34)$$

Sehingga persamaan diatas dapat disederhanakan menjadi :

$$a_{i,j}p'_{i,j} = a_{i+1,j}p'_{i+1,j} + a_{i-1,j}p'_{i-1} + a_{i,j+1}p'_{i,j+1} + a_{i,j-1}p'_{i,j-1} + b'_{i,j}$$
(3.35)

Tekanan koreksi p' diperoleh dari penyelesaian persamaan (3.35), dimana source term b' tergantung dari ketidakseimbangan penyelesaian persamaan kontinuitas karena u* dan v* salah. Setelah diperoleh

tekanan koreksi P' untuk semua point dapat diketahui dengan menggunakan persamaan (3.22), sedangkan kecepatan koreksi diperoleh dari persamaan (3.31) & (3.32). Persamaan akan konvergen bila :

$$p^{new} = p^* + \alpha_p p' \tag{3.36}$$

dimana : α_p = under relaksasi factor untuk tekanan nilainya dari 0-1. Untuk nilai 0 maka tekanan terkaan p* tidak mengalami koreksi sedangkan nilai 1 sebaliknya terkoreksi oleh p'.

Untuk mendapatkan u^{new} dan v^{new} :

$$u^{new} = \alpha_{u}u + (1 - \alpha_{u})u^{(n-1)}$$

$$v^{new} = \alpha_{u}v + (1 - \alpha_{v})v^{(n-1)}$$
(3.37)

dimana : $u^{(n-1)}$ dan $v^{(n-1)}$ adalah nilai kecepatan pada iterasi sebelumnya.

No	Persamaan	Diskritisasi	Faktor Under – Relaksasi (α)
1.	Pressure	Standart	0,3
2.	Momentum	First Order Upwing	0,7
3.	Energi	First order upwing	1
4.	Pressure-velocity Coupling	SIMPLE	
5.	Density		1
6.	Body force		1

Tabel 3.2 Metode Diskritisasi dan Nilai Faktor Under Relaksasi

Penyelesaian dengan menggunakan faktor under relaksasi, $\alpha_p = 0,3$, karena persamaan tekanan koreksi, p' cenderung sulit mencapai nilai konvergen apalagi untuk kasus aliran konveksi alamiah. Sedangkan untuk momentum digunakan α yang lebih besar (0,7) karena persamaan momentum cenderung tidak mudah mencapai konvergen. Untuk persamaan energi, density dan body force menggunakan $\alpha = 1$.

BAB IV

ANALISA DAN DISKUSI

4.1. Pola Aliran Pengaruh dari Angka Reynolds dan Jarak Sirip (Aligned)

Setelah melakukan pemodelan secara numerik dengan dimensi benda yang sama dengan eksperimen baik susunan aligned maupun staggered, dan dengan penentuan boundary condition sebagai berikut :

- 1. Tube; Isothermal dengan Heat flux (q") = 4458.5987 W/m² untuk susunan tube aligned dan Heat flux (q") = 2523.1286 W/m² untuk susunan tube staggered.
- 2. Isolated wall; wall thickness = 0.003 m
- 3. Temperatur udara masuk = 26° C = 299 K
- 4. Properties udara :
 - $\rho = 1.104125 \text{ Kg/m}^3$
 - Cp = 1007.6884 J/Kg.K
 - Konduktivitas Thermal (K) = 27.57354 W/m.K
- 5. Gaya Gravitasi ; g = 0
- 6. Gage Presure = 0 (Tekanan pada outlet)

Maka diperoleh pola aliran dan kontur temperatur seperti yang terlihat pada gambar 4.1

Gambar 4.1 Kontur temperature dan pola aliran Re 500, Pf3 susunan aligned

Pada gambar 4.1 terlihat pada Re 500, kontur temperature pada tube 1 dan tube 2 simetris, hal ini disebabkan karena jarak antara tube yang cukup jauh (SL/D = 3.3)sehingga dianggap sebagai tube tunggal. Terlihat bahwa pada tube1 separasi lebih maju kedepan dibanding dengan Re 750 dan Re 1000 yang lebih besar (gambar 4.2, gambar 4.3). Hal ini disebabkan karena kecepatan aliran udara yang melewati susunan sillinder berbeda-beda, dimana semakin tinggi angka

Reynolds maka kecepatan pun semakin besar. Temperatur pun lebih tinggi dibanding dengan angka Reynolds yang lebih tinggi karena kecepatan yang meningkat. Setelah titik separasi yang lepas sampai kedaerah belakang tube pertama dan sebelum memasuki tube kedua temperature kembali naik lagi akibat pengaruh dari panas bangkitan (heat fluks) pada silinder kedua. Kecepatan udara yang memasuki tube kedua lebih rendah dari tube pertama. Hal ini disebabkan juga karena pengaruh dari daerah wake tube pertama. Juga terlihat daerah wake yang hampir sama polanya pada daerah bawah tube 2 dan atas tube 4 sehingga kontur temperature pada daerah tersebut juga terlihat hampir sama.

Gambar 4.2 Kontur temperature dan pola aliran Re 750, Pf 3 susunan aligned

Pada gambar 4.2 terlihat pada tube 1 maupun tube 2 bahwa separasi lebih tertunda kebelakang (lebih menyempit) dibanding dengan gambar 4.1 hal ini disebabkan karena pengaruh kecepatan akibat perubahan angka Reynoldsnya. Terlihat pula pada kontur temperature antara sillinder depan dan belakang yang lebih rendah dibandingkan dengan Re 500 (gambar 4.1). Dari pola aliran juga terlihat adanya daerah wake pada tube belakang pada bagian bawah tube 2 dan atas tube 4 yang mengakibatkan temperatur didaerah tersebut meningkat.

Gambar 4.3 pola aliran dan kontur temperature Re 1000, Pf 3 susunan aligned

Pada gambar 4.3 pola aliran pada Re 1000 hampir sama dengan Re 500 untuk jarak fin 3 tetapi Re 1000 daerah wake tube 1 dan 3 tidak menyambung (lebih sempit) dibanding pada Re 500 (gambar 4.1) yang daerah wakenya masih menyambung hingga mendekati tube 2 dan 4. Hal ini disebabkan karena kecepatan aliaran udara yang memasuki susunan tube lebih besar (v = 2,2 m/s) dibandingkan pada Re 500 (v = 0,3 m/s).

Gambar 4.4 pola aliran dan kontur temperatur Re 500, Pf 5 susunan aligned Pada masing – masing jarak sirip yang lain (pf = 5mm, pf = 7mm),

memilliki pola aliran dan kontur temperatur yang hampir sama pada angka Reynolds yang sama (gambar 4.4 dan gambar 4.5) yang agak berbeda daerah bertemperatur lebih tinggi yang menyambung lebih sempit (kecil) didaerah bawah silinder 2 dan atas silinder 4 pada jarak fin (pf) 7 mm dan Re = 1000 (gambar 4.9) sedangkan pada pf = 3 mm dan pf = 5 mm terjadi pada Re = 750

Gambar 4.5 pola aliran dan kontur temperature Re 750, Pf 5 susunan aligned

Velocity Vectors Colored By Velocity Magnitude (m/s) Jul 26, 2005 FLUENT 6.2 (3d, dp, segregated, lam)

Gambar 4.6 pola aliran dan kontur temperature Re 1000, Pf 5 susunan aligned Pada gambar 4.7 terlihat temperatur antara tube1 dan tube 2 yang lebih besar pada daerah belakang tube 1 dan tube2 dengan angka Reynolds yang sama (Re 500) untuk jarak sirip 3 mm dan 5 mm, daerah bertemperatur tinggi lebih kebelakang mendekati tube 2 dan terus meningkat sampai pada belakang tube 2 dan tube 4.

Jurusan Teknik Mesin FII - FIS

0.33 0.24 0.15 0.062

64

Gambar 4.7 pola aliran dan kontur temperature Re 500, Pf 7 susunan aligned Sedangkan pada Re 750 (gambar 4.8) kontur temperatur dan kecepatannya hampir sama pada jarak sirip yang lain (3 mm dan 5 mm) tetapi

daerahnya lebih sempit, pada tube 2 dan tube 4 temperaturnya hampir sama tetapi agak melebar pada daerah sekeliling tube 2 dan 4.

Gambar 4.8 pola aliran dan kontur temperature Re 750, Pf 7 susunan aligned

Pada angka Reynolds yang lebih besar dan jarak sirip yang lebih besar (pf = 7mm) terlihat pula bahwa temperatur pada daerah belakang tube 1 dan 3 lebih panas dibanding depan tube dan lebih menyempit. Hal ini disebabkan karena kecepatannya yang semakin cepat. Demikian pula pada tube 2 dan 4 karena pengaruh dari kecepatan yang masuk pada tube 2 dan 4 serta heat fluks pada tube mengakibatkan temperatur didaerah tersebut menjadi lebih tinggi dibanding tube 1 dan 3.

Jurusan Teknik Mesin FII - FIS

66

Pada gambar 4.9 terlihat bahwa temperatur yang lebih tinggi dibelakang tube 1 dan tube 3 lebih mengecil menuju ke tube 2 dan 4. Kecepatan tertinggi tejadi sebelum titik separasi baik untuk tube 1 dan tube 2, kemudian turun dan agak naik lagi pada bagian belakang tube, akibat dari vortex dan wake yang terjadi didaerah tersebut.

67

4.2 Pola Aliran Pengaruh dari Angka Reynolds dan Jarak Sirip (Staggered)

Untuk boundary condition yang sama dengan susunan tube aligned dengan panas bangkitan ($q'' = 2523.1286 \text{ W/m}^2$) yang berbeda menggunakan program Fluent 6.2 diperoleh kontur temperatur dan velocity vector untuk susunan tube staggered.

Gambar 4.10 Pola aliran dan kontur temperature Re 500, Pf 3 susunan staggered

Pada gambar 4.10 terlihat bahwa temperatur pada fin yang berbeda

pada baris atas dan bawah. Tampak bahwa pada daerah sekitar tube 5 yang lebih panas dibandingkan tube 6 yang berada segaris, hal ii disebabkan karena tube 5 mendapat gangguan dari tube 3 dan 4 sehingga temperaturnya lebih tinggi dari tube 6 dan kecepatannya juga naik. Sedangkan tube 6 hanya mendapat gangguan dari tube 4 sehingga temperatur naik setelah titik separasi dan kecepatan naik hanya pada sisi atas tube 6 saja.

Gambar 4.11 Pola aliran dan kontur temperature Re 750, Pf 3 susunan staggered

Untuk angka Reynolds yang lebih tinggi (Re 750 dan Re 1000) terlihat bahwa dengan bertambahnya angka Reynold maka distribusi temperatur pada sirip dan tube makin berkurang (lebih dingan) dibanding Re 500 dan kecepatannya semakin bertambah (gambar 4.11 dan 4.12). Karena bertambahnya kecepatan maka daerah wake pada masing – masing tube juga semakin terdorong kebelakang (semakin sempit), sehingga pada daerah tersebut temperaturnya menjadi lebih tinggi.

Gambar 4.13 Pola aliran dan kontur temperature Re 500, Pf 5 susunan staggered

Pada variasi jarak sirip (pf = 5 mm dan pf = 7 mm) dan angka Reynolds (Re 500, Re 750 dan Re 1000) dari segi kontur temperatur dan velocity vector terlihat pola yang hampir sama dengan pad pf = 3 mm tetapi memiliki nilai yang lebih tinggi untuk kecepatan pada sirip maupun pada tube dan temperatur yang lebih rendah pada sirip dan tube untuk angka Reynolds yang lebih besar (gambar 4.13, gambar 4.14, gambar 4.15)

Gambar 4.14 Pola aliran dan kontur temperature Re 750, Pf 5 susunan staggered

Gambar 4.15 Pola aliran dan kontur temperature Re 1000, Pf 5 susunan staggered

Pada jarak sirip yang semakin besar terlihat bahwa temperaturnya semakin naik, demikian pula distribusi kecepatannya semakin meningkat seiring dengan bertambahnya angka Reynolds. Hal ini disebabkan karena perubahan ketebalan boundary layer dari aliran laminar ke aliran transisi dibelakang tube yang disebabkan oleh vortex pada daerah wake (Gambar 4.16, gambar 4.17 dan gambar 4.18).

Jul 26, 2005 FLUENT 6.2 (3d, dp, segregated, lam)

Jurusan Teknik Mesin PTI - FTS

0.27 0.24 0.2 0.16 0.12 0.084 0.046 0.0085

Velocity Vectors Colored By Velocity Magnitude (m/s)

Gambar 4.17 Pola aliran dan kontur temperature Re 750, Pf 7 susunan staggered

Gambar 4.18 Pola aliran dan kontur temperature Re 1000, Pf 7 susunan staggered

4.3 Analisa Pengaruh Jarak Sirip dan Angka Reynolds terhadap Angka Nusselt Lokal dan Kecepatan Lokal (Aligned)

Dari hasil pemodelan numerik untuk susunan aligned pada jarak sirip yang kecil (pf = 3mm)maupun yang besar (pf = 5 mm dan pf = 7 mm) memiliki pola yang hampir sama (Gambar 4.20sampai gambar 4.21), dimana angka Nusselt bertambah seiring dengan bertambahnya θ sebagai akibat dari boundary layer laminar lanjutan kemudian turun tetapi belum terseparasi hingga mencapai minimum pada $\theta \approx 120$ dan $\theta \approx -120$ dimana separasi terjadi kemudian angka Nusselt bertambah lagi seiring bertambahnya θ akibat dari vortex formation dan wake yang terjadi dibelakang tube.

Gambar 4.20 Grafik angka Nusselt local pada pf = 3mm, tube 1

Dengan bertambahnya angka Reynolds maka angka Nusseltnya juga semakin bertambah. Hal ini disebabkan karena perbedaan temperatur yang bertambah pula sehingga mengakibatkan angka Nusselt bertambah, sesuai dengan

persamaan :

$$h_{\theta} = \frac{q''}{(\overline{T_{\theta}} - T_{\infty})} \tag{4.1}$$

$$Nu_{\theta} = \frac{h_{\theta} D_{t}}{k_{e}} = f(\text{Re}, \text{Pr}, x^{*}) \quad \dots \qquad (4.2)$$

Gambar 4.21 Grafik angka Nusselt local pada pf = 5mm, tube 1

Gambar 4.22 Grafik angka Nusselt local pada pf = 7mm, tube 1

Semakin besar angka Reynolds maka kecepatan juga semakin bertambah untuk masing – masing jarak sirip. Pada titik stagnasi kecepatan berkurang kemudian naik seiring dengan bertambahnya θ , kemudian mencapai minimum pada titik separasi baru kemudian naik lagi stelah titik separasi sebagai akibat dari vortex dan wake dibelakang tube

Gambar 4.23 Grafik Velocity magnitude local pada pf = 3mm, tube 1

Pola kecepatan hampir sama untuk masing masing jarak sirip (pada pf = 5 mm dan pf = 7 mm) yang mengalami kenaikan kecepatan pada titik stagnasi dan memiliki nilai minimum pada titik separasi. Tetapi untuk angka Reynolds yang lebih besar (Re 750 dan Re 1000) titik separasinya lebih tertunda ke daerah belakang silinder.

Gambar 4.24 Grafik Velocity magnitude local pada pf = 5mm, tube 1

Gambar 4.25 Grafik Velocity magnitude local pada pf = 7mm, tube 1

Sedangkan pada tube 2 baik angka Nusselt memiliki pola yang hampir sama dengan tube 1 (gambar 4.31 - 4.33)tetapi memiliki nilai yang lebih rendah dibandingkan tube 1 akibat pengaruh aliran yang melintasi tube dan karena pengaruh panas bangkitan yang dimiliki oleh tube itu sendiri.

Gambar 4.26 Grafik angka Nusselt local pada pf = 3mm, tube 2

Gambar 4.27 Grafik angka Nusselt local pada pf = 5mm, tube 2

Terlihat bahwa kenaikan angka Nusselt lebih curam pada angka Reynolds yang lebih besar (Re 750 dan Re 1000), karena terjadi pengurangan ketebalan dari boundary layer maka angka Nusselt nya juga semakin bertambah.

Gambar 4.28 Grafik angka Nusselt local pada pf = 7mm, tube 2

Dari segi kecepatan juga terlihat bahwa kecepatan yang melintasi tube 2 lebih rendah dari tube 1. Hal ini disebabkan adanya pengaruh dari wake tube 1 yang sudah kembali menjadi laminar . Seperti pada tube 1 kecepatan bertambah setelah titik stagnasi dan minimum pada saat terseparasi lepas dan kemudian kecepatannya naik lagi sebagai akibat dari vortex pada daerah wake yang terjadi dibelakang silinder. (gambar 4.29 - 4.31)

Gambar 4.29 Grafik Velocity magnitude local pada pf = 3mm, tube 2

Gambar 4.30 Grafik Velocity magnitude local pada pf =5mm, tube 2

Gambar 4.31Grafik Velocity magnitude local pada pf =7mm, tube 2

Terlihat bahwa kecepatan yang lebih tinggi pada bagian bawah tube 2 untuk masing – masing jarak sirip dibanding dengan bagian atas tube 2, hal ini disebabkan adanya pengaruh kecepatan didaerah celah antara tube 2 dan 4.

4.4 Analisa Pengaruh Jarak Sirip dan Angka Reynolds terhadap Angka Nusselt Lokal dan Kecepatan Lokal (Staggered)

Untuk susunan tube staggered terlihat bahwa pola grafik angka Nusselt lokal untuk tube 1, tube 4 dan tube 5 terlihat hampir sama dengan susunan tube aligned tetapi memiliki nilai yang berbeda, hal ini disebabkan karena dimensi benda dan panas bangkitan yang berbeda untuk susunan aligned dan staggered.

Gambar 4.32 Grafik angka Nusselt local pada pf =3mm, tube 1

Gambar 4.33 Grafik angka Nusselt local pada pf =3mm, tube 4

Gambar 4.34Grafik angka Nusselt local pada pf =3mm, tube 5

Terlihat setelah titik stagnasi angka Nusselt turun kemudian naik lagi akibat dari bertambahnya kecepatan pada bagian atas dan bawah silinder kemudian turun lagi sampai mencapai titik separasi dan setelah itu mengalami kenaikan lagi akibat dari vortex formation pada daerah wake. Dari gambar 4.32, gambar 4.33 dan gambar 4.34 terlihat bahwa dengan bertambahnya angka Reynolds maka angka Nusseltnya juga ikut bertambah, hal ini disebabkan karena terjadinya pengurangan ketebalan dari boundary layer.

Gambar 4.36 Grafik Velocity magnitude local pada pf =3mm, tube 1

Gambar 4.37 Grafik Velocity magnitude local pada pf =5mm, tube 1

Gambar 4.38Grafik Velocity magnitude local pada pf =7mm, tube 1

Dari grafik kecepatan juga terlihat bahwa kecepatan semakin naik seiring dengan bertambahnya angka Reynolds pada tube 1 untuk masing – masing jarak

sirip (gambar 4.36, gambar 4.37dan gambar 4.38).

Gambar 4.39 Grafik angka Nusselt local pada pf =5mm, tube 1

Gambar 4.40Grafik angka Nusselt local pada pf =5mm, tube 3

Pada jarak sirip yang sama (pf = 5 mm) terlihat bahwa pada tube 1 dan tube 3 memiliki angka Nusselt local yang hampir simetris , hal ini menunjukkan pengaruh dari tube yang berdekatan lemah (sedikit) akibat jarak antara tube yang Tesis Teknologi Energi

cukup jauh.

Tetapi pada tube 5 (gambar 4.41) terlihat bahwa angka Nusselt tidak lagi simetris pada bagian atas dan bawah tube 5. Dari velocity vector dapat kita lihat bahwa kecepatan pada bagian atas tube 5 lebih besar karena pengaruh dari daerah wake tube 4.

Gambar 4.41 Grafik angka Nusselt local pada pf =5mm, tube 5

Hal yang sama pun terjadi pada jarak sirip pf = 7 mm (gambar 4.42, gambar 4.43 dan 4.44), terlihat dengan bertambahnya angka Reynold maka angka Nusselt juga akan bertambah, hal ini terjadi karena adanya pengurangan ketebalan boundary layer.

Analisa Dan Diskusi

Gambar 4.42 Grafik angka Nusselt local pada pf =7mm, tube 1

Gambar 4.43 Grafik angka Nusselt local pada pf =7mm, tube 3

Gambar 4.44 Grafik angka Nusselt local pada pf =7mm, tube 3

Jurusan Teknik Mesin FTI - ITS

89

4.5 Analisa Pengaruh Angka Reynolds terhadap Koefisien Perpindahan Panas Konveksi Rerata

Koefisien perpindahan panas konveksi menunjukkan kemampuan aliran fluida dalam memindahkan atau mentransfer panas. Koefisien perpindahan panas konveksi secara umum dipengaruhi oleh kondisi aliran fluida , geometri permukaan aliran, dan sifat-sifat *(properties)* dari fluida. Pada kasus konveksi paksa *(forced convection)*, kondisi aliran fluida diwakili oleh angka Reynolds sebagai perbandingan antara gaya inersia terhadap gaya viscous.

Pada eksperimen koefisien perpindahan panas konveksi rata-rata pada model penukar panas diperoleh dari perbandingan antara fluks panas yang dihasilkan terhadap beda suhu permukaan luar rata-rata dengan suhu udara ratarata. Hal ini secara matematis dirumuskan sebagai berikut :

$$\overline{h} = \frac{q''}{(\overline{T}_{ex} - T_{\infty})} \tag{4.1}$$

$$\overline{Nu} = \frac{\overline{h}.L}{k_f} = f(\operatorname{Re}, \operatorname{Pr}, x^*) \quad \dots \quad (4.2)$$

Harga koefisien perpindahan panas konveksi rerata dipengaruhi juga oleh angka Reynolds sehingga didapatkan hasil pengaruh angka Reynolds terhadap harga koefisien perpindahan panas konveksi rerata sebagai berikut :

Analisa Dan Diskusi

(b) Staggered Gambar 4.46 Pengaruh Re terhadap Koefisien Perpindahan Panas Konveksi

Dari grafik 4.46 dapat dianalisa bahwa harga koefisien perpindahan panas konveksi rata-rata cenderung naik dengan bertambahnya angka Reynolds. Hal ini sesuai persamaan 4.2 pada kasus konveksi paksa, angka Nusselt (Nu) yang berbanding lurus dengan koefisien perpindahan panas konveksi, dipengaruhi oleh angka Reynolds, geometri permukaan, dan sifat-sifat aliran. Angka Reynolds sangat besar pengaruhnya terhadap perubahan angka Nusselt, sehingga dengan dengan naiknya angka Reynolds pada jarak sirip yang konstan, mengakibatkan

Jurusan Teknik Mesin FII - FIS

naiknya angka Nusselt yang berimbas pada naiknya harga koefisien perpindahan

panas konveksi reratanya.

(a) Aligned (Laga, 2004)

Dari hasil eksperimen yang dilakukan oleh *Laga dan Salim (2004)* terlihat bahwa pada jarak fin yang kecil dengan angka Reynolds yang tinggi (Re 300) koefisien perpindahan panasnya tertinggi (gambar 4.47). Hal ini lebih dikarenakan luasan permukaan total perpindahan panasnya yang semakin besar

Jurusan Teknik Mesin FII - MIS

karena jumlah sirip yang banyak (20 buah) pada jarak sirip yang kecil (pf = 3 mm).

Dari kedua grafik diatas, harga koefisien perpindahan panas konveksi terbesar dihasilkan oleh model penukar panas yang dioperasikan pada angka Reynolds tertinggi (Re=1000). Hal ini mengindikasikan bahwa pada model penukar panas dengan sirip tunggal dan dioperasikan pada angka Reynolds tertinggi (Re=1000), kecepatan udara sebagai fluida pendingin di permukaan sirip menjadi paling tinggi sehingga menaikkan angka Reynolds didalamnya (tertinggi) yang juga akan menaikkan angka Nusseltnya (terbesar) sehingga harga koefisien perpindahan panas konveksinya menjadi paling besar diantara ketiganya.

4.6 Analisa Pengaruh Angka Reynolds terhadap Efisiensi Sirip

Sirip *(fin)* digunakan untuk menambah luasan permukaan efektif perpindahan panas sehingga diharapkan juga akan meningkatkan laju perpindahan panas yang terjadi. Sirip tunggal (geometri sirip) tentu akan mempengaruhi karakteristik (unjuk kerja) penukar panas tersebut. Selain itu lingkungan dimana sirip tersebut digunakan juga berpengaruh pada karakteristik penukar panas. Dalam hal ini karakteristik (unjuk kerja) tersebut dikaji dalam bentuk efisiensi sirip. Pengaruh angka Reynolds terhadap efisiensi sirip ditunjukkan pada gambar 4.48 berikut :

Analisa Dan Diskusi

Pada penukar panas dengan sirip tunggal secara rata-rata menghasilkan effisiensi tertinggi pada Reynolds rendah. Hal ini mengindikasikan bahwa sirip cukup efektif dalam membantu pembuluh melepaskan panas ke udara. Kemampuan pembuluh dalam melepaskan panas ke udara adalah terbatas sehingga dalam proses pelepasan panas, pembuluh menggunakan sirip untuk membantu melepaskan panas ke udara. Dengan jarak sirip yang lebih jauh maka dalam melepaskan panas ke udara, penukar panas ini benar-benar mengefektifkan

Dari gambar 4.49 juga terlihat bahwa pada jarak sirip dari 7 mm ke 5 mm gradien kenaikannya lebih landai sedangkan pada jarak sirip 5 mm ke 3 mm gradien kenaikannya lebih tajam. Hal ini mengindikasikan bahwa dengan pengurangan jarak sirip akan mempunyai pengaruh yang signifikan, artinya kenaikan effisiensi sirip yang terjadi cukup besar. Tetapi apabila jarak sirip dikurangi lagi maka pengaruhnya tidak begitu signifikan artinya kenaikan effisiensi sirip yang didapatkan tidak begitu besar dibandingkan yang pertama.

Pada kasus konveksi paksa, efisiensi sirip juga dipengaruhi oleh lingkungan dimana penukar panas tersebut dioperasikan. Pengoperasian penukar panas pada beban pendinginan yang tinggi, sehingga kecepatan fluida pendingin (udara) juga harus diperbesar untuk menambah laju alir massa fluida pendingin pembawa panas yang berdampak pada naiknya angka Reynolds, tentu akan mempengaruhi kontribusi tiap sirip dalam membantu pembuluh melepas panas. Dengan bertambahnya angka Reynolds (akibat peningkatan kecepatan), laju alir fluida dingin pembawa panas juga akan bertambah sehingga massa kemampuannya (kapasitas) untuk menyerap panas menjadi lebih besar yang mengakibatkan bertambahnya laju perpindahan panas yang terjadi. Dengan bertambahnya laju perpindahan panas ini, tentu akan menurunkan suhu sirip secara rata-rata relatif lebih besar daripada penurunan suhu pangkalnya karena luas kontak sirip yang lebih besar dibanding luas kontak pembuluhnya, sehingga efisiensi siripnya juga mengalami penurunan. Hal ini dapat dilihat pada gambar grafik 4.48 berikut ini :

Dari grafik tersebut baik eksperimen maupun numerik terlihat bahwa dari

Analisa Dan Diskusi

semua penukar panas harga effisiensi sirip cenderung turun dengan naiknya angka Reynolds. Hal ini disebabkan dengan semakin naiknya angka Reynolds maka laju alir massa yang melewati penukar panas semakin besar. Dengan semakin besarnya laju alir massa yang melewati penukar panas maka panas yang dilepaskan secara konveksi oleh penukar panas (baik pembuluh maupun sirip) juga semakin besar atau dapat dikatakan bahwa laju pendinginan oleh udara semakin besar. Hal ini dapat dilihat dari turunnya suhu rerata sirip maupun suhu rerata pembuluh, tetapi penurunan suhu pada sisi sirip lebih besar dibandingkan penurunan suhu pada sisi tube. Penurunan suhu yang lebih besar pada sisi sirip dapat terjadi karena panas berpindah secara konduksi dari pembuluh ke sirip sedangkan pembuluh sendiri juga mengalami proses konveksi. Karena proses konveksi pada pembuluh inilah menyebabkan suhu pembuluh turun dengan naiknya angka Reynolds sehingga dengan turunnya suhu pembuluh maka panas yang dikonduksikan ke sirip juga berkurang sedangkan pada sirip mengalami pendinginan yang lebih besar dengan naiknya angka Reynolds sehingga penurunan temperatur pada sirip lebih besar. Penurunan suhu sirip ini mengindikasikan kemampuan sirip melepas panas ke udara berkurang sehingga effisiensinya turun.

Pada angka Reynolds 500 mempunyai effisiensi sirip tertinggi, hal ini mengindikasikan bahwa sirip lebih efektif melepaskan panas ke udara. Dengan pelepasan panas ke udara yang tidak terlalu besar pada pembuluh maka pembuluh mempunyai suhu yang relatif tinggi, sehingga panas yang dikonduksikan ke ke sirip juga relatif lebih besar. Hal ini mengakibatkan temperatur rerata sirip yang relatif tinggi sehingga kemampuan melepas panas

sirip juga besar. Sebaliknya pada angka Reynolds 1000 mempunyai effisiensi sirip paling rendah hal ini mengindikasikan bahwa sirip kurang efektif dalam membantu pembuluh dalam melepas panas ke udara.

4.7 Analisa Pengaruh Angka Reynolds terhadap Efisiensi Permukaan Menyeluruh (Overall Surface Efficiency)

Untuk menganalisa secara keseluruhan susunan sirip yang terpasang, dapat diwujudkan dalam bentuk efisiensi permukaan menyeluruh *(overall surface efficiency)*. Efisiensi permukaan menyeluruh dapat didefinisikan sebagai perbandingan antara laju perpindahan panas aktual dengan laju perpindahan panas maksimal. Laju perpindahan panas aktual yang dimaksud adalah laju perpindahan panas yang melewati pembuluh dan sirip, dengan suhu ujung sirip berbeda dari suhu pangkalnya. Pengaruh jarak sirip terhadap efisiensi permukaan menyeluruh dapat dilihat dari grafik 4.50 berikut :

Analisa Dan Diskusi

Gambar 4.50 Pengaruh angka Reynolds terhadap Efisiensi Overall (Numerik)

Efisiensi permukaan menyeluruh (overall surface efficiency) menunjukkan efisiensi sirip dengan memperhitungkan faktor luasan sirip dan luasan tanpa sirip (unfined surface area) yang memiliki harga efisiensi seratus persen. Persamaan 2.13 (pada bab II) telah menjelaskan bahwa variabel yang berpengaruh terhadap efisiensi permukaan menyeluruh adalah efisiensi sirip, luasan sirip, dan luasan pembuluh. Dari gambar 4.50 diatas, secara umum trend grafik efisiensi permukaan menyeluruh (overall surface efficiency) sama dengan trend grafik efisiensi sirip untuk satu sirip (single fin), hanya saja harganya mengalami kenaikan karena sudah memperhitungkan luasan tanpa sirip. Dengan memperlebar jarak/spasi sirip (semakin sedikit jumlah sirip yang terpasang), perbandingan luasan efektif sirip terhadap luasan efektif total dari model penukar panas menjadi berkurang, disamping itu efisiensi sirip semakin besar karena kontribusi tiap sirip membantu pembuluh melepaskan panas juga semakin besar sehingga kedua faktor tersebut menaikan harga efisiensi permukaan menyeluruh (overall surface efficiency) dari model penukar panas.

Jurusan Teknik Mesin FII - FIS

99

fungsi sirip untuk membantu pembuluh melepaskan panas ke udara. Atau dengan kata lain, dengan jarak sirip yang besar menyebabkan kontribusi sirip dalam membantu pembuluh melepaskan panas akan lebih tinggi, sehingga efisiensi dari sirip meningkat. Hal ini dapat dilihat dari suhu permukaan sirip rerata yang tinggi dan penurunan suhu sirip dari suhu pangkalnya (pembuluh) yang rendah. Dengan suhu permukaan rerata yang tinggi maka beda temperatur dengan udara luar juga tinggi sehingga panas yang dilepaskan sirip ke udara juga tinggi.

(a) Aligned (Laga, 2004)

(b) Staggered (Salim, 2004)

Pada kondisi lingkungan yang bervariasi, sebagai contoh untuk tingkat pembebanan yang bervariasi, perubahan kecepatan aliran fluida dingin yang mengakibatkan perubahan angka Reynolds juga akan mempengaruhi efisiensi permukaan menyeluruh *(overall surface efficiency)* dari penukar panas yang dioperasikan.

Untuk kasus konveksi paksa (forced convection), dengan bertambahnya angka Reynolds (akibat peningkatan kecepatan), laju alir massa fluida dingin pembawa panas juga akan bertambah sehingga kemampuannya (kapasitas) untuk menyerap panas menjadi lebih besar yang mengakibatkan bertambahnya laju perpindahan panas yang terjadi. Dengan bertambahnya laju perpindahan panas ini, tentu akan menurunkan suhu sirip secara rata-rata relatif lebih besar daripada penurunan suhu pangkalnya karena luas permukaan efektif (kontak) sirip yang lebih besar dibanding luas permukaan efektif (kontak) pembuluhnya, sehingga efisiensi siripnya juga mengalami penurunan. Dengan penurunan efisiensi sirip secara rata-rata dan perbandingan luasan efektif sirip terhadap luasan efektif total dari model penukar panas yang tetap/konstan (untuk variasi angka Reynolds), tentu akan menurunkan harga efisiensi permukaan menyeluruhnya sesuai persamaan (2.13).

Hasil dari eksperimen yang telah dilakukan oleh peneliti terdahulu (Laga dan Salim, 2004) tidak dapat dibandingkan. Hal ini disebabkan karena dimensi dan bentuk sirip yang berbeda. Dimana pada eksperimen bentuk siripnya bergelombang dan terdiri dari beberapa sirip yang tersusun secara kontinyu

Analisa Dan Diskusi

dengan jarak tertentu (pf = 3 mm, pf = 5 mm, pf = 7 mm). Sedangkan pada pemodelan numerik hanya menggunakan satu sirip bentuk plat datar dengan susunan tube aligned dan staggered. Sehingga hasil yang diperoleh walaupun memiliki tren / pola grafik yang sama tetapi pada eksperimen analisanya lebih dipengaruhi oleh dimensi / luasan dari benda kerja, sedangkan pada numerik analisa perpindahan panasnya dianalisa lebih kearah pola aliran.

(a) Aligned (Laga, 2004)

(b) Staggered (Salim, 2004)

Gambar 4.56 Pengaruh angka Reynolds terhadap Efisiensi Overall (Eksperimen)

Jurusan Teknik Mesin FII - IIS

BAB V

PENUTUP

V.1 Kesimpulan

Dari penelitian secara numerik terhadap susunan tube *aligned* dan staggered bersirip tunggal (satu) yang memvariasikan angka Reynolds (Re); 500, 750, 1000, serta daya listrik *heater* yang konstan (128 W/tube untuk aligned dan 480 watt untuk staggered) didapatkan kesimpulan sebagai berikut :

- Model penukar panas dengan single fin (sirip tunggal), pada angka Reynolds terendah (Re 500) menghasilkan :
 - a. Untuk susunan tube aligned, efisiensi fin (η_f) tertinggi (83,52 %) dan efisiensi *overall* (η_o) tertinggi(84,47 %)
 - b. Untuk susunan tube staggered, efisiensi fin (η_f) tertinggi (94 %) dan efisiensi *overall* (η_o) tertinggi(96.21 %).
- Model penukar panas dengan fin tunggal, pada angka Reynolds tertinggi (Re 1000) menghasilkan angka Nusselt yang tertinggi pula untuk susunan tube aligned dan staggered
- Sedangkan semakin besar angka Reynolds (500 ke 1000) maka efisiensi fin dan efisiensi overall turun.

V.2 Saran

- Untuk mengetahui fenomena aliran udara didalam model penukar panas (kondisi lapisan batas aliran dan termalnya) dibutuhkan simulasi pemodelan menggunakan perangkat lunak komputer (FLUENT, ANSYS) dengan jumlah sirip lebih dari satu dan jenis sirip yang bergelombang. Hal ini diperlukan guna mendukung analisa terhadap karakteristik model penukar panas ini.
- Referensi jarak titik pengukuran fluida keluar (T_{out}) dari model penukar panas perlu didapatkan sehingga pengukurannya lebih tepat.
- Tingkat pembebanan (fluks panas *heater*) dan kondisi lingkungan (angka Reynolds) perlu divariasikan lebih banyak lagi sehingga bisa dianalisa lebih lanjut tentang karakteristik model penukar panas ini akibat kedua hal tersebut.

DAFTAR PUSTAKA

- 1. Bejan, A., "Heat Transfer", John Willey & Sons, Inc, New York, 1993.
- 2. Chin-Hsiang Cheng and Feng –Liang Liao, "DSMC Analysis of Rarefied Gas Flow Over a Rectangular Cylinder at All Knudsen Numbers", Jurnal Transaction of the ASME, 2000
- Fauzi, Imron, "Studi Eksperimental Pengaruh Jarak Sirip Terhadap Unjuk Kerja Penukar Panas Woven Matrix Anyaman Ganda", Tugas Akhir, Teknik Mesin ITS, Surabaya, 2004.
- 4. Incropera, FrankP. and David P. Dewit, "Fundamentals of Heat and Mass Tansfer", Fourth Edition, John Willey & Sons Co, New York, 1999.
- 5. Igarashi, Tamotsu, Hajime Nakamura and Taketo Fukuoka, "Pressure Drop and Heat Transfer of Arrays of in-line Circular Blocks on The Wall of Parallel Channel", International Journal of Heat and Mass Transfer, 2004
- 6. Laga, Arif, "Studi Eksperimen Pengaruh Jarak Sirip dan Angka Reynolds Terhadap Unjuk Kerja Susunan Tube Aligned Bersirip Kontinyu" Tugas Akhir, Teknik Mesin ITS, Surabaya, 2004.
- Kays, W.M. and London A.L,"Compact Heat Exchanger", 2nd edition, Mc Graw Hill, New York, 1993.
- 8. Kakac, sadic & Liu, Hong Tan, "Heat Exchanger Selection, Rating and Thermal Design", CRC Press LLC, New York, 1998.
- 9. Kern, D.Q, "Proses Heat Transfer" Mc. Graw Hill, Tokyo, 1983.

- Keith, F dan Priyono, A., "Prinsip-Prinsip Perpindahan panas", Edisi ketiga, Penerbit Erlangga, Jakarta, 1986.
- 11. Kuswanto, Slamet A., "Redesign Alat Penukar Kalor Tipe Continuous Fin Shell And Tube Untuk Oil Cooler Pada Kompressor Tipe GA 160 Dengan Optimasi Jumlah Sirip", Tugas Akhir, Teknik Mesin ITS, Surabaya, 2003.
- Moran, Michael J. & Howard, N. Shapiro, "Fundamental of Engineering Thermodynamics", 2nd edition, John Willey & Sons, New York, 1993.
- 13. Meinders, E.R and Hanjalic, K, "Experimental Study of Convective Heat Transfer from in-line and staggered Configurations of two wall-mounted cubes", International Journal of Heat and Mass Transfer, 2002
- 14. Salim, Abu "Studi Eksperimen Pengaruh Jarak Sirip dan Angka Reynolds Terhadap Unjuk Kerja Susunan Tube Staggered Bersirip Kontinyu", Tugas Akhir, Teknik Mesin ITS, Surabaya, 2004.
- 15. Shah R.K. dan Webb R.L., "Compact and Enhanced Heat Exchangers". Jurnal.
- 16. Zhao, Xiangwei,"Performance of Single Row Heat Exchanger at Low In-Tube Flow Rates", Tesis, 1995.

DATA ANGKA NUSSELT (NUMERIK)

Nu Aligned Re 500, Pf3, silinder 1

Nu Aligned Re 750, Pf3, silinder 1

-				
No	X	Y	θ	Nu
1	-0.0075	9.18E-19	0.0	2456.332
2	-0.0074528	-0.0008397	-64	2420.46
3	-0.007312	-0.0016689	-129	2333 213
4	-0.0070791	-0.0024771	10.3	2206 557
5	0.0067572	0.0022544	-19.5	2200.007
0	-0.0007573	-0.0032541	-25.7	2008.131
0	-0.0063504	-0.0039902	-32.2	1902.499
7	-0.0058637	-0.0046762	-38.6	1751.622
8	-0.0053033	-0.0053033	-45.0	1742.764
9	-0.0046762	-0.0058637	-51.5	1866.625
10	-0.0039902	-0.0063504	-57.9	1971.325
11	-0.0032541	-0.0067573	-64.3	2033.922
12	-0.0024771	-0.0070791	-70.8	2023.64
13	-0.0016689	-0.007312	-77.2	1889 091
14	-0.0008397	-0.0074528	-83.6	1578 883
15	4 59E-19	-0.0075	-00.0	1066 613
16	0.0009207	0.0074528	-90.0	455 9052
10	0.0008397	-0.0074526	-90.4	400.0002
17	0.0016689	-0.00/312	-102.8	91./3142
18	0.0024771	-0.0070791	-109.2	215.9024
19	0.0032541	-0.0067573	-115.7	356.6196
20	0.0039902	-0.0063504	-122.1	428.7949
21	0.0046762	-0.0058637	-128.5	473.8314
22	0.0053033	-0.0053033	-135.0	567.9945
23	0.0058637	-0.0046762	-141.4	705,894
24	0.0063504	-0.0039902	-147.8	848 8789
25	0.0067573	-0.0032541	-154.3	987 7545
26	0.0070701	-0.0024771	460.7	1114 679
20	0.0070101	0.0024771	-100.7	1017.000
21	0.00/312	-0.0016669	-16/.1	1217.922
28	0.0074528	-0.0008397	-173.6	1296.819
29	-0.0075	9.18E-19	-180.0	2467.548
30	-0.0074528	0.0008397	6.4	2422.199
31	-0.007312	0.0016689	12.9	2328.531
32	-0.0070791	0.0024771	19.3	2198.216
33	-0.0067573	0.0032541	25.7	2047.57
34	-0.0063504	0.0039902	32.2	1890.505
35	-0.0058637	0.0046762	38.6	1738 875
36	-0.0053033	0.0053033	45.0	1726 824
37	0.0046762	0.0058637	40.0 E1.E	1943 102
20	0.0020002	0.0000001	51.5	1045.105
30	-0.0039902	0.0003504	57.9	1933.42/
39	-0.0032541	0.006/5/3	64.3	19/6.993
40	-0.0024771	0.0070791	70.8	1923.931
41	-0.0016689	0.007312	77.2	1712.736
42	-0.0008397	0.0074528	83.6	1283.734
43	4.59E-19	0.0075	90.0	668.6691
44	0.0008397	0.0074528	96.4	158.8429
45	0.0016689	0.007312	102.8	184.4982
46	0.0024771	0.0070791	109.2	382,1058
47	0.0032541	0.0067573	115.7	487 7449
48	0.0030002	0.0063504	122.1	539 2114
40	0.0046762	0.0059637	120.5	503 6400
40	0.0040702	0.0050037	128.5	694 6466
50	0.0053033	0.0053033	135.0	001.0101
51	0.0058637	0.0046762	141.4	813.9934
52	0.0063504	0.0039902	147.8	953.1101
53	0.0067573	0.0032541	154.3	1084.957
54	0.0070791	0.0024771	160.7	1201.912
55	0.007312	0.0016689	167.1	1293.182
56	0.0074528	0.0008397	173.6	1350.221
57	0.0075	9.18E-19	180.0	1242.183

No	X	Y	0	NH
1	-0.0075	9.18E-19	0.0	2684.91
2	-0.007453	-0.00084	-6.4	2635.12
3	-0.007312	-0.001669	-12.9	2528.27
4	-0.007079	-0.002477	-19.3	2380.15
5	-0.006757	-0.003254	-25.7	2210.6
6	-0.00635	-0.00399	-32.2	2036.44
7	-0.005864	-0.004676	-38.6	1870.25
8	-0.005303	-0.005303	-45.0	1866.25
9	-0.004676	-0.005864	-51.5	2017.23
10	-0.00399	-0.00635	-57.9	2160.99
11	-0.003254	-0.006757	-64.3	2278.48
12	-0.002477	-0.007079	-70.8	2344.05
13	-0.001669	-0.007312	-77.2	2319.02
14	-0.00084	-0.007453	-83.6	2151.58
15	4.59E-19	-0.0075	-90.0	1768.33
16	0.0008397	-0.007453	-96.4	1059.31
17	0.0016689	-0.007312	-102.8	257.999
18	0.0024771	-0.007079	-109.2	328.051
19	0.0032541	-0.006757	-115.7	661.97
20	0.0039902	-0.00635	-122.1	744,512
21	0.0046762	-0.005864	-128.5	775.032
22	0.0053033	-0.005303	-135.0	856.99
23	0.0058637	-0.004676	-141.4	1007.38
24	0.0063504	-0.00399	-147.8	1160.53
25	0.0067573	-0.003254	-154.3	1310.13
26	0.0070791	-0.002477	-160.7	1447.33
27	0.007312	-0.001669	-167.1	1557.4
28	0.0074528	-0.00084	-173.6	1631.94
29	-0.0075	9.18E-19	-180.0	2694.78
30	-0.007453	0.0008397	6.4	2637.39
31	-0.007312	0.0016689	12.9	2525.79
32	-0.007079	0.0024771	19.3	2375.06
33	-0.006757	0.0032541	25.7	2204.02
34	-0.00635	0.0039902	32.2	2028.95
35	-0.005864	0.0046762	38.6	1862.29
36	-0.005303	0.0053033	45.0	1856.44
37	-0.004676	0.0058637	51.5	2003.08
38	-0.00399	0.0063504	57.9	2139.92
39	-0.003254	0.006/5/3	64.3	2245.9
40	-0.002477	0.0070791	70.8	2291.11
41	-0.001669	0.007312	77.2	2221.63
42	-0.00084	0.0074528	83.6	1904.00
43	4.09E-19	0.0075	90.0	516 005
44	0.0006597	0.0074526	90.4	228.054
40	0.0010009	0.0070704	102.8	230.934
40	0.0024771	0.0070791	109.2	806 753
47	0.0032041	0.0007575	122.4	852 414
40	0.0046762	0.0058637	122.1	872 42
50	0.0053033	0.0053033	120.0	943.95
51	0.0058637	0.0046762	141.4	1089 34
52	0.0063504	0.0039902	147.8	1240.6
53	0.0067573	0.0032541	154.3	1386.9
54	0.0070791	0.0024771	160.7	1517.81
55	0.007312	0.0016689	167.1	1618.7
56	0.0074528	0.0008397	173.6	1666.39
57	0.0075	9.18E-19	180.0	1242.18

No	X	Y	8	Nu
1	-0.0075	9 18E-19	0.0	2795.321
2	-0.00745	-0 00084	-6.4	2748.513
3	-0.00731	-0.00167	-12.0	2630 906
4	-0.00708	-0.00248	-10.3	2471 053
5	0.00676	0.00240	-18.5	2200 041
0	-0.00076	0.00323	-20.7	2105 317
0	-0.00035	-0.00399	-32.2	1020.517
1	-0.0050	-0.00400	-38.0	1930.52
8	-0.0053	-0.0053	-45.0	1920.294
9	-0.00468	-0.00586	-51.5	2092.764
10	-0.00399	-0.00635	-57.9	2256.035
11	-0.00325	-0.00676	-64.3	2400.975
12	-0.00248	-0.00708	-70.8	2504.164
13	-0.00167	-0.00731	-77.2	2536.056
14	-0.00084	-0.00745	-83.6	2456.087
15	4.59E-19	-0.0075	-90.0	2210.62
16	0.00084	-0.00745	-96.4	1683.79
17	0.001669	-0.00731	-102.8	693.4583
18	0.002477	-0.00708	-109.2	356.0309
19	0.003254	-0.00676	-115.7	897.9994
20	0.00399	-0.00635	-122.1	974.3862
21	0.004676	-0.00586	-128.5	985.7737
22	0.005303	-0.0053	-135.0	1053.746
23	0.005864	-0.00468	-141.4	1213.097
24	0.00635	-0.00399	-147.8	1375.882
25	0.006757	-0.00325	-154.3	1534.652
26	0.007079	-0.00248	-160.7	1679.503
27	0.007312	-0.00167	-167.1	1793.267
28	0.007453	-0.00084	-173.6	1859.388
29	-0.0075	9.18E-19	-180.0	1860.333
30	-0.00745	0.00084	64	2750.94
31	-0.00731	0.001669	12.9	2629.54
32	-0.00708	0.002477	19.3	2467.641
33	-0.00676	0.003254	25.7	2285 488
34	-0.00635	0.00399	32.2	2100 128
35	-0.00586	0.004676	38.6	1924 937
36	-0.00000	0.005303	45.0	1921.6
27	0.00468	0.005864	40.0	2083 146
20	-0.00400	0.000004	57.0	2000.140
30	0.00335	0.00033	64.3	2370 512
39	-0.00325	0.007070	70.0	2470 707
40	-0.00248	0.007019	70.8	2470.797
41	-0.00167	0.007312	11.2	24/1./90
42	-0.00084	0.007453	83.6	2340.487
43	4.59E-19	0.0075	90.0	1991.359
44	0.00084	0.007453	96.4	1169.05
45	0.001669	0.007312	102.8	307.5125
46	0.002477	0.007079	109.2	799.0283
47	0.003254	0.006757	115.7	1027.185
48	0.00399	0.00635	122.1	1064.349
49	0.004676	0.005864	128.5	1053.635
50	0.005303	0.005303	135.0	1114.893
51	0.005864	0.004676	141.4	1270.543
52	0.00635	0.00399	147.8	1429.961
53	0.006757	0.003254	154.3	1585.534
54	0.007079	0.002477	160.7	1725.755
55	0.007312	0.001669	167.1	1828.257
56	0.007453	0.00084	173.6	1869.51
57	0.0075	9.18E-19	180.0	1242.183

DATA ANGKA NUSSELT (NUMERIK)

Nu Aligned Re 500, Pf5, silinder 1

Nu Aligned Re 750, Pf5, silinder 1

No 8 Nu х -0.0075 9.18E-19 2527 726 0.0 2 -0.0074528 -0.0008397 2524.698 -6.4 3 -0.007312 -0.0016689 2433.38 -12.9 4 -0.0070791 -0.0024771 2302.069 -19.3 5 -0.0067573 -0.0032541 -25.7 2148 745 6 -0.0063504 -0.0039902 1987.962 -32.2 -0.0058637 -0.0046762 7 1834.313 -38.6 Â -0.0053033 -0.0053033 -45.0 1826.86 9 -0.0046762 -0.0058637 1961.418 -51.5 10 -0.0039902 -0.0063504 2083.645 -57.9 -0.0032541 -0.0067573 11 -64.3 2175,228 12 -0.0024771 -0.0070791 -70.8 2213.617 13 -0.0016689 -0.007312 2170.728 -77.2 -0.0008397 -0.0074528 14 2020.878 -83.6 -90.0 1738.874 15 4.59E-19 -0.0075 16 0.0008397 -0.0074528 1266.904 -96.4 17 0.0016689 -0.007312 -102.8 572.7769 18 0.0024771 -0.0070791 -109.2 168.5738 0.0032541 -0.0067573 19 -115.7 465.3692 20 0.0039902 -0.0063504 620.0137 -122.1 21 0.0046762 -0.0058637 668.579 -128.5 22 0.0053033 -0.0053033 729.6215 -135.0 23 0.0058637 -0.0046762 -141.4 851.0949 24 0.0063504 -0.0039902 -147.8 981.9254 25 0.0067573 -0.0032541 -154.3 1107.178 26 0.0070791 -0.0024771 -160.7 1215.611 -167.1 1289.753 27 0.007312 -0.0016689 28 0.0074528 -0.0008397 -173.6 1326.893 29 -0.0075 9 18E-19 -180.0 1354.856 30 -0.0074528 0.0008397 2527.726 6.4 -0.007312 0.0016689 31 2430.432 12.9 32 -0.0070791 0.0024771 2295 894 19.3 33 -0.0067573 0.0032541 25.7 2140.709 34 -0.0063504 0.0039902 1978.838 32.2 35 -0.0058637 0.0046762 1824 579 38.6 36 -0.0053033 0.0053033 45.0 1814.943 37 -0.0046762 0.0058637 1944.262 51.5 38 -0.0039902 0.0063504 2058 221 57.9 30 -0.0032541 0.0067573 64.3 2136.842 40 -0.0024771 0.0070791 2154.439 70.8 -0.0016689 0.007312 41 77.2 2076 453 42 -0.0008397 0.0074528 1870 13 83.6 1486.664 4.59E-19 0.0075 43 90.0 44 0.0008397 0.0074528 837,9362 96.4 45 0.0016689 0.007312 102.8 230.9446 0.0024771 0.0070791 397.7381 46 109.2 47 0.0032541 0.0067573 673 3257 115.7 0.0039902 0.0063504 48 122.1 759.6004 775.0147 0.0046762 0.0058637 49 128.5 50 0.0053033 0.0053033 135.0 840.0383 51 0.0058637 0.0046762 141.4 965.9118 0.0063504 0.0039902 52 147.8 1096.73 53 0.0067573 0.0032541 1215.913 154.3 0.0070791 0.0024771 54 160.7 1306 534 55 0.007312 0.0016689 1354.712 167.1 173.6 1350.056 56 0.0074528 0.0008397 57 0.0075 9.18E-19 180.0 1242.183

No	X	Y	θ	Nu
1	-0.0075	9.18E-19	0.0	2735.82
2	-0.007453	-0.00084	-6.4	2685.74
3	-0.007312	-0.001669	-12.9	2577.88
4	-0.007079	-0.002477	-19.3	2428.96
5	-0.006757	-0.003254	-25.7	2258.62
6	-0.00635	-0.00399	-32.2	2082.81
7	-0.005864	-0.004676	-38.6	1915.78
8	-0.005303	-0.005303	-45.0	1911.02
9	-0.004676	-0.005864	-51.5	2066.06
10	-0.00399	-0.00635	-57.9	2217.13
11	-0.003254	-0.006757	-64.3	2347 19
12	-0.002477	-0.007079	-70.8	2434 23
13	-0.001669	-0.007312	-77.2	2451.4
14	-0.00084	-0.007453	.93.6	2373.03
15	4 59E-19	-0.0075	-00.0	2173.84
16	0.0008397	-0.007453	-50.0	1820.89
17	0.0016689	-0.007312	-30.4	1127 19
19	0.0010003	-0.007312	100.2	347 032
10	0.0024771	0.00070757	-109.2	674 470
19	0.0032541	-0.000757	-115.7	0/4.4/9
20	0.0039902	-0.00635	-122.1	909.290
21	0.0046762	-0.005864	-128.5	920.000
22	0.0053033	-0.005303	-135.0	973.999
23	0.0058637	-0.004676	-141.4	1106.04
24	0.0063504	-0.00399	-147.8	1244.38
25	0.0067573	-0.003254	-154.3	1376.29
26	0.0070791	-0.002477	-160.7	1486.57
27	0.007312	-0.001669	-167.1	1558.31
28	0.0074528	-0.00084	-173.6	1587.55
29	-0.0075	9.18E-19	-180.0	1591.24
30	-0.007453	0.0008397	6.4	2688.82
31	-0.007312	0.0016689	12,9	2576.34
32	-0.007079	0.0024771	19.3	2424.93
33	-0.006757	0.0032541	25.7	2253.19
34	-0.00635	0.0039902	32.2	2076.65
35	-0.005864	0.0046762	38.6	1909.22
36	-0.005303	0.0053033	45.0	1903.07
37	-0.004676	0.0058637	51.5	2054.7
38	-0.00399	0.0063504	57.9	2200.4
39	-0.003254	0.0067573	64.3	2322.02
40	-0.002477	0.0070791	70.8	2395.81
41	-0.001669	0.007312	77.2	2390.16
42	-0.00084	0.0074528	83.6	2273.01
43	4.59E-19	0.0075	90.0	2010.22
44	0.0008397	0.0074528	96.4	1478.36
45	0.0016689	0.007312	102.8	574.137
46	0.0024771	0.0070791	109.2	515.677
47	0.0032541	0.0067573	115.7	959.293
48	0.0039902	0.0063504	122.1	1027.9
49	0.0046762	0.0058637	128.5	1005.85
50	0.0053033	0.0053033	135.0	1053.33
51	0.0058637	0.0046762	141.4	1187.3
52	0.0063504	0.0039902	147.8	1325.33
53	0.0067573	0.0032541	154.3	1450.69
54	0.0070791	0.0024771	160.7	1546.81
55	0.007312	0.0016689	167.1	1599.04
56	0.0074528	0.0008397	173.6	1592 57
57	0.0075	9.18E-19	180.0	1242.18
L."	0.0010	0.100 10	100.0	

No	X	Y	θ	Nu
1	-0.0075	9 18E-19	0.0	2831,217
2	-0.00745	-0.00084	-6.4	2774 117
3	-0.00731	-0.00167	-12.9	2656 565
4	-0.00708	-0.00248	19.3	2497 11
5	0.00676	-0.00240	-18.5	2316 50
6	0.00675	0.00320	-20.7	2132 126
7	-0.00050	0.00399	-32.2	1057 565
0	-0.00000	-0.00400	-30.0	1054 104
0	-0.0005	-0.0000	-40.0	2120 244
9	-0.00400	-0.00000	-01.0	2120.244
10	-0.00399	-0.00035	-57.9	2200.723
11	-0.00325	-0.00676	-64.3	2437.408
12	-0.00248	-0.00708	-70.8	2000.734
13	-0.00167	-0.00/31	-77.2	2600.909
14	-0.00084	-0.00745	-83.6	2563.604
15	4.59E-19	-0.0075	-90.0	2417.557
16	0.00084	-0.00745	-96.4	2142.659
17	0.001669	-0.00731	-102.8	1633.547
18	0.002477	-0.00708	-109.2	663.7516
19	0.003254	-0.00676	-115.7	689.2596
20	0.00399	-0.00635	-122.1	1103.124
21	0.004676	-0.00586	-128.5	1103.553
22	0.005303	-0.0053	-135.0	1145.093
23	0.005864	-0.00468	-141.4	1286.871
24	0.00635	-0.00399	-147.8	1434.198
25	0.006757	-0.00325	-154.3	1574.944
26	0.007079	-0.00248	-160.7	1692.328
27	0.007312	-0.00167	-167.1	1767.893
28	0.007453	-0.00084	-173.6	1796.214
29	-0.0075	9.18E-19	-180.0	1782.214
30	-0.00745	0.00084	6.4	2777.042
31	-0.00731	0.001669	12.9	2655.719
32	-0.00708	0.002477	19.3	2494.238
33	-0.00676	0.003254	25.7	2312.589
34	-0.00635	0.00399	32.2	2127.524
35	-0.00586	0.004676	38.6	1952 647
36	-0.0053	0.005303	45.0	1948,279
37	-0.00468	0.005864	51.5	2111 86
38	0.00100	0.00635	57.9	2274 479
30	-0.00325	0.006757	64.3	2419 152
40	-0.00248	0.007079	70.8	2523 19
40	-0.00240	0.007312	77.2	2557 753
41	0.000004	0.007453	02.6	2404 861
42	4 505 40	0.007400	00.0	230/ 1/0
43	4.09E-19	0.0075	90.0	1041 500
44	0.00084	0.007403	90.4	1090 000
45	0.001669	0.007312	102.8	507 0004
46	0.0024//	0.00/0/9	109.2	021.2034
4/	0.003254	0.006/5/	115.7	1111.211
48	0.00399	0.00635	122.1	1181.914
49	0.004676	0.005864	128.5	1148.222
50	0.005303	0.005303	135.0	1185.426
51	0.005864	0.004676	141.4	1325.492
52	0.00635	0.00399	147.8	1469.795
53	0.006757	0.003254	154.3	1604.606
54	0.007079	0.002477	160.7	1713.042
55	0.007312	0.001669	167.1	1777.287
56	0.007453	0.00084	173.6	1787.301
57	0.0075	9.18E-19	180.0	1242,183

iran B-1

A ANGKA NUSSELT (NUMERIK)

ned Re 500, Pf7, silinder 1

Nu Aligned Re 750, Pf7, silinder 1

0 X Nu -0.0075 9.18E-19 0.0 2520 -0.0074528 -0.0008397 2380 -6.4 -0.007312 -0.0016689 2260 -12.9 -0.0070791 -0.0024771 2173.4 -19.3 -0.0067573 -0.0032541 -25.7 2081.03 -0.0063504 -0.0039902 1959.52 -32.2 -0.0058637 -0.0046762 1825.94 -38.6 -0.0053033 -0.0053033 -45.0 1833.06 -0.0046762 -0.0058637 -51.5 1982.18 -0.0039902 -0.0063504 -57.9 2138.25 -0.0032541 -0.0067573 2180 -64.3 -0.0024771 -0.0070791 -70.8 2170 -0.0016689 -0.007312 2070 -77.2 -0.0008397 -0.0074528 1880 -83.6 4.59E-19 -0.0075 -90.0 1770 0.0008397 -0.0074528 -96.4 1610 0.0016689 -0.007312 -102.8 1290 0.0024771 -0.0070791 -109.2 960 0.0032541 -0.0067573 -115.7 450.267 0.0039902 -0.0063504 -122.1 271.921 0.0046762 -0.0058637 -128.5 617 82 0.0053033 -0.0053033 -135.0 701.672 0.0058637 -0.0046762 -141.4 750.313 0.0063504 -0.0039902 852.41 -147.8 0.0067573 -0.0032541 963.75 -154.3 0.0070791 -0.0024771 -160.7 1067.39 0.007312 -0.0016689 1149.01 -167.1 0.0074528 -0.0008397 1194.48 -173.6 -0.0075 9.18E-19 -180.0 1212.29 -0.0074528 0.0008397 6.4 2548.14 2503.05 -0.007312 0.0016689 12.9 -0.0070791 0.0024771 2409.51 19.3 0.0067573 0.0032541 25.7 2279.94 0.0063504 0.0039902 2129.85 32.2 0.0058637 0.0046762 1972.66 38.6 0.0053033 0.0053033 45.0 1822.97 0.0046762 0.0058637 1813.77 51.5 0.0063504 -0.0039902 57.9 1942.4 0.0032541 0.0067573 64.3 2056.26 0.0024771 0.0070791 70.8 2136.69 -0.0016689 0.007312 2160.45 77.2 2102.32 -0.0008397 0.0074528 83.6 4.59E-19 0.0075 90.0 1943.91 0.0008397 0.0074528 96.4 1674.81 0.0016689 0.007312 102.8 1285 99 0.0024771 0.0070791 690.394 109.2 0.0032541 0.0067573 115.7 246,495 0.0039902 0.0063504 622,483 122.1 0.0046762 0.0058637 128.5 792,594 0.0053033 0.0053033 821,449 135.0 0.0058637 0.0046762 865.976 141.4 0.0063504 0.0039902 147.8 977.039 0.0067573 0.0032541 154.3 1088.96 0.0070791 0.0024771 1180.89 160.7 0.007312 0.0016689 1243.2 167.1 0.0074528 0.0008397 173.6 1263.63

0.0075

9.18E-19

180.0

1242.18

NO	X	Y	8	NU
1	-0.0075	9.18E-19	0.0	2703.73
2	-0.007453	-0.00084	-6.4	2657.17
3	-0.007312	-0.001669	-12.9	2552.99
4	-0.007079	-0.002477	-19.3	2408.21
5	-0.006757	-0.003254	-25.7	2241.87
6	-0.00635	-0.00399	-32.2	2069.84
7	-0.005864	-0.004676	-38.6	1906.27
8	-0.005303	-0.005303	-45.0	1901.8
9	-0.004676	-0.005864	-51.5	2054.84
10	-0.00399	-0.00635	-57.9	2203.37
11	-0.003254	-0.006757	64.3	2330 79
12	-0.003477	-0.007079	70.9	2415 34
12	0.001660	0.007312	-70.0	2432 62
10	-0.001009	-0.007312	-11.2	2363 14
14	4.505 10	-0.007455	-03.0	2303.14
10	4.59E-19	-0.0075	-90.0	2194.01
10	0.00084	-0.007453	-90.4	1910
17	0.001669	-0.007312	-102.8	1535.98
18	0.002477	-0.007079	-109.2	826.286
19	0.003254	-0.006757	-115.7	381.695
20	0.00399	-0.00635	-122.1	871.854
21	0.004676	-0.005864	-128.5	936.009
22	0.005303	-0.005303	-135.0	981.625
23	0.005864	-0.004676	-141.4	1093.18
24	0.00635	-0.00399	-147.8	1213.39
25	0.006757	-0.003254	-154.3	1323.67
26	0.007079	-0.002477	-160.7	1408.82
27	0.007312	-0.001669	-167.1	1455.77
28	0.007453	-0.00084	-173.6	1468.37
29	-0.0075	9.18E-19	-180.0	2716.42
30	-0.007453	0.00084	6.4	2660.75
31	-0.007312	0.001669	12.9	2551.47
32	-0.007079	0.002477	19.3	2403.95
33	-0.006757	0.003254	25.7	2236.07
34	-0.00635	0.00399	32.2	2063.21
35	-0.005864	0.004676	38.6	1899.21
36	-0.005303	0.005303	45.0	1893.32
37	-0.004676	0.005864	51.5	2042 89
38	-0.00399	0.00635	57.9	2186 07
39	-0.003254	0.006757	64.3	2305 1
40	-0.002477	0.007079	70.8	2376.95
40	-0.001669	0.007312	77.2	2375 26
12	-0.001005	0.007453	93.6	2070.20
42	4 50E-10	0.0075	00.0	2066 56
45	4.392-19	0.007453	90.0	1735 42
44	0.00084	0.007433	100.4	1170 96
40	0.001009	0.007312	102.0	421 071
40	0.002477	0.007079	145 7	773 505
4/	0.003254	0.000757	115.7	113.595
40	0.00399	0.00035	122.1	1023.40
49	0.004676	0.005864	128.5	1028.05
50	0.005303	0.005303	135.0	1055.07
51	0.005864	0.004676	141.4	11/3.01
52	0.00635	0.00399	147.8	1291.61
53	0.006757	0.003254	154.3	1393.1
54	0.007079	0.002477	160.7	1464.16
55	0.007312	0.001669	167.1	1493.47
56	0.007453	0.00084	173.6	1480.35
57	0.0075	9.18E-19	180.0	1242.18

Nu Aligned Re 750, Pf7, silinder 1

No	X	Y	0	Nu
1	-0.0075	9.18E-19	0.0	2802.31
2	-0.007453	-0.00084	-6.4	2748.27
3	-0.007312	-0.001669	-12.9	2633.9
4	-0.007079	-0.002477	-19.3	2478.01
5	-0.006757	-0.003254	-25.7	2300.92
6	-0.00635	-0.00399	-32.2	2119 48
7	-0.005864	-0.004676	-38.6	1947.55
8	-0.005303	-0.005303	-45.0	1944 32
9	-0.004676	-0.005864	-51.5	2108.28
10	-0.00300	-0.00635	-57.9	2271.96
11	-0.003254	-0.006757	-64.3	2419.24
12	-0.002477	-0.007070	-70.8	2528.57
13	-0.001660	-0.007312	-77.2	2575 17
14	-0.00084	-0.007453	-83.6	2538.24
15	4.59E-10	-0.0075	-90.0	2404 49
16	0.00084	-0.007453	-96.4	2162.34
17	0.001660	-0.007312	-102.9	1824 74
18	0.002477	-0.007070	-109.2	1204 07
10	0.003264	-0.006757	-115.7	469 166
20	0.000204	-0.00635	-122.1	1020
20	0.004676	-0.005864	-128 5	1104.6
22	0.005202	-0.005302	-135.0	1148 65
22	0.005964	-0.004676	-141.4	1270 86
20	0.000004	-0.00300	-147.9	1401.38
24	0.00035	-0.003254	-154.2	1521.00
20	0.0007070	-0.002477	-160 7	1616.82
20	0.007240	-0.001660	-167.4	1670 74
20	0.007452	-0.00094	-173 6	1684 37
20	-0.0075	9 18E 10	-180.0	1683 56
20	-0.0075	0.00094	6.4	2751 7
34	-0.007453	0.001660	12.0	2633 12
30	-0.007372	0.001009	10.2	2474 00
32	-0.007079	0.0024//	25.7	2296 61
34	-0.00015/	0.003204	20.1	2114 40
34	-0.00035	0.00399	39.6	1942 21
30	-0.005004	0.004070	45.0	1937 02
30	-0.000303	0.005964	51.5	2000 25
30	-0.004070	0.000004	57.0	2258 0
30	-0.00399	0.00035	64.2	2390 02
10	-0.003477	0.007070	70.9	2400 75
40	-0.002411	0.007242	77.0	2532 15
41	-0.001009	0.007312	92.6	2474 3
42	4 505 40	0.007453	00.0	2307 05
43	USE-19	0.0075	0.0	2010 07
44	0.00084	0.007453	102.0	1577.02
40	0.001009	0.007312	102.8	697.93
40	0.0024/7	0.00/0/9	145 7	720 244
4/	0.003254	0.000/5/	110./	1161 40
48	0.00399	0.00035	122.1	1150.69
49	0.004076	0.005303	126.0	1172.00
50	0.005303	0.005303	135.0	1206 44
01	0.005864	0.004676	147.4	1422 65
52 FC	0.00035	0.00399	147.8	1527 7
53	0.000/57	0.003254	104.3	1604.00
54	0.00/079	0.002477	160.7	1670.00
55	0.007312	0.001669	10/.1	1692.00
06	0.00/453	0.00084	1/3.6	1002.08
57	0.0075	9.18E-19	180.0	1242.18

DATA ANGKA NUSSELT (NUMERIK)

Nu Aligned Re 500, Pf3, silinder 2

Nu Aligned Re 750, Pf3, silinder 2

No	X	Y	θ	Nu
1	-0.0075	9 18F-19	0.0	1220
2	-0.00745	-0.00084	-6.4	1240
3	-0.00731	-0.00167	-12.0	1200
4	-0.00708	-0.00248	10.3	1170
5	-0.00700	-0.00240	-19.3	1120
6	-0.00076	0.00323	-20.7	1000 442
7	-0.00635	-0.00399	-32.2	1009.443
	-0.00500	-0.00400	-38,6	1100.391
0	-0.0053	-0.0053	-45.0	1129.45
9	-0.00468	0.00005	-51.5	1209.321
10	-0.00399	-0.00635	-57.9	1263.741
11	-0.00325	-0.00676	-64.3	1285.494
12	-0.00248	-0.00/08	-70.8	1264.277
13	-0.00167	-0.00731	-77.2	1191.421
14	-0.00084	-0.00745	-83.6	1067.022
15	4.59E-19	-0.0075	-90.0	897.6528
16	0.00084	-0.00745	-96.4	692.2605
17	0.00167	-0.00731	-102.8	479.1776
18	0.00248	-0.00708	-109.2	293.8595
19	0.00325	-0.00676	-115.7	169.0525
20	0.00399	-0.00635	-122.1	104.9316
21	0.00468	-0.00586	-128.5	85.43446
22	0.0053	-0.0053	-135.0	60.43952
23	0.00586	-0.00468	-141.4	98.11514
24	0.00635	-0.00399	-147.8	146.625
25	0.00676	-0.00325	-154.3	224.3013
26	0.00708	-0.00248	-160.7	346.7787
27	0.00731	-0.00167	-167.1	495.3528
28	0.00745	-0.00084	-173.6	611.3634
29	-0.0075	9.18E-19	-180.0	861.0171
30	-0.00745	0.00084	64	1190
31	-0.00731	0.00167	12.9	1150
32	-0.00708	0.00248	19.3	1090
33	-0.00676	0.00325	25.7	1080
34	-0.00635	0.00399	32.2	1089 443
35	-0.00586	0.00468	39.6	1100 301
36	-0.00500	0.00400	30.0	1120.45
30	-0.0000	0.00596	40.0	129.40
30	-0.00400	0.00000	57.0	1209.321
30	-0.00399	0.00035	57.9	1203.741
39	-0.00325	0.000/0	04.3	1200.494
40	-0.00248	0.00708	70.8	1204.2//
41	-0.00167	0.00731	11.2	1191.421
42	-0.00084	0.00745	83.6	1067.022
43	4.59E-19	0.0075	90.0	897.6528
44	0.00084	0.00745	96.4	692.2605
45	0.00167	0.00731	102.8	479.1776
46	0.00248	0.00708	109.2	293.8595
47	0.00325	0.00676	115.7	169.0525
48	0.00399	0.00635	122.1	104.9316
49	0.00468	0.00586	128.5	85.43446
50	0.0053	0.0053	135.0	60.43952
51	0.00586	0.00468	141.4	98.11514
52	0.00635	0.00399	147.8	146.625
53	0.00676	0.00325	154.3	224.3013
54	0.00708	0.00248	160.7	346.7787
55	0.00731	0.00167	167.1	495.3528
56	0.00745	0.00084	173.6	611.3634
57	0.0075	9.18E-19	180.0	782.366

No	X	Y	9	Nu
1	-0.0075	9.18E-19	0.0	1530
2	-0.0075	-0.0008	-6.4	1520
3	-0.0073	-0.0017	-12.9	1500
4	-0.0071	-0.0025	-19.3	1480
5	-0.0068	-0.0033	-25.7	1480
6	-0.0064	-0.004	-32.2	1415.9
7	-0.0059	-0.0047	-38.6	1356
8	-0.0053	-0.0053	-45.0	1371.4
9	-0.0047	-0.0059	-51.5	1477.7
10	-0.004	-0.0064	-57.9	1571
11	-0.0033	-0.0068	-64.3	1640
12	-0.0025	-0.0071	-70.8	1669.7
13	-0.0017	-0.0073	-77.2	1645
14	-0.0008	-0.0075	-83.6	1557.1
15	4.59E-19	-0.0075	-90.0	1404.7
16	0.00084	-0.0075	-96.4	1191.3
17	0.00167	-0.0073	-102.8	922.45
18	0.00248	-0.0071	-109.2	613.14
19	0.00325	-0.0068	-115.7	328.92
20	0.00399	-0.0064	-122.1	136.21
21	0.00468	-0.0059	-128.5	64,004
22	0.0053	-0.0053	-135.0	34,928
23	0.00586	-0.0047	-141 4	117.97
24	0.00635	-0.004	-147.8	194.12
25	0.00676	-0.0033	-154.3	299.57
26	0.00708	-0.0025	-160.7	459 16
27	0.00731	-0.0017	-167.1	646.95
28	0.00745	-0.0008	-173.6	794 32
20	-0.0075	9 18E-19	-173.0	944 51
30	-0.0075	0.00084	64	1510
31	-0.0073	0.00167	12.0	1500
32	-0.0073	0.00249	10.2	1470
22	-0.0071	0.00240	19.3	1470
33	-0.0008	0.00320	20.7	1415.0
34	-0.0064	0.00399	32.2	1200
35	-0.0059	0.00408	38.6	1420
30	-0.0053	0.0053	45.0	1430
3/	-0.0047	0.00086	51.5	14/1.1
38	-0.004	0.00635	57.9	15/1
39	-0.0033	0.006/6	64.3	1640
40	-0.0025	0.00708	/0.8	1009./
41	-0.0017	0.00731	11.2	1645
42	-0.0008	0.00745	83.6	100/.1
43	4.59E-19	0.0075	90.0	1404.7
44	0.00084	0.00745	96.4	1191.3
45	0.00167	0.00731	102.8	922.45
46	0.00248	0.00708	109.2	613.14
47	0.00325	0.00676	115.7	328.92
48	0.00399	0.00635	122.1	136.21
49	0.00468	0.00586	128.5	64.004
50	0.0053	0.0053	135.0	34.928
51	0.00586	0.00468	141.4	117.97
52	0.00635	0.00399	147.8	194.12
53	0.00676	0.00325	154.3	299.57
54	0.00708	0.00248	160.7	459.16
55	0.00731	0.00167	167.1	646.95
56	0.00745	0.00084	173.6	794.32
57	0.0075	9 18E-19	180.0	884,65

Star & Banks	Second Street Street Street Street			
No	X	Y	9	NU
1	-0.0075	9.18E-19	0.0	1770
2	-0.0075	-0.0008	-6.4	1760
3	-0.0073	-0.0017	-12.9	1730
4	-0.0071	-0.0025	-19.3	1686.5
5	-0.0068	-0.0033	-25.7	1661.54
6	-0.0064	-0.004	-32.2	1588.2
7	-0.0059	-0.0047	-38.6	1496 45
0	0.0053	0.0053	45.0	1508.07
0	0.0003	0.0050	-40.0	1622 77
9	-0.0047	-0.0009	-01.0	1002.11
10	-0.004	-0.0064	-57.9	1/00.90
11	-0.0033	-0.0068	-64.3	1850.47
12	-0.0025	-0,0071	-70.8	1914.82
13	-0.0017	-0.0073	-77.2	1926.34
14	-0.0008	-0.0075	-83.6	1872.67
15	4.59E-19	-0.0075	-90.0	1749.12
16	0.00084	-0.0075	-96.4	1557.34
17	0.00167	-0.0073	-102.8	1306.4
19	0.00248	-0.0071	100.2	986 024
10	0.00240	0.0068	-109.2	624 687
19	0.00325	-0.0000	-115.7	024.007
20	0.00399	-0.0064	-122.1	295.045
21	0.00468	-0.0059	-128.5	100.491
22	0.0053	-0.0053	-135.0	-8.07983
23	0.00586	-0.0047	-141.4	111.707
24	0.00635	-0.004	-147.8	220.389
25	0.00676	-0.0033	-154.3	346.194
26	0.00708	-0.0025	-160.7	532.798
27	0.00731	-0.0017	-167 1	753.344
28	0.00745	-0.0008	-173.6	931 584
20	0.0075	0 19E-10	190.0	1108 88
29	-0.0075	9.102-19	-100.0	1750
30	-0.0075	0.00084	6.4	1750
31	-0.0073	0.00167	12.9	1700
32	-0.0071	0.00248	19.3	1686.5
33	-0.0068	0.00325	25.7	1661.54
34	-0.0064	0.00399	32.2	1588.2
35	-0.0059	0.00468	38.6	1496.45
36	-0.0053	0.0053	45.0	1508.07
37	-0.0047	0.00586	51.5	1632.77
38	-0.004	0.00635	57.9	1750.96
20	0.0033	0.00676	64.2	1850.47
40	0.0005	0.00700	70.0	1014 92
40	-0.0025	0.00708	70.0	1020 24
41	-0.0017	0.00731	11.2	1920.34
42	-0.0008	0.00745	83.6	18/2.6/
43	4.59E-19	0.0075	90.0	1749.12
44	0.00084	0.00745	96.4	1557.34
45	0.00167	0.00731	102.8	1306.4
46	0.00248	0.00708	109.2	986.024
47	0.00325	0.00676	115.7	624.687
48	0.00399	0.00635	122.1	295.045
49	0.00468	0.00586	128.5	100 491
50	0.0052	0.0053	125.0	-8 07983
50	0.00500	0.0000	144.4	111 707
51	0.00586	0.00468	141.4	000.000
52	0.00635	0.00399	147.8	220.389
53	0.00676	0.00325	154.3	346.194
54	0.00708	0.00248	160.7	532.798
55	0.00731	0.00167	167.1	753.344
56	0.00745	0.00084	173.6	931.584
57	0.0075	9.18E-19	180.0	1036.21

DATA ANGKA NUSSELT (NUMERIK)

Nu Aligned Re 500, Pf5, silinder 2

Nu Aligned Re 750, Pf5, silinder 2

No	X	Y	0	Nu
1	-0.0075	9.18E-19	0.0	801.3343
2	-0.00745	-0.00084	-6.4	965.5373
3	-0.00731	-0.00167	-12.9	1224,716
4	-0.00708	-0.00248	-19.3	1375 536
5	-0.00676	-0.00325	25.7	1402 666
6	0.00025	0.00320	-20.7	1264 260
7	-0.00035	-0.00399	-32.2	1004.209
	-0.00500	-0.00400	-38.6	1299.271
8	-0.0053	-0.0053	-45.0	1309.518
9	-0.00468	-0.00586	-51.5	1406.791
10	-0.00399	-0.00635	-57.9	1489.749
11	-0.00325	-0.00676	-64.3	1546.864
12	-0.00248	-0.00708	-70.8	1564.529
13	-0.00167	-0.00731	-77.2	1530.199
14	-0.00084	-0.00745	-83.6	1439.789
15	4.59E-19	-0.0075	-90.0	1297.512
16	0.00084	-0.00745	-96.4	1112.936
17	0.00167	-0.00731	-102.8	902.1098
18	0.00248	-0.00708	-109.2	671.229
19	0.00325	-0.00676	-115.7	437,5967
20	0.00399	-0.00635	-122.1	225.0762
21	0.00468	-0.00586	-128.5	79,16119
22	0.0053	-0.0053	-135.0	5 106659
23	0.00586	-0.00468	-141.4	111 6302
24	0.00635	-0.00300	-147.9	205 665
25	0.00035	0.00000	-147.0	211 5972
20	0.00070	-0.00323	-104.3	454 5464
20	0.00700	-0.00240	-160.7	401.0101
21	0.00731	-0.00167	-167.1	509.787
28	0.00745	-0.00084	-1/3.6	/19.6339
29	-0.0075	9.18E-19	-180.0	726.2101
30	-0.00745	0.00084	6.4	700.8397
31	-0.00731	0.00167	12.9	680.5491
32	-0.00708	0.00248	19.3	637.4362
33	-0.00676	0.00325	25.7	578.7693
34	-0.00635	0.00399	32.2	517.8909
35	-0.00586	0.00468	38.6	515.6049
36	-0.0053	0.0053	45.0	518.7029
37	-0.00468	0.00586	51.5	578.7304
38	-0.00399	0.00635	57.9	643.5773
39	-0.00325	0.00676	64.3	697.0936
40	-0.00248	0.00708	70.8	722.2916
41	-0.00167	0.00731	77.2	710.6547
42	-0.00084	0.00745	83.6	660,4166
43	4.59E-19	0.0075	90.0	576,4022
44	0.00084	0.00745	96.4	466.8424
45	0.00167	0.00731	102.8	343 8884
46	0.00248	0.00708	100.0	224 4064
47	0.00325	0.00676	115.2	130 2025
49	0.00300	0.00075	122.4	69 20927
40	0.00000	0.00000	122.1	45 07000
40	0.00400	0.00000	120.0	40.97290
50	0.0003	0.0003	135.0	19.20408
51	0.00586	0.00468	141.4	59.25422
52	0.00635	0.00399	147.8	116.0645
53	0.00676	0.00325	154.3	189.6774
54	0.00708	0.00248	160.7	296.8791
55	0.00731	0.00167	167.1	433.2096
56	0.00745	0.00084	173.6	594.9866
57	0.0075	9.18E-19	180.0	596.8931

No	X	Y	θ	Nu
1	-0.0075	9.18E-19	-1.0	1309.5
2	-0.0075	-0.0008	-6.4	1527.3
3	-0.0073	-0.0017	-12.9	1708.6
4	-0.0071	-0.0025	-19.3	1736
5	-0.0068	-0.0033	-25.7	1679.5
6	-0.0064	-0.004	-32.2	1587.2
7	-0.0059	-0.0047	-38.6	1483.7
8	-0.0053	-0.0053	-45.0	1491.5
9	-0.0047	-0.0059	-51.5	1614.9
10	-0.004	-0.0064	-57.9	1732.1
11	-0.0033	-0.0068	-64.3	1830.4
12	-0.0025	-0.0071	-70.8	1893.7
13	-0.0017	-0,0073	-77.2	1905.1
14	-0.0008	-0.0075	-83.6	1854.5
15	4.59E-19	-0.0075	-90.0	1739.9
16	0.00084	-0.0075	-96.4	1567.4
17	0.00167	-0.0073	-102.8	1351.9
18	0.00248	-0.0071	-109.2	1102.1
19	0.00325	-0.0068	-115.7	831 74
20	0.00399	-0.0064	-122.1	538 29
21	0.00468	-0.0059	-128.5	269 77
22	0.0053	-0.0053	-135.0	-5.6126
23	0.00586	-0.0047	-141 4	57.63
24	0.00635	-0.004	-147 0	259.82
25	0.00676	-0.0033	-154.2	403.62
26	0.00709	-0.0025	160 7	571.93
20	0.00708	-0.0017	-167.4	750.96
20	0.00745	-0.0007	-172.0	871 70
20	-0.0075	9 185 10	-1/3.0	1133.0
29	-0.0075	0.00004	-180.0	009.00
24	-0.0075	0.00064	0.4	805.07
31	-0.0073	0.00167	12.9	800 70
32	-0.00/1	0.00248	19.3	744.05
33	-0.0068	0.00325	20.7	722.22
34	-0.0064	0.00399	32.2	790 00
30	-0.0059	0.00468	38.6	100.83
36	-0.0053	0.0053	45.0	0/2.69
3/	-0.0047	0.00586	51.5	1011.5
38	-0.004	0.00635	57.9	1129.8
39	-0.0033	0.00676	64.3	1219
40	-0.0025	0.00708	70.8	1207.2
41	-0.0017	0.00731	77.2	1266.6
42	-0.0008	0.00745	83.6	1213
43	4.59E-19	0.0075	90.0	1109.3
44	0.00084	0.00745	96.4	962.9
45	0.00167	0.00731	102.8	788.58
46	0.00248	0.00708	109.2	597.25
47	0.00325	0.00676	115.7	409.04
48	0.00399	0.00635	122.1	242.44
49	0.00468	0.00586	128.5	132.72
50	0.0053	0.0053	135.0	9.2432
51	0.00586	0.00468	141.4	-28.639
52	0.00635	0.00399	147.8	77.534
53	0.00676	0.00325	154.3	187.07
54	0.00708	0.00248	160.7	311.75
55	0.00731	0.00167	167.1	468.43
56	0.00745	0.00084	173.6	656.79
57	0.0075	9.18E-19	180.0	673.24

NIC	v	V	A	Nhi
NO	A	1	9	INU ACAD EE
1	-0.0075	9.18E-19	0.0	1049.00
2	-0.0075	-0.0008	-6.4	1843.95
3	-0.0073	-0.0017	-12.9	1957.46
4	-0.0071	-0.0025	-19.3	1927.37
5	-0.0068	-0.0033	-25.7	1833.64
6	-0.0064	-0.004	-32.2	1715.99
7	-0.0059	-0.0047	-38.6	1592.96
8	-0.0053	-0.0053	-45.0	1599.86
9	-0.0047	-0.0059	-51.5	1738.92
10	-0.004	-0.0064	-57.9	1876.4
11	-0.0033	-0.0068	-64.3	1999.08
12	-0.0025	-0.0071	-70.8	2089.87
13	-0.0017	-0.0073	-77.2	2130.14
14	-0.0008	-0.0075	-83.6	2106.61
15	4.59E-19	-0.0075	-90.0	2014.36
16	0.00084	-0.0075	-96.4	1857.87
17	0.00167	-0.0073	-102.8	1651.47
18	0.00248	-0.0071	-109.2	1405.16
19	0.00325	-0.0068	-115.7	1136.83
20	0.00399	-0.0064	-122.1	841,155
21	0 00468	-0.0059	-128.5	569,916
22	0.0053	-0.0053	-135.0	214.855
23	0.00586	-0.0047	-141 4	-33,8065
24	0.00635	-0.004	-147.8	256 586
25	0.00676	-0.0033	154.3	462.07
26	0.00708	-0.0025	160.7	649 952
20	0.00700	-0.0023	-167.1	850 268
20	0.00745	-0.0008	172.6	080.200
20	0.00745	-0.0008	-173.0	1464 57
29	-0.0075	9.102-19	-180.0	1206.62
30	-0.0075	0.00004	0.4	1154 45
31	-0.0073	0.00167	12.9	1104.40
32	-0.0071	0.00248	19.3	1042.55
33	-0.0068	0.00325	25.7	990.798
34	-0.0064	0.00399	32.2	1020.05
35	-0.0059	0.00468	38.6	1104.91
36	-0.0053	0.0053	45.0	1204.4
37	-0.0047	0.00586	51.5	1356.07
38	-0.004	0.00635	57.9	1484.92
39	-0.0033	0.00676	64.3	1588.85
40	-0.0025	0.00708	70.8	1655.54
41	-0.0017	0.00731	77.2	1672.79
42	-0.0008	0.00745	83.6	1631.65
43	4.59E-19	0.0075	90.0	1531.03
44	0.00084	0.00745	96.4	1376.88
45	0.00167	0.00731	102.8	1184.56
46	0.00248	0.00708	109.2	966,824
47	0.00325	0.00676	115.7	746.746
48	0.00399	0.00635	122.1	540.45
49	0.00468	0.00586	128.5	392.42
50	0.0053	0.0053	135.0	212.449
51	0.00586	0.00468	141.4	45.255
52	0.00635	0.00399	147.8	-18,6928
53	0.00676	0.00325	154.3	154.556
54	0.00708	0.00248	160.7	330 447
55	0.00708	0.00167	167.1	506 193
56	0.00745	0.00084	172.6	727 834
57	0.00745	Q 18E-10	180.0	852 614
1/	 17181(1) 	7 I I I I I I I I		 LOUGE U 1 1 1

DATA ANGKA NUSSELT (NUMERIK)

Nu Aligned Re 500, Pf7, silinder 2

Nu Aligned Re 750, Pf7, silinder 2

.

Nu Aligned Re 1000, Pf7, silinder 2

	V I	V	-	AND INCOME.
NO	X	Y	A	Nu
1	-0.0075	9.18E-19	0.0	1138.291
2	-0.00745	-0.00084	-6.4	1355.621
3	-0.00731	-0.00167	-12.9	1546.191
4	-0.00708	-0.00248	-19.3	1610,411
5	-0.00676	-0.00325	-25.7	1566 119
6	0.00070	0.00200	-20.7	1492 107
0	-0.00035	-0.00399	-32.2	1465.107
1	-0.00586	-0.00468	-38.6	1390.034
8	-0.0053	-0.0053	-45.0	1397.143
9	-0.00468	-0.00586	-51.5	1507.434
10	-0.00399	-0.00635	-57.9	1607.453
11	-0.00325	-0.00676	-64.3	1683.83
12	-0.00248	-0.00708	-70.8	1721 771
13	-0.00167	-0.00731	77.0	1707 047
14	0.000004	0.00745	-11.2	1/07.047
14	-0.00004	-0.00745	-83.6	1633.272
15	4.59E-19	-0.0075	-90.0	1502.634
16	0.00084	-0.00745	-96.4	1324.163
17	0.00167	-0.00731	-102.8	1114.944
18	0.00248	-0.00708	-109.2	885.3513
19	0.00325	-0.00676	-115.7	653,7929
20	0.00399	-0.00635	-122.1	427 097
21	0.00469	0.00596	120 5	224 229
21	0.00400	-0.00500	-128.0	234.330
22	0.0053	-0.0053	-135.0	16.22869
23	0.00586	-0.00468	-141.4	81.85405
24	0.00635	-0.00399	-147.8	245.1384
25	0.00676	-0.00325	-154.3	367.9608
26	0.00708	-0.00248	-160.7	509.8581
27	0.00731	-0.00167	-167 1	653 0117
28	0.00745	-0.00084	173.6	744 3901
20	-0.0075	0 195-10	100.0	046 2247
20	0.00745	0.00004	-100.0	340.3347
30	-0.00745	0.00064	6.4	790.1444
31	-0.00/31	0.00167	12.9	687.2365
32	-0.00708	0.00248	19.3	615.3283
33	-0.00676	0.00325	25.7	605.2377
34	-0.00635	0.00399	32.2	671.4224
35	-0.00586	0.00468	38.6	805.0501
36	-0.0053	0.0053	45.0	912 0718
37	-0.00468	0.00586	51 E	1044 22
20	0.00200	0.00000	51.5	1044.22
30	-0.00399	0.00033	57.9	1141./41
39	-0.00325	0.00676	64.3	1203.487
40	-0.00248	0.00708	70.8	1222.66
41	-0.00167	0.00731	77.2	1194.333
42	-0.00084	0.00745	83.6	1118.576
43	4.59E-19	0.0075	90.0	1001.772
44	0.00084	0.00745	96.4	853,8558
45	0.00167	0.00731	102.8	690 0914
46	0.00248	0.00708	102.0	520 0955
40	0.00240	0.00708	109.2	320.0000
41	0.00325	0.00076	115.7	309.8/32
48	0.00399	0.00635	122.1	216.766
49	0.00468	0.00586	128.5	111.1156
50	0.0053	0.0053	135.0	1.863194
51	0.00586	0.00468	141.4	35.91539
52	0.00635	0.00399	147.8	135,8145
53	0.00676	0.00325	154.3	227 4052
54	0.00709	0.00248	160.7	335.02
54	0.00706	0.00240	100.7	400.0550
00	0.00731	0.00167	167.1	403.3558
56	0.00745	0.00084	173.6	615.9491
57	0.0075	9 18E-19	180.0	617 3651

No	X	Y	θ	Nu
1	-0.0075	9.18E-19	0.0	1628.2
2	-0.0075	-0.0008	-6.4	1807.1
3	-0.0073	-0.0017	-12.9	1904
4	-0.0071	-0.0025	-19.3	1880.4
5	-0.0068	-0.0033	-25.7	1784.4
6	-0.0064	-0.004	-32.2	1667.1
7	-0.0059	-0.0047	-38.6	1547.7
8	-0.0053	-0.0053	-45.0	1554 5
9	-0.0047	-0.0059	-51.5	1688
10	-0.004	-0.0064	-57.9	1817.7
11	-0.0033	-0.0068	64.3	1930 1
12	-0.0025	-0.0071	-70.8	2008.3
13	-0.0017	-0.0073	-77.2	2034.9
14	-0.0008	-0.0075	-83.6	1998 3
15	4 59E-19	-0.0075	-00.0	1895.4
16	0.00084	-0.0075	-90.0	1731.9
17	0.00004	-0.0073	-90.4	1523.2
17	0.00107	-0.0073	-102.8	1020.2
10	0.00240	-0.0071	-109.2	1021.2
19	0.00325	-0.0000	-115.7	750.07
20	0.00399	-0.0064	-122.1	/00.0/
21	0.00468	-0.0059	-128.5	527.29
22	0.0053	-0.0053	-135.0	249.03
23	0.00586	-0.0047	-141.4	7.5614
24	0.00635	-0.004	-147.8	262.19
25	0.00676	-0.0033	-154.3	470.05
26	0.00708	-0.0025	-160.7	625.8
27	0.00731	-0.0017	-167.1	776.45
28	0.00745	-0.0008	-173.6	867.63
29	-0.0075	9.18E-19	-180.0	1419.9
30	-0.0075	0.00084	6.4	1216.4
31	-0.0073	0.00167	12.9	1047.2
32	-0.0071	0.00248	19.3	940.25
33	-0.0068	0.00325	25.7	945.25
34	-0.0064	0.00399	32.2	1037.4
35	-0.0059	0.00468	38.6	1143.8
36	-0.0053	0.0053	45.0	1236.1
37	-0.0047	0.00586	51.5	1376.4
38	-0.004	0.00635	57.9	1493.1
39	-0.0033	0.00676	64.3	1583.7
40	-0.0025	0.00708	70.8	1636.3
41	-0.0017	0.00731	77.2	1638.8
42	-0.0008	0.00745	83.6	1584.2
43	4.59E-19	0.0075	90.0	1472.9
44	0.00084	0.00745	96.4	1312.3
45	0.00167	0.00731	102.8	1118.4
46	0.00248	0.00708	109.2	902.47
47	0.00325	0.00676	115.7	685.85
48	0.00399	0.00635	122.1	476.2
49	0.00468	0.00586	128.5	296.28
50	0.0053	0.0053	135.0	102.27
51	0.00586	0.00468	141 4	-13 72
52	0.00635	0.00300	147.9	40.95
53	0.00676	0.00325	154.2	222 47
54	0.00709	0.00325	104.3	360.02
54	0.00708	0.00240	100.7	407.10
50	0.00745	0.0010/	10/.1	497.10
50	0.00745	0.00084	1/3.6	650.10
5/	0.0075	9.18E-19	180.0	659.13

No	X	Y	0	Nu
1	-0.0075	9.18E-19	0.0	1908.38
2	-0.0075	-0.0008	-6.4	2050.79
3	-0.0073	-0.0017	-12.9	2098.3
4	-0.0071	-0.0025	-19.3	2034.88
5	-0.0068	-0.0033	-25.7	1913.79
6	-0.0064	-0.004	-32.2	1777,78
7	-0.0059	-0.0047	-38.6	1643.71
8	-0.0053	-0.0053	-45.0	1650.19
9	-0.0047	-0.0059	-51.5	1797.26
10	-0.004	-0.0064	-57.9	1944.35
11	-0.0033	-0.0068	-64.3	2077.89
12	-0.0025	-0.0071	-70.8	2180.07
13	-0.0017	-0.0073	-77.2	2231.77
14	-0.0008	-0.0075	-83.6	2218.76
15	4.59E-19	-0.0075	-90.0	2135.25
16	0.00084	-0.0075	-96.4	1985.35
17	0.00167	-0.0073	-102.8	1783.31
18	0.00248	-0.0071	-109.2	1540.34
19	0.00325	-0.0068	-115.7	1272.82
20	0.00399	-0.0064	-122.1	983.071
21	0.00468	-0.0059	-128.5	717.097
22	0.0053	-0.0053	-135.0	370.653
23	0.00586	-0.0047	-141.4	73.3917
24	0.00635	-0.004	-147.8	169.346
25	0.00676	-0.0033	-154.3	525.366
26	0.00708	-0.0025	-160.7	701.271
27	0.00731	-0.0017	-167.1	867.261
28	0.00745	-0.0008	-173.6	960.243
29	-0.0075	9.18E-19		1711.7
30	-0.0075	0.00084	6.4	1496.21
31	-0.0073	0.00167	12.9	1305.26
32	-0.0071	0.00248	19.3	1207.46
33	-0.0068	0.00325	25.7	1245.54
34	-0.0064	0.00399	32.2	1330.98
35	-0.0059	0.00468	38.6	13/1.29
36	-0.0053	0.0053	45.0	1432.9
3/	-0.0047	0.00586	51.5	15/7.09
38	-0.004	0.00635	57.9	1708.77
39	-0.0033	0.00676	64.3	1820.87
40	-0.0025	0.00708	70.8	1098.52
41	-0.0017	0.00731	11.2	1920.00
42	4 595 10	0.00745	83.6	1702.00
43	0.00084	0.00745	90.0	1634 34
44	0.00064	0.00745	102.9	1430 17
40	0.00107	0.00708	102.0	1189.04
40	0.00248	0.00708	115.2	934 33
47	0.00320	0.00635	122.4	649.067
40	0.00469	0.00586	129 5	331 847
50	0.00408	0.0053	120.0	46 0077
51	0.00586	0.00468	141 4	-68 996
52	0.00635	0.00399	147.9	-15 4678
53	0.00676	0.00325	154.3	208 073
54	0.00708	0.00248	160.7	390 583
55	0.00708	0.00167	167.1	537 636
56	0.00745	0.00084	173.6	718 554
57	0.0075	9 18F-19	180.0	719 482
51	0.0015	0.100-10	100.0	110.402

pcity magnitude Re 500 Pf 3 silinder 1

Velocity magnitude Re 750 Pf 3 silinder 1

Velocity magnitude Re 1000 Pf 3 silinder 1

	X	Y	θ	V
	-0.0076	9.21E-19	0.0	0.0567
	-0.00755	-0.000854	-6.5	0.059155
	-0.00741	-0.0017014	-12.9	0.077468
	-0.00717	-0.0025163	-19.3	0.099468
	-0.00684	-0.0033087	-25.8	0.118244
	-0.00643	-0.0040476	-32.2	0.130534
	-0.00594	-0.004743	-38.6	0.136988
	-0.00537	-0.005374	-45.0	0.138954
	-0.00474	-0.0059383	-51.4	0.165108
	-0.00405	-0.0064325	-57.8	0.19134
	-0.00331	-0.0068419	-64.2	0.214582
	-0.00252	-0.0071713	-70.7	0.230633
	-0.0017	-0.0074071	-77.1	0.234178
_	-0.00085	-0.0075519	-83.6	0.220253
_	4.48E-19	-0.0076	-90.0	0.187278
	0.000854	-0.0075519	-96.4	0.138464
_	0.001701	-0.0074071	-102.9	0.085838
	0.002516	-0.0071713	-109.3	0.051482
	0.003309	-0.0068419	-115.8	0.032436
	0.004048	-0.0064325	-122.2	0.025148
_	0.004/43	-0.0059383	-128.6	0.02/21
_	0.005374	-0.005374	-135.0	0.030002
_	0.005938	-0.004743	-141.4	0.041113
_	0.000432	-0.0040476	-14/.8	0.05186
-	0.000842	-0.0033087	-154.2	0.059427
	0.007171	-0.0025163	-100.7	0.001409
	0.007407	-0.0017014	-107.1	0.000409
Η	0.007552	-0.000654	-1/3.5	0.045393
Н	0.00755	0.000854	-100.0	0.040393
Н	-0.00733	0.0017014	12.0	0.072100
Н	-0.00741	0.0025163	10.3	0.118427
Н	-0.00684	0.0033087	25.8	0.135382
Н	-0.00643	0.0040476	32.2	0.145034
Н	-0.00594	0.004743	38.6	0.148618
Η	-0.00537	0.005374	45.0	0 147722
Н	-0.00474	0.0059383	51.4	0 172296
H	-0.00405	0.0064325	57.8	0.196026
H	-0.00331	0.0068419	64.2	0.215321
H	-0.00252	0.0071713	70.7	0.225472
H	-0.0017	0.0074071	77.1	0.221216
	-0.00085	0.0075519	83.6	0.197903
	4.90E-19	0.0076	90.0	0.156075
	0.000854	0.0075519	96.4	0.102349
	0.001701	0.0074071	102.9	0.060637
	0.002516	0.0071713	109.3	0.037896
	0.003309	0.0068419	115.8	0.029571
	0.004048	0.0064325	122.2	0.030398
	0.004743	0.0059383	128.6	0.030747
	0.005374	0.005374	135.0	0.033439
	0.005938	0.004743	141.4	0.042642
	0.006432	0.0040476	147.8	0.04998
1	0.006842	0.0033087	154.2	0.052971
	0.007171	0.0025163	160.7	0.049811
	0.007407	0.0017014	167.1	0.04117
	0.007552	0.000854	173.5	0.032961

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.08387
2	-0.00755	-0.00085	-6.5	0.08814
3	-0.00741	-0.0017	-12.9	0.11707
4	-0.00717	-0.00252	-19.3	0.15131
5	-0.00684	-0.00331	-25.8	0.18036
6	-0.00643	-0.00405	-32.2	0.19941
7	-0.00594	-0.00474	-38.6	0.20963
8	-0.00537	-0.00537	-45.0	0.21309
9	-0.00474	-0.00594	-51.4	0.25395
10	-0.00405	-0.00643	-57.8	0.29585
11	-0.00331	-0.00684	-64.2	0.33457
12	-0.00252	-0.00717	-70.7	0.3644
13	-0.0017	-0.00741	-77.1	0.37752
14	-0.00085	-0.00755	-83.6	0.36575
15	4.48E-19	-0.0076	-90.0	0.32412
16	0.000854	-0.00755	-96.4	0.25409
17	0.001701	-0.00741	-102.9	0.16549
18	0.002516	-0.00717	-109.3	0.09761
19	0.003309	-0.00684	-115.8	0.06027
20	0.004048	-0.00643	-122.2	0.04638
21	0.004743	-0.00594	-128.6	0.0491
22	0.005374	-0.00537	-135.0	0.05343
23	0.005938	-0.004/4	-141.4	0.07009
24	0.006432	-0.00405	-14/.8	0.06527
25	0.006842	-0.00331	-154.2	0.09514
20	0.007171	-0.00252	-100.7	0.09000
21	0.007407	-0.0017	-10/.1	0.08/79
20	0.007552	-2.015.10	-1/3.0	0.07139
29	-0.00765	0.000854	-160.0	0.07139
31	-0.00733	0.000004	12.0	0 14421
32	-0.00747	0.002516	10.3	0 17918
33	-0.00684	0.002310	25.8	0.20558
34	-0.00643	0.004048	32.2	0.22081
35	-0.00594	0.004743	38.6	0.22687
36	-0.00537	0.005374	45.0	0.22625
37	-0.00474	0.005938	51.4	0.26515
38	-0.00405	0.006432	57.8	0.26515
39	-0.00331	0.006842	64.2	0.33797
40	-0.00252	0.007171	70.7	0.36062
41	-0.0017	0.007407	77.1	0.36381
42	-0.00085	0.007552	83.6	0.33922
43	4.90E-19	0.0076	90.0	0.28365
44	0.000854	0.007552	96.4	0.20118
45	0.001701	0.007407	102.9	0.12055
46	0.002516	0.007171	109.3	0.07161
47	0.003309	0.006842	115.8	0.05372
48	0.004048	0.006432	122.2	0.05206
49	0.004743	0.005938	128.6	0.05384
50	0.005374	0.005374	135.0	0.05708
51	0.005938	0.004743	141.4	0.07096
52	0.006432	0.004048	147.8	0.08218
53	0.006842	0.003309	154.2	0.08692
54	0.007171	0.002516	160.7	0.08248
55	0.007407	0.001701	167.1	0.06991
56	0.007552	0.000854	173.5	0.05721

No	Y	V	8	V
1	-0.0076	9.21E-10	0.0	0 1104
	-0.0076	0.000854	0.0	0.11656
2	0.00733	-0.0000004	12.0	0 1565
4	-0.00747	-0.002516	-12.3	0.20339
5	0.00684	-0.002310	25.9	0.24308
6	-0.00004	-0.003309	-23.0	0.26915
7	0.00594	-0.004743	-32.2	0.28337
8	-0.00537	-0.005374	-35.0	0.2885
a	-0.000074	-0.005938	-51.4	0 34445
10	-0.00405	-0.006432	-57.8	0 40242
11	-0.00331	-0.006842	-64.2	0.4572
12	-0.00252	-0 007171	-70.7	0 50164
13	-0.0017	-0.007407	-77.1	0.52583
14	-0.00085	-0.007552	-83.6	0.51936
15	4.48E-19	-0.0076	-90.0	0.47447
16	0.000854	-0.007552	-96.4	0.3896
17	0.001701	-0.007407	-102.9	0.2734
18	0.002516	-0.007171	-109.3	0.1641
19	0.003309	-0.006842	-115.8	0.10084
20	0.004048	-0.006432	-122.2	0.07456
21	0.004743	-0.005938	-128.6	0.06859
22	0.005374	-0.005374	-135.0	0.07623
23	0.005938	-0.004743	-141.4	0.09849
24	0.006432	-0.004048	-147.8	0.11859
25	0.006842	-0.003309	-154.2	0.13131
26	0.007171	-0.002516	-160.7	0.13248
27	0.007407	-0.001701	-167.1	0.12013
28	0.007552	-0.000854	-173.5	0.09874
29	0.0076	-2.01E-19	-180.0	0.09874
30	-0.00755	0.000854	6.5	0.14266
31	-0.00741	0.0017014	12.9	0.19252
32	-0.00717	0.0025163	19.3	0.24034
33	-0.00684	0.0033087	25.8	0.27655
34	-0.00643	0.0040476	32.2	0.29766
35	-0.00594	0.004743	38.6	0.30651
36	-0.00537	0.005374	45.0	0.30641
37	-0.00474	0.0059383	51.4	0.36014
38	-0.00405	0.0064325	57.8	0.41467
39	-0.00331	0.0068419	64.2	0.46408
40	-0.00252	0.0071713	70.7	0.50054
41	-0.0017	0.0074071	77.1	0.51387
42	4.90E-19	0.0076	90.0	0.43119
43	0.000854	0.0075519	96.4	0.33018
44	0.001701	0.0074071	102.9	0.20713
45	0.002516	0.0071713	109.3	0.12284
46	0.003309	0.0068419	115.8	0.08237
47	0.004048	0.0064325	122.2	0.06938
48	0.004743	0.0059383	128.6	0.07643
49	0.005374	0.005374	135.0	0.08031
50	0.005938	0.004743	141.4	0.0996
51	0.006432	0.0040476	147.8	0.11569
52	0.006842	0.0033087	154.2	0.12315
53	0.007171	0.0025163	160.7	0.11802
54	0.007407	0.0017014	167.1	0.10135
55	0.007552	0.000854	1/3.5	0.08308

pcity magnitude Re 500 Pf 5 silinder 1

Velocity magnitude Re 750 Pf 5 silinder 1

Velocity magnitude Re 1000 Pf 5 silinder 1

	X	Y	θ	V
	-0.0076	9.21E-19	0.0	0.025749
	-0.00755	-0.000854	-6.5	0.026576
	-0.00741	-0.0017014	-12.9	0.034523
	-0.00717	-0.0025163	-19.3	0.044282
	-0.00684	-0.0033087	-25.8	0.052719
	-0.00643	-0.0040476	-32.2	0.058256
	-0.00594	-0.004743	-38.6	0.061105
	-0.00537	-0.005374	-45.0	0.061732
	-0.00474	-0.0059383	-51.4	0.072643
	-0.00405	-0.0064325	-57.8	0.082894
	-0.00331	-0.0068419	-64.2	0.090935
	-0.00252	-0.0071713	-70.7	0.094907
	-0.0017	-0.0074071	-77.1	0.093057
	-0.00085	-0.0075519	-83.6	0.084182
	4.48E-19	-0.0076	-90.0	0.068963
	0.000854	-0.0075519	-96.4	0.04971
	0.001701	-0.0074071	-102.9	0.030786
	0.002516	-0.0071713	-109.3	0.018272
	0.003309	-0.0068419	-115.8	0.01113
	0.004048	-0.0064325	-122.2	0.008033
	0.004743	-0.0059383	-128.6	0.007771
	0.005374	-0.005374	-135.0	0.008312
	0.005938	-0.004743	-141.4	0.01221
	0.006432	-0.0040476	-147.8	0.017004
	0.006842	-0.0033087	-154.2	0.021264
	0.007171	-0.0025163	-160.7	0.023555
Н	0.007407	-0.0017014	-167.1	0.022616
H	0.007552	-0.000854	-173.5	0.018271
Н	0.0076	-2.01E-19	-180.0	0.012638
	-0.00755	0.000854	6.5	0.032879
Н	-0.00/41	0.001/014	12.9	0.04357
Н	-0.00717	0.0025163	19.3	0.053618
Н	-0.00684	0.0033087	25.8	0.06114
H	-0.00643	0.0040476	32.2	0.005341
Н	-0.00594	0.004743	38.6	0.000/30
Н	-0.00537	0.005374	45.0	0.0000007
Н	-0.00474	0.0059385	57.0	0.075733
Н	-0.00400	0.0068410	64.2	0.004374
Н	-0.00001	0.0071713	70.7	0.090061
Н	-0.00202	0.0074071	77.1	0.085532
H	-0.00085	0.0075519	83.6	0.073025
Н	4.90F-19	0.0076	90.0	0.055078
H	0.000854	0.0075519	96.4	0.035364
	0.001701	0.0074071	102.9	0.020718
	0.002516	0.0071713	109.3	0.01252
ľ	0.003309	0.0068419	115.8	0.009355
	0.004048	0.0064325	122.2	0.009138
	0.004743	0.0059383	128.6	0.008895
	0.005374	0.005374	135.0	0.010061
	0.005938	0.004743	141.4	0.014092
	0.006432	0.0040476	147.8	0.017754
	0.006842	0.0033087	154.2	0.019723
	0.007171	0.0025163	160.7	0.018894
	0.007407	0.0017014	167.1	0.01523
	0.007552	0.000854	173.5	0.011333
	and an an an an an an an			

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.04052
2	-0.00755	-0.00085	-6.5	0.04205
3	-0.00741	-0.0017	-12.9	0.05465
4	-0.00717	-0.00252	-19.3	0.06997
5	-0.00684	-0.00331	-25.8	0.08313
6	-0.00643	-0.00405	-32.2	0.09175
7	-0.00594	-0.00474	-38.6	0.09623
8	-0.00537	-0.00537	-45.0	0.09745
9	-0.00474	-0.00594	-51.4	0.1154
10	-0.00405	-0.00643	-57.8	0.13298
11	-0.00331	-0.00684	-64.2	0.14782
12	-0.00252	-0.00717	-70.7	0.15688
13	-0.0017	-0.00741	-77.1	0.15669
14	-0.00085	-0.00755	-83.6	0.14441
15	4.48E-19	-0.0076	-90.0	0.12001
16	0.000854	-0.00755	-96.4	0.08668
17	0.001701	-0.00741	-102.9	0.05332
18	0.002516	-0.00717	-109.3	0.03223
19	0.003309	-0.00684	-115.8	0.02013
20	0.004048	-0.00643	-122.2	0.01527
21	0.004743	-0.00594	-128.6	0.01585
22	0.005374	-0.00537	-135.0	0.01734
23	0.005938	-0.00474	-141.4	0.02477
24	0.006432	-0.00405	-147.8	0.03266
25	0.006842	-0.00331	-154.2	0.03881
26	0.007171	-0.00252	-160.7	0.04127
27	0.007407	-0.0017	-167.1	0.03858
28	0.007552	-0.00085	-173.5	0.03095
29	0.0076	-2.01E-19	-180.0	0.02241
30	-0.00755	0.000854	6.5	0.05144
31	-0.00741	0.001701	12.9	0.06807
32	-0.00/1/	0.002516	19.3	0.08383
33	-0.00684	0.003309	25.8	0.09505
34	-0.00643	0.004048	32.2	0.10255
30	-0.00594	0.004743	38.0	0.10409
30	-0.00537	0.005374	45.0	0.10077
37	-0.00474	0.000930	57.0	0.1204
20	-0.00405	0.000432	0/.0	0.13300
40	-0.00351	0.000042	70.7	0.15104
40	-0.00232	0.007407	77.1	0.146
42	-0.00085	0.007552	83.6	0.12728
43	4 90E-19	0.0076	90.0	0.09742
44	0.000854	0.007552	96.4	0.06264
45	0.001701	0.007407	102.9	0.03726
46	0.002516	0.007171	109.3	0.02336
47	0.003309	0.006842	115.8	0.01803
48	0.004048	0.006432	122.2	0.01816
49	0.004743	0.005938	128.6	0.0181
50	0.005374	0.005374	135.0	0.02023
51	0.005938	0.004743	141.4	0.02685
52	0.006432	0.004048	147.8	0.03232
53	0.006842	0.003309	154.2	0.03476
54	0.007171	0.002516	160.7	0.03274
55	0.007407	0.001701	167.1	0.0266
56	0.007552	0.000854	173.5	0.02064

No	Y	V	6	V
1	-0.0076	9.21E-10	0.0	0.01901
2	-0.00765	-0.000854	-6.5	0.01801
4	-0.00741	-0.001701	-12.0	0.02897
4	-0.00717	-0.002516	-10.3	0.04094
5	-0.00684	-0.003300	-25.9	0.0514
6	-0.00642	-0.004048	-32.2	0.05881
7	-0.00594	-0.004742	-38.6	0.06355
8	-0.00537	-0.005374	-45.0	0.06635
a	-0.00474	-0.005939	-51.4	0.08138
10	-0.00405	-0.006432	-57.8	0.09762
11	-0.00331	-0.006842	-64.2	0.11392
12	-0.00252	-0.007171	-70.7	0.12867
13	-0.0017	-0.007407	-77.1	0.13928
14	-0.00085	-0.007552	-83.6	0.14335
15	4.48E-19	-0.0076	-90.0	0.13918
16	0.000854	-0.007552	-96.4	0.12657
17	0.001701	-0.007407	-102.9	0.1074
18	0.002516	-0.007171	-109.3	0.08517
19	0.003309	-0.006842	-115.8	0.06313
20	0.004048	-0.006432	-122.2	0.04453
21	0.004743	-0.005938	-128.6	0.03169
22	0.005374	-0.005374	-135.0	0.02408
23	0.005938	-0.004743	-141.4	0.02314
24	0.006432	-0.004048	-147.8	0.02312
25	0.006842	-0.003309	-154.2	0.02673
26	0.007171	-0.002516	-160.7	0.03359
27	0.007407	-0.001701	-167.1	0.03707
28	0.007552	-0.000854	-173.5	0.03662
29	0.0076	-2.01E-19	-180.0	0.03434
30	-0.00755	0.000854	6.5	0.03018
31	-0.00741	0.0017014	12.9	0.04433
32	-0.00717	0.0025163	19.3	0.05638
33	-0.00684	0.0033087	25.8	0.06506
34	-0.00643	0.0040476	32.2	0.07007
35	-0.00594	0.004743	38.6	0.07238
36	-0.00537	0.005374	45.0	0.07242
37	-0.00474	0.0059383	51.4	0.08498
38	-0.00405	0.0064325	57.8	0.09795
39	-0.00331	0.0068419	64.2	0.10997
40	-0.00252	0.0071713	70.7	0.11953
41	-0.0017	0.0074071	77.1	0.12469
42	-0.00085	0.0075519	83.6	0.12379
43	4.90E-19	0.0076	90.0	0.11624
44	0.000854	0.0075519	96.4	0.10286
45	0.001701	0.0074071	102.9	0.08589
46	0.002516	0.0071713	109.3	0.06823
47	0.003309	0.0068419	115.8	0.05195
48	0.004048	0.0084325	122.2	0.03881
49	0.004743	0.0059383	128.6	0.02984
50	0.005374	0.005374	135.0	0.02316
51	0.005938	0.004743	141.4	0.02136
52	0.006432	0.0040476	147.8	0.02088
53	0.006842	0.0033087	154.2	0.0224
54	0.00/171	0.0025163	100.7	0.02/36
55	0.007407	0.001/014	107.1	0.03218
56	0.007552	0.000854	1/3.5	0.03324

Velocity magnitude Re 500 Pf 7 silinder 1

-	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.019231
1	-0.00755	-0.000854	-6.5	0.019809
1	-0.00741	-0.0017014	-12.9	0.025899
	-0.00717	-0.0025163	-19.3	0.033381
	-0.00684	-0.0033087	-25.8	0.039867
	-0.00643	-0.0040476	-32.2	0.044124
	-0.00594	-0.004743	-38.6	0.046307
	-0.00537	-0.005374	-45.0	0.046705
	-0.00474	-0.0059383	-51.4	0.054697
	-0.00405	-0.0064325	-57.8	0 061974
	-0.00331	-0.0068419	-64.2	0.067389
	-0.00252	-0.0071713	-70.7	0.069626
	-0.0017	-0.0074071	-77.1	0.06759
	-0.00085	-0.0075519	-83.6	0.060629
	4.48E-19	-0.0076	-90.0	0.049476
	0.000854	-0.0075519	-96.4	0.03583
1	0.001701	-0.0074071	-102.9	0.022414
	0.002516	-0.0071713	-109.3	0.013051
	0.003309	-0.0068419	-115.8	0.007729
	0.004048	-0.0064325	-122.2	0.005404
	0.004743	-0.0059383	-128.6	0.00503
	0.005374	-0.005374	-135.0	0.005404
	0.005938	-0.004743	-141.4	0.007952
	0.006432	-0.0040476	-147.8	0.01131
	0.006842	-0.0033087	-154.2	0.014489
	0.007171	-0.0025163	-160.7	0.016396
	0.007407	-0.0017014	-167.1	0.015957
	0.007552	-0.000854	-173.5	0.012924
	0.0076	-2.01E-19	-180.0	0.008755
	-0.00755	0.000854	6.5	0.024805
	-0.00741	0.0017014	12.9	0.033045
	-0.00717	0.0025163	19.3	0.040735
	-0.00684	0.0033087	25.8	0.046481
1	-0.00643	0.0040476	32.2	0.049663
	-0.00594	0.004743	38.6	0.050679
	-0.00537	0.005374	45.0	0.049854
	-0.00474	0.0059383	51.4	0.056953
	-0.00405	0.0064325	57.8	0.062894
ļ	-0.00331	0.0068419	64.2	0.066459
	-0.00252	0.0071713	70.7	0.066344
	-0.0017	0.0074071	77.1	0.061709
	-0.00085	0.0075519	83.6	0.052244
	4.90E-19	0.0076	90.0	0.039331
	0.000854	0.0075519	96.4	0.025436
l	0.001701	0.0074071	102.9	0.014683
	0.002516	0.0071713	109.3	0.008558
	0.003309	0.0068419	115.8	0.006218
	0.004048	0.0064325	122.2	0.005981
	0.004743	0.0059383	128.6	0.005827
	0.005374	0.005374	135.0	0.006558
ĺ	0.005938	0.004743	141.4	0.009414
	0.006432	0.0040476	147.8	0.012172
	0.006842	0.0033087	154.2	0.013813
ĺ	0.007171	0.0025163	160.7	0.013425
	0.007407	0.0017014	167.1	0.010835
ľ	0.007552	0.000854	173.5	0.007848

No	X	Y	0	V
1	-0.0076	9.21E-19	0.0	0.03215
2	-0.00755	-0.00085	-6.5	0.03326
3	-0.00741	-0.0017	-12.9	0.04316
4	-0.00717	-0.00252	-19.3	0.05527
5	-0.00684	-0.00331	-25.8	0.0657
6	-0.00643	-0.00405	-32.2	0.07254
7	-0.00594	-0.00474	-38.6	0.07608
8	-0.00537	-0.00537	-45.0	0.07695
9	-0.00474	-0.00594	-51.4	0.09085
10	-0.00405	-0.00643	-57.8	0.1042
11	-0.00331	-0.00684	-64.2	0.11507
12	-0.00252	-0.00717	-70.7	0.12107
13	-0.0017	-0.00741	-77.1	0.11972
14	-0.00085	-0.00755	-83.6	0.10917
15	4.48E-19	-0.0076	-90.0	0.0899
16	0.000854	-0.00755	-96.4	0.06468
17	0.001701	-0.00741	-102.9	0.03986
18	0.002516	-0.00717	-109.3	0.02397
19	0.003309	-0.00684	-115.8	0.01475
20	0.004048	-0.00643	-122.2	0.01089
21	0.004743	-0.00594	-128.6	0.01097
22	0.005374	-0.00537	-135.0	0.01185
23	0.005938	-0.00474	-141.4	0.01727
24	0.006432	-0.00405	-147.8	0.02346
25	0.006842	-0.00331	-154.2	0.02863
26	0.007171	-0.00252	-160.7	0.03108
27	0.007407	-0.0017	-167.1	0.02944
28	0.007552	-0.00085	-173.5	0.02368
29	0.0076	-2.01E-19	-180.0	0.01671
30	-0.00755	0.000854	6.5	0.04089
31	-0.00741	0.001701	12.9	0.0541
32	-0.00717	0.002516	19.3	0.06656
33	-0.00684	0.003309	25.8	0.0759
34	-0.00643	0.004048	32.2	0.08114
35	-0.00594	0.004743	38.6	0.08294
36	-0.00537	0.005374	45.0	0.08204
37	-0.00474	0.005938	51.4	0.09478
38	-0.00405	0.006432	57.8	0.10628
39	-0.00331	0.006842	64.2	0.11441
40	-0.00252	0.007171	70.7	0.11663
41	-0.0017	0.007407	77.1	0.11075
42	-0.00085	0.007552	83.6	0.09539
43	4.90E-19	0.0076	90.0	0.07228
44	0.000854	0.007552	96.4	0.04634
45	0.001701	0.007407	102.9	0.02743
46	0.002516	0.00/1/1	109.3	0.01693
4/	0.003309	0.006842	115.8	0.01285
48	0.004048	0.006432	122.2	0.012/5
49	0.004/43	0.005938	128.6	0.01253
50	0.005374	0.000374	135.0	0.01415
50	0.005938	0.004743	141.4	0.01935
52	0.000432	0.004048	147.0	0.02004
54	0.000042	0.003509	160.7	0.02003
55	0.007407	0.002010	167.1	0.01009
56	0.007552	0.000854	173.5	0.01516
	0.001002	5.000004	110.0	0.01010

Velocity magnitude Re 750 Pf 7 silinder 1

Velocity magnitude Re 1000 Pf 7 silinder 1

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.04463
2	-0.00755	-0.000854	-6.5	0.04638
3	-0.00741	-0.001701	-12.9	0.06038
4	-0.00717	-0.002516	-19.3	0.07734
5	-0.00684	-0.003309	-25.8	0.09188
6	-0.00643	-0.004048	-32.2	0.1014
1	-0.00594	-0.004/43	-38.6	0.10036
8	-0.00537	-0.0053/4	-45.0	0.10776
9	-0.004/4	-0.005938	-51.4	0.12///
10	-0.00405	-0.006432	-57.8	0.14/48
11	-0.00331	-0.000642	-04.2	0.10438
12	-0.00252	-0.007107	-70.1	0.17569
10	-0.0017	-0.007407	-11.1	0 16276
15	4.48E-10	-0.0076	-90.0	0.13598
16	0.000854	-0.007552	-96.4	0.09863
17	0.001701	-0.007407	-102.9	0.0607
18	0.002516	-0.007171	-109.3	0.03666
10	0.003300	-0.006842	-115.8	0.02302
20	0.004048	-0.006432	-122.2	0.01763
21	0.004743	-0.005938	-128.6	0.01852
22	0.005374	-0.005374	-135.0	0.02034
23	0.005938	-0.004743	-141.4	0.02875
24	0.006432	-0.004048	-147.8	0.03742
25	0.006842	-0.003309	-154.2	0.04397
26	0.007171	-0.002516	-160.7	0.04635
27	0.007407	-0.001701	-167.1	0.04309
28	0.007552	-0.000854	-173.5	0.03457
29	0.0076	-2.01E-19	-180.0	0.02536
30	-0.00755	0.000854	6.5	0.05666
31	-0.00741	0.0017014	12.9	0.07504
32	-0.00717	0.0025163	19.3	0.09247
33	-0.00684	0.0033087	25.8	0.10556
34	-0.00643	0.0040476	32.2	0.11296
35	-0.00594	0.004743	38.6	0.11561
36	-0.00537	0.005374	45.0	0.11469
37	-0.00474	0.0059383	51.4	0.13329
38	-0.00405	0.0064325	57.8	0.15079
39	-0.00331	0.0068419	64.2	0.16427
40	-0.00252	0.0071713	70.7	0.17
41	-0.0017	0.0074071	11.1	0.10425
42	-0.00085	0.0075519	83.6	0.1441
43	4.90E-19	0.0075540	90.0	0.11101
44	0.000854	0.0075519	90.4	0.0/161
45	0.001/01	0.00740/1	102.9	0.04208
40	0.002516	0.0071713	115.0	0.02077
4/	0.003309	0.0064325	122.2	0.02108
40	0.004048	0.0004323	128.6	0.02108
50	0.005374	0.005374	135.0	0.02345
51	0.005938	0.004743	141 4	0.03074
52	0.006432	0.0040476	147.8	0.03667
53	0.006842	0.0033087	154.2	0.03922
54	0.007171	0.0025163	160.7	0.03688
55	0.007407	0.0017014	167.1	0.03007
56	0.007552	0.000854	173.5	0.02356

pcity magnitude Re 500 Pf 3 silinder 2

Velocity magnitude Re 750 Pf 3 silinder 2

Velocity magnitude Re 1000 Pf 3 silinder 2

	X	Y	θ	V
	-0.0076	9.21E-19	0.0	0.01901
	-0.00755	-0.0009	-6.5	0.01891
	-0.00741	-0.0017	-12.9	0.02897
	-0.00717	-0.0025	-19.3	0.04094
	-0.00684	-0.0033	-25.8	0.0514
	-0.00643	-0.004	-32.2	0.05881
	-0.00594	-0.0047	-38.6	0.06355
	-0.00537	-0.0054	-45.0	0.06635
	-0.00474	-0.0059	-51.4	0.08138
	-0.00405	-0.0064	-57.8	0.09762
	-0.00331	-0.0068	-64.2	0.11392
	-0.00252	-0.0072	-70.7	0 12867
H	-0.0017	-0.0074	-77.1	0 13928
H	-0.00085	-0.0076	-83.6	0 14335
	4 48F-19	-0.0076	-90.0	0 13918
	0.00085	-0.0076	-96.4	0.12657
	0.0017	-0.0074	-102.9	0 1074
H	0.00252	-0.0072	-102.0	0.08517
	0.00331	-0.0068	-115.8	0.06313
H	0.00405	-0.0064	-110.0	0.00013
H	0.00474	-0.0059	-128.6	0.03160
	0.00537	-0.0054	-120.0	0.02408
Н	0.00594	-0.0047	-141.4	0.02314
Н	0.00643	-0.0047	1/7.9	0.02314
Н	0.00043	0.004	-147.0	0.02312
Н	0.00004	0.0035	-104.2	0.02073
Н	0.00711	-0.0025	-100.7	0.03359
Н	0.00741	-0.0017	-107,1	0.03707
Н	0.00755	-0.0009	-173.5	0.03002
Н	0.00765	0.00095	-100.0	0.03434
Н	0.00733	0.00085	0.0	0.03010
Н	0.00747	0.0017	12.9	0.04400
Н	-0.00717	0.00252	19.3	0.00038
Н	0.00643	0.00331	20.0	0.00000
Н	0.00043	0.00405	32.2	0.07007
Н	-0.00594	0.00474	30.0	0.07230
Н	-0.00337	0.00537	40.0	0.07242
Η	-0.004/4	0.00094	57.9	0.00498
Н	-0.00405	0.00043	01.0	0.09/95
	-0.00331	0.00004	70.7	0.10997
	-0.00202	0.00717	77.4	0.11903
Н	-0.0017	0.00741	02.6	0.12409
H	4 005 10	0.00700	00.0	0.123/9
Н	4.50E-19	0.0076	90.0	0.11024
Н	0.00000	0.00700	102.0	0.10200
Н	0.0017	0.00741	102.9	0.06009
Н	0.00252	0.00/1/	109.3	0.00823
Η	0.00331	0.00084	115.8	0.05195
Η	0.00405	0.00043	122.2	0.03881
Η	0.00474	0.00594	128.6	0.02984
Н	0.00537	0.00537	135.0	0.02316
Η	0.00594	0.00474	141.4	0.02136
Н	0.00643	0.00405	147.8	0.02088
Н	0.00684	0.00331	154.2	0.0224
Η	0.00717	0.00252	160.7	0.02736
μ	0.00741	0.0017	167.1	0.03218
	0.00755	0.00085	173.5	0.03324

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.02888
2	-0.00755	-0.00085	-6.5	0.02925
3	-0.00741	-0.0017	-12.9	0.04762
4	-0.00717	-0.00252	-19.3	0.0682
5	-0.00684	-0.00331	-25.8	0.08519
6	-0.00643	-0.00405	-32.2	0.09675
7	-0.00594	-0.00474	-38.6	0.1039
8	-0.00537	-0.00537	-45.0	0.10812
9	-0.00474	-0.00594	-51.4	0.13268
10	-0.00405	-0.00643	-57.8	0.15959
11	-0.00331	-0.00684	-64.2	0.18699
12	-0.00252	-0.00717	-70.7	0.21245
13	-0.0017	-0.00741	-77.1	0.23196
14	-0.00085	-0.00755	-83.6	0.24165
15	4.48E-19	-0.0076	-90.0	0.2385
16	0.00085	-0.00755	-96.4	0.22162
17	0.0017	-0.00741	-102.9	0.19281
18	0.00252	-0.00717	-109.3	0.15679
19	0.00331	-0.00684	-115.8	0.11866
20	0.00405	-0.00643	-122.2	0.08456
21	0.00474	-0.00594	-128.6	0.05952
22	0.00537	-0.00537	-135.0	0.04354
23	0.00594	-0.00474	-141.4	0.04104
24	0.00643	-0.00405	-147.8	0.0414
25	0.00684	-0.00331	-154.2	0.04364
26	0.00717	-0.00252	-160.7	0.05116
27	0.00741	-0.0017	-167.1	0.05842
28	0.00755	-0.00085	-173.5	0.06091
29	0.0076	-2.01E-19	-180.0	0.05815
30	-0.00755	0.000854	6.5	0.04/08
31	-0.00741	0.001701	12.9	0.06902
32	-0.00/1/	0.002516	19.3	0.08/66
33	-0.00684	0.003309	25.8	0.10116
34	-0.00643	0.004048	32.2	0.10908
35	-0.00594	0.004743	38.6	0.11289
30	-0.00537	0.005374	45.0	0.11362
3/	-0.004/4	0.005938	51.4	0.13492
38	-0.00405	0.006432	57.8	0.15/56
39	-0.00331	0.006842	64.2	0.17938
40	-0.00252	0.007171	70.7	0.190
41	-0.0017	0.007407	11.1	0.21003
42	-0.00085	0.007552	00.0	0.21230
43	4.90E-19	0.0076	90.0	0.20336
44	0.00065	0.007552	90.4	0.16304
40	0.0017	0.007407	102.9	0.10019
40	0.00232	0.007171	145.9	0.12009
48	0.00405	0.006432	122.2	0.0310
40	0.00474	0.005032	122.2	0.05841
50	0.00537	0.005374	135.0	0.04624
51	0.00594	0.004743	141 4	0.04184
52	0.00643	0.004048	147.8	0.03959
53	0.00684	0.003309	154.2	0.03976
54	0.00717	0.002516	160.7	0.0423
55	0.00741	0.001701	167.1	0.0484
56	0.00755	0.000854	173.5	0.05344

	V	N N	0	
NO	A 0.0070	V 0.015 40	9	V 0.020720
1	-0.0076	9.21E-19	0.0	0.038732
2	-0.00735	-0.00085	-0.0	0.041904
3	-0.00741	-0.0017	-12.9	0.009300
4	-0.00717	-0.00232	-19.3	0.120413
6	-0.00004	-0.00331	-20.0	0.120413
7	-0.00043	-0.00403	-32.2	0.135790
8	-0.00537	-0.00537	-35.0	0 150959
g	-0.00474	-0.00594	-51.4	0 185311
10	-0.00405	-0.00643	-57.8	0.223195
11	-0.00331	-0.00684	-64.2	0.262019
12	-0.00252	-0.00717	-70.7	0.298508
13	-0.0017	-0.00741	-77.1	0.327127
14	-0.00085	-0.00755	-83.6	0.342749
15	4.48E-19	-0.0076	-90.0	0.341091
16	0.000854	-0.00755	-96.4	0.320915
17	0.001701	-0.00741	-102.9	0.284428
18	0.002516	-0.00717	-109.3	0.236931
19	0.003309	-0.00684	-115.8	0.184594
20	0.004048	-0.00643	-122.2	0.135282
21	0.004743	-0.00594	-128.6	0.096103
22	0.005374	-0.00537	-135.0	0.06842
23	0.005938	-0.00474	-141.4	0.061757
24	0.006432	-0.00405	-147.8	0.061741
25	0.006842	-0.00331	-154.2	0.062677
26	0.007171	-0.00252	-160.7	0.069559
27	0.007407	-0.0017	-167.1	0.079453
28	0.007552	-0.00085	-173.5	0.084432
29	0.0076	-2.01E-19	-180.0	0.081329
30	-0.00755	0.000854	6.5	0.06218
31	-0.00741	0.001701	12.9	0.091248
32	-0.00717	0.002516	19.3	0.116453
33	-0.00684	0.003309	25.8	0.134976
34	-0.00643	0.004048	32.2	0.146269
35	-0.00594	0.004743	38.6	0.152248
36	-0.00537	0.005374	45.0	0.154515
37	-0.00474	0.005938	51.4	0.185337
38	-0.00405	0.006432	57.8	0.218404
39	-0.00331	0.006842	64.2	0.250828
40	-0.00252	0.007171	70.7	0.279495
41	-0.0017	0.007407	02.6	0.299755
42	-0.00085	0.007552	00.0	0.209910
43	4.90E-19	0.007552	90.0	0.230013
44	0.0000004	0.007302	102.0	0.238058
45	0.001701	0.007407	102.9	0.200000
40	0.002010	0.006842	115.8	0.153832
48	0.004048	0.006432	122.2	0.118328
40	0.004743	0.005938	128.6	0.09291
50	0.005374	0.005374	135.0	0.073665
51	0.005938	0.004743	141.4	0.067511
52	0.006432	0.004048	147.8	0.061533
53	0.006842	0.003309	154.2	0.060409
54	0.007171	0.002516	160.7	0.062313
55	0.007407	0.001701	167.1	0.066769
56	0.007552	0.000854	173.5	0.07368

poity magnitude Re 500 Pf 5 silinder 2

	X	Y	6	V
	-0.0076	9.21E-19	0.0	0.00821
	-0.00755	-0.0009	-6.5	0.01037
	-0.00741	-0.0017	-12.9	0.01412
	-0.00717	-0.0025	-19.3	0.01741
	-0.00684	-0.0033	-25.8	0.02017
	-0.00643	-0.004	-32.2	0.02227
	-0.00594	-0.0047	38.6	0.0238
	-0.00537	-0.0054	-35.0	0.0200
	-0.00474	-0.0059	-40.0	0.02472
-	-0.00405	-0.0003	-51.4	0.03540
-	-0.00400	-0.0068	-57.0	0.03049
-	0.000001	0.0072	-04.2	0.04009
-	-0.00232	0.0072	-70.7	0.04495
	0.00095	-0.0074	-//.1	0.04727
-	-0.00065	-0.0076	-83.0	0.04703
_	4.40E-19	-0.0076	-90.0	0.04405
	0.00085	-0.0076	-96.4	0.038/4
	0.0017	-0.0074	-102.9	0.03194
	0.00252	-0.0072	-109.3	0.02482
	0.00331	-0.0068	-115.8	0.01822
	0.00405	-0.0064	-122.2	0.01286
	0.00474	-0.0059	-128.6	0.00922
	0.00537	-0.0054	-135.0	0.00699
	0.00594	-0.0047	-141.4	0.0065
	0.00643	-0.004	-147.8	0.0074
	0.00684	-0.0033	-154.2	0.00992
	0.00717	-0.0025	-160.7	0.01235
	0.00741	-0.0017	-167.1	0.01281
	0.00755	-0.0009	-173.5	0.01095
	0.0076	#######	-180.0	0.00943
	-0.00755	0.00085	6.5	0.01052
	-0.00741	0.0017	12.9	0.01605
	-0.00717	0.00252	19.3	0.02132
	-0.00684	0.00331	25.8	0.02526
	-0.00643	0.00405	32.2	0.02758
	-0.00594	0.00474	38.6	0.02872
	-0.00537	0.00537	45.0	0.02871
	-0.00474	0.00594	51.4	0.03323
	-0.00405	0.00643	57.8	0.03755
Н	-0.00331	0.00684	64.2	0.04118
Н	-0.00252	0.00717	70.7	0.04357
Η	-0.0017	0.00741	77.1	0.04415
Η	-0.00085	0.00755	83.6	0.04248
Н	4.90E-19	0.0076	90.0	0.03863
Η	0.00085	0.00755	96.4	0.03307
Η	0,0017	0.00741	102.9	0.02663
Η	0.00252	0.00717	109.3	0.02028
Η	0.00331	0.00684	115.9	0.01461
Н	0.00405	0.00643	122.2	0.01014
Η	0.00474	0.00594	128.6	0.0072
Η	0.00537	0.00537	125.0	0.0012
Н	0.00504	0.000007	100.0	0.00545
Η	0.00094	0.00474	141.4	0.00011
Н	0.00043	0.00405	147.8	0.00041
Η	0.00084	0.00331	154.2	0.00932
Η	0.00717	0.00252	160.7	0.0118
μ	0.00/41	0.0017	167,1	0.01231
	0.00755	0.00085	173.5	0.01058

Velocity magnitude	Re	750	Pf	5	silinder 2	2
--------------------	----	-----	----	---	------------	---

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.01321
2	-0.00755	-0.00085	-6.5	0.01438
3	-0.00741	-0.0017	-12.9	0.02074
4	-0.00717	-0.00252	-19.3	0.02761
5	-0.00684	-0.00331	-25.8	0.03378
6	-0.00643	-0.00405	-32.2	0.03841
7	-0.00594	-0.00474	-38.6	0.04153
8	-0.00537	-0.00537	-45.0	0.0434
9	-0.00474	-0.00594	-51.4	0.05311
10	-0.00405	-0.00643	-57.8	0.06344
11	-0.00331	-0.00684	-64.2	0.0736
12	-0.00252	-0.00717	-70.7	0.08247
13	-0.0017	-0.00741	-77.1	0.08833
14	-0.00085	-0.00755	-83.6	0.08968
15	4.48E-19	-0.0076	-90.0	0.08569
16	0.00085	-0.00755	-96.4	0.07668
1/	0.0017	-0.00/41	-102.9	0.06418
18	0.00252	-0.00/1/	-109.3	0.05047
19	0.00331	-0.00684	-115.8	0.03737
20	0.00405	-0.00043	-122.2	0.02000
21	0.00474	-0.00594	-128.0	0.01915
22	0.00594	-0.00337	-135.0	0.01385
20	0.00034	-0.00474	-141.4	0.01303
25	0.00043	-0.00403	-147.0	0.01391
26	0.00717	-0.00001	-160.7	0.02217
27	0.00741	-0.0017	-167.1	0.0243
28	0.00755	-0.00085	-173.5	0.02289
29	0.0076	-2.01E-19	-180.0	0.02085
30	-0.00755	0.000854	6.5	0.01954
31	-0.00741	0.001701	12.9	0.0291
32	-0.00717	0.002516	19.3	0.03751
33	-0.00684	0.003309	25.8	0.04362
34	-0.00643	0.004048	32.2	0.04716
35	-0.00594	0.004743	38.6	0.04884
36	-0.00537	0.005374	45.0	0.04881
37	-0.00474	0.005938	51.4	0.05689
38	-0.00405	0.006432	57.8	0.06498
39	-0.00331	0.006842	64.2	0.07219
40	-0.00252	0.007171	70.7	0.07753
41	-0.0017	0.007407	77.1	0.07984
42	-0.00085	0.007552	83.6	0.07816
43	4.90E-19	0.0076	90.0	0.07239
44	0.00085	0.007552	96.4	0.06321
45	0.0017	0.007407	102.9	0.05201
40	0.00252	0.0001171	109.3	0.04001
4/	0.00331	0.000042	110.8	0.03023
40	0.00403	0.000432	122.2	0.02191
49 50	0.00474	0.005938	125.0	0.01029
51	0.00504	0.003374	141.4	0.01200
52	0.00643	0.004743	141.4	0.01724
53	0.00684	0.003300	154.2	0.01545
54	0.00717	0.002516	160.7	0.02018
55	0.00741	0.001701	167.1	0.02222
56	0.00755	0.000854	173.5	0.02115

Velocity magnitude Re 1000 Pf 5 silinder 2

NIS	v	V	0	CALLSON Y REPORT
NO	A 0.0076	0.215 10	0	0.010014
-	-0.0076	9.21E-19	0.0	0.019014
2	-0.00735	-0.00065	-0.0	0.010900
3	-0.00741	-0.0017	-12.9	0.020975
4	-0.00717	0.00232	-19.0	0.04094
6	-0.00004	-0.00331	-20.0	0.058813
7	-0.00043	-0.00474	-32.2	0.063551
8	-0.00537	-0.00537	-45.0	0.066347
q	-0.000074	-0.00594	-51.4	0.081375
10	-0.00405	-0.00643	-57.8	0.097622
11	-0.00331	-0.00684	-64.2	0.113918
12	-0.00252	-0.00717	-70.7	0.128673
13	-0.0017	-0.00741	-77.1	0.139276
14	-0.00085	-0.00755	-83.6	0.143349
15	4 48E-19	-0.0076	-90.0	0.139177
16	0.000854	-0.00755	-96.4	0.126565
17	0.001701	-0.00741	-102.9	0.107401
18	0.002516	-0.00717	-109.3	0.085171
19	0.003309	-0.00684	-115.8	0.063133
20	0.004048	-0.00643	-122.2	0.044533
21	0.004743	-0.00594	-128.6	0.031689
22	0.005374	-0.00537	-135.0	0.024076
23	0.005938	-0.00474	-141.4	0.023139
24	0.006432	-0.00405	-147.8	0.023117
25	0.006842	-0.00331	-154.2	0.026728
26	0.007171	-0.00252	-160.7	0.033589
27	0.007407	-0.0017	-167.1	0.037075
28	0.007552	-0.00085	-173.5	0.036621
29	0.0076	-2.01E-19	-180.0	0.034341
30	-0.00755	0.000854	6.5	0.030182
31	-0.00741	0.001701	12.9	0.04433
32	-0.00717	0.002516	19.3	0.056382
33	-0.00684	0.003309	25.8	0.065059
34	-0.00643	0.004048	32.2	0.070066
35	-0.00594	0.004743	38.6	0.072385
36	-0.00537	0.005374	45.0	0.07242
37	-0.00474	0.005938	51.4	0.084983
38	-0.00405	0.006432	57.8	0.09795
39	-0.00331	0.006842	64.2	0.109974
40	-0.00252	0.007171	70.7	0.119529
41	-0.0017	0.007407	77.1	0.124694
42	-0.00085	0.007552	83.6	0.123/89
43	4.90E-19	0.0076	90.0	0.110238
44	0.000854	0.007552	90.4	0.102804
45	0.001/01	0.007407	102.9	0.069229
40	0.002516	0.0000171	109.3	0.066226
4/	0.003309	0.000042	115.8	0.001900
40	0.004048	0.000432	122.2	0.030012
49	0.004/43	0.005938	125.0	0.029038
50	0.005374	0.000074	144 4	0.023107
52	0.000936	0.004743	141.4	0.021001
52	0.000432	0.004040	147.0	0.020070
53	0.000042	0.003509	160.7	0.022399
55	0.007171	0.002310	167.1	0.021303
56	0.007407	0.000954	173.5	0.033230
00	0.001002	0.000004	110.0	0.000200

elocity magnitude Re 500 Pf 7 silinder 2

Velocity	magnitude	Re 750	Pf7	silinder 2
----------	-----------	--------	-----	------------

Velocity magnitude Re 1000 Pf 7 silinder 2

	X	Y	θ	V
	-0.0076	9.21E-19	0.0	0.00607
	-0.00755	-0.0009	-6.5	0.00823
	-0.00741	-0.0017	-12.9	0.01098
	-0.00717	-0.0025	-19.3	0.01313
	-0.00684	-0.0033	-25.8	0.01477
	-0.00643	-0.004	-32.2	0.01598
	-0.00594	-0.0047	-38.6	0.01688
	-0.00537	-0.0054	-45.0	0.01741
	-0.00474	-0.0059	-51.4	0.02097
	-0.00405	-0.0064	-57.8	0.0246
	-0.00331	-0.0068	-64.2	0.02795
	-0.00252	-0.0072	-70.7	0.03055
	-0.0017	-0.0074	-77.1	0.03178
	-0.00085	-0.0076	-83.6	0.03125
	4.48E-19	-0.0076	-90.0	0.02896
	0.00085	-0.0076	-96.4	0.02518
	0.0017	-0.0074	-102.9	0.0205
	0.00252	-0.0072	-109.3	0.01571
	0.00331	-0.0068	-115.8	0.01133
	0.00405	-0.0064	-122.2	0.00783
	0.00474	-0.0059	-128.6	0.00551
	0.00537	-0.0054	-135.0	0.00416
-	0.00594	-0.0047	-141 4	0.00414
	0.00643	-0.004	-147.8	0.00518
-	0.00684	-0.0033	-154.2	0.00609
	0.00717	-0.0025	-160 7	0.0083
	0.00741	-0.0017	-167.1	0.00814
-	0.00755	-0.0009	-173.5	0.00637
-	0.0076	#######	-180.0	0.00543
Н	-0.00755	0.00085	6.5	0,00706
Η	-0.00741	0.0017	12.0	0.01001
Η	-0.00717	0.00252	10.2	0.01495
Η	-0.00684	0.00331	25.8	0.01788
Η	-0.00643	0.00405	32.0	0.01069
Η	-0.00594	0.00474	38.6	0.0206
Н	-0.00537	0.00537	45.0	0.0200
Н	-0 00474	0.00504	51.4	0.02001
Н	-0 00405	0.00642	57.9	0.02070
Η	-0.00331	0.00694	64.2	0.02007
Η	-0.00252	0.00717	70.7	0.02001
Η	-0.0017	0.00744	77 4	0.03042
Η	-0.00000	0.00741	826	0.00001
Η	4 905 40	0.00700	0.00	0.02902
Η	0.00005	0.00755	90.0	0.02007
Н	0.00085	0.00705	90.4	0.02204
	0.0017	0.00747	102.9	0.01/51
Н	0.00252	0.00/1/	109.3	0.01312
Н	0.00331	0.00084	115.8	0.00925
μ	0.00405	0.00643	122.2	0.00624
Ц	0.00474	0.00594	128.6	0.00428
Ц	0.00537	0.00537	135.0	0.00315
μ	0.00594	0.00474	141.4	0.00318
μ	0.00643	0.00405	147.8	0.00438
μ	0.00684	0.00331	154.2	0.00638
μ	0.00717	0.00252	160.7	0.00799
μ	0.00741	0.0017	167.1	0.00823
Ц	0.00755	0.00085	173.5	0.00679

No	VO X Y		θ	V
1	-0.0076	9.21E-19	0.0	0.01035
2	-0.00755	-0.00085	-6.5	0.01222
3	-0.00741	-0.0017	-12.9	0.01703
4	-0.00717	-0.00252	-19.3	0.0217
5	-0.00684	-0.00331	-25.8	0.0258
6	-0.00643	-0.00405	-32.2	0.02894
7	-0.00594	-0.00474	-38.6	0.03116
8	-0.00537	-0.00537	-45.0	0.0325
9	-0.00474	-0.00594	-51.4	0.03963
10	-0.00405	-0.00643	-57.8	0.04712
11	-0.00331	-0.00684	-64.2	0.05437
12	-0.00252	-0.00717	-70.7	0.06048
13	-0.0017	-0.00741	-77.1	0.06421
14	-0.00085	-0.00755	-83.6	0.06451
15	4.48E-19	-0.0076	-90.0	0.06098
16	0.00085	-0.00755	-96.4	0.05405
17	0.0017	-0.00741	-102.9	0.04491
18	0.00252	-0.00717	-109.3	0.03513
19	0.00331	-0.00684	-115.8	0.02595
20	0.00405	-0.00643	-122.2	0.01845
21	0.00474	-0.00594	-128.6	0.01331
22	0.00537	-0.00537	-135.0	0.01013
23	0.00594	-0.00474	-141.4	0.00938
24	0.00643	-0.00405	-147.8	0.00996
25	0.00684	-0.00331	-154.2	0.0129
26	0.00717	-0.00252	-160.7	0.01653
27	0.00741	-0.0017	-167.1	0.01776
28	0.00755	-0.00085	-1/3.5	0.01599
29	0.0076	-2.01E-19	-180.0	0.01409
30	-0.00755	0.000854	0.5	0.01427
22	-0.00741	0.001701	12.9	0.0215
32	0.00694	0.002510	19.3	0.02011
34	-0.00643	0.003309	20.0	0.03582
35	-0.00043	0.004040	32.2	0.03719
36	-0.00537	0.005374	45.0	0.03718
37	-0.00474	0.005938	51.4	0.04318
38	-0.00405	0.006432	57.8	0.04905
39	-0.00331	0.006842	64.2	0.05414
40	-0.00252	0.007171	70.7	0.0577
41	-0.0017	0.007407	77.1	0.05893
42	-0.00085	0.007552	83.6	0.05719
43	4.90E-19	0.0076	90.0	0.05249
44	0.00085	0.007552	96.4	0.04537
45	0.0017	0.007407	102.9	0.03693
46	0.00252	0.007171	109.3	0.02846
47	0.00331	0.006842	115.8	0.02084
48	0.00405	0.006432	122.2	0.01478
49	0.00474	0.005938	128.6	0.01073
50	0.00537	0.005374	135.0	0.00826
51	0.00594	0.004743	141.4	0.00769
52	0.00643	0.004048	147.8	0.00885
53	0.00684	0.003309	154.2	0.01224
54	0.00717	0.002516	160.7	0.01563
55	0.00741	0.001701	167.1	0.01662
56	0.00755	0.000854	173.5	0.01492

No	X	Y	θ	V
1	-0.0076	9.21E-19	0.0	0.014686
2	-0.00755	-0.00085	-6.5	0.015459
3	-0.00741	-0.0017	-12.9	0.022624
4	-0.00/1/	-0.00252	-19.3	0.030703
5	-0.00684	-0.00331	-25.8	0.03/9/
6	-0.00643	-0.00405	-32.2	0.043331
1	-0.00594	-0.00474	-38.6	0.040889
8	-0.00537	-0.00537	-45.0	0.049009
9	-0.00474	-0.00594	-51.4	0.000037
10	-0.00405	-0.00043	-57.6	0.07103
10	-0.00351	-0.00004	-04.2	0.003003
12	-0.00252	-0.00717	-70.7	0.093813
10	-0.0017	-0.00741	-//.1	0.100019
14	-0.00085	-0.00733	-03.0	0.002793
16	4.400-19	-0.0070	-90.0	0.088600
17	0.0000004	-0.00733	102.0	0.074505
18	0.002516	-0.00747	-102.9	0.058721
10	0.002010	-0.00684	-115.9	0.043516
20	0.004048	-0.00643	-122.2	0.030895
21	0.004743	-0.00594	-128.6	0.022235
22	0.005374	-0.00537	-135.0	0.016997
23	0.005938	-0.00474	-141.4	0.016128
24	0.006432	-0.00405	-147.8	0.016053
25	0.006842	-0.00331	-154.2	0.01932
26	0.007171	-0.00252	-160.7	0.025024
27	0.007407	-0.0017	-167.1	0.027559
28	0.007552	-0.00085	-173.5	0.026375
29	0.0076	-2.01E-19	-180.0	0.024285
30	-0.00755	0.000854	6.5	0.02226
31	-0.00741	0.001701	12.9	0.032963
32	-0.00717	0.002516	19.3	0.042278
33	-0.00684	0.003309	25.8	0.049013
34	-0.00643	0.004048	32.2	0.052905
35	-0.00594	0.004743	38.6	0.054739
36	-0.00537	0.005374	45.0	0.054707
37	-0.00474	0.005938	51.4	0.063874
38	-0.00405	0.006432	57.8	0.073121
39	-0.00331	0.006842	64.2	0.081467
40	-0.00252	0.007171	70.7	0.087789
41	-0.0017	0.007407	77.1	0.090724
42	-0.00085	0.007552	83.6	0.089152
43	4.90E-19	0.0076	90.0	0.082877
44	0.000854	0.007552	96.4	0.072639
45	0.001701	0.007407	102.9	0.06004
46	0.002516	0.007171	109.3	0.047127
47	0.003309	0.006842	115.8	0.035328
48	0.004048	0.006432	122.2	0.025832
49	0.004743	0.005938	128.6	0.019393
50	0.005374	0.005374	135.0	0.015054
51	0.005938	0.004743	141.4	0.014135
52	0.006432	0.004048	147.8	0.014133
53	0.006842	0.003309	154.2	0.017074
54	0.007171	0.002516	160.7	0.022243
55	0.007407	0.001701	167.1	0.024915
56	0.007552	0.000854	173.5	0.024293

hpiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf3, silinder 1

Nu Aligned Re 750, Pf3, silinder 1

X	Y	θ	Nu
-0.0061	-0.0005	0.0	2605.08
-0.006	-0.0014	-13.5	2610.57
-0.0057	-0.0023	-22.5	2504.07
-0.0052	-0.0032	-31.5	2296.04
-0.0047	-0.004	-40.5	2076.61
-0.004	-0.0047	-49.5	1995.97
-0.0032	-0.0052	-58.5	2048.17
-0.0023	-0.0057	-67.5	1907.3
-0.0014	-0.006	-76.5	1538.8
-0.0005	-0.0061	-8 5.5	1039.31
0.00048	-0.0061	-94.5	592.881
 0.00143	-0.006	-103.5	300.243
0.00235	-0.0057	-112.5	142.362
0.0032	-0.0052	-121.5	71.6681
0.00398	-0.0047	-130.5	55.0084
0.00466	-0.004	-139.5	55.9477
0.00523	-0.0032	-148.5	134.077
0.00566	-0.0023	-157.5	251.563
0.00596	-0.0014	-166.5	408.947
0.00611	-0.0005	-175.5	555.728
-0.0061	0.00048	-175.5	2652.37
-0.006	0.00143	13.5	2625.69
-0.0057	0.00235	22.5	2493.89
-0.0052	0.0032	31.5	2273.7
-0.0047	0.00398	40.5	2049.16
-0.004	0.00466	49.5	1958.36
-0.0032	0.00523	58.5	1987.93
-0.0023	0.00566	67.5	1808.53
-0.0014	0.00596	76.5	1399.57
-0.0005	0.00611	85.5	888.533
0.00048	0.00611	94.5	473.875
0.00143	0.00596	103.5	229.092
0.00235	0.00566	112.5	110.377
0.0032	0.00523	121.5	60.7432
0.00398	0.00466	130.5	49.3061
0.00466	0.00398	139.5	57.5622
0.00523	0.0032	148.5	133.415
0.00566	0.00235	157.5	248.528
0.00596	0.00143	166.5	407.756
0.00611	0.00048	175.5	565.034

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3198.91
2	-0.006	-0.0014	-13.5	3106.98
3	-0.0057	-0.0023	-22.5	2885.28
4	-0.0052	-0.0032	-31.5	2588.56
5	-0.0047	-0.004	-40.5	2293.15
6	-0.004	-0.0047	-49.5	2257.99
7	-0.0032	-0.0052	-58.5	2478.52
8	-0.0023	-0.0057	-67.5	2593.82
9	-0.0014	-0.006	-76.5	2498.45
10	-0.0005	-0.0061	-85 .5	2114.58
11	0.00048	-0.0061	-94.5	1477.41
12	0.00143	-0.006	-103.5	785.121
13	0.00235	-0.0057	-112.5	276.033
14	0.0032	-0.0052	-121.5	43.433
15	0.00398	-0.0047	-130.5	67.7165
16	0.00466	-0.004	-139.5	138.709
17	0.00523	-0.0032	-148.5	300.555
18	0.00566	-0.0023	-157.5	505.151
19	0.00596	-0.0014	-166.5	764.444
20	0.00611	-0.0005	-175.5	979.687
21	-0.0061	0.00048	-175.5	3239.36
22	-0.006	0.00143	13.5	3120.44
23	-0.0057	0.00235	22.5	2880.01
24	-0.0052	0.0032	31.5	2575.26
25	-0.0047	0.00398	40.5	2277.35
26	-0.004	0.00466	49.5	2237.83
27	-0.0032	0.00523	58.5	2445.75
28	-0.0023	0.00566	67.5	2537.88
29	-0.0014	0.00596	76.5	2401.39
30	-0.0005	0.00611	85 .5	1959.44
31	0.00048	0.00611	94.5	1276.02
32	0.00143	0.00596	103.5	604.321
33	0.00235	0.00566	112.5	179.108
34	0.0032	0.00523	121.5	36.0132
35	0.00398	0.00466	130.5	65.3864
36	0.00466	0.00398	139.5	108.281
37	0.00523	0.0032	148.5	238.218
38	0.00566	0.00235	157.5	417.405
39	0.00596	0.00143	166.5	651.894
40	0.00611	0.00048	175.5	893.198

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3256.56
2	-0.006	-0.0014	-13.5	3152.077
3	-0.0057	-0.0023	-22.5	2916.209
4	-0.0052	-0.0032	-31.5	2608.317
5	-0.0047	-0.004	-40.5	2304.801
6	-0.004	-0.0047	-49.5	2274.056
7	-0.0032	-0.0052	-58.5	2512.387
8	-0.0023	-0.0057	-67.5	2658.619
9	-0.0014	-0.006	-76.5	2608.182
10	-0.0005	-0.0061	-85.5	2274.795
11	0.00048	-0.0061	-94.5	1669.155
12	0.00143	-0.006	-103.5	952.3308
13	0.00235	-0.0057	-112.5	377.0506
14	0.0032	-0.0052	-121.5	57.70073
15	0.00398	-0.0047	-130.5	47.15158
16	0.00466	-0.004	-139.5	122.1325
17	0.00523	-0.0032	-148.5	296.5714
18	0.00566	-0.0023	-157.5	514.8621
19	0.00596	-0.0014	-166.5	792.6728
20	0.00611	-0.0005	-175.5	1024.839
21	-0.0061	0.00048	-175.5	3295.328
22	-0.006	0.00143	13.5	3164.892
23	-0.0057	0.00235	22.5	2911.372
24	-0.0052	0.0032	31.5	2596.047
25	-0.0047	0.00398	40.5	2290.045
26	-0.004	0.00466	49.5	2255.448
27	-0.0032	0.00523	58.5	2482.219
28	-0.0023	0.00566	67.5	2607.701
29	-0.0014	0.00596	76.5	2519.732
30	-0.0005	0.00611	85.5	2130.526
31	0.00048	0.00611	94.5	1468.976
32	0.00143	0.00596	103.5	752,7973
33	0.00235	0.00566	112.5	248.5626
34	0.0032	0.00523	121.5	31.80575
35	0.00398	0.00466	130.5	51.79605
36	0.00466	0.00398	139.5	94.84539
37	0.00523	0.0032	148.5	226.8975
38	0.00566	0.00235	157.5	407.7933
39	0.00596	0.00143	166.5	651.9877
40	0.00611	0.00048	175.5	910.9666

npiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf3, silinder 3

Nu Aligned Re 750, Pf3, silinder 3

X	Y	θ	Nu
-0.0061	-0.0005	0. 0	2467.44
-0.006	-0.0014	-13.5	2517.9
-0.0057	-0.0023	-22.5	2451.94
-0.0052	-0.0032	-31.5	2281.37
-0.0047	-0.004	-40.5	2080.98
-0.004	-0.0047	-49.5	2000.36
-0.0032	-0.0052	-58.5	2045.89
-0.0023	-0.0057	-67.5	1902.29
-0.0014	-0.006	-76.5	1549.61
-0.0005	-0.0061	-85.5	1070.06
0.00048	-0.0061	-94.5	624.112
0.00143	-0.006	-103.5	318.571
0.00235	-0.0057	-112.5	151.482
0.0032	-0.0052	-121.5	76.5572
0.00398	-0.0047	-130.5	55.6586
0.00466	-0.004	-139.5	34.6106
0.00523	-0.0032	-148.5	69.4054
0.00566	-0.0023	-157.5	119.833
0.00596	-0.0014	-166.5	206.166
0.00611	-0.0005	-175.5	326.53
-0.0061	0.00048	-175.5	2509.2
-0.006	0.00143	13.5	2510.81
-0.0057	0.00235	22.5	2412.28
-0.0052	0.0032	31.5	2228.15
-0.0047	0.00398	40.5	2027.56
-0.004	0.00466	49.5	1935.61
-0.0032	0.00523	58.5	1954.34
-0.0023	0.00566	67.5	1772.69
-0.0014	0.00596	76.5	1375.76
-0.0005	0.00611	85.5	874.108
0.00048	0.00611	94.5	452.591
0.00143	0.00596	103.5	199.159
0.00235	0.00566	112.5	83.9832
0.0032	0.00523	121.5	44.954
0.00398	0.00466	130.5	49.3826
0.00466	0.00398	139.5	78.4253
0.00523	0.0032	148.5	159.233
0.00566	0.00235	157.5	267.235
0.00596	0.00143	166.5	382.234
0.00611	0.00048	175.5	444.67

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3192.11
2	-0.006	-0.0014	-13.5	3121.84
3	-0.0057	-0.0023	-22.5	2913.11
4	-0.0052	-0.0032	-31.5	2619.43
5	-0.0047	-0.004	-40.5	2319.87
6	-0.004	-0.0047	-49.5	2286.18
7	-0.0032	-0.0052	-58.5	2508.93
8	-0.0023	-0.0057	-67.5	2622.47
9	-0.0014	-0.006	-76.5	2528.16
10	-0.0005	-0.0061	-85.5	2162.61
11	0.00048	-0.0061	-94.5	1554.38
12	0.00143	-0.006	-103.5	844.075
13	0.00235	-0.0057	-112.5	288.559
14	0.0032	-0.0052	-121.5	24.3508
15	0.00398	-0.0047	-130.5	36.3896
16	0.00466	-0.004	-139.5	38.2496
17	0.00523	-0.0032	-148.5	98.6431
18	0.00566	-0.0023	-157.5	187.467
19	0.00596	-0.0014	-166.5	333.782
20	0.00611	-0.0005	-175.5	526.305
21	-0.0061	0.00048	-175.5	3227.49
22	-0.006	0.00143	13.5	3119.39
23	-0.0057	0.00235	22.5	2888.83
24	-0.0052	0.0032	31.5	2588.46
25	-0.0047	0.00398	40.5	2289.67
26	-0.004	0.00466	49.5	2251.48
27	-0.0032	0.00523	58.5	2459.07
28	-0.0023	0.00566	67.5	2547.14
29	-0.0014	0.00596	76.5	2411.12
30	-0.0005	0.00611	85.5	1979.32
31	0.00048	0.00611	94.5	1279.73
32	0.00143	0.00596	103.5	532.518
33	0.00235	0.00566	112.5	82.2765
34	0.0032	0.00523	121.5	28,1016
35	0.00398	0.00466	130.5	69.8855
36	0.00466	0.00398	139.5	112.672
37	0.00523	0.0032	148.5	230.408
38	0.00566	0.00235	157.5	392.172
39	0.00596	0.00143	166.5	587.661
40	0.00611	0.00048	175.5	724.131

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3265.345
2	-0.006	-0.0014	-13.5	3179.017
3	-0.0057	-0.0023	-22.5	2952.2
4	-0.0052	-0.0032	-31.5	2644.461
5	-0.0047	-0.004	-40.5	2334.583
6	-0.004	-0.0047	-49.5	2305.185
7	-0.0032	-0.0052	-58.5	2546.864
8	-0.0023	-0.0057	-67.5	2692.635
9	-0.0014	-0.006	-76,5	2641.436
10	-0.0005	-0.0061	-85.5	2318.368
11	0.00048	-0.0061	-94.5	1737.588
12	0.00143	-0,006	-103.5	1005.911
13	0.00235	-0.0057	-112.5	374.0893
14	0.0032	-0.0052	-121.5	16.92299
15	0.00398	-0.0047	-130.5	35.69315
16	0.00466	-0.004	-139.5	36.80028
17	0.00523	-0.0032	-148.5	100.9814
18	0.00566	-0.0023	-157.5	198.9027
19	0.00596	-0.0014	-166.5	359.8509
20	0.00611	-0.0005	-175.5	569.106
21	-0.0061	0.00048	-175.5	3299.368
22	-0.006	0.00143	13.5	3177.237
23	-0.0057	0.00235	22.5	2930.055
24	-0.0052	0.0032	31.5	2616.204
25	-0.0047	0.00398	40.5	2307.016
26	-0.004	0.00466	49.5	2273.685
27	-0.0032	0.00523	58.5	2501.621
28	-0.0023	0.00566	67.5	2624.228
29	-0.0014	0.00596	76.5	2534.461
30	-0.0005	0.00611	85.5	2150.088
31	0.00048	0.00611	94.5	1472.176
32	0.00143	0.00596	103.5	676.1431
33	0.00235	0.00566	112.5	108.1777
34	0.0032	0.00523	121.5	12.70757
35	0.00398	0.00466	130.5	66.70313
36	0.00466	0.00398	139.5	111.3526
37	0.00523	0.0032	148.5	235.764
38	0.00566	0.00235	157.5	407.0675
39	0.00596	0.00143	166.5	622.2072
40	0.00611	0.00048	175.5	785.9753

hpiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf3, silinder 4

Nu Aligned Re 750, Pf3, silinder 4

Y θ Nu X -0.00611 -0.00048 0.0 2594.98 -0.00596 -0.00143 -13.5 2595.395 -0.00566 -0.00235 -22.5 2490.897 -0.00523 -0.0032 -31.5 2294.797 -0.00466 -0.00398 -40.5 2081.104 -0.00398 -0.00466 -49.5 1992.99 -0.0032 -0.00523 -58.5 2025.24 -0.00235 -0.00566 -67.5 1854.41 -0.00143 -0.00596 -76.5 1457.237 -0.00048 -0.00611 -85.5 937.4866 0.00048 -0.00611 -94.5 490,1048 0.00143 -0.00596 -103.5 221.4444 0.00235 -0.00566 -112.5 101.5025 0.0032 -0.00523 -121.5 54.92607 0.00398 -0.00466 -130.5 41.86114 0.00466 -0.00398 -139.5 27.08456 0.00523 -0.0032 -148.5 65.4913 0.00566 -0.00235 -157.5 141.1801 0.00596 -0.00143 -166.5 259.4514 0.00611 -0.00048 -175.5 375.9644 -0.00611 0.00048 -175.5 2549.704 -0.00596 0.00143 13.5 2568.969 -0.00566 0.00235 22.5 2484.643 -0.00523 0.0032 31.5 2300.553 -0.00466 0.00398 40.5 2091.573 -0.00398 0.00466 49.5 2008.87 -0.0032 0.00523 58.5 2053.408 -0.00235 0.00566 67.5 1905.235 -0.00143 0.00596 76.5 1541.726 -0.00048 0.00611 85.5 1050.067 94.5 0.00048 0.00611 601.1202 0.00143 0.00596 103.5 305.0828 0.00235 0.00566 112.5 149.489 0.00523 0.0032 121.5 79.20804 0.00398 0.00466 130.5 58.20012 0.00466 0.00398 139.5 24.42974 0.00523 0.0032 148.5 41.21066 0.00566 0.00235 157.5 90.14418 0.00596 0.00143 166.5 175.3076 0.00611 0.00048 175.5 288.4056

No	X	Y	θ	Nu
1	-0.0061	-0.00048	0.0	3318.6
2	~0.006	-0.00143	-13.5	3201.67
3	-0.0057	-0.00235	-22.5	2960.1
4	-0.0052	-0.0032	-31.5	2648.74
5	-0.0047	-0.00398	-40.5	2339
6	-0.004	-0.00466	-49.5	2302.47
7	-0.0032	-0.00523	-58.5	2522.84
8	-0.0023	-0.00566	-67.5	2627.43
9	-0.0014	-0.00596	-76.5	2510.78
10	-0.0005	-0.00611	-85 .5	2102.87
11	0.00048	-0.00611	-94.5	1430.37
12	0.00143	-0.00596	-103.5	692.124
13	0.00235	-0.00566	-112.5	193.845
14	0.0032	-0.00523	-121.5	17.4288
15	0.00398	-0.00466	-130.5	43.7176
16	0.00466	-0.00398	-139.5	49.3699
17	0.00523	-0.0032	-148.5	137.895
18	0.00566	-0.00235	-157.5	318.23
19	0.00596	-0.00143	-166.5	584.389
20	0.00611	-0.00048	-175.5	859.264
21	-0.0061	0.000482	-175.5	3280.82
22	-0.006	0.001431	13.5	3179.58
23	-0.0057	0.002346	22.5	2953.81
24	-0.0052	0.003204	31.5	2650.03
25	-0.0047	0.003981	40.5	2343.35
26	-0.004	0.004662	49.5	2308.98
27	-0.0032	0.005227	58.5	2534.87
28	-0.0023	0.005664	67.5	2651.51
29	-0.0014	0.005962	7 6 .5	2559.08
30	-0.0005	0.006112	85.5	2193.67
31	0.00048	0.006112	94.5	1582.68
32	0.00143	0.005962	103.5	877.155
33	0.00235	0.005664	112.5	341.772
34	0.0032	0.005227	121.5	71.4694
35	0.00398	0.004662	130.5	21.4154
36	0.00466	0.003981	139.5	30.6179
37	0.00523	0.003204	148.5	64.6707
38	0.00566	0.002346	157.5	165.292
39	0.00596	0.001431	166.5	357.491
40	0.00611	0.000482	175.5	619.448

No	X	Y	θ	Nu
1	-0.00611	-0.0005	0.0	3390.799
2	-0.00596	-0.0014	-13.5	3259.494
3	-0.00566	-0.0023	-22.5	3001.364
4	-0.00523	-0.0032	-31.5	2676.586
5	-0.00466	-0.004	-40.5	2356.673
6	-0.00398	-0.0047	-49.5	2324.813
7	-0.0032	-0.0052	-58.5	2565.417
8	-0.00235	-0.0057	-67.5	2704.705
9	-0.00143	-0.006	-76.5	2635.684
10	-0.00048	-0.0061	-85.5	2277.804
11	0.00048	-0.0061	-94.5	1638.67
12	0.00143	-0.006	-103.5	867.9989
13	0.00235	-0.0057	~112.5	279.8517
14	0.0032	-0.0052	-121.5	7.481581
15	0.00398	-0.0047	-130.5	49.16135
16	0.00466	-0.004	-139.5	53.71192
17	0.00523	-0.0032	-148.5	140.2833
18	0.00566	-0.0023	-157.5	340.0088
19	0.00596	-0.0014	-166.5	641.838
20	0.00611	-0.0005	-175.5	954.3785
21	-0.00611	0.0005	-175.5	3354.792
22	-0.00596	0.0014	13.5	3238.447
23	-0.00566	0.0023	22.5	2995.085
24	-0.00523	0.0032	31.5	2677.32
25	-0.00466	0.004	40.5	2360.28
26	-0.00398	0.0047	49.5	2330.253
27	-0.0032	0.0052	58.5	2575.533
28	-0.00235	0.0057	67.5	2725.155
29	-0.00143	0.006	76.5	2677.3
30	-0.00048	0.0061	85.5	2357.467
31	0.00048	0.0061	94.5	1778.801
32	0.00143	0.006	103.5	1056.615
33	0.00235	0.0057	112.5	446.2043
34	0.0032	0.0052	121.5	98.96442
35	0.00398	0.0047	130.5	10.17573
36	0.00466	0.004	139.5	36.02945
37	0.00523	0.0032	148.5	68.09013
38	0.00566	0.0023	157.5	174.3189
39	0.00596	0.0014	166.5	387.0952
40	0.00611	0.0005	175.5	682.5135

npiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf3, silinder 5

Nu Aligned Re 750, Pf3, silinder 5

X		Y	θ	Nu
-0.00	611	-0.00048	0.0	1710
-0.00	596	-0.00143	-13.5	1660
-0.00	566	-0.00235	-22.5	1570
-0.00	523	-0.0032	-31.5	1453.569
-0.00	466	-0.00398	-40.5	1431.397
-0.00	398	-0.00466	-49.5	1410.895
-0.00	32	-0.00523	-58.5	1436.862
-0.00	235	-0.00566	-67.5	1310.492
-0.00	143	-0.00596	-76.5	1055.106
-0.00	048	-0.00611	-85.5	757.2375
0.000)48	-0.00611	-94.5	504.5878
0.00	143	-0.00596	-103.5	321.0851
0.002	235	-0.00566	-112.5	196.9393
0.00	32	-0.00523	-121.5	119.9879
0.003	398	-0.00466	-130.5	96.04597
0.004	166	-0.00398	-139.5	47.29569
0.005	523	-0.0032	-148.5	55.37991
0.005	566	-0.00235	-157.5	114.1853
0.005	596	-0.00143	-166.5	226.8111
0.006	511	-0.00048	-175.5	371.2602
-0.00	611	0.00048	-175.5	629.9445
-0.00	596	0.00143	13.5	1650
-0.00	566	0.00235	22.5	1580
-0.00	523	0.0032	31.5	1480
-0.00	466	0.00398	40.5	1436.262
-0.00	398	0.00466	49.5	1406.144
-0.00)32	0.00523	58.5	1423.94
-0.00	235	0.00566	67.5	1289.771
-0.00	143	0.00596	76.5	1024.214
-0.00	048	0.00611	85.5	718.2537
0.000)48	0.00611	94.5	460.5729
0.00	143	0.00596	103.5	278.2923
0.002	235	0.00566	112.5	158.4754
0.00	32	0.00523	121.5	90.39459
0.00	398	0.00466	130.5	66.67019
0.004	466	0.00398	139.5	38.44755
0.00	523	0.0032	148.5	82.28982
0.00	566	0.00235	157.5	176.0559
0.00	596	0.00143	166.5	318.9895
0.00	511	0.00048	175.5	454.2496

No	X	Y	θ	Nu
1	-0.0061	-0.00048	0.0	2240
2	-0.006	-0.00143	-13.5	2210
3	-0.0057	-0.00235	-22.5	2118.97
4	-0.0052	-0.0032	-31.5	2027.94
5	-0.0047	-0.00398	-40.5	1867.91
6	-0.004	-0.00466	-49.5	1881.66
7	-0.0032	-0.00523	-58.5	2076.92
8	-0.0023	-0.00566	-67.5	2155.85
9	-0.0014	-0.00596	-76.5	2043.71
10	-0.0005	-0.00611	-85.5	1711.86
11	0.00048	-0.00611	-94.5	1224.34
12	0.00143	-0.00596	-103.5	713.621
13	0.00235	-0.00566	-112.5	341.088
14	0.0032	-0.00523	-121.5	161.41
15	0.00398	-0.00466	-130.5	126.808
16	0.00466	-0.00398	-139.5	67.5547
17	0.00523	-0.0032	-148.5	114.101
18	0.00566	-0.00235	-157.5	242.529
19	0.00596	-0.00143	-166.5	475.465
20	0.00611	-0.00048	-175.5	754.997
21	-0.0061	0.000482	-175.5	786.714
22	-0.006	0.001431	13.5	2210
23	-0.0057	0.002346	22.5	2130
24	-0.0052	0.003204	31.5	2061.54
25	-0.0047	0.003981	40.5	1920.54
26	-0.004	0.004662	49.5	1916.39
27	-0.0032	0.005227	58.5	2100.25
28	-0.0023	0.005664	67.5	2174.56
29	-0.0014	0.005962	76.5	2057.95
30	-0.0005	0.006112	85.5	1699.92
31	0.00048	0.006112	94.5	1159.14
32	0.00143	0.005962	103.5	617.511
33	0.00235	0.005664	112.5	251.279
34	0.0032	0.005227	121.5	82.5141
35	0.00398	0.004662	130.5	58.8982
36	0.00466	0.003981	139.5	70.1489
37	0.00523	0.003204	148.5	175.378
38	0.00566	0.002346	157.5	351.191
39	0.00596	0.001431	166.5	605.776
40	0.00611	0.000482	175.5	855.006

No	X	Y	θ	Nu
1	-0.00611	-0.0005	0.0	2360
2	-0.00596	-0.0014	-13.5	2300
3	-0.00566	-0.0023	-22.5	2241.364
4	-0.00523	-0.0032	-31.5	2120.953
5	-0.00466	-0.004	-40.5	1939.758
6	-0.00398	-0.0047	-49.5	1956.228
7	-0.0032	-0.0052	-58.5	2177.566
8	-0.00235	-0.0057	-67.5	2293.91
9	-0.00143	-0.006	-76.5	2222.672
10	-0.00048	-0.0061	-85.5	1918.817
11	0.00048	-0.0061	-94.5	1428.208
12	0.00143	-0.006	-103.5	867.7293
13	0.00235	-0.0057	-112.5	417.4918
14	0.0032	-0.0052	-121.5	188.1436
15	0.00398	-0.0047	-130.5	145.2682
16	0.00466	-0.004	-139.5	78.03817
17	0.00523	-0.0032	-148.5	124.057
18	0.00566	-0.0023	-157.5	267.2557
19	0.00596	-0.0014	-166.5	535.1348
20	0.00611	-0.0005	-175.5	849.3682
21	-0.00611	0.0005	-175.5	1497.049
22	-0.00596	0.0014	13.5	2310
23	-0.00566	0.0023	22.5	2226.064
24	-0.00523	0.0032	31.5	2164.985
25	-0.00466	0.004	40.5	1998.253
26	-0.00398	0.0047	49.5	1996.074
27	-0.0032	0.0052	58.5	2205.507
28	-0.00235	0.0057	67.5	2317.589
29	-0.00143	0.006	76.5	2244.991
30	-0.00048	0.0061	85.5	1921.034
31	0.00048	0.0061	94.5	1372.508
32	0.00143	0.006	103.5	763.4604
33	0.00235	0.0057	112.5	315.4076
34	0.0032	0.0052	121.5	92.74129
35	0.00398	0.0047	130.5	60.84258
36	0.00466	0.004	139.5	68.30504
37	0.00523	0.0032	148.5	178.3888
38	0.00566	0.0023	157.5	366.1622
39	0.00596	0.0014	166.5	638.5925
40	0.00611	0.0005	175.5	918.8431

hpiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf5, silinder 1

Nu Staggered Re 750, Pf5, silinder 1

X Y θ Nu -0.0061 -0.0005 0.0 2579.27 -13.5 -0.006 -0.0014 2604.86 -22.5 -0.0057 -0.0023 2518.22 -31.5 -0.0052 -0.0032 2334.54 -40.5 -0.004 -0.0047 2142.64 -0.004 -0.0047 -49.5 2069.05 -58.5 -0.0032 -0.0052 2145.98 -0.0057 -67.5 -0.0023 2054.76 -0.0014 -0.006 -76.5 1772.44 -0.0005 -0.0061 -85.5 1357.89 -94.5 0.00048 -0.0061 913.361 -103.5 0.00143 -0.006 515.309 -112.5 0.00235 -0.0057 218.039 -121.5 0.0032 -0.0052 83.311 -130.5 0.00398 -0.0047 69.2627 -139.5 0.00466 -0.004 92.4891 0.00523 -0.0032 -148.5 190.794 -157.5 0.00566 -0.0023 314.756 0.00596 -166.5 -0.0014 473.434 0.00611 -0.0005 -175.5 619.043 -0.0061 0.00048 -175.5 2632.53 13.5 -0.006 0.00143 2622.83 -0.0057 0.00235 22.5 2510.61 31.5 2314.83 -0.0052 0.0032 -0.0047 0.00398 40.5 2118.43 49.5 -0.004 0.00466 2038.52 58.5 -0.0032 0.00523 2098.79 -0.0023 0.00566 67.5 1983.36 76.5 -0.0014 0.00596 1673.85 0.00611 85.5 -0.0005 1236.08 0.00048 0.00611 94.5 782.368 103.5 0.00596 0.00143 400.212 112.5 0.00235 0.00566 157.97 121.5 0.0032 0.00523 70.9193 130.5 0.00466 0.00398 67.5123 0.00466 0.00398 139.5 96.6256 148.5 0.00523 0.0032 192.243 157.5 0.00566 0.00235 316.088 166.5 0.00596 0.00143 479.211 0.00611 175.5 0.00048 639.415

NO	X	Y	9	Nu
1	-0.0061	-0.0005	0.0	3055.83
2	-0.006	-0.0014	-13.5	2995.14
3	-0.0057	-0.0023	-22.5	2806.66
4	-0.0052	-0.0032	-31.5	2537.8
5	-0.0047	-0.004	-40.5	2267.58
6	-0.004	-0.0047	-49.5	2234.92
7	-0.0032	-0.0052	-58.5	2448.57
8	-0.0023	-0.0057	-67.5	2558.71
9	-0.0014	-0.006	-76.5	2480.76
10	-0.0005	-0.0061	-85.5	2171.62
11	0.00048	-0.0061	-94.5	1675.54
12	0.00143	-0.006	-103.5	1082.81
13	0.00235	-0.0057	-112.5	452.568
14	0.0032	-0.0052	-121.5	38.6202
15	0.00398	-0.0047	-130.5	126.014
16	0.00466	-0.004	-139.5	224.976
17	0.00523	-0.0032	-148.5	390.739
18	0.00566	-0.0023	-157.5	582.811
19	0.00596	-0.0014	~166.5	791.538
20	0.00611	-0.0005	-175.5	965.421
21	-0.0061	0.00048	-175.5	3106.15
22	-0.006	0.00143	13.5	3013.4
23	-0.0057	0.00235	22.5	2803.38
24	-0.0052	0.0032	31.5	2525.4
25	-0.0047	0.00398	40.5	2251.97
26	-0.004	0.00466	49.5	2215.46
27	-0.0032	0.00523	58.5	2417.53
28	-0.0023	0.00566	67.5	2508.48
29	-0.0014	0.00596	76.5	2403.29
30	-0.0005	0.00611	85.5	2061.16
31	0.00048	0.00611	94.5	1531.78
32	0.00143	0.00596	103.5	911.812
33	0.00235	0.00566	112.5	302.184
34	0.0032	0.00523	121.5	28.5915
35	0.00398	0.00466	130.5	120.517
36	0.00466	0.00398	139.5	184.118
37	0.00523	0.0032	148.5	336.606
38	0.00566	0.00235	157.5	526.557
39	0.00596	0.00143	166.5	754.236
40	0.00611	0.00048	175.5	970.485

Nu Staggered Re 1000, Pf5, silinder 1

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3110.694
2	-0.006	-0.0014	-13.5	3037,198
3	-0.0057	-0.0023	-22.5	2834.498
4	-0.0052	-0.0032	-31.5	2554.39
5	-0.0047	-0.004	-40.5	2274.706
6	-0.004	-0.0047	-49.5	2245.951
7	-0.0032	-0.0052	-58.5	2475.037
8	-0.0023	-0.0057	-67.5	2611.228
9	-0.0014	-0.006	-76.5	2566.911
10	-0.0005	-0.0061	-85.5	2288.711
11	0.00048	-0.0061	-94.5	1809.384
12	0.00143	-0.006	-103.5	1216.575
13	0.00235	-0.0057	-112.5	571.6122
14	0.0032	-0.0052	-121.5	47.63134
15	0.00398	-0.0047	-130.5	103.9069
16	0.00466	-0.004	-139.5	233.2761
17	0.00523	-0.0032	-148.5	406.6539
18	0.00566	-0.0023	-157.5	608.8487
19	0.00596	-0.0014	-166.5	825.4266
20	0.00611	-0.0005	-175.5	1000.995
21	-0.0061	0.00048	-175.5	3159.645
22	-0.006	0.00143	13.5	3055.132
23	-0.0057	0.00235	22.5	2831.761
24	-0.0052	0.0032	31.5	2542.939
25	-0.0047	0.00398	40.5	2260.201
26	-0.004	0.00466	49.5	2227.845
27	-0.0032	0.00523	58.5	2446.069
28	-0.0023	0.00566	67.5	2564.044
29	-0.0014	0.00596	76.5	2493.314
30	-0.0005	0.00611	85.5	2182.04
31	0.00048	0.00611	94.5	1667.753
32	0.00143	0.00596	103.5	1044.406
33	0.00235	0.00566	112.5	389.7078
34	0.0032	0.00523	121.5	16.76119
35	0.00398	0.00466	130.5	112.2792
36	0.00466	0.00398	139.5	187.4368
37	0.00523	0.0032	148.5	339.0679
38	0.00566	0.00235	157.5	532.994
39	0.00596	0.00143	1 6 6.5	765.1152
40	0.00611	0.00048	175.5	988.8994

npiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf5, silinder 3

Nu Staggered Re 750, Pf5, silinder 3

_				
ALC: NO POST	X	Y	θ	Nu
	-0.00611	-0.00048	0.0	2766.764
	-0.00596	-0.00143	-13.5	2790.106
	-0.00566	-0.00235	-22.5	2678.288
	-0.00523	-0.0032	-31.5	2467.608
	-0.00466	-0.00398	-40.5	2244.005
	-0.00398	-0.00466	-49.5	2171.513
	-0.0032	-0.00523	-58.5	2268.72
	-0.00235	-0.00566	-67.5	2191.987
	-0.00143	-0.00596	-76.5	1900.726
	-0.00048	-0.00611	-85.5	1447.042
	0.00048	-0.00611	-94.5	961.4536
	0.00143	-0.00596	-103.5	538.3319
	0.00235	-0.00566	-112.5	230.7975
	0.0032	-0.00523	-121.5	96.31579
	0.00398	-0.00466	-130.5	78.1538
	0.00466	-0.00398	-139.5	64.35709
	0.00523	-0.0032	-148.5	128.8352
	0.00566	-0.00235	-157.5	192.4317
	0.00596	-0.00143	-166.5	296.1509
	0.00611	-0.00048	-175.5	439.3131
	-0.00611	0.00048	-175.5	2807.87
	-0.00596	0.00143	13.5	2776.397
	-0.00566	0.00235	22.5	2635.652
	-0.00523	0.0032	31.5	2414.749
	-0.00466	0.00398	40.5	2192.801
	-0.00398	0.00466	49.5	2113.514
1	-0.0032	0.00523	58.5	2188.993
1	-0.00235	0.00566	67.5	2082.318
	-0.00143	0.00596	76.5	1755.172
	-0.00048	0.00611	85.5	1273.388
	0.00048	0.00611	94.5	770.3724
1	0.00143	0.00596	103.5	357.9875
	0.00235	0.00566	112.5	129.853
	0.0032	0.00523	121.5	72.2037
	0.00398	0.00466	130.5	82.97256
	0.00466	0.00398	139.5	121.1301
	0.00523	0.0032	148.5	227.1384
	0.00566	0.00235	157.5	355.1582
	0.00596	0.00143	166.5	496.0719
	0.00611	0.00048	175.5	589.7904

No	X	Y	θ	Nu
1	-0.0061	-0.00048	0.0	3275.66
2	-0.006	-0.00143	-13.5	3203.15
3	-0.0057	-0.00235	-22.5	2980.28
4	-0.0052	-0.0032	-31.5	2675.92
5	-0.0047	-0.00398	-40.5	2372.18
6	-0.004	-0.00466	-49.5	2340.03
7	-0.0032	-0.00523	-58.5	2580.41
8	-0.0023	-0.00566	-67.5	2722.48
9	-0.0014	-0.00596	-76,5	2668.18
10	-0.0005	-0.00611	-85.5	2353.25
11	0.00048	-0.00611	-94 .5	1812.3
12	0.00143	-0.00596	-103.5	1161.21
13	0.00235	-0.00566	-112.5	454.057
14	0.0032	-0.00523	-121.5	51.4841
15	0.00398	-0.00466	-130.5	152.862
16	0.00466	-0.00398	-139.5	143.183
17	0.00523	-0.0032	-148.5	238.535
18	0.00566	-0.00235	-157.5	325.095
19	0.00596	-0.00143	-166.5	480.566
20	0.00611	-0.00048	-175.5	678.748
21	-0.0061	0.000482	-175.5	3314.08
22	-0.006	0.001431	13.5	3197.47
23	-0.0057	0.002346	22.5	2953.58
24	-0.0052	0.003204	31.5	2643.55
25	-0.0047	0.003981	40.5	2341.28
26	-0.004	0.004662	49 .5	2305.63
27	-0.0032	0.005227	58.5	2531.17
28	-0.0023	0.005664	67.5	2648.88
29	-0.0014	0.005962	76.5	2557.03
30	-0.0005	0.006112	85 .5	2188.09
31	0.00048	0.006112	94.5	1584
32	0.00143	0.005962	103.5	866.873
33	0.00235	0.005664	112.5	182.527
34	0.0032	0.005227	121.5	75.3194
35	0.00398	0.004662	130.5	124.995
36	0.00466	0.003981	139.5	164.039
37	0.00523	0.003204	148.5	316.056
38	0.00566	0.002346	157.5	504.224
39	0.00596	0.001431	166.5	726.376
40	0.00611	0.000482	175.5	906.325

Nu Staggered Re 1000, Pf5, silinder 3

No	X	Y	θ	Nu
1	-0.00611	-0.0005	0.0	3327.256
2	-0.00596	-0.0014	-13.5	3241.34
3	-0.00566	-0.0023	-22.5	3004.233
4	-0.00523	-0.0032	-31.5	2688.899
5	-0.00466	-0.004	-40.5	2376.583
6	-0.00398	-0.0047	-49.5	2348.213
7	-0.0032	-0.0052	-58.5	2603.668
8	-0.00235	-0.0057	-67.5	2771.896
9	-0.00143	-0.006	-76.5	2752.994
10	-0.00048	-0.0061	-85.5	2472.532
11	0.00048	-0.0061	-94.5	1949.123
12	0.00143	-0.006	-103.5	1290.909
13	0.00235	-0.0057	-112.5	519.9752
14	0.0032	-0.0052	-121.5	55.03371
15	0.00398	-0.0047	-130.5	184.8218
16	0.00466	-0.004	-139.5	168.9112
17	0.00523	-0.0032	-148.5	262.4219
18	0.00566	-0.0023	-157.5	349.8414
19	0.00596	-0.0014	-166.5	510.4819
20	0.00611	-0.0005	-175.5	716.7034
21	-0.00611	0.0005	-175.5	3364.534
22	-0.00596	0.0014	13.5	3236.7
23	-0.00566	0.0023	22.5	2979.773
24	-0.00523	0.0032	31.5	2659.194
25	-0.00466	0.004	40.5	2348.187
26	-0.00398	0.0047	49.5	2316.629
27	-0.0032	0.0052	58.5	2558.277
28	-0.00235	0.0057	67.5	2703.631
29	-0.00143	0.006	76.5	2648.602
30	-0.00048	0.0061	85.5	2314.511
31	0.00048	0.0061	94.5	1724.201
32	0.00143	0.006	103.5	986,124
33	0.00235	0.0057	112.5	213.1344
34	0.0032	0.0052	121.5	92.31356
35	0.00398	0.0047	130.5	141.0546
36	0.00466	0.004	139.5	165.7499
37	0.00523	0.0032	148.5	324.7784
38	0.00566	0.0023	157.5	522.9169
39	0.00596	0.0014	166.5	760.0776
40	0.00611	0.0005	175.5	956.037

hpiran B-1

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf5, silinder 4

Nu Staggered Re 750, Pf5, silinder 4

and the second se	X	Y	θ	Nu
	-0.0061	-0.0005	0.0	2880.77
	-0.006	-0.0014	-13.5	2847.08
	-0.0057	-0.0023	-22.5	2701.66
	-0.0052	-0.0032	-31.5	2474.25
	-0.0047	-0.004	-40.5	2243.04
	-0.004	-0.0047	-49.5	2166.04
	-0.0032	-0.0052	-58.5	2253
	-0.0023	-0.0057	-67.5	2155.53
	-0.0014	-0.006	-76.5	1829.32
	-0.0005	-0.0061	-85.5	1335.34
	0.00048	-0.0061	-94.5	818.166
	0.00143	-0.006	-103.5	395.683
	0.00235	-0.0057	-112.5	150.522
	0.0032	-0.0052	-121.5	83.5889
	0.00398	-0.0047	-130.5	70.2748
	0.00466	-0.004	-139.5	50.8806
	0.00523	-0.0032	-148.5	112.894
	0.00566	-0.0023	-157.5	205.271
	0.00596	-0.0014	-166.5	341.182
	0.00611	-0.0005	-175.5	477.607
	-0.0061	0.00048	-175.5	2838.21
	-0.006	0.00143	13.5	2825.65
	-0.0057	0.00235	22.5	2697.86
	-0.0052	0.0032	31.5	2479.42
	-0.0047	0.00398	40.5	2251.87
	-0.004	0.00466	49.5	2177.9
-	-0.0032	0.00523	58.5	2273.46
	-0.0023	0.00566	67.5	2192.97
	-0.0014	0.00596	76.5	1894.82
	-0.0005	0.00611	85.5	1433.93
	0.00048	0.00611	94.5	942.522
	0.00143	0.00596	103.5	519.37
	0.00235	0.00566	112.5	219.3
	0.0032	0.00523	121.5	95.6731
	0.00398	0.00466	130.5	73.0542
	0.00466	0.00398	139.5	37.5487
	0.00523	0.0032	148.5	80.2201
	0.00566	0.00235	157.5	145.491
	0.00596	0.00143	166.5	246.578
ĺ	0.00611	0.00049	175.5	276 027

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3395.15
2	-0.006	-0.0014	-13.5	3270.64
3	-0.0057	-0.0023	-22.5	3018.79
4	-0.0052	-0.0032	-31.5	2700.25
5	-0.0047	-0.004	-40.5	2388.94
6	-0.004	-0.0047	-49.5	2354.45
7	-0.0032	-0.0052	-58.5	2591.59
8	-0.0023	-0.0057	-67.5	2724.07
9	-0.0014	-0.006	-76.5	2648.98
10	-0.0005	-0.0061	-85.5	2298.21
11	0.00048	-0.0061	-94.5	1712.77
12	0.00143	-0.006	-103.5	1018.74
13	0.00235	-0.0057	-112.5	307.56
14	0.0032	-0.0052	-121.5	27.6873
15	0.00398	-0.0047	-130.5	72.515
16	0.00466	-0.004	-139.5	97.7001
17	0.00523	-0.0032	-148.5	239.504
18	0.00566	-0.0023	-157.5	447.388
19	0.00596	-0.0014	-166.5	726.763
20	0.00611	-0.0005	-175.5	978.965
21	-0.0061	0.00048	-175.5	3356.6
22	-0.006	0.00143	13.5	3250.6
23	-0.0057	0.00235	22.5	3013.36
24	-0.0052	0.0032	31.5	2701.53
25	-0.0047	0.00398	40.5	2393.05
26	-0.004	0.00466	49.5	2360.09
27	-0.0032	0.00523	58.5	2601.82
28	-0.0023	0.00566	67.5	2744.38
29	-0.0014	0.00596	76.5	2689.59
30	-0.0005	0.00611	85.5	2374.21
31	0.00048	0.00611	94.5	1836.83
32	0.00143	0.00596	103.5	1193.32
33	0.00235	0.00566	112.5	508.178
34	0.0032	0.00523	121.5	34.5266
35	0.00398	0.00466	130.5	53.9344
36	0.00466	0.00398	139.5	40.966
37	0.00523	0.0032	148.5	129.836
38	0.00566	0.00235	157.5	268.903
39	0.00596	0.00143	166.5	488.757
40	0.00611	0.00048	175.5	760.502

Nu Staggered Re 1000, Pf5, silinder 4

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3446.873
2	-0.006	-0.0014	-13.5	3310.719
3	-0.0057	-0.0023	-22.5	3045.602
4	-0.0052	-0.0032	-31.5	2716.245
5	-0.0047	-0.004	-40.5	2396.211
6	-0.004	-0.0047	-49.5	2365.73
7	-0.0032	-0.0052	-58.5	2619.007
8	-0.0023	-0.0057	-67.5	2779.511
9	-0.0014	-0.006	-76.5	2742.777
10	-0.0005	-0.0061	-85.5	2430.644
11	0.00048	-0.0061	-94.5	1865.713
12	0.00143	-0.006	-103.5	1165.763
13	0.00235	-0.0057	-112.5	383.4079
14	0.0032	-0.0052	-121.5	15.34407
15	0.00398	-0.0047	-130.5	69.43596
16	0.00466	-0.004	-139.5	103.1263
17	0.00523	-0.0032	-148.5	263.3826
18	0.00566	-0.0023	-157.5	490.1178
19	0.00596	-0.0014	-166.5	795.4063
20	0.00611	-0.0005	-175.5	1070.4
21	-0.0061	0.00048	-175.5	3409.687
22	-0.006	0.00143	13.5	3291.277
23	-0.0057	0.00235	22.5	3040.022
24	-0.0052	0.0032	31.5	2717.001
25	-0.0047	0.00398	40.5	2399.667
26	-0.004	0.00466	49.5	2370.536
27	-0.0032	0.00523	58.5	2627.804
28	-0.0023	0.00566	67.5	2797.171
29	-0.0014	0.00596	76.5	2778.682
30	-0.0005	0.00611	85.5	2499.264
31	0.00048	0.00611	94.5	1981.61
32	0.00143	0.00596	103.5	1334.694
33	0.00235	0.00566	112.5	602.9744
34	0.0032	0.00523	121.5	35.50902
35	0.00398	0.00466	130.5	46.47508
36	0.00466	0.00398	139.5	37.03076
37	0.00523	0.0032	148.5	139.2551
38	0.00566	0.00235	157.5	293.7323
39	0.00596	0.00143	166.5	533.7237
40	0.00611	0.00048	175.5	831.7632
TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf5, silinder 5

Nu Staggered Re 750, Pf5, silinder 5

		COMPANY NO.		Casherrandored
	X	¥ .	θ	Nu
	-0.00611	-0.00048	0.0	2350
	-0.00596	-0.00143	-13.5	2230
	-0.00566	-0.00235	-22.5	1970
	-0.00523	-0.0032	-31.5	1803.509
	-0.00466	-0.00398	-40.5	1730.102
	-0.00398	-0.00466	-49.5	1712.211
	-0.0032	-0.00523	-58.5	1789.809
	-0.00235	-0.00566	-67.5	1708:644
	-0.00143	-0.00596	-76.5	1462.353
	-0.00048	-0.00611	-85.5	1120.712
	0.00048	-0.00611	-94.5	786.4108
	0.00143	-0.00596	-103.5	505.4291
	0.00235	-0.00566	-112.5	285.6825
	0.0032	-0.00523	-121.5	139.4884
	0.00398	-0.00466	-130.5	87.1656
	0.00466	-0.00398	-139.5	38.57255
	0.00523	-0.0032	-148.5	71.6899
	0.00566	-0.00235	-157.5	155.3362
	0.00596	-0.00143	-166.5	284.5198
	0.00611	-0.00048	-175.5	442.2556
	-0.00611	0.00048	-1 75 .5	786.642
	-0.00596	0.00143	13.5	2280
	-0.00566	0.00235	22.5	2090
	-0.00523	0.0032	31.5	1900
	-0.00466	0.00398	40.5	1588.394
	-0.00398	0.00466	49.5	1570.856
	-0.0032	0.00523	58.5	1630.033
	-0.00235	0.00566	67.5	1544.202
	-0.00143	0.00596	76.5	1312.486
	-0.00048	0.00611	85.5	1003.403
	0.00048	0.00611	94.5	696.8762
	0.00143	0.00596	103.5	432.7416
	0.00235	0.00566	112.5	227.6993
	0.0032	0.00523	121.5	104.0441
	0.00398	0.00466	130.5	63.65584
	0.00466	0.00398	139.5	46.49089
	0.00523	0.0032	148.5	117.1064
	0.00566	0.00235	157.5	229.8692
	0.00596	0.00143	166.5	387.1283
1	0.00611	0.00049	175.5	522 0700

No	X	*	B	Nu
1	-0.0081	-0.00048	0.0	2620
2	-0.006	-0.00143	-13.5	2540
3	-0.0057	-0.00235	-22.5	2446.35
4	-0.0052	-0.0032	-31.5	2283.51
5	-0.0047	-0.00398	-40.5	2091.95
6	-0.004	-0.00466	-49.5	2104.92
7	-0.0032	-0.00523	-58.5	2338.41
.8	-0.0023	-0:00506	-67.5	2467.14
9	-0.0014	-0.00596	-76.5	2405.49
10	-0.0005	-0.00611	-85.5	2109.15
11	0.00048	-0.00611	-94.5	1629.23
12	0.00143	-0.00596	-103.5	1082.16
13	0.00235	-0.00566	-112.5	564.788
14	0.0032	-0.00523	-121.5	176.205
15	0.00398	-0.00466	-130.5	27.4557
16	0.00466	-0.00398	-139.5	41.8518
17	0.00523	-0.0032	-148.5	157.533
18	0.00566	-0.00235	-157.5	323.257
19	0.00596	-0.00143	-166.5	566.121
20	0.00611	-0.00048	-175.5	826.286
21	-0.0061	0.000482	-175.5	1089.66
22	-0.006	0.001431	13.5	2520
23	-0.0057	0.002346	22.5	2370
24	-0.0052	0.003204	31.5	2250
25	-0.0047	0.003981	40.5	1990
26	-0.004	0.004662	49.5	1875.54
27	-0.0032	0.005227	58.5	2064.83
28	-0.0023	0.005664	67.5	2149.79
29	-0.0014	0.005962	76.5	2062.63
30	-0.0005	0.006112	85.5	1778.99
31	0.00048	0.006112	94.5	1349.79
32	0.00143	0.005962	103.5	859.201
33	0.00235	0.005664	112.5	388.693
34	0.0032	0.005227	121.5	63.313
35	0.00398	0.004662	130.5	45.4256
36	0.00466	0.003981	139.5	114.033
37	0.00523	0.003204	148.5	258.84
38	0.00566	0.002346	157.5	458.989
39	0.00596	0.001431	166.5	712.053
40	0.00611	0.000482	175.5	936,977

Mar	×	× ·		NH
140	0.00001 4	0.0005	0.0	0700
1	0.00611	0.0005	-13.5	2/00
2	-0.00596	-0.0014	-22.5	2020
3	0.00500	-0.0023	-31.5	2000.913
4	-0.00523	-0.0032	40.5	2370.000
5	-0.00466	-0.004	-40.5	2157.008
6	-0.00398	-0.0047	-49.5	2172.955
1	-0.0032	-0.0052	-30.5	2430.214
.8	-0.00235	-0.0057	-07.0	2593:981
9	-0.00143	-0.006	-/0.0	2573.257
10	-0.00048	-0.0061	-85.5	2308.186
11	0.00048	-0.0061	-94.5	1833.165
12	0.00143	-0.006	-103.5	1258.662
13	0.00235	-0.0057	-112.5	687.2016
14	0.0032	-0.0052	-121.5	227.4486
15	0.00398	-0.0047	-130.5	21.5227
16	0.00466	-0.004	-139.5	34.46201
17	0.00523	-0.0032	-148.5	175.1947
18	0.00566	-0.0023	-157.5	365.2091
19	0.00596	-0.0014	-166.5	631.2921
20	0.00611	-0.0005	-175.5	910.1279
21	-0.00611	0.0005	-175.5	1222.943
22	-0.00596	0.0014	13.5	2710
23	-0.00566	0.0023	22.5	2670
24	-0.00523	0.0032	31.5	2520
25	-0.00466	0.004	40.5	2300
26	-0.00398	0.0047	49.5	1943.994
27	-0.0032	0.0052	58.5	2155.413
28	-0.00235	0.0057	67.5	2272.043
29	-0.00143	0.006	76.5	2219.105
30	-0.00048	0.0061	85.5	1957.661
31	0.00048	0.0061	94.5	1526.115
32	0.00143	0.006	103.5	1006.624
33	0.00235	0.0057	112.5	482.6441
34	0.0032	0.0052	121.5	74.89686
35	0.00398	0.0047	130.5	30.75655
36	0.00466	0.004	139.5	120.6358
37	0.00523	0.0032	148.5	276.8287
38	0.00566	0.0023	157.5	488.1493
39	0.00596	0.0014	166.5	759.3504
40	0.00611	0.0005	175.5	1000.934

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

Staggered Re 500, Pf7, silinder 1

Nu Staggered Re 750, Pf7, silinder 1

X	Y	θ	Nu
-0.0061	-0.0005	0.0	2417.94
-0.006	-0.0014	-13.5	2473.01
-0.0057	-0.0023	-22.5	2416.15
-0.0052	-0.0032	-31.5	2257.03
-0.0047	-0.004	-40.5	2088.99
-0.004	-0.0047	-49.5	2015.64
-0.0032	-0.0052	-58.5	2082.05
-0.0023	-0.0057	-67.5	1988.63
-0.0014	-0.006	-76.5	1722.18
-0.0005	-0.0061	-85.5	1342.74
0.00048	-0.0061	-94 .5	942.914
0.00143	-0.006	-103.5	578.328
0.00235	-0.0057	-112.5	270.773
0.0032	-0.0052	-121.5	111.905
0.00398	-0.0047	-130.5	106.137
0.00466	-0.004	-139.5	121.543
0.00523	-0.0032	-148.5	222.994
0.00566	-0.0023	-157.5	340.435
0.00596	-0.0014	-166.5	500.882
0.00611	-0.0005	-175.5	664.2
-0.0061	0.00048	-175.5	2481.92
-0.006	0.00143	13.5	2498.03
-0.0057	0.00235	22.5	2412.81
-0.0052	0.0032	31.5	2240.08
-0.0047	0.00398	40.5	2066.48
-0.004	0.00466	49.5	1986.82
-0.0032	0.00523	58.5	2038.71
-0.0023	0.00566	67.5	1924.81
-0.0014	0.00596	76.5	1635.79
-0.0005	0.00611	85.5	1237.78
0.00048	0.00611	94.5	829.658
0.00143	0.00596	103.5	470.565
0.00235	0.00566	112.5	204.499
0.0032	0.00523	121.5	104.787
0.00398	0.00466	130.5	106.648
0.00466	0.00398	139.5	139.361
0.00523	0.0032	148.5	256.656
0.00566	0.00235	157.5	398.076
0.00596	0.00143	166.5	583.75
0.00611	0.00048	175.5	748.416

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	2938.3
2	-0.006	-0.0014	-13.5	2900.14
3	-0.0057	-0.0023	-22.5	2734.91
4	-0.0052	-0.0032	-31.5	2484.99
5	-0.0047	-0.004	-40.5	2230.84
6	-0.004	-0.0047	-49.5	2197.18
7	-0.0032	-0.0052	-58.5	2397.86
8	-0.0023	-0.0057	-67.5	2493.31
9	-0.0014	-0.006	-76.5	2405.54
10	-0.0005	-0.0061	-85.5	2099.53
11	0.00048	-0.0061	-94.5	1622.59
12	0.00143	-0.006	-103.5	1065.98
13	0.00235	-0.0057	-112.5	449.2
14	0.0032	-0.0052	-121.5	50.914
15	0.00398	-0.0047	-130.5	161.657
16	0.00466	-0.004	-139.5	244.173
17	0.00523	-0.0032	-148.5	405.563
18	0.00566	-0.0023	-157.5	571.592
19	0.00596	-0.0014	-166.5	786.259
20	0.00611	-0.0005	-175.5	1006.16
21	-0.0061	0.00048	-175.5	2999.16
22	-0.006	0.00143	13.5	2925.57
23	-0.0057	0.00235	22.5	2735.74
24	-0.0052	0.0032	31.5	2474.94
25	-0.0047	0.00398	40.5	2216.55
26	-0.004	0.00466	49.5	2178.78
27	-0.0032	0.00523	58.5	2368.63
28	-0.0023	0.00566	67.5	2446.48
29	-0.0014	0.00596	76.5	2333.86
30	-0.0005	0.00611	85.5	1998.44
31	0.00048	0.00611	94.5	1493.53
32	0.00143	0.00596	103.5	917.722
33	0.00235	0.00566	112.5	296.104
34	0.0032	0.00523	121.5	90.1561
35	0.00398	0.00466	130.5	233.445
36	0.00466	0.00398	139.5	310.199
37	0.00523	0.0032	148.5	505.656
38	0.00566	0.00235	157.5	723.71
39	0.00596	0.00143	166.5	969.196
40	0.00611	0.00048	175.5	1166.3

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3003.752
2	-0.006	-0.0014	-13.5	2950.688
3	-0.0057	-0.0023	-22.5	2769.389
4	-0.0052	-0.0032	-31.5	2506.72
5	-0.0047	-0.004	-40.5	2241.612
6	-0.004	-0.0047	-49.5	2211.856
7	-0.0032	-0.0052	-58.5	2428.649
8	-0.0023	-0.0057	-67.5	2550.128
9	-0.0014	-0.006	-76.5	2494.173
10	-0.0005	-0.0061	-85.5	2214.577
11	0.00048	-0.0061	-94 ,5	1746.478
12	0.00143	-0.006	-103.5	1179.762
13	0.00235	-0.0057	-112.5	507.9434
14	0.0032	-0.0052	-121.5	45.10156
15	0.00398	-0.0047	-130.5	171.9588
16	0.00466	-0.004	-139.5	262.8456
17	0.00523	-0.0032	-148.5	424.7724
18	0.00566	-0.0023	-157.5	591.4774
19	0.00596	-0.0014	-166.5	804.4327
20	0.00611	-0.0005	-175.5	1026.598
21	-0.0061	0.00048	-175.5	3062.68
22	-0.006	0.00143	13.5	2975.511
23	-0.0057	0.00235	22.5	2770.643
24	-0.0052	0.0032	31.5	2497.565
25	-0.0047	0.00398	40.5	2228.401
26	-0.004	0.00466	49.5	2194.82
27	-0.0032	0.00523	58.5	2401.406
28	-0.0023	0.00566	67.5	2506.103
29	-0.0014	0.00596	76.5	2425.806
30	-0.0005	0.00611	85.5	2116.149
31	0.00048	0.00611	94.5	1617.525
32	0.00143	0.00596	103.5	1025.888
33	0.00235	0.00566	112.5	328.4397
34	0.0032	0.00523	121.5	96.37694
35	0.00398	0.00466	130.5	259.893
36	0.00466	0.00398	139.5	333.7319
37	0.00523	0.0032	148.5	527.5316
38	0.00566	0.00235	157.5	744.8334
39	0.00596	0.00143	166.5	990.3185
40	0.00611	0.00048	175.5	1188.551

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

Staggered Re 500, Pf7, silinder 3

Nu Staggered Re 750, Pf7, silinder 3

X	Ŷ	θ	Nu
-0.00611	-0.00048	0.0	2725.914
-0.00596	-0.00143	-13.5	2766.779
-0.00566	-0.00235	-22.5	2667.288
-0.00523	-0.0032	-31.5	2463.197
-0.00466	-0.00398	-40.5	2246.761
-0.00398	-0.00466	-49.5	2176.003
-0.0032	-0.00523	-58.5	2275.73
-0.00235	-0.00566	-67.5	2205.983
-0.00143	-0.00596	-76.5	1927.285
-0.00048	-0.00611	-85.5	1489.539
0.00048	-0.00611	-94.5	1009.588
0.00143	-0.00596	-103.5	571.8853
0.00235	-0.00566	-112.5	234.8945
0.0032	-0.00523	-121.5	140.2445
0.00398	-0.00466	-130.5	151.0304
0.00466	-0.00398	-139.5	130.5794
0.00523	-0.0032	-148.5	212.6277
0.00566	-0.00235	-157.5	291.7903
0.00596	-0.00143	-166.5	408.7297
0.00611	-0.00048	-175.5	547.5006
-0.00611	0.00048	-175.5	2777.451
-0.00596	0.00143	13.5	2755.178
-0.00566	0.00235	22.5	2624.248
-0.00523	0.0032	31.5	2409.921
-0.00466	0.00398	40.5	2194.953
-0.00398	0.00466	49.5	2117.417
-0.0032	0.00523	58.5	2195.064
-0.00235	0.00566	67.5	2095.116
-0.00143	0.00596	76.5	1782.58
-0.00048	0.00611	85.5	1315.735
0.00048	0.00611	94.5	820.5519
0.00143	0.00596	103.5	388.2184
0.00235	0.00566	112.5	146.9449
0.0032	0.00523	121.5	107.4002
0.00398	0.00466	130.5	120.4041
0.00466	0.00398	139.5	143.7913
0.00523	0.0032	148.5	256.9901
0.00566	0.00235	157.5	391.0894
0.00596	0.00143	166.5	555.7362
0.00611	0.00048	175.5	691.796

No	X	Y	θ	Nu
1	-0.0061	-0.00048	0.0	3191.48
2	-0.006	-0.00143	-13.5	3139,37
3	-0.0057	-0.00235	-22.5	2933.82
4	-0.0052	-0.0032	-31.5	2642.82
5	-0.0047	-0.00398	-40.5	2350.55
6	-0.004	-0.00466	-49.5	2317.67
7	-0.0032	-0.00523	-58.5	2548.94
8	-0.0023	-0.00566	-67.5	2678.95
9	-0.0014	-0.00596	-76.5	2613.21
10	-0.0005	-0.00611	-85.5	2293.38
11	0.00048	-0.00611	-94.5	1755.03
12	0.00143	-0.00596	-103.5	1099.43
13	0.00235	-0.00566	-112.5	330.975
14	0.0032	-0.00523	-121.5	180.24
15	0.00398	-0.00466	-130.5	325.421
16	0.00466	-0.00398	-139.5	316.47
17	0.00523	-0.0032	-148.5	470.128
18	0.00566	-0.00235	-157.5	619.064
19	0.00596	-0.00143	-166.5	795.193
20	0.00611	-0.00048	-175.5	941.991
21	-0.0061	0.000482	-175.5	3239.92
22	-0.006	0.001431	13.5	3136.27
23	-0.0057	0.002346	22.5	2906.98
24	-0.0052	0.003204	31.5	2609.61
25	-0.0047	0.003981	40.5	2318.66
26	-0.004	0.004662	49.5	2282.01
27	-0.0032	0.005227	58.5	2497.54
28	-0.0023	0.005664	67.5	2601.97
29	-0.0014	0.005962	76.5	2497.8
30	-0.0005	0.006112	85.5	2124.68
31	0.00048	0.006112	94.5	1525.3
32	0.00143	0.005962	103.5	743.858
33	0.00235	0.005664	112.5	140.417
34	0.0032	0.005227	121.5	253.36
35	0.00398	0.004662	130.5	273.765
36	0.00466	0.003981	139.5	241.898
37	0.00523	0.003204	148.5	399.195
38	0.00566	0.002346	157.5	573.638
39	0.00596	0.001431	166.5	798.321
40	0.00611	0.000482	175.5	1021.5

No	X	Y	θ	Nu
1	-0.00611	-0.0005	0.0	3244.101
2	-0.00596	-0.0014	-13.5	3177.824
3	-0.00566	-0.0023	-22.5	2957.738
4	-0.00523	-0.0032	-31.5	2655.665
5	-0.00466	-0.004	-40.5	2354.575
6	-0.00398	-0.0047	-49.5	2325.37
7	-0.0032	-0.0052	-58.5	2571.194
8	-0.00235	-0.0057	-67.5	2726.101
9	-0.00143	-0.006	-76.5	2693.156
10	-0.00048	-0.0061	-85.5	2403.554
11	0.00048	-0.0061	-94.5	1877.836
12	0.00143	-0.006	-103.5	1212.41
13	0.00235	-0.0057	-112.5	373.4223
14	0.0032	-0.0052	-121.5	197.8204
15	0.00398	-0.0047	-130.5	373.6047
16	0.00466	-0.004	-139.5	367.9709
17	0.00523	-0.0032	-148.5	526.8804
18	0.00566	-0.0023	-157.5	680.6946
19	0.00596	-0.0014	-166.5	856.554
20	0.00611	-0.0005	-175.5	998.5269
21	-0.00611	0.0005	-175.5	3290.906
22	-0.00596	0.0014	13.5	3175.722
23	-0.00566	0.0023	22.5	2933.237
24	-0.00523	0.0032	31.5	2625.204
25	-0.00466	0.004	40.5	2325.283
26	-0.00398	0.0047	49.5	2292.607
27	-0.0032	0.0052	58.5	2523.749
28	-0.00235	0.0057	67.5	2654.471
29	-0.00143	0.006	76.5	2584.163
30	-0.00048	0.0061	85.5	2240.289
31	0.00048	0.0061	94.5	1649.958
32	0.00143	0.006	103.5	835.6224
33	0.00235	0.0057	112.5	158.9943
34	0.0032	0.0052	121.5	314.2187
35	0.00398	0.0047	130.5	332.3952
36	0.00466	0.004	139.5	288.4671
37	0.00523	0.0032	148.5	450.6773
38	0.00566	0.0023	157.5	623.473
39	0.00596	0.0014	166.5	846.2037
40	0.00611	0.0005	175.5	1066.977

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

Staggered Re 500, Pf7, silinder 4

Nu Staggered Re 750, Pf7, silinder 4

X	Y	θ	Nu
-0.0061	-0.0005	0.0	2843.4
-0.006	-0.0014	-13.5	2820.54
-0.0057	-0.0023	-22.5	2686.2
-0.0052	-0.0032	-31.5	2466.21
-0.0047	-0.004	-40.5	2243.06
-0.004	-0.0047	-49.5	2168.01
-0.0032	-0.0052	-58.5	2256.83
-0.0023	-0.0057	-67.5	2165.89
-0.0014	-0.006	-76.5	1854.06
-0.0005	-0.0061	-85.5	1375.67
0.00048	-0.0061	-94.5	863.144
0.00143	-0.006	-103.5	410.852
0.00235	-0.0057	-112.5	164.42
0.0032	-0.0052	-121.5	141
0.00398	-0.0047	-130.5	144.251
0.00466	-0.004	-139.5	102.382
0.00523	-0.0032	-148.5	176.054
0.00566	-0.0023	-157.5	269.026
0.00596	-0.0014	-166.5	401.238
0.00611	-0.0005	-175.5	541.685
-0.0061	0.00048	-175.5	2795.52
-0.006	0.00143	13.5	2797.22
-0.0057	0.00235	22.5	2681.81
-0.0052	0.0032	31.5	2470.86
-0.0047	0.00398	40.5	2251.51
-0.004	0.00466	49.5	2179.26
-0.0032	0.00523	58.5	2276.09
-0.0023	0.00566	67.5	2201.08
-0.0014	0.00596	76.5	1915.32
-0.0005	0.00611	85.5	1469.84
0.00048	0.00611	94.5	985.57
0.00143	0.00596	103.5	546.34
0.00235	0.00566	112.5	219.902
0.0032	0.00523	121.5	135.862
0.00398	0.00466	130.5	131.708
0.00466	0.00398	139.5	86.4583
0.00523	0.0032	148.5	142.641
0.00566	0.00235	157.5	206.251
0.00596	0.00143	166.5	308.712
0.00611	0.00048	175.5	125 026

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3320.24
2	-0.006	-0.0014	-13.5	3208.35
3	-0.0057	-0.0023	-22.5	2971.19
4	-0.0052	-0.0032	-31.5	2665.57
5	-0.0047	-0.004	-40.5	2365.79
6	-0.004	-0.0047	-49.5	2330.42
7	-0.0032	-0.0052	-58.5	2557.59
8	-0.0023	-0.0057	-67.5	2676.71
9	-0.0014	-0.006	-76.5	2588.76
10	-0.0005	-0.0061	-85.5	2231.91
11	0.00048	-0.0061	-94.5	1647.3
12	0.00143	-0.006	-103.5	916.495
13	0.00235	-0.0057	-112.5	190.762
14	0.0032	-0.0052	-121.5	145.475
15	0.00398	-0.0047	-130.5	181.054
16	0.00466	-0.004	-139.5	161.355
17	0.00523	-0.0032	-148.5	309.187
18	0.00566	-0.0023	-157.5	497.846
19	0.00596	-0.0014	-166.5	745.074
20	0.00611	-0.0005	-175.5	977.041
21	-0.0061	0.00048	-175.5	3275.29
22	-0.006	0.00143	13.5	3185.23
23	-0.0057	0.00235	22.5	2964.46
24	-0.0052	0.0032	31.5	2666.29
25	-0.0047	0.00398	40.5	2369.74
26	-0.004	0.00466	49.5	2335.99
27	-0.0032	0.00523	58.5	2567.81
28	-0.0023	0.00566	67.5	2697.05
29	-0.0014	0.00596	76.5	2629.14
30	-0.0005	0.00611	85.5	2307.21
31	0.00048	0.00611	94.5	1769.36
32	0.00143	0.00596	103.5	1121.71
33	0.00235	0.00566	112.5	359.831
34	0.0032	0.00523	121.5	97.9068
35	0.00398	0.00466	130.5	174.465
36	0.00466	0.00398	139.5	127.501
37	0.00523	0.0032	148.5	219.635
38	0.00566	0.00235	157.5	344.321
39	0.00596	0.00143	166.5	548.433
40	0.00611	0.00048	175.5	792.895

No	X	Y	θ	Nu
1	-0.0061	-0.0005	0.0	3373.055
2	-0.006	-0.0014	-13.5	3249.051
3	-0.0057	-0.0023	-22.5	2998.288
4	-0.0052	-0.0032	-31.5	2681.711
5	-0.0047	-0.004	-40.5	2372.884
6	-0.004	-0.0047	-49.5	2341.396
7	-0.0032	-0.0052	-58.5	2584.23
8	-0.0023	-0.0057	-67.5	2730.127
9	-0.0014	-0.006	-76.5	2677.723
10	-0.0005	-0.0061	-85.5	2354.449
11	0.00048	-0.0061	-94.5	1785.167
12	0.00143	-0.006	-103.5	1049.011
13	0.00235	-0.0057	-112.5	230.4572
14	0.0032	-0.0052	-121.5	133.7745
15	0.00398	-0.0047	-130.5	187.3996
16	0.00466	-0.004	~139.5	180.6914
17	0.00523	-0.0032	-148.5	344.9232
18	0.00566	-0.0023	-157.5	552.1602
19	0.00596	-0.0014	-166.5	812.2367
20	0.00611	-0.0005	-175.5	1049.263
21	-0.0061	0.00048	-175.5	3329.571
22	-0.006	0.00143	13.5	3226.488
23	-0.0057	0.00235	22.5	2991.355
24	-0.0052	0.0032	31.5	2681.879
25	-0.0047	0.00398	40.5	2376.153
26	-0.004	0.00466	49.5	2346.122
27	-0.0032	0.00523	58.5	2593.044
28	-0.0023	0.00566	67.5	2747.923
29	-0.0014	0.00596	76.5	2713.751
30	-0.0005	0.00611	85.5	2423.292
31	0.00048	0.00611	94.5	1899.944
32	0.00143	0.00596	103.5	1245.69
33	0.00235	0.00566	112.5	420.7585
34	0.0032	0.00523	121.5	85.69827
35	0.00398	0.00466	130.5	177.8069
36	0.00466	0.00398	139.5	135.3509
37	0.00523	0.0032	148.5	237.9058
38	0.00566	0.00235	157.5	380.0274
39	0.00596	0.00143	166.5	604.0234
40	0.00611	0.00048	175.5	862.472

TA ANGKA NUSSELT SUSUNAN STAGGERED (NUMERIK)

taggered Re 500, Pf7, silinder 5

Nu Staggered Re 750, Pf7, silinder 5

	X	Y	θ	Nu
	-0.00611	-0.00048	0.0	1321.914
	-0.00596	-0.00143	-13.5	1844.083
	-0.00566	-0.00235	-22.5	2028.175
	-0.00523	-0.0032	-31.5	1973.046
	-0.00466	-0.00398	-40.5	1888.768
	-0.00398	-0.00466	-49.5	1857.966
	-0.0032	-0.00523	-58.5	1942.631
	-0.00235	-0.00566	-67.5	1868.27
	-0.00143	-0.00596	-76.5	1620.076
	-0.00048	-0.00611	-85.5	1263.571
	0.00048	-0.00611	-94.5	896.1789
	0.00143	-0.00596	-103.5	572.9476
1	0.00235	-0.00566	-112.5	305.3645
	0.0032	-0.00523	-121.5	141.0209
	0.00398	-0.00466	-130.5	91.48183
	0.00466	-0.00398	-139.5	41.75548
	0.00523	-0.0032	-148.5	92.90909
	0.00566	-0.00235	-157.5	183.8226
	0.00596	-0.00143	-166.5	308.1096
	0.00611	-0.00048	-175.5	458.9424
	-0.00611	0.00048	-175.5	887.3748
	-0.00596	0.00143	13.5	949.7036
	-0.00566	0.00235	22.5	1257.81
	-0.00523	0.0032	31.5	1405.762
	-0.00466	0.00398	40.5	1470.174
	-0.00398	0.00466	49.5	1462.725
	-0.0032	0.00523	58.5	1510.256
	-0.00235	0.00566	67.5	1421.926
	-0.00143	0.00596	76.5	1211.837
	-0.00048	0.00611	85.5	940.8175
	0.00048	0.00611	94.5	671.7715
	0.00143	0.00596	103.5	431.3045
	0.00235	0.00566	112.5	230.312
	0.0032	0.00523	121.5	112.9208
	0.00398	0.00466	130.5	77.79896
	0.00466	0.00398	139.5	59.74022
	0.00523	0.0032	148.5	142.9909
	0.00566	0.00235	157.5	255.3572
	0.00596	0.00143	166.5	404.7087
	0.00611	0.00048	175.5	550,4271

No	X	Y	θ	Nu
1	-0.0061	-0.00048	0.0	2212.39
2	-0.006	-0.00143	-13.5	2623.17
3	-0.0057	-0.00235	-22.5	2621.8
4	-0.0052	-0.0032	-31.5	2420.5
5	-0.0047	-0.00398	-40.5	2210.21
6	-0.004	-0.00466	-49.5	2203.62
7	-0.0032	-0.00523	-58.5	2432.54
8	-0.0023	-0.00566	-67.5	2557.66
9	-0.0014	-0.00596	-76.5	2491.64
10	-0.0005	-0.00611	-85.5	2188.58
11	0.00048	-0.00611	-94.5	1697.93
12	0.00143	-0.00596	-103.5	1125.4
13	0.00235	-0.00566	-112.5	526.893
14	0.0032	-0.00523	-121.5	78.7259
15	0.00398	-0.00466	-130.5	44.359
16	0.00466	-0.00398	-139.5	61.874
17	0.00523	-0.0032	-148.5	183.168
18	0.00566	-0.00235	-157.5	347.616
19	0.00596	-0.00143	-166.5	565.556
20	0.00611	-0.00048	-175.5	798.353
21	-0.0061	0.000482	-175.5	1465.53
22	-0.006	0.001431	13.5	1254.95
23	-0.0057	0.002346	22.5	1569.27
24	-0.0052	0.003204	31.5	1701.73
25	-0.0047	0.003981	40.5	1700.48
26	-0.004	0.004662	49.5	1719.29
27	-0.0032	0.005227	58.5	1866.94
28	-0.0023	0.005664	67.5	1902.67
29	-0.0014	0.005962	76.5	1782.05
30	-0.0005	0.006112	85.5	1502.44
31	0.00048	0.006112	94.5	1119.94
32	0.00143	0.005962	103.5	705.411
33	0.00235	0.005664	112.5	279.399
34	0.0032	0.005227	121.5	56.6609
35	0.00398	0.004662	130.5	101.493
36	0.00466	0.003981	139.5	159.954
37	0.00523	0.003204	148.5	322.603
38	0.00566	0.002346	157.5	514.075
39	0.00596	0.001431	166.5	747.227
40	0.00611	0.000482	175.5	947.599

No	Y	V	A	Nu
140	0.00011	0.0005	0.0	2410 734
	0.00011	-0.0005	-13.5	2782 422
2	-0.00590	-0.0014	-10.0	2702.433
3	-0.00500	-0.0023	-22.0	2/39.012
4	-0.00523	-0.0032	-31.5	2511.891
5	-0.00466	-0.004	-40.5	22/5.980
6	-0.00398	-0.0047	-49.5	2270.052
7	-0.0032	-0.0052	-00.0	2521.874
8	-0.00235	-0.0057	-07.5	2681.493
9	-0.00143	-0.006	-/6.5	2655.51
10	-0.00048	-0.0061	-85.5	2382.285
11	0.00048	-0.0061	-94.5	1894.165
12	0.00143	-0.006	-103.5	1293.377
13	0.00235	-0.0057	-112.5	635.7209
14	0.0032	-0.0052	-121.5	84.97707
15	0.00398	-0.0047	-130.5	34.60399
16	0.00466	-0.004	-139.5	65.99073
17	0.00523	-0.0032	-148.5	209.1592
18	0.00566	-0.0023	-157.5	390.1283
19	0.00596	-0.0014	-166.5	624.5216
20	0.00611	-0.0005	-175.5	865.6935
21	-0.00611	0.0005	-175.5	1669.733
22	-0.00596	0.0014	13.5	1449.006
23	-0.00566	0.0023	22.5	1726.211
24	-0.00523	0.0032	31.5	1820.06
25	-0.00466	0.004	40.5	1781.895
26	-0.00398	0.0047	49.5	1800.364
27	-0.0032	0.0052	58.5	1970.21
28	-0.00235	0.0057	67.5	2035.436
29	-0.00143	0.006	76.5	1941.203
30	-0.00048	0.0061	85.5	1670.339
31	0.00048	0.0061	94.5	1271.02
32	0.00143	0.006	103.5	818.0606
33	0.00235	0.0057	112.5	324.3581
34	0.0032	0.0052	121.5	49.75699
35	0.00398	0.0047	130.5	114.9337
36	0.00466	0.004	139.5	183.3517
37	0.00523	0.0032	148.5	357.0386
38	0.00566	0.0023	157.5	562.9412
39	0.00596	0.0014	166.5	807.1183
40	0.00611	0.0005	175.5	1015.134

Lampiran B-II

Re	Т	T	T	T	AT	Tu	Ter Ta	The Tr	Terr
1.0	.0		100	• 01		rerata	11 10	10 10	·ex
500	102.49	92.9238	70.35	26	44.35	48.18	44.75	54.31	93.70
750	83.79	75.5095	58.15	26	32.15	42.08	33.43	41.72	76.18
1000	75.90	67.1714	53.25	26	27.25	39.63	27.55	36.28	67.88
dud and and a second second	J		Laure	L		1			1
	m	q	q"	h					. 3/2
Re	kg/s	W	W/m ²	W/m ² .K	ηf	ηΟ	St	Ĵн	Lc ^{3/2} (hkAp) ^{1/2}
500	0.0040	180.486	808.09	17.7519	0.824	0.838	0.0249	0.01968	0.0669554
750	0.0062	199.642	893.86	26.2099	0.801	0.817	0.0241	0.01905	0.0988569
1000	0.0083	227 536	1018 75	34 1572	0 759	0 779	0.0233	0.01847	0 1288321

<u>Tabel Hasil Perhitungan (Eksperimental)</u>

the second se	COLOR DE LA COL	COLUMN TWO IS NOT THE OWNER WITH THE PARTY OF THE PARTY O	Statement and shade to prove the later of the	In 17th Million State Consults Statements in a	And in the Carl and Carl and the Carl and th	
			dialest bad	CONTRACTOR OF A		1000
the second second as an in the second	The second second second	and only state, indeed only saids		A second s	and the second state of the second state and	
FGHUNGI						
	And the state	ALC: NO DE COMPANY			the state of the state of the state	
						_

Re	Ть	Tr	Tuo	Tul	ΔΤ	T _u irerata	Tr-T.	T₀ - T∞	T _{ex}
500	86.89	76.96	62.41	26	36.41	44.21	32.76	42.69	77.46
750	76.94	67.84	54.92	26	28.92	40.46	27.38	36.48	68.30
1000	69.96	60.74	49.97	26	23.97	37.99	22.75	31.98	61.21

Re	m	q	q"	h		ηο		jн	Lc ^{3/2} (hkAp) ^{1/2}
	kg/s	W	W/m ²	W/m ² .K	ា្		St		
500	0.0068	250.354	723.65	21.7596	0,767	0.779	0.0175	0.01383	0.0820716
750	0.0104	302.582	874.62	31.4163	0.751	0.763	0.0166	0.01313	0.1184938
1000	0.0139	335.731	970.44	41.7918	0.712	0.726	0.0165	0.01305	0.1576276

Line of the second s	A REAL PROPERTY AND A REAL		Contraction of the second second	And a second sec	the second se	
Penukar	Panas	dengan	Pf =	3 mm	(Stagge	ered)

Re	Ть	Tr	Tuo	Tui	ΔΤ	T _u rerata	T _f - T.	T _b - T⊷	T _{ex}
500	75.61	62.61	56.62	26	30.62	41.31	21.30	34.30	63.10
750	66.52	53.94	49.13	26	23.13	37.56	16.38	28.96	54.42
1000	57.01	46.6697	44.87	26	18.87	35.44	11.23	21.57	47.06

Re	m	q	q"	h		if ηο		-		1 312/11 0-11/2
	kg/s	W	W/m ²	W/m ² .K	η រ		St	нl	LC (nikAp)	
500	0.0092	282.455	630.25	28.9182	0.621	0.635	0.0168	0.01333	0.1090717	
750	0.0138	322.214	718.96	42.6603	0.566	0.582	0.0164	0.01303	0.1609035	
1000	0.0186	354.148	790.22	57.3648	0.521	0.539	0.0164	0.01301	0.2163647	

Lampiran Tabel Suhu, Properties, dan Perhitungan

IN A TO A TO PORT A TITLE

TABEL SUHU, PROPERTIS, DAN PERHITUNGAN (Eksperimen, Aligned)

$P_{r} = 3 \text{ mm}$	$P_{r} = 3$		m
------------------------	-------------	--	---

<u>DATA BENDA UJI :</u>									
$D_t = 0.0156 \text{ m}$	$A_b = 0.010586 \text{ m}^2$	$A_{f}/A_{t} = 0.9717$							
$T_{f} = Lf = 0.1 m$	$A_f = 0.01818 \text{ m}^2$	$A_{\rm ff}/A_{\rm fr}(\sigma) = 0.9$							
$t_f = 0.0003 \text{ m}$	$A_{\rm ff} = 0.0054 {\rm m}^2$	$A_t/V_t(\alpha) = 623.667 \text{ m}^2/\text{m}^3$							
$N_{f} = 20$	$A_{fr} = 0.006 m^2$								
$P_f = 0.003 m$	$A_t = 0.3742 \text{ m}^2$								
$P_{b} = 0.06 m$	$V_t = 0.0006 \text{ m}^3$								
P = 3.9026 m									
$D_{h} = 0.005534 \text{ m}$									

TABEL SUHU

Re -		Suhu (°C)													
	T _{b1}	T _{b2}	Тъ	T _f	Tao	T _{ai}	ΔT	T∞	$T_{f} - T_{\infty}$	T _b - T _∞					
500	72.87	86.04	79.46	68.28	55.88	26.00	29.88	40.94	27.33	38.51					
750	63.97	76.60	70.28	60.16	48.85	26.00	22.85	37.43	22.73	32.86					
1000	57.88	71.84	64.86	55.26	44.93	26.00	18.93	35.47	19.79	29.40					

TABEL DATA PROPERTI (Tabel A4)

Re	T∞	ρ	c _p	Pr
	K	kg/m ³	J/kg.K	
500	313.942	1.080	1007.977	0.704
750	310.425	1.099	1007.745	0.704
1000	308.467	1.111	1007.604	0.705

Re	v	A _{fr}	A _{ff}	Ab	A _f	N _f *A _f	A	m	q	q"	Tex	h	ne	n	St	I.,
Inc	m/s	m ²	m ²	m ²	m ²	m ²	m ²	kg/s	W	W/m ²	K	W/m ² .K	ι α	16	50	J.H
500	1.5000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0097	292.8094	782.5236	68.5913	28.3014	0.7097	0.7179	0.0156	0.0123
750	2.2000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0145	334.1791	893.0829	60.4448	38.7963	0.6919	0.7006	0.0143	0.0113
1000	2.9000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0193	368.8507	985.7417	55.5301	49.1313	0.6732	0.6825	0.0136	0.0108

Lampiran Tabel Suhu, Properties, dan Perhitungan

TABEL SUHU, PROPERTIS,	DAN PERHITUNGAN	(Eksperimen, Aligned)
	$P_f = 5 mm$	

DATA BENDA UJI :

$D_t = 0.0156 \text{ m}$	$A_b = 0.0110564 \text{ m}^2$	$A_f/A_t = 0.95175$
$T_{f} = Lf = 0.1 m$	$A_f = 0.01818 \text{ m}^2$	$A_{\rm ff}/A_{\rm fr}(\sigma) = 0.94$
$t_f = 0.0003 m$	$A_{\rm ff} = 0.00564 {\rm m}^2$	$A_t/V_t(\alpha) = 382.033 \text{ m}^2/\text{m}^3$
$N_{f} = 12$	$A_{fr} = 0.006 m^2$	
$P_{f} = 0.005 \text{ m}$	$A_t = 0.22922 \text{ m}^2$	
$P_{b} = 0.06 \text{ m}$	$V_t = 0.0006 \text{ m}^3$	
P = 2.3034 m		

 $D_h = 0.009794 \text{ m}$

TABEL SUHU

Re		Suhu (°C)													
	T _{b1}	T _{b2}	Tb	T _f	Tuo	Tui	ΔΤ	Τ _∞	$T_f - T_{\infty}$	Τ _b - Τ _∞					
500	87.32	104.62	95.97	83.94	70.17	26.00	44.17	48.08	35.86	47.89					
750	77.67	92.13	84.90	74.17	59.37	26.00	33.37	42.68	31.48	42.22					
1000	69.82	81.71	75.76	66.31	51.98	26.00	25.98	38.99	27.32	36.77					

TABEL DATA PROPERTI (Tabel A4)

Re	T∞	ρ	Cp	Pr
	K	kg/m ³	J/kg.K	
500	321.083	1.080	1007.977	0.704
750	315.683	1.099	1007.745	0.704
1000	311.992	1.111	1007.604	0.705

Re	v	Afr	A _{ff}	Ab	A _f	N _f *A _f	At	m	q	q"	Tex	h	7.	n	St	I.,
nu	m/s	m ²	m ²	m ²	m ²	m ²	m ²	kg/s	W	W/m ²	K	W/m ² .K	'U'	10		-1
500	0.7500	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0049	216.3817	944.0063	84.5218	25.9068	0.7488	0.7609	0.0298	0.0236
750	1.1000	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0073	243.9922	1064.4622	74.6844	33.2633	0.7458	0.7580	0.0257	0.0203
1000	1.5000	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0100	261.8253	1142.2627	66.7644	41.1289	0.7429	0.7553	0.0230	0.0182

Lampiran Tabel Suhu, Properties, dan Perhitungan

TABEL SUHU, PROPERTIS, DAN PERHITUNGAN (Eksperimen, Aligned)

	$P_f = 7 \text{ mm}$												
DATA BENDA U.	DATA BENDA UJI :												
$D_t = 0.0156 \text{ m}$	$A_b = 0.01117 \text{ m}^2$	$A_{f}/A_{t} = 0.9421$											
$T_{f} = Lf = 0.1 m$	$A_f = 0.01818 \text{ m}^2$	$A_{\rm ff}/A_{\rm fr}(\sigma) = 0.95$											
$t_f = 0.0003 \text{ m}$	$A_{\rm ff} = 0.0057 {\rm m}^2$	$A_t/V_t(\alpha) = 321.617 \text{ m}^2/\text{m}^3$											
$N_{f} = 10$	$A_{fr} = 0.006 m^2$												
$P_f = 0.007 m$	$A_t = 0.19297 \text{ m}^2$												
$P_{b} = 0.06 \text{ m}$	$V_t = 0.0006 \text{ m}^3$												
P = 1.9206 m													
$D_h = 0.01187 m$													

TABEL SUHU

Re		Suhu (°C)													
100	T _{b1}	T _{b2}	Тъ	T _f	Tuo	Tui	ΔΤ	Τ _∞	$T_f - T_{\infty}$	T _b - T _{co}					
500	99.53	115.51	107.52	96.88	75.87	26.00	49.87	50.93	45.94	56.59					
750	91.15	106.51	98.83	87.68	64.25	26.00	38.25	45.13	42.55	53.71					
1000	83.80	98.11	90.96	80.05	57.18	26.00	31.18	41.59	38.46	49.36					

TABEL DATA PROPERTI (Tabel A4)

Re	T∞ K	ρ kg/m ³	с _р J/kg.K	Pr
500	323.933	1.080	1007.977	0.704
750	318.125	1.099	1007.745	0.704
1000	314.592	1.111	1007.604	0.705

Re	v	A _{fr}	Aff	A _b	A _f	N _f *A _f	A,	m	q	q"	Tex	h	h ŋr		St	J _H
	m/s	m ²	m ²	m ²	m ²	m ²	m ²	kg/s	W	W/m ²	K	W/m ² .K	-			
500	0.6000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0039	195.4458	1012.8299	97.4913	21.7542	0.8118	0.8227	0.0316	0.0250
750	0.9000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0059	228.8466	1185.9178	88.3207	27.4545	0.7923	0.8043	0.0262	0.0207
1000	1.2000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0080	251.3792	1302.6854	80.6813	33.3256	0.7791	0.7919	0.0236	0.0187

P_f = 3 mm (Aligned , Numerik)

DATA BENDA UJI :

 $\begin{array}{lll} D_t = 0.0156 \ m & A_b = 0.010586 \ m^2 & A_f/A_t = 0.9717 \\ T_f = Lf = 0.1 \ m & A_f = 0.01818 \ m^2 & A_{ff}/A_{fr}(\sigma) = 0.9 \\ t_f = 0.0003 \ m & A_{ff} = 0.0054 \ m^2 & A_{t'}/V_t(\alpha) = 623.667 \ m^2/m^3 \\ N_f = 20 & A_{fr} = 0.006 \ m^2 \\ P_f = 0.003 \ m & A_t = 0.3742 \ m^2 \\ P_b = 0.06 \ m & V_t = 0.0006 \ m^3 \\ P = 3.9026 \ m \\ D_h = 0.005534 \ r \end{array}$

	TABEL SUHU														
Re		Suhu (°C)													
	Tat	T _{b2}	Tb	Tr	Tuo	Tui	ΔΤ	Ta	Tr-Tm	Tp - Tm					
500	101.86	120.77	111.32	95.15	52.63	26.00	26.63	39.31	55.84	72.00					
750	88.72	104.02	96.37	81.34	44.42	26.00	18.42	35.21	46.13	61.16					
1000	81.23	94.52	87.87	74.76	40.36	26.00	14.36	33.18	41.58	54.70					

TABEL DATA PROPERTI (Tabel A4)

Re	T.	ρ	Ср	Pr
	К	kg/m ³	J/kg.K	
500	312.313	1.080	1007.977	0.704
750	308.210	1.099	1007.745	0.704
1000	306.179	1.111	1007.604	0.705

TARFI	PERHITI	INGAN

Re	۷	Afr	Aff	Ab	Ar	Nf*Af	At	m	q	q"	T _{ex}	h	ne	The	St	ժս
	m/s	m ²	m ²	m ²	m ²	m²	m ²	kg/s	W	W/m ²	K	W/m ² .K	.4	.10		-7
500	1.5000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0097	126.0000	4458.5987	95.6072	79.2017	0.7755	0.7818	0.0436	0.0345
750	2.2000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0145	126.0000	4458.5987	81.7617	95.7776	0.7542	0.7612	0.0354	0.0280
1000	2.9000	0.0060	0.0054	0.0106	0.0182	0.3636	0.3742	0.0193	126.0000	4458.5987	75.1339	106.2703	0.7466	0.7538	0.0295	0.0233

P_f = 5 mm (Aligned, Numerik)

DATA BENDA UJI :

	TABLE SOTIO														
Re		Suhu (°C)													
	T _{b1}	T _{b2}	Tb	Tr	Tuo	Tut	ΔΤ	T.	$T_f = T_{\rm sec}^{\rm c}$	Tb - Too					
500	136.75	164.90	150.82	133.80	78.93	26.00	52.93	52.46	81.33	98.36					
750	115.29	138.00	126.64	111.13	62.30	26.00	36.30	44.15	66.98	82.49					
1000	101.83	120.76	111.30	96.75	52.63	26.00	26.63	39.31	57.44	71.98					

TADEL CULU

TABEL DATA PROPERTI (Tabel A4)

Re	Teo	ρ	Ср	Pr
	к	kg/m ³	J/kg.K	
500	325.463	1.080	1007.977	0.704
750	317.152	1.099	1007.745	0.704
1000	312.313	1.111	1007.604	0.705

Re	v	Afr	An	Ab	Ar	Nf*Af	A _t	m	q	q"	T _{ex}	h	The	Te	St	Ju
	m/s	m ²	m ²	m ²	m ²	m²	m ²	kg/s	W	W/m ²	K	W/m ² .K	-ध	.10		-14
500	0.7500	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0049	126.0000	4458.5987	134.6173	54.2708	0.8269	0.8352	0.0625	0.0494
750	1.1000	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0073	126.0000	4458.5987	111.8765	65.8342	0.8119	0.8210	0.0508	0.0402
1000	1.5000	0.0060	0.0056	0.0111	0.0182	0.2182	0.2292	0.0100	126.0000	4458.5987	97.4529	76.6874	0.7979	0.8077	0.0429	0.0340

P_f = 7 mm (Aligned, Numerik)

DATA BENDA UJI :

 $\begin{array}{lll} D_t = 0.0156 \mbox{ m} & A_b = 0.01117 \mbox{ m}^2 & A_{ff}/A_t = 0.9421 \\ T_f = Lf = 0.1 \mbox{ m} & A_f = 0.01818 \mbox{ m}^2 & A_{ff}/A_{fr}(\sigma) = 0.95 \\ t_f = 0.0003 \mbox{ m} & A_{ff} = 0.0057 \mbox{ m}^2 & A_{t}/V_t(\alpha) = 321.617 \mbox{ m}^2/\mbox{m}^3 \\ N_f = 1 & A_{fr} = 0.006 \mbox{ m}^2 \\ P_f = 0.007 \mbox{ m} & A_t = 0.19297 \mbox{ m}^2 \\ P_b = 0.06 \mbox{ m} & V_t = 0.0006 \mbox{ m}^3 \end{array}$

P = 1.9206 m

D_h = 0.01187 m

TABEL SUHU

Re		Suhu (°C)													
	T _{b1}	T _{b2}	Tb	Tf	Tuo	T _{ui}	ΔΤ	T _{ee}	Tr-T.	Tb - Tw					
500	152.08	183.71	167.89	149.92	91.67	26.00	65.67	58.84	91.08	109.06					
750	125.88	151.27	138.57	122.27	70.25	26.00	44.25	48.13	74.14	90.45					
1000	111.27	132.77	122.02	115.92	59.29	26.00	33.29	42.65	73.27	79.38					

TABEL DATA PROPERTI (Tabel A4)

Re	Te	ρ	cp	Pr
	K	kg/m ³	J/kg.K	
500	331.835	1.080	1007.977	0.704
750	321.127	1.099	1007.745	0.704
1000	315.645	1.111	1007.604	0.705

Re	v	Afr	Aff	Ab	Ar	N/*Ar	At	m	q	q"	T _{ex}	h	ne	no	St	JH
	m/s	m ²	m²	kg/s	W	W/m ²	К	W/m ² .K		.10	都認識					
500	0.6000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0039	126.0000	4458.5987	150.9587	48.3981	0.8352	0.8447	0.0704	0.0557
750	0.9000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0059	126.0000	4458.5987	123.2100	59.3823	0.8197	0.8301	0.0566	0.0448
1000	1.2000	0.0060	0.0057	0.0112	0.0182	0.1818	0.1930	0.0080	126.0000	4458.5987	116.2702	60.5582	0.8065	0.8177	0.0428	0.0339

P_f = 3 mm (Staggered)

DATA BENDA UJI :

		LC = 0.056 m
D _t = 0.0126 m	A _b = 0.0170357m2	Ap = 0.001608 n
$T_f = L_f = 0.1 m$	A _f = 0.43113 m2	k = 177 W/m.K
t _f = 0.0003 m	A _{ff} = 0.00537 m2	
N _f = 1	$A_{ff}/A_{fr}(\sigma) = 0.0895$	
P _f = 0.003 m	$V_{tot} = 0.0006 \text{ m}3$	
P _b = 0.06 m	$A_{tot}/V_{tot}(\alpha) = 746.9428 \text{ m}2/m$	
P = 4,012 m	$A_{f/}A_{tot} = 0.961988$	
$D_{\rm b} = 0.005354$ m	0.0054	

		Suhu (°C)													
Re	T _{b1}	T _{b2}	T _{b3}	Tba	Tb	Tr	Tuo	Tui	ΔΤ	T.o	Tr-Tw	T _b - T ₊			
500	70.53	73.59	75.41	85.76	76.32	73.09	50.40	26.00	24.40	38.20	34.89	38,13			
750	56.94	58.86	60.43	67.87	61.02	57.83	39.30	26.00	13.30	32.65	25.18	28.37			
1000	55.40	57.16	58.59	65.58	59.19	55.97	38.12	26.00	12.12	32.06	23.91	27.13			

0.000

TABEL DATA PROPERTI (Tabel A4)

Re	T.	ρ	cp	Pr
	К	kg/m ³	J/kg.K	
500	311.199	1.080	1007.977	0.704
750	305.648	1.099	1007.745	0.704
1000	305.060	1.111	1007.604	0.705

Re	v	Afr	Aff	Ab	Af	Nf*Af	A _t	m	q	q"	Tex	h	174	ne	St	Ju
	m/s	m ²	m ²	m ²	m ²	m²	m²	kg/s	W	W/m ²	K	W/m ² .K		.10		
500	1.37	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0089	126.0000	2523.1286	81.9534	45.0934	0.6387	0.7717	0.0272	0.0215
750	2.05	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0135	126.0000	2523.1286	65.1274	64.4849	0.4072	0.6254	0.0256	0.0202
1000	2.74	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0183	126.0000	2523.1286	63.0087	68.1766	0.3780	0.6069	0.0200	0.0158

		P _f = 5 mm (Staggered)	
DATA BENDA	UJI :		
		Lc = 0.056 m	
$D_t = 0.0126 \text{ m}$	A _b = 0.017478 m2	Ap = 0.001608 r	
$T_f = L_f = 0.1 \text{ m}$	A _f = 0.32848 m2	k = 177 W/m.K	
t _f = 0.0003 m	A _{ff} = 0.00552 m2		
$N_f = 1$	$A_{ff}/A_{fr}(\sigma) = 0.92$		
$P_{f} = 0.005 \text{ m}$	$V_{tot} = 0.0006 \text{ m}3$		
$P_{b} = 0.06 m$	$A_{tot}/V_{tot}(\alpha) = 576.5967 \text{ m}2/2$	n	
P = 3,111 m	A _f /A _{tot} = 0.949479		
$D_h = 0.0070974$	r 0.0055		

	Suhu (°C)													
Re	T _{b1}	T _{N2}	T _{b3}	T _{b4}	Tb	Tr	Tuo	Tui	ΔΤ	Te	$T_{\beta} = T_{\omega}$	Tb-To		
500	79.13	82.86	84.81	96.50	85.83	82.55	57.20	26.00	31.20	41.60	40.94	44.22		
750	67.28	70.09	71.79	81.63	72.69	69.45	47.81	26.00	21.81	36.90	32.55	35.79		
1000	60.73	63.03	64.55	73.04	65.34	62.14	42.32	26.00	16.32	34.16	27.98	31.18		

TABEL DATA PROPERTI (Tabel A4)

Re	T.	ρ	cp	Pr
	ĸ	kg/m ³	J/kg.K	a starte de
500	314.601	1.080	1007.977	0.704
750	309.904	1.099	1007.745	0.704
1000	307.159	1.111	1007.604	0.705

Re	v	Afr	An	Ab	Ar	Nf*Af	At	m	q	q"	Tex	h	ne	no	St	ы
	m/s	m²	m ²	kg/s	W	W/m ²	ĸ	W/m ² .K		.10						
500	1.37	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0089	126.0000	2523.1286	92.1966	38.1157	0.7500	0.8420	0.0230	0.0182
750	2.05	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0135	126.0000	2523.1286	78.0067	48.5155	0.5909	0.7415	0.0192	0.0152
1000	2.74	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0183	126.0000	2523.1286	69.9145	57.4555	0.4777	0.6699	0.0169	0.0134

P_f = 7 mm (Staggered)

DATA BENDA UJI :

D _{to} = 0.0126 m	A _b = 0.01804848 m2	Lc = 0.056 m
$T_{f} = L_{f} = 0.1 m$	A _f = 0.2053 m2	Ap = 0.001608
t _f = 0.0003 m	A _{ff} = 0.0057 m2	k = 177 W/m.K
N _f = 1	$A_{\rm ff}/A_{\rm fr}(\sigma) = 0.95$	
P _f = 0.007 m	V _{tot} = 0.0006 m3	
P _b = 0.06 m	$A_{tot}/V_{tot}(\alpha) = 372.24747 \text{ m2}$	
P = 1,9206 m	A _f /A _t = 0.9191914	
D _h = 0.001187 m	0.0057	

						SI	uhu (°C)					
Re	T _{b1}	T _{b2}	T _{b3}	Ты	Ть	T ₄	Tuo	Tul	ΔΤ	Teo	Tr-Tw	Tb - Ta
500	98.92	103.89	106.16	119.87	107.21	103.86	72.12	26.00	46.12	49.06	54.81	58.15
750	82.85	86.76	88.77	100.78	89.79	86.47	59.80	26.00	33.80	42.90	43.57	46.89
1000	73.52	76.82	78.65	85.55	78.64	76.37	52.70	26.00	26.70	39.35	37.02	39.28

TABEL DATA PROPERTI (Tabel A4)

Re	T _{so}	ρ	с _р	Pr
	К	kg/m ³	J/kg.K	
500	322.059	1.080	1007.977	0.704
750	315.898	1.099	1007.745	0.704
1000	312.352	1.111	1007.604	0.705

Re	٧	Afr	Aff	Ab	Ar	Nf*Af	At	m	q	q"	T _{ex}	h	ne	De	St	ut
	m/s	m ²	m²	m ²	m ²	m ²	m ²	kg/s	W	W/m ²	К	W/m ² .K		.10		
500	1.37	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0089	126.0000	2523.1286	114.8241	28.4059	0.9400	0.9621	0.0171	0.0136
750	2.05	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0135	126.0000	2523.1286	96.3635	35.8585	0.7878	0.8659	0.0142	0.0112
1000	2.74	0.0060	0.0054	0.0106	0.0182	0.0182	0.0288	0.0183	126.0000	2523.1286	83.0118	44.2562	0.6786	0.7969	0.0130	0.0103

Lampiran C

Perkembangan Boundary Layer di Dalam Wind Tunnel

Posisi benda uji didalam saluran uji ditunjukkan gambar sebagai berikut:

Perkembangan boundary layer didalam saluran yang berbentuk segi empat (plat datar) dapat dirumuskan sebagai berikut:

$$\delta = \frac{5.x}{\sqrt{\text{Re}_x}}$$

dimana: δ = ketebalan boundary layer

x = jarak benda uji dari ujung masuk wind tunel

 $Re_x = angka Reynold pada jarak x$

Pada penelitian ini posisi benda uji terletak sejauh 20 cm, sedangkan angka Reynold pada jarak tersebut adalah sama dengan saat masuk wind tunel yaitu 500, sehingga didapatkan:

$$\delta = \frac{5.0,2}{\sqrt{500}} = 0,0447 \ m = 4,47 \ cm$$

Apabila dilihat dari letak benda uji dimana jarak terdekat benda uji dengan dinding dalam wind tunel adalah 6,15 cm jadi masih belum terpengaruh adanya boundary layer (kecepatan masuk benda uji sama dengan kecepatan saat masuk wind tunel).

Thermophysical Properties of Selected Metallic Solids

	F	Properties at	20°C (293 k	0			Thermal C	Conductivit	ty k (W/m.ł	()	
Metal	ρ	Cp	k	α	-100°C	0°C	100°C	200°C	400°C	600°C	1000°C
Alloys	(kg/m ³)	(kJ/kg.K)	(W/m.K)	(cm ² /s)	(173 K)	(273 K)	(373 K)	(473 K)	(673 K)	(873 K)	(1273 K)
Aluminium											
Pure	2707	0.896	204	0.842	215	202	205	215	249		
Duralumin (94-96% Al,											
3-5% Cu, trace Mg)	2787	0.883	164	0.667	126	159	182	194			
Silumin (87% Al, 13% Si)	2659	0.871	164	0.71	149	163	175	185			
Amtimony	6690	0.208	17.4	0.125	19.2	17.7	16.3	16	17.2		
Berylium	1850	1.750	167	0.516	126	160	191	215			
Bismuth, polycrystaline	9780	0.124	7.9	0.065	12.1	8.4	7.2	7.2			
Cadmium, polycrystaline	8650	0.231	92.8	0.464	97	93	92	91			
Cesium	1873	0.230	36	0.836							
Chromium	7190	0.453	90	0.276	120	95	88	85	77		
Cobalt (97.1% Co)											
polychristaline	8900	0.389	70	0.202							
Copper											
Pure	8954	0.384	398	1.16	420	401	391	389	378	366	336
Commercial	8300	0.419	372	1.07							
Aluminium Bronze (95%											
Cu,											
5% AI)	8666	0.410	83	0.233							
Brass (70% Cu, 30% Zn)	8522	0.385	111	0.341	88		128	144	147		
Brass (60% Cu, 40% Zn)	8400	0.376	113	0.358							
Bronze (75% Cu, 25%	0000	0.0.10									
Sn)	8666	0.343	26	0.086							
Bronze (85% Cu, 6% Sn,											
9% Zn, 1% Pb)	8800	0.377	61.7	0.186							

Sumber : Tabel A - 1 Heat Transfer, Adrian Bejan

Т	ρ	Cp	μ.10 ⁷	v . 10 ⁶	k. 10 ³	α.10 ⁶	Dr
(K)	(kg/m ³)	(kJ/kg.K)	(N.s/m ²)	(m²/s)	(W/m.K)	(m²/s)	F1
Air							
100	3.5562	1.032	71.10	2.00	9.34	2.54	0.786
150	2.3364	1.012	103.4	4.426	13.8	5.84	0.758
200	1.7458	1.007	132.5	7.59	18.1	10.3	0.737
250	1.3947	1.006	159.6	11.44	22.3	15.9	0.720
300	1.1614	1.007	184.6	15.89	26.3	22.5	0.707
350	0.995	1.009	208.2	20.92	30.0	29.9	0.700
400	0.8711	1.014	230.1	26.41	33.8	38.3	0.690
450	0.774	1.021	250.7	32.39	37.3	47.2	0.686
500	0.6964	1.030	270.1	38.79	40.7	56.7	0.684
550	0.6329	1.040	288.4	45.57	43.9	66.7	0.683
600	0.5804	1.051	305.8	52.69	46.9	76.9	0.685
650	0.5356	1.063	322.5	60.21	49.7	87.3	0.690
700	0.4975	1.075	338.8	68.10	52.4	98.0	0.695
750	0.4643	1.087	354.6	76.37	54.9	109	0.702
800	0.4354	1.099	369.8	84.93	57.3	120	0.709
850	0.4097	1.110	384.3	93.8	59.6	131	0.716
900	0.3868	1.121	398.1	102.9	62.0	143	0.720
950	0.3666	1.131	411.3	112.2	64.3	155	0.723
100	0 0.3482	1.141	424.4	121.9	66.7	168	0.726
105	0 0.3155	1.159	449.0	141.8	71.5	195	0.728

Thermophysical Properties of Gasses at Atmospheric Pressure

Sumber : Tabel A-4 Fundamental Heat and Mass Transfer, Frank P. Incropera

1