

TUGAS AKHIR - SS 090302

ANALISIS STATISTIKA TERHADAP FAKTOR - FAKTOR YANG MEMPENGARUHI PRODUKSI PADI DI JAWA TIMUR

WILUJENG AGUSTIN PRIHATINI 1311 030 101

Dosen Pembimbing: Dra. Destri Susilaningrum, M.Si

PROGRAM STUDI DIPLOMA III JURUSAN STATISTIKA Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya 2014

FINAL PROJECT - SS 090302

STATISTICAL ANALYSIS TOWARD AFFECTING FACTORS OF RICE PRODUCTION IN EAST JAVA

WILUJENG AGUSTIN PRIHATINI 1311 030 101

Advisor:

Dra. Destri Susilaningrum, M.Si

STUDY PROGRAM DIPLOMA III STATISTICS DEPARTMENT Faculty of Mathematics and Natural Science Institut Teknologi Sepuluh Nopember Surabaya 2014

ANALISIS STATISTIKA TERHADAP FAKTOR – FAKTOR YANG MEMPENGARUHI PRODUKSI PADI DI JAWA TIMUR

Nama Mahasiswa : Wilujeng Agustin Prihatini

NRP : 1311 030 101 Program Studi : Diploma III

Jurusan : Statistika FMIPA-ITS

Dosen Pembimbing : Dra. Destri Susilaningrum, M.Si.

Abstrak

Produksi padi di Jawa Timur pada tahun 2011 mengalami penurunan 9,16% jika dibandingkan dengan produksi tahun 2010. Turunnya produksi padi itu secara teknis disebabkan karena kurangnya pemerataan distribusi pupuk dan juga berkurangnya luas lahan yang di pakai untuk menanam padi. Banyaknya faktor faktor yang mempengaruhi tingkat produksi padi menyebabkan petani padi harus berpikir lagi untuk meneruskan usahanya, karena tidak sedikit petani padi yang mengalami kerugian. Oleh karena itu perlu dilakukan pendugaan fungsi produksi padi di Jawa Timur. Tujuan yang ingin dicapai dalam penelitian ini adalah dapat mengetahui faktor – faktor yang mempengaruhi produksi padi di Jawa Timur. Metode analisa yang digunakan dalam penelitian ini adalah Analisis Regresi Linier Berganda dengan model terbaik untuk mengetahui parameter yang mempunyai pengaruh signifikan terhadap produksi padi di Jawa Timur. Dalam pendugaan fungsi produksi padi, model yang digunakan adalah model Fungsi Produksi Cobb Douglas. Hasil penelitian menunjukkan bahwa dengan menggunakan Analisis Regresi Linier Berganda dan model terbaik diperoleh model fungsi produksi dengan nilai R^2 sebesar 99,4%. Kesimpulan lain diperoleh faktor faktor yang mempengaruhi produksi padi di Jawa Timur tahun 2010-2012 adalah luas lahan pertanian (Ha) dan pupuk (ton).

Kata Kunci : Analisis Regresi Linier Berganda, Fungsi Produksi Cobb Douglas, Produksi Padi

Halaman Ini Sengaja Dikosongkan

STATISTICAL ANALYSIS TOWARD AFFECTING FACTORS OF RICE PRODUCTION IN EAST JAVA

Name of Student : Wilujeng Agustin Prihatini

NRP : 1311 030 101 Study Program : Diploma III

Departement : Statistika FMIPA-ITS

Supervisor :Dra. Destri Susilaningrum, M.Si

Abstract

Rice production in East Java in 2011 decreased 9,16% compared with production in 2010. Decrease of rice production was technically because of lack of even distribution of fertilizers and also reduced the area of land used for growing rice. Many factors that influence of rice production caused farmers should think againt to continue their operations, because there were many farmers who suffered losses. Therefore, it was necessary to estimate the production function of rice in East Java. The goal of this Research was to identify the factors that influence of rice production in East Java. The analysis method that used in this Research was "Analisis Regresi Linier Berganda dengan model terbaik" to know the parameters that have a significant effect on rice production in East Java. The assesment of rice production function, in this research used the Cobb Douglas Production Function Model. The result of this Research showed that by using "Analisis Regresi Linier Berganda dengan model terbaik" was obtained production function model and value R^2 of 99,4%. Another conclusion was obtained the factors that influence of rice production in East Java in 2010-2011 was agricultural land area (ha) and fertilizer (tonnes).

Keywords: Analisis Linier Berganda, Cobb Douglas Production Function, Rice Production

Halaman Ini Sengaja Dikosongkan

LEMBAR PENGESAHAN

ANALISIS STATISTIKA TERHADAP FAKTOR – FAKTOR YANG MEMPENGARUHI PRODUKSI PADI DI JAWA TIMUR

TUGAS AKHIR

Diajukan Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya pada

Program Studi Diploma III Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember Surabaya

Oleh:

WILUJENG AGUSTIN PRIHATINI NRP. 1311 030 101

Disetujui oleh Pembimbing Tugas Akhir:

Dra. Destri Susilaningrum, M.Si NIP. 19601213 198601 2 001 (()

Ketua Jurusan Stanstika FMIPA-ITS

Dr. Muhammad Mashuri, MT NIP. 19620408 198701 1 001

SURABAYA, Juli 2014

KATA PENGANTAR

Puji syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, nikmat, dan hidayah kepada makhluk-Nya serta shalawat dan salam tetap tercurahkan kepada Nabi Muhammad SAW atas tauladannya sehingga penulis dapat menyelesaikan Tugas Akhir yang berjudul:

"ANALISIS STATISTIKA TERHADAP FAKTOR – FAKTOR YANG MEMPENGARUHI PRODUKSI PADI DI JAWA TIMUR"

Keberhasilan dalam menyelesaikan Tugas Akhir ini tidak lepas dari bantuan banyak pihak, oleh karena itu penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada :

- 1. Ibu Dra. Destri Susilaningrum, M.Si selaku dosen pembimbing yang telah banyak meluangkan waktunya untuk memberikan ilmu, bimbingan, serta masukan yang bermanfaat dalam penyelesaian Tugas Akhir ini.
- 2. Bapak Dr. Muhammad Mashuri, MT selaku Ketua Jurusan Statistika ITS.
- 3. Ibu Dra. Sri Mumpuni Retnaningsih, MT selaku Ketua Program Studi Diploma III Statistika FMIPA ITS.
- 4. Bapak Dr. Ir. Setiawan, MS dan Ibu Dwi Endah Kusrini, S.Si, M.Si. selaku dosen penguji atas saran dan kritiknya demi kesempurnaan Tugas Akhir ini.
- 5. Ibu Vita Ratnasari, S.Si, M.Si selaku dosen Wali yang telah membimbing penulis mulai awal perkuliahan dan motivasi luar biasa yang diberikan kepada penulis.
- 6. Bapak dan Ibu dosen serta karyawan Jurusan Statistika ITS, terima kasih atas bantuan dan ilmu yang bermanfaat.
- 7. Bapak Trias selaku Staf Bagian Data Dinas Pertanian Provinsi Jawa Timur yang telah baik dan ramah membantu dalam perolehan data.
- 8. Bapak dan Ibu yang telah memberi limpahan kasih sayang, semangat, perhatian serta doa dalam setiap langkah penulis.

- 9. Kakak Emma Rahmawati yang telah memberikan kasih sayang, semangat, dan motivasi kepada penulis.
- 10. Sahabat sahabat tercinta Muniroh, Iko, Siti Nur Asiyah, Sakura, Agusty yang telah membantu, meberikan semangat, serta selalu membuat penulis tersenyum. Terimakasih atas kebersamaannya, semoga kebersamaan ini akan tetap terjalin sampai kapanpun.
- 11. Teman-teman ∑22 (D3 dan S1 2011) atas kebersamaan dan doa serta semua pihak yang turut membantu dalam penyelesaian Tugas Akhir ini baik secara langsung maupun tidak langsung dan tidak dapat disebutkan satu per satu.

Penulis menyadari bahwa dalam penulisan Tugas Akhir ini masih banyak kekurangan. Oleh karena itu, kritik dan saran membangun akan sangat membantu Penulis untuk memperbaikinya di masa yang akan datang. Semoga Tugas Akhir ini akan bermanfaat untuk menambah wawasan keilmuan bagi semua pihak.

Surabaya, Juli 2014

Penulis

DAFTAR ISI

HALAMAN JUDUL	
LEMBAR PENGESAHAN	V
ABSTRAK	vii
ABSTRACT	ix
KATA PENGANTAR	xi
DAFTAR ISI	xiii
DAFTAR TABEL	XV
DAFTAR GAMBAR	xvii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	3
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	3
1.5 Batasan Masalah	
BAB II TINJAUAN PUSTAKA	5
2.1 Statistika Deskriptif	5
2.2 Analisis Regresi Linier Berganda	5
2.3 Estimasi Parameter	
2.4 Pengujian Parameter	7
2.4.1 Pengujian Parameter Secara Serentak	7
2.4.2 Pengujian Parameter Secara Individu	
2.5 Koefisien Determinasi	
2.6 Asumsi Regresi Linier Berganda	10
2.6.1 Deteksi Multikolinearitas	
2.6.2 Uji Identik	11
2.6.3 Uji Independen	11
2.6.4 Uji Distribusi Normal	13
2.7 Model Terbaik Backward Elimination	
2.8 Fungsi Produksi Cobb Douglas	15
2.9 Penelitian Terdahulu	
BAB III METODOLOGI PENELITIAN	21
3.1 Sumber Data	21
3.2 Variabel Penelitian	21

3.3 Langkah Analisis	22
BAB IV ANALISIS DAN PEMBAHASAN	
4.1 Analisis Produksi Padi	23
4.2 Scatterplot untuk Variabel Respon dengan	
Variabel Prediktor	26
4.2.1 Scatterplot untuk Variabel X ₁ Terhadap	
Variabel Respon	26
4.2.2 <i>Scatterplot</i> untuk Variabel X ₂ Terhadap	
Variabel Respon	27
4.2.3 <i>Scatterplot</i> untuk VariabelX ₃ Terhadap	
Variabel Respon	27
4.3 Hasil dan Pembahasan Model Regresi	
4.3.1 Uji Serentak	
4.3.2 Uji Parsial	
4.3.3 Uji Serentak Model Terbaik	32
4.3.4 Uji Parsial Model Terbaik	
4.3.5 Koefisien Determinasi	34
4.4 Uji Asumsi Residual	34
4.4.1 Uji Identik	
4.4.2 Uji Independen	35
4.4.3 Uji Normalitas	
4.4.4 Pemeriksaan Multikolinearitas	37
4.5 Analisis Fungsi Produksi	38
BAB V KESIMPULAN DAN SARAN	
5.1 Kesimpulan	41
5.2 Saran	42
DAFTAR PUSTAKA	43
LAMPIRAN	45
RIODATA PENULIS	

DAFTAR GAMBAR

Gambar 4.1	Produksi Padi di Jawa Timur Tahun	
	2010 - 2012	23
Gambar 4.2	Scatterplot antara Variabel X ₁ terhadap	
	Variabel Y	26
Gambar 4.3	Scatterplot antara Variabel X ₂ terhadap	
	Variabel Y	27
Gambar 4.4	Scatterplot antara Variabel X ₃ terhadap	
	Variabel Y	28
Gambar 4.5	Uji Normalitas	37

Halaman Ini Sengaja Dikosongkan

DAFTAR TABEL

Tabel 2.1	ANOVA Model Regresi	8
Tabel 2.2	Kriteria Penolakan Uji Durbin-Watson	13
Tabel 3.1	Variabel Penelitian	21
Tabel 4.1	Statistika Deskriptif Tahun 2010	24
Tabel 4.2	Statistika Deskriptif Tahun 2011	24
Tabel 4.3	Statistika Deskriptif Tahun 2012	25
Tabel 4.4	Hasil Estimasi	29
Tabel 4.5	Hasil Uji Serentak	30
Tabel 4.6	Hasil Uji Parsial Parameter	31
Tabel 4.7	Hasil Uji Serentak Model Terbaik	33
Tabel 4.8	Hasil Uji Parsial Model Terbaik	33
Tabel 4.9	Uji Glejser	35
Tabel 4.10	Uji Multikolinearitas	

Halaman Ini Sengaja Dikosongkan

BAB I PENDAHULUAN

1.1 Latar Belakang

Bahan pangan yang memperoleh perhatian khusus adalah bahan pangan strategis, seperti beras, gula, jagung, kedelai. Lebih lanjut Husen Sawit dalam Sri Widodo dkk, (2002: 117 - 119) mengatakan bahwa bagi negara – negara Asia termasuk Indonesia, pangan berarti beras. Hal ini mengisyaratkan bahwa beras masih memegang peranan penting sebagai pangan utama di Asia. Diperkirakan 40 – 80% kebutuhan kalori masyarakat berasal dari beras. Beras menjadi sumber pendapatan penting bagi sebagian besar petani kecil di Asia, karena diperkirakan 2/3 lahan pertanian di Asia dialokasikan untuk tanaman padi. Di sebagian besar negara Asia, beras mempunyai nilai politik srategis, yang mempunyai implikasi, pemerintahan akan labil jika beras harganya tidak stabil dan sulit diperoleh. Di Indonesia kondisi ini masih diperburuk dengan adanya kendala disisi produksi.

Ada empat masalah yang berkaitan dengan kondisi perberasan di Indonesia, pertama rata – rata luas garapan petani hanya 0,3 Ha, kedua sekitar tujuh puluh persen petani termasuk golongan masyarakat miskin dan berpendapatan rendah. Ketiga hampir seluruh petani padi adalah net konsumer beras dan ke empat rata – rata pendapatan dari usaha tani padi hanya sebesar tiga puluh persen dari total pendapatan keluarga. Dengan kondisi ini pemerintah selalu dihadapkan pada posisi sulit, satu sisi pemerintah harus menyediakan beras dengan harga yang terjangkau oleh masyarakat, dan di sisi lain pemerintah harus melindungi petani produsen dan menjaga ketersediaan secara cukup (Achmad, 2003:47).

Jawa Timur merupakan provinsi yang patut diperhitungkan dalam memberikan hasil produksi padi nasional. Direktorat Jenderal Tanaman Pangan Departemen Pertanian RI merilis provinsi Jawa Timur masih merupakan andalan utama produksi beras di Indonesia. Hal tersebut ditandai dengan potensi sumber

daya lahan seluas 1.147 hektar. Kementrian Pertanian juga melansir data BPS 2011 yang menunjukkan bahwa kontribusi padi di Jawa Timur untuk kebutuhan pangan nasional mencapai 16,08%, jagung 30,85%, dan kedelai 43,11%. Memasuki tahun 2012 provinsi Jawa Timur menargetkan produksi padi sebesar 12,31 juta ton atau meningkat sebesar 1,777 juta ton dari tahun lalu yang mencapai 10,533 juta ton. Produksi padi tahun 2012 dihasilkan oleh areal tanaman seluas 2,142 juta ha, dengan luas panen sekitar 2,057 juta ha. Berdasarkan data dari Dinas Pertanian Tanaman Pangan Jawa Timur produktivitas padi menurut angka ramalan I tahun 2012 mencapai 62,04 kuintal dari target 59,84 ku/ha. Realisasi tanam selama musim penghujan (MH) 2011/2012, telah mencapai 1.378.291 ha atau 94.30 persen dari target 1.461.549 ha," data Dinas Pertanian Tanaman Pangan Jawa Timur. Sementara untuk pertanaman di musim kemarau, realisasinya mencapai 416.007 ha atau 61,051 persen.

Peningkatan produktivitas dilakukan melalui penggunaan benih varietas unggul bermutu termasuk benih padi hibrida, pemupukan berimbang dan pemakaian organik, pupuk pengelolaan pengairan dan perbaikan budidaya disertai pengawalan, pemantauan, dan pendampingan yang intensif. Produksi padi tahun 2011 sampai tahun 2013 di Jawa Timur mengalami penurunan, akan tetapi masih dapat memenuhi kebutuhan konsumsi beras dengan asumsi konsumsi beras per kapita sebesar 250,2 gram/kap/hari. Turunnya produksi padi disebabkan karena naiknya harga bibit padi serta pupuk dan harga jual padi yang sering lebih rendah dari biaya produksinya. Tingginya kemungkinan gagal panen di akhir tahun banyak mengakibatkan petani menutup lahannya, serta meningkatnya pembangunan di Jawa Timur seperti pembangunan jalan tol, sehingga mengakibatkan lahan produksi padi berkurang. Banyaknya faktor – faktor yang dapat mempengaruhi tingkat produksi padi menyebabkan petani padi harus berpikir lagi untuk meneruskan usahanya, karena tidak sedikit petani padi yang mengalami kerugian. Oleh karena itu perlu dilakukan pendugaan fungsi produksi padi di wilayah Jawa Timur.

1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan di atas, ada beberapa permasalahan yang muncul pada penelitian ini diantaranya.

- Bagaimana deskripsi dari kondisi produksi padi, luas lahan, pupuk, dan pompa air di Provinsi Jawa Timur tahun 2010 -2012?
- 2. Apakah luas lahan, pupuk, dan pompa air mempengaruhi produksi padi di Jawa Timur ?

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah, maka tujuan yang ingin dicapai pada penelitian ini adalah sebagai berikut.

- 1. Mendeskripsikan kondisi produksi padi, luas lahan, pupuk, serta pompa air di Jawa Timur tahun 2010 2012.
- 2. Menganalisis pengaruh luas lahan, pupuk, dan pompa air dalam peningkatan produksi padi di Jawa Timur.

1.4 Manfaat Penelitian

Manfaat yang diharapkan pada penelitian ini adalah sebagai berikut.

- Bagi instansi pemerintah, dapat memberikan gambaran tentang produksi padi di wilayah Jawa Timur untuk memenuhi informasi awal pengambilan keputusan pada jenjang organisasi pertanian baik di tingkat wilayah Jawa Timur maupun pada jenjang yang lebih tinggi.
- 2. Bagi pembaca, dapat dijadikan sebagai pengetahuan mengenai analisis regresi dan fungsi produksi Cobb Douglass serta aplikasinya dalam suatu permasalahan ekonomi.

1.5 Batasan Masalah

Batasan masalah dalam penelitian ini adalah sebagai berikut.

- 1. Data diperoleh dari Dinas Pertanian Provinsi Jawa Timur untuk periode tahun 2010 2012.
- 2. Variabel yang digunakan adalah variabel variabel yang diduga merupakan indikator dalam bidang pertanian khususnya faktor yang mempengaruhi produksi padi.

BAB II TINJAUAN PUSTAKA

2.1 Statistika Deskriptif

Statistik deskriptif merupakan metode-metode yang berkaitan dengan pengumpulan dan penyajian suatu gugus data sehingga memberikan informasi yang berguna (Walpole, 1995). Statistika deskriptif bertujuan untuk menyajikan informasi data sebagai deskripsi fakta dalam bentuk numerik, tabel, grafik atau kurva distribusi, sehingga suatu fakta atau peristiwa dapat secara mudah untuk dipahami dan disimpulkan (Mustafid, 2003). Statistika deskriptif pada penelitian ini digunakan untuk menyajikan deskripsi dari karakteristik kabupaten di Jawa Timur berdasarkan variabel variabel yang mempengaruhi produksi padi.

2.2 Analisis Regresi Linier Berganda

Analisis regresi merupakan salah satu teknik analisis data dalam statistika yang sering kali digunakan untuk mengkaji hubungan antara beberapa variabel. (Kutner, Nachtsheim dan Neter, 2004).

Regresi linier berganda (multiple linear regression) hampir sama dengan regresi linier sederhana, hanya saja pada regresi linier berganda variabel bebasnya lebih dari satu variabel penduga. Tujuan analisis regresi linier berganda adalah untuk mengukur intensitas hubungan antara dua variabel atau lebih dan membuat prediksi perkiraan nilai Y atas X. Untuk mendapatkan model regresi linier berganda dapat diperoleh dengan melakukan estimasi terhadap parameter-parameternya dengan menggunakan metode tertentu. Adapun metode yang dapat digunakan untuk mengestimasi parameter model regresi linier berganda adalah dengan metode kuadrat terkecil (ordinary least square/OLS) dan metode kemungkinan maksimum (maximum likelihood estimation/MLE) (Kutner et.al, 2004).

Bentuk umum model regresi linier berganda dengan p variabel bebas adalah seperti pada persamaan (2.1) berikut.

$$Y_{i} = \beta_{0} + \beta_{1} X_{i1} + \beta_{2} X_{i2} + \dots + \beta_{p} X_{i,p} + \varepsilon_{i}$$
 (2.1)

Dengan:

 Y_i adalah variabel tidak bebas untuk pengamatan ke-i, untuk i = 1,2,...n.

 $\beta_0, \beta_1, \beta_2, ..., \beta_p$ adalah parameter dan $X_{i1}, X_{i2}, ..., X_{ip}$ adalah variabel bebas.

 ε_i adalah sisa *(error)* untuk pengamatan ke-i yang diasumsikan berdistribusi normal yang saling bebas dan identik dengan rata rata nol dan variansi δ^2 .

Dalam notasi matriks persamaan (2.1) dapat ditulis menjadi persamaan (2.2) berikut.

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.2}$$

Model diatas dapat juga disajikan sebagai berikut.

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{m1} \\ 1 & X_{21} & X_{22} & \cdots & X_{m2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{mn} \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_m \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_{n_1} \end{bmatrix}$$
(2.3)

dimana,

Y: vektor variabel respon berukuan $n \times 1$,

X: matriks variabel prediktor berukuran $n \times (p+1)$,

 β : vektor parameter berukuran $(p+1) \times 1$,

 ε : vektor *error* berukuran $n \times 1$

Pengujian asumsi residual digunakan untuk memberikan kepastian bahwa persamaan regresi yang didapatkan memiliki ketepatan dalam estimasi, tidak bias dan konsisten. Berikut adalh macam – macam pengujian asumsi klasik regresi.

2.3 Estimasi Parameter Model Regresi Linier Berganda

Estimasi parameter ini bertujuan untuk mendapatkan model regresi linier berganda yang akan digunakan dalam analisis. Metode yang digunakan untuk mengestimasi parameter model regresi linier berganda adalah metode kuadrat terkecil atau seing juga disebut metode $ordinary\ least\ square\ (OLS)$. Metode OLS ini bertujuan meminimumkan jumlah kuadrat error. Berdasarkan persamaan (2.2) dapat diperoleh penaksir (estimator) OLS untuk β adalah sebagai berikut.

$$\hat{\boldsymbol{\beta}} = (X^T X)^{-1} X^T Y. \tag{2.4}$$

Penaksir OLS pada persamaan (2.3) merupakan penaksir yang tidak bias, linier dan terbaik (best linear unbiased estimator/BLUE).

2.4 Pengujian Parameter

Pengujian parameter dilakukan untuk menguji apakah model regresi yang dibuat sudah signifikan atau tidak. Jika, parameter signifikan maka model regresi juga akan signifikan dan begitu pula sebaliknya. Pengujian parameter terdiri dari dua tahap yaitu uji serentak dan uji parsial.

2.4.1 Pengujian Parameter Secara Serentak (Simultan)

Pengujian parameter secara serentak dilakukan untuk mengetahui signifikansi parameter β terhadap variabel respon secara bersama-sama. Hipotesis yang digunakan pada uji serentak adalah sebagai berikut.

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$

 H_1 : Tidak semua β_k sama dengan nol, untuk k = 1, 2, ..., p

Statistik uji yang digunakan adalah uji F:

$$F_{hitung} = \frac{RKR}{RKE} \tag{2.5}$$

Keterangan:

RKR : rata-rata kuadrat regresi RKE : rata-rata kuadrat *error*

Daerah penolakan yang digunakan adalah H_0 ditolak apabila $F_{\text{hitung}} > F_{(\alpha;p,n-p)}$ atau F_{tabel} . Atau dapat juga dilihat melalui nilai peluang pengujian (p-value) yang dibandingkan dengan taraf signifikan (α) , dengan kesimpulan tolak H_0 jika $p\text{-}value < \alpha$.

Berikut ini adalah *Analysis of Variance* (ANOVA) dari uji serentak.

Sumber Variasi	Derajat Bebas	Jumlah Kuadrat	Rata-rata Kuadrat	F_{Hitung}
Regresi	p	$JKR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$	$RKR = \frac{JKR}{p}$	$F = \frac{RKR}{RKE}$
Error	n-p-1	$JKE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$	$RKE = \frac{JKE}{n - p - 1}$	
Total	n-1	$JKT = \sum_{i=1}^{n} (y_i - \overline{y})^2$		

Tabel 2.1 ANOVA Model Regresi

2.4.2 Pengujian Parameter Secara Individu (Parsial)

Pengujian parameter secara parsial dilakukan untuk mengetahui signifikansi parameter β terhadap variabel respon secara parsial dengan menggunakan statistik uji t. Hipotesis yang digunakan pada uji parsial adalah sebagai berikut.

$$H_0: \beta_k = 0$$

$$H_1: \beta_k \neq 0 \text{ untuk } k = 1, 2, ..., p$$

Statistik uji yang digunakan adalah uji t:

$$t = \frac{\hat{\beta}_p}{se(\hat{\beta}_p)}$$

Keterangan:

 $\hat{\beta}_p$: nilai taksiran parameter β_p .

 $se(\hat{\beta}_p)$: standar *error* nilai taksiran parameter β_p

Daerah penolakan yang digunakan adalah H_0 ditolak apabila $\left|t_{hitung}\right| > t_{\frac{\alpha}{2},n-p}$ dimana n adalah jumlah pengamatan dan p adalah jumlah parameter.

2.5 Koefisien Determinasi (R^2)

Koefisien determinasi dinyatakan dengan R^2 untuk pengujian regresi linier berganda yang mencakup lebih dari dua variabel. Koefisien determinasi adalah untuk mengetahui proporsi keragaman total dalam variabel tak bebas (Y) yang dapat dijelaskan atau diterangkan oleh variabel-variabel bebas yang ada di dalam model persamaan regresi linier berganda secara bersama-sama. Maka R^2 dapat ditentukan dengan rumus umum seperti berikut :

$$R^{2} = \frac{JK_{regresi}}{JK_{Total}} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}$$

dimana,

 \widehat{y} : nilai dugaan variabel respon, \overline{y} : rata-rata dari variabel respon, y_i : observasi variabel respon, n : banyaknya observasi.

Koefisien determinasi (R^2) memiliki nilai antara $0 \le R^2 \le 1$.

2.6 Asumsi Regresi Linier Berganda

Untuk dapat di ambil kesimpulan maka hasil analisis regresi linier berganda haruslah memenuhi asumsi bahwa residual berdistribusi Normal, Identik, Independen, ($\epsilon \sim \text{IIDN }(0,\sigma^2)$) dan juga haruslah bebas dari multikolinieritas.

2.6.1 Deteksi Multikolinearitas

Multikolinieritas adalah terjadinya hubungan linier antara variabel bebas dalam suatu model regresi linier berganda (Gujarati, 2003). Hubungan linier antara variabel bebas dapat terjadi dalam bentuk hubungan linier yang sempurna dan hubungan linier yang kurang sempurna (imperfect).

Adapun dampak adanya multikolinieritas dalam model regresi linier berganda adalah (Gujarati, 2003 dan Widarjono, 2007):

- 1. Penaksir OLS masih bersifat BLUE, tetapi mempunyai variansi dan kovariansi yang besar sehingga sulit mendapatkan taksiran (estimasi) yang tepat.
- 2. Akibat penaksir OLS mempunyai variansi dan kovariansi yang besar, menyebabkan interval estimasi akan cenderung lebih lebar dan nilai hitung statistik uji t akan kecil, sehingga membuat variabel bebas secara statistik tidak signifikan mempengaruhi variabel tidak bebas.
- 3. Walaupun secara individu variabel bebas tidak berpengaruh terhadap variabel tidak bebas melalui uji t, tetapi nilai koefisien determinasi (R²) masih bisa relatif tinggi. Selanjutnya untuk mendeteksi adanya multikolinieritas dalam model regresi linier berganda dapat digunakan nilai *variance inflation factor* (VIF) dan *tolerance* (TOL). Nilai VIF dapat dihitung dengan menggunakan rumus sebagai berikut.

$$VIF = \frac{1}{1 - R_i^2}$$
 (2.6)

2.6.2 Uji Identik (Homokedastisitas)

Untuk melakukan pemeriksaan asumsi identik pada residual dilakukan pengujian homokedastisitas atau homogenitas varians residual.

Homogenitas varians residual didasarkan pada sifat $E(\varepsilon_i) = 0$ dimana $V(\varepsilon_i) = \sigma^2$. Dalam hal dimana varians residual tidak konstan maka kondisi residual ini sudah tidak memenuhi kondisi yang homogen dan kondisi dimana varians residual tidak homogen dikenal sebagai kondisi yang heterokedastisitas. Pada kondisi residual bersifat heteroskedastisitas, akan menyebabkan estimasi koefisien regresi kurang akurat atau tidak efisien (Gujarati, 2009).

Untuk menguji asumsi identik ini digunakan uji Glejser dengan perumusan hipotesis sebagai berikut.

$$H_0: \sigma_i^2 = \sigma^2$$

$$H_1: \sigma_i^2 \neq \sigma^2, i = 1, 2, ..., n$$

Statistik uji

$$F_{hitung} = \frac{\sum_{i=1}^{n} (|\hat{\varepsilon}_{i}| - |\overline{\varepsilon}|)^{2}}{\sum_{i=1}^{n} (|\varepsilon_{i}| - |\hat{\varepsilon}_{i}|)^{2}}$$

$$(2.7)$$

Daerah kritis: tolak H_0 jika $F_{hitung} > F_{tabel}$ atau residual adalah heterokedastisitas

Sedangkan model dikatakan tidak terdapat kasus heteros-kedastisitas apabila nilai dari masing — masing variabel prediktor nilai $F_{\rm hitung}$ < $F_{\rm tabel}$

2.6.3 Uji Independen (Otokorelasi)

Uji independen atau otokorelasi adalah pengujian untuk memeriksa apakah residual telah memenuhi asumsi independen

atau tidak. Pelanggaran tehadap asumsi ini biasa disebut dengan autokorelasi. Autokorelasi adalah terjadinya korelasi antara satu variabel *error* dengan variabel *error* yang lain. Autokorelasi seringkali terjadi pada data *time series* dan dapat juga terjadi pada data *cross section*. (Widarjono, 2007).

Adapun dampak dari adanya autokorelasi dalam model regresi adalah sama dengan dampak dari heteroskedastisitas yang telah diuraikan di atas, yaitu walaupun estimator OLS masih linier dan tidak bias, tetapi tidak lagi mempunyai variansi yang minimum dan menyebabkan perhitungan standart *error* metode OLS tidak bisa dipercaya kebenarannya. Selain itu interval estimasi maupun pengujian hipotesis yang didasarkan pada distribusi t maupun Ftidak bisa lagi dipercaya untuk evaluasi hasil regresi. Akibat dari adanya dampak autokorelasi dalam model regresi menyebabkan estimator OLS tidak menghasilkan estimator yang BLUE dan hanya menghasilkan estimator yang LUE (*Linier Unbiased Estimator*).

Selanjutnya untuk mendeteksi adanya autokorelasi dalam model regresi linier berganda dapat digunakan metode Durbin-Watson telah berhasil mengembangkan sutau metode yang digunakan untuk mendeteksi adanya masalah autokorelasi dalam model regresi linier berganda menggunakan pengujian hipotesis dengan statistik uji pada persamaan (2.7) berikut:

Hipotesis yang digunakan dalam uji *Durbin Watson* sebagai berikut

 $H_0: \rho_k = 0$

 $H_1: \rho_k \neq 0$

Statistik uji:
$$Dw = \frac{\sum_{i=1}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$$
 (2.8)

Nilai Statistik Durbin- Watson	Hasil
$0 < D_W < dL$	Ada autokorelasi positif
	Tidak ada keputusan;daerah keragu-
$dL \le Dw \le dU$	raguan
	Tidak ada autokorelasi
$dU \le Dw \le 4 - d\underline{U}$	positif/negatif
	Tidak ada keputusan;daerah keragu-
$4-dU \le Dw \le 4-dU$	raguan
4 -dL \leq Dw \leq 4	Ada autokorelasi positif

Tabel 2.2 Kriteria Penolakan Uji Durbin-Watson

Salah satu keuntungan dari uji Durbin-Watson yang didasarkan pada *error* adalah bahwa setiap program komputer untuk regresi selalu memberi informasi statistik d. Adapun prosedur dari uji Durbin-Watson adalah (Widarjono, 2007):

- 1. Melakukan regresi metode OLS dan kemudian mendapatkan nilai *error* nya.
- 2. Menghitung nilai Dw dari persamaan (2.8)
- 3. Dengan jumlah observasi (n) dan jumlah variabel bebas tertentu tidak termasuk konstanta (p-1), cari nilai kritis dU dan dL di statistik Durbin-Watson.
- 4. Keputusan ada atau tidaknya autokorelasi dalam model regresi didasarkan pada tabel 2.2.

2.6.3 Uji Distribusi Normal Residual

Pengujian normalitas residual dilakukan untuk melihat apakah residual mengikuti distribusi normal atau tidak. Jika residual tidak memenuhi asumsi berdistribusi normal maka pengujian parameter tidak valid. Cara mendeteksi apakah residual berdistribusi normal dapat dilihat pada *normality probability* plot residual. Apabila plot residualnya mengikuti atau berada diantara

garis normal maka residual telah berditribusi normal. Ketidaknormalan residual dapat diatasi dengan transformasi variabel.

Pengujian distribusi normal juga dapat dilakukan dengan metode Uji *Kolmogorov-Smirnov* yang juga dikenal dengan uji kesesuaian model (*Goodness of Fit Test*). Hipotesis yang digunakan adalah sebagai berikut.

$$H_0: F_0(x) = F(x)$$
 $H_1: F_0(x) \neq F(x)$
Statistik uji: $D = \sup_{x} |F_0(x) - S_N(x)|$ (2.9)

Keterangan:

 $F_0(x)$: fungsi distribusi frekuensi kumulatif teoritis

 $S_N(x)$: fungsi peluang kumulatif yang diobservasi dari satu sampel random dengan N observasi.

K : banyaknya observasi yang sama atau kurang dari x.

Kesimpulan untuk menolak H_0 jika $|D| > D_{(1-\alpha)}$ dimana D adalah nilai berdasarkan tabel $Kolmogorov\ Smirnov$.

2.7 Pemilihan Model Terbaik Backward Elimination

Eliminasi langkah mundur mulai dengan regresi terbesar dengan menggunakan semua variabel bebas X_i , dan secara bertahap mengurangi banyaknya variabel di dalam persamaan sampai suatu keputusan dicapai untuk menggunakan persamaan yang diperoleh dengan jumlah variabel tertentu. Metode eliminasi langkah mundur lebih ekonomis dibandingkan dengan metode semua kemungkinan regresi yang ada, dalam pengertian bahwa metode ini mencoba memeriksa hanya regresi terbaik yang mengandung sejumlah tertentu variabel bebas X_i .

Langkah-langkah dalam prosedur ini adalah sebagai berikut:

- 1). Menghitung persamaan regresi yang mengandung semua variabel bebas X_i .
- 2). Menghitung nilai F parsial untuk setiap variabel peramal, seolah-olah merupakan variabel terakhir yang dimasukkan ke dalam persamaan regresi.
- 3). Membandingkan nilai F_{hitung} terendah dengan nilai $F_{(\alpha;p,n-p)}$ bertaraf nyata (α) misalnya (α = 5%). Jika $F_{\text{hitung}} \leq F_{(\alpha;p,n-p)}$, maka hilangkan atau buang variabel X_i , yang menghasilkan nilai F_{hitung} tersebut, dari persamaan regresi dan kemudian hitung kembali persamaan regresi tanpa menyertakan variabel X_i tersebut; seperti ke langkah 2) di atas. Jika $F_{\text{hitung}} > F_{(\alpha;p,n-p)}$, maka ambillah persamaan regresi itu.

Prosedur eliminasi langkah mundur pada hakikatnya mencoba membuang semua variabel X yang tidak dibutuhkan tanpa meningkatkan secara berarti besarnya nilai dugaan Ragam Sisa Regresi σ^2 .

2.8 Fungsi Produksi Cobb-Douglas

Fungsi produksi adalah hubungan fisik antara masukan produksi (*input*) dengan produksi (*output*). Fungsi produksi Cobb-Douglas adalah suatu fungsi atau persamaan yang melibatkan dua atau lebih variabel, di mana variabel satu disebut variabel dependen (Y) dan yang lain disebut variabel independen (X). Penyelesaian hubungan antara X dan Y adalah biasanya dengan cara regresi, di mana variasi dari Y akan dipengaruhi variasi dari X. Dengan demikian kaidahkaidah pada garis regresi juga berlaku dalam penyelesaian fungsi Cobb-Douglas (Soekartawi, 2003).

Fungsi Cobb-Douglas diperkenalkan oleh Charles W. Cobb dan Paul H. Douglas pada tahun 1920. Untuk memudahkan pendugaan terhadap persamaan fungsi produksi Cobb-Douglas (Cobb Douglas production function) maka persamaan tersebut diperluas secara umum dandiubah m enjadi bentuk linier dengan cara melogaritmakan persamaan tersebut (Soekartawi, 2003).

Karena penyelesaian fungsi Cobb-Douglas selalu di logaritmakan dan diubah bentuknya menjadi linier, maka persyaratan dalam menggunakan fungsi tersebut antara lain (Soekartawi, 2003): 1. Tidak ada pengamatan yang bernilai nol. Sebab logaritma dari nol adalah suatu bilangan yang besarnya tidak diketahui (*infinite*). 2. Dalam fungsi produksi perlu diasumsikan bahwa tidak ada perbedaan tingkat teknologi pada setiap pengamatan. 3. Tiap variabel X dalam pasar *perfect competition*.

Fungsi produksi yang berbentuk tidak linier berarti bahwa fungsi tidak berupa garis lurus. Tetapi dengan mentransformasikan *ln*, model dapat menjadi linier. Model fungsi Cobb Douglas sebagi berikut.

- a. $Y = \beta_0 X^{\beta_i} e^{\varepsilon}$ apabila hanya terdapat sebuah input
- b. $Y = \beta_0 X_1^{\beta_1} X_2^{\beta_2} ... X_p^{\beta_p} e^{\varepsilon}$ apabila terdapat sebanyak p buah input

Model tersebut dapat dilinierkan dengan mentransformasikan variabel respon Y dan variabel prediktor X sehingga modelnya menjadi sebagai berikut.

$$\ln(Y) = \ln(\beta_0) + \beta_1 \ln(X_1) + \beta_2 \ln(X_2) + \dots + \beta_p \ln(X_p) + \varepsilon$$
 (2.10)

Apabila

 $\ln(Y) = Y^*, \ln(\beta_0) = \beta_0^*, \ln(X_1) = X_1^*, \ln(X_2) = X_2^*$ dan $\ln(X_p) = X_p^*$ maka persamaan 2.10 menjadi model Cobb Douglas setelah ditransformasi $\ln n$.

$$Y^* = \beta_0^* + \beta_1 X_1^* + \beta_2 X_2^* + \dots + \beta_p X_p^* + \varepsilon$$
 (2.11)

Koefisien regresi merupakan besaran elastisitas produksi, yaitu presentase perubahan output sebagai akibat berubahnya input sebesar satu persen. Secara matematika ekonomi, besaran elastisitas dapat diperoleh dengan persamaan berikut.

$$E_{X_1} = \frac{MP_{X_1}}{AP_{X_2}} \tag{2.12}$$

MP adalah besaran produksi marginal (Marginal Product) yang didefinisikan sebagai tambahan output sebagai akibat bertambahnya input sebesar satu satuan. MP secara matematis merupakan turunan pertama dari fungsi produksi.

$$MP_{X_1} = \frac{\partial Y}{\partial X_1} = \beta_1 \tag{2.13}$$

 AP_{X_1} adalah produk rata – rata (Average Product) untuk input X_1 yang diperoleh dari persamaan berikut.

$$AP_{X_1} = \frac{Y}{X_1} \tag{2.14}$$

Dengan demikian, persamaan elastisitas produksi untuk input X_1 adalah sebagai berikut.

$$E_{X_1} = \frac{MP_{X_1}}{AP_{X_1}} = \frac{\partial Y/\partial X_1}{Y/X_1} = \frac{\beta_1 \beta_0 X_1^{\beta_1 - 1} X_2^{\beta_2} e^{\varepsilon}}{Y/X_1} = \frac{\beta_1 X_1^{-1} Y X_1}{Y} = \beta_1 \quad (2.15)$$

Secara umum hubungan hubungan tersebut dapat dijelaskan sebagai berikut.

- nilai $\beta_1 + \beta_2 + ... + \beta_i > 1$, increasing return to scale
- nilai $\beta_1 + \beta_2 + ... + \beta_i = 1$, constant return to scale
- nilai $\beta_1 + \beta_2 + ... + \beta_i < 1$, decreasing return to scale

Menurut Soekartawi (1990), dalam proses produksi terdapat tiga tipe reaksi produk atas input(faktor produksi) adalah berikut.

- a. *Increasing return to scale*, yaitu apabila tiap unit tambahan input menghasilkan tambahan output yang sama daripada unit sebelumnya.
- b. *Constant return to scale*, yaitu apabila tiap unit tambahan input menghasilkan output yang sama daripada nilai unit sebelumnya.

c. Decreasing return to scale, yaitu apabila tiap unit tambahan input menghasilkan tambahan output yang lebih sedikit daripada nilai unit sebelumnya.

2.9 Penelitian Terdahulu

Beberapa penelitian terdahulu yang pernah dilakukan oleh pihak lain yang dapat dijadikan sebagai bahan pertimbangan yang berkaitan dengan permasalahan dalam penlitian ini, antara lain:

1. Joko Triyanto (2006)

Melakukan penelitian yang berjudul "Analisis Produksi Padi di Jawa Tengah". Variabel independen yang digunakan dalam penelitian ini adalah lahan, tenaga kerja, benih, pupuk, pompa. Sampel yang digunakan adalah 29 kabupaten/kota di Jawa tengah selama tiga tahun (data pooling), sehingga secara keseluruhan masing masing variabel ada 87 observasi. Teknik analisis yang digunakan dalam penelitian ini adalah regresi linier berganda dan fungsi produksi Cobb Douglas. Hasil analisis menunjukkan bahwa variabel luas lahan, tenaga kerja, benih, dan pompa air memberikan pengaruh positif yang signifikan. Nilai elastisitas produksinya 1,089(elastis). Ini berarti bahwa secara umum usaha tani padi di Jawa Tengah dalam skala mendekati *constant return to scale*.

2. Hendri Metro Purba (2005)

Melakukan penelitian yang berjudul "Analisis Pendapatan Dan Faktor-Faktor Yang Mempengaruhi Produksi Cabang Usaha Tani Padi Ladang Di Kabupaten Karawang". Variabel independen yang digunakan dalam penelitian ini adalah tenaga kerjaluar keluarga, tenaga kerja dalam keluarga, pupuk, benih pestisida. Sampel yang digunakan diperoleh dari hasil melakukan wawancara dan pengamatan langsung dengan petani responden dan diperoleh secara sekunder dari Badan Pusat Statistik, Departemen Pertanian, dan Balai Penelitian Tanaman Pangan. Teknik analisis yang digunakan dalam penelitian ini adalah

pendekatan fungsi produksi Cobb Douglas dan analisis efisiensi ekonomi dengan Nilai Produk Marginal dan Biaya Korbanan Maginal. Hasil penelitian menunjukkan bahwa faktor faktor produksi yang berpengaruh nyata terhadap produksi padi ladang adalah tenaga kerja luar keluarga dan tenaga kerja dalam keluarga. Sedangkan faktor pupuk, benih, dan pestisida tidak berpengaruh nyata. Penggunaan faktor faktor produksi yang efisien secara ekonomis dicapai pada saat penggunaan faktor pupuk sebesar 282,51, faktor tenaga kerja luar keluarga sebesar 146,33 HOK.

Halaman Ini Sengaja Dikosongkan

BAB III METODOLOGI PENELITIAN

3.1 Sumber Data

Data yang digunakan dalam penelitian ini merupakan data sekunder mengenai faktor faktor yang mempengaruhi produksi padi di Jawa Timur yang di ambil dari Dinas Pertanian Provinsi Jawa Timur periode Tahun 2010 - 2012.

3.2 Variabel Penelitian

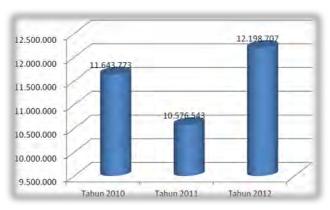
Variabel yang digunakan dalam penelitian ini terdiri atas variabel respon dan variabel prediktor. Variabel respon adalah produksi padi. Variabel prediktor yang digunakan adalah luas lahan (X_1) , pupuk (X_2) , dan pompa air (X_3) . Penjelasan variabel penelitian yang digunakan dalam penelitian ini dapat ditunjukkan pada Tabel 3.1.

Tabel 3.1 Variabel Penelitian

Kode	Nama Variabel	Definisi Operasional
Y	Produksi Padi	Jumlah hasil produksi padi di masing masing Kabupaten dan Kota di Jawa Timur yang dinyatakan dalam ton.
X_1	Luas Lahan	Luas lahan pertanian merupakan luas lahan pertanian yang dapat ditanami padi selama satu tahun dari masing masing kabupaten/kota se Jawa Timur, dinyatakan dalam (ha/tahun).
X ₂	Pupuk	Jumlah pupuk yang digunakan oleh seluruh petani di masing masing kabupaten/kota di Jawa Timur untuk memupuk tanaman padinya selama kurun waktu satu tahun. Pupuk yang dimaksud merupakan indeks penggunaan pupuk urea, SP-36, KCL, dan Za.
X ₃	Pompa Air	Seluruh jumlah pompa air dengan diameter antara 3" sampai dengan 4". Merupakan pompa air <i>portable</i> yang biasa digunakan untuk mengambil air dari sumur maupun air sungai yang ada di masing masing kabupaten di Jawa Timur yang digunakan oleh petani dalam proses produksi, dinyatakan dalam (unit/tahun).

3.3 Langkah Analisis

Langkah-langkah analisis yang dilakukan pada penelitian ini adalah sebagai berikut.


- 1. Mendeskripsikan kondisi produksi padi di Jawa Timur tahun 2010 2012.
 - i. Mendeskripsikan kondisi produksi padi, luas lahan pertanian, pupuk, dan pompa air di Jawa Timur tahun 2010 2012.
 - ii. Menginterpretasikan hasil analisis dan mengambil kesimpulan.
- 2. Memodelkan fungsi produksi padi di Provinsi Jawa Timur dengan menggunakan fungsi produksi Cobb Douglas.
 - Membuat Scatterplot antara variabel respon dengan masing

 masing variabel prediktor yang dijadikan deteksi awal mengenai pola hubungan antara variabel respon dan variabel prediktor.
 - ii. Memodelkan variabel respon dengan analisis regresi dan transformasi Ln.
 - iii. Menetapkan model terbaik.
 - iv. Menguji signifikansi parameter secara serentak dan parsial.
 - v. Melakukan uji asumsi residual.
 - vi. Menginterpretasikan hasil analisis dan mengambil kesimpulan.

BAB IV HASIL DAN PEMBAHASAN

4.1 Analisis Produksi Padi

Analisis deskriptif bertujuan untuk mengetahui karakteristik data yang digunakan. Faktor-faktor yang digunakan dalam menduga fungsi produksi padi di Jawa Timur dalam penelitian ini meliputi luas tanam, pupuk, dan pompa air pada periode 2010 – 2012. Berikut tabel analisa deskriptif.

Gambar 4.1 Produksi Padi di Jawa Timur Tahun 2010 - 2012

Berdasarkan diagram batang tersebut dapat dijelaskan secara deskriptif mengenai produksi padi periode 2010 – 2012. Produksi padi tahun 2010 sebesar 11,6 juta ton dan menagalami penurunan tahun 2011 sebesar 1,06 juta ton atau sekitar 9,16%. Pada tahun 2012 produksi padi mengalami peningkatan dari tahun 2011 sebesar 1,62 juta ton sekitar 15,33%.

Tabel 4.1Deskripsi Produksi, Luas Tanam, Pupuk, dan Pompa Tanun 2010									
Tahun 2010									
Variabel Mean St Deviasi Minimum Maximum									
Produksi (ton)	306415	254436	4785	900328					
Luas tanam (Ha)	54279	43730	1123	156921					
Pupuk (ton) 48789 38126 745 125935									
Pompa air (unit)	2922	3737	9	13696					

Tabel 4.1Deskripsi Produksi, Luas Tanam, Pupuk, dan Pompa Tahun 2010

Berdasarkan Tabel 4.1 dapat dijelaskan statistika deskriptif dari variabel input faktor yang mempengaruhi produksi padi di Jawa Timur tahun 2010. Diketahui bahwa rata rata produksi padi yang dihasilkan di Jawa Timur pada Tahun 2010 sebesar 306.415 ton, besar standar deviasi untuk variabel produksi, luas tanam, pupuk, dan pompa air secara berturut turut sebesar 254.436 ton, 43.730 ha, 38.126 ton, dan 3.737 pompa air. Nilai minimum untuk variabel pompa air adalah sebesar 9 yang terdapat pada kota Malang. Nilai maximum dari luas tanam yaitu sebesar 156.921 ha yaitu terdapat pada Kabupaten Jember.

Tabel 4.2 Deskripsi Produksi, Luas Tanam, Pupuk, dan Pompa Tahun 2011

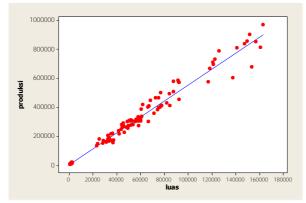
Tahun 2011								
Variabel	Mean	St Deviasi	Minimum	Maximum				
Produksi (ton)	278330	217184	4683	813514				
Luas tanam (Ha)	54275	43495	979	161101				
Pupuk(ton)	54479	42057	941	147734				
Pompa air (Unit)	3093	3807	9	14612				

Berdasarkan Tabel 4.2 diketahui bahwa nilai rata rata produksi padi tahun 2011 di Provinsi Jawa Timur sebesar 278.330

ton, menurun dari tahun sebelumnya sebesar 28.085 atau 9,16% dari tahun 2010, standar deviasi sebesar 217.184 dan nilai minimum dari produksi padi yaitu sebesar 4.683 ton yang di hasilkan oleh Kota Mojokerto. Standar deviasi dari variabel produksi, luas tanam, pupuk dan pompa air secara berturut turut sebesar 217.184, 43.495, 42.057, dan 3.807. Nilai minimum dari luas tanam atau luas areal tanam sebesar 979 ha yaitu terdapat pada kota Mojokerto. Nilai maximum dari pupuk yang dialokasikan kepada daerah di Jawa Timur adalah sebesar 147.734 ton yaitu Kabupaten Jember.

Tabel 4.3Deskripsi Produksi, Luas Tanam, Pupuk, dan Pompa Tahun 2012

Tahun 2012								
Variabel	Mean	St Deviasi	Minimum	Maximum				
Produksi (ton)	321019	259217	4878	968505				
Luas tanam (Ha)	54389	43694	1074	162842				
Pupuk (ton)	58658	44597	1123	154466				
Pompa air (Unit)	3370	4403	9	19708				

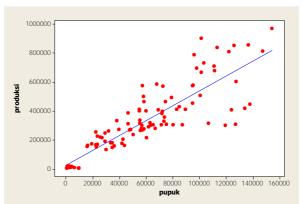

Berdasarkan Tabel 4.3 dapat dijelaskan secara deskriptif variabel variabel yang mempengaruhi produksi padi di Jawa Timur tahun 2012. Rata rata produksi padi di Jawa Timur tahun 2012 sebesar 321.019 ton dengan rata rata luas areal tanam sebesar 54.389 ha. Rata rata produksi tahun 2012 mengalami peningkatan sebesar 42.689 ton atau 15,33% dari rata rata tahun 2011 sebesar 278.330 ton. Nilai standar deviasi variabel luas tanam, pupuk, dan pompa air secara berturut turut sebesar 43.694, 44.597, 4.403. Luas areal tanam yang paling kecil pada tahun 2012 sebesar 1.074 ha yaitu terdapat pada kota Batu, untuk variabel pompa air yang paling kecil pada tahun 2012 sebesar 9 yaitu pada kota Malang. Variabel pupuk yang paling banyak memperoleh realisasi pupuk adalah kabupaten Jember sebesar 154.466 ton.

4.2 Scatterplot untuk Variabel Respon dengan Variabel Prediktor

Analisis regresi merupakan salah satu metode statistika yang digunkan untuk menyelidiki pola hubungan antara variabel prediktor dengan variabel respon. Bentuk pola hubungan fungsional antara variabel prediktor dengan variabel respon dapat diperkirakan dengan membuat diagram pencar (scatterplot) yang memuat informasi tentang kedua hubungan tersebut.

4.2.1 Scatterplot untuk Varaiebl X₁ terhadap Variabel Respon

Bentuk pola hubungan antara variabel X_1 yaitu luas areal tanam terhadap produksi padi (Y) disajikan pada gambar 4.2.

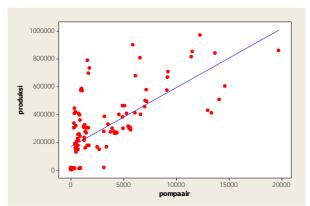


Gambar 4.2Scatterplot antara Variabel X₁ terhadap Variabel Y

Pada Gambar 4.2, dapat dilihat bahwa ada kecenderungan pola mebentuk pola yang mengikuti garis linier antara luas areal tanam (X_1) dengan produksi padi.

4.2.2 Scatterplot untuk Varaiebl X2 terhadap Variabel Respon

Bentuk pola hubungan antara variabel X_2 yaitu pupuk terhadap produksi padi (Y) disajikan pada gambar 4.3.



Gambar 4.3Scatterplot antara Variabel X2 terhadap Variabel Y

Pada Gambar 4.3, dapat dilihat bahwa ada kecenderungan pola mebentuk pola yang mengikuti garis linier antara pupuk (X_2) dengan produksi padi namun terdapat beberapa data pencilan.

4.2.3 Scatterplot untuk Varaiebl X3 terhadap Variabel Respon

Bentuk pola hubungan antara variabel X₃ yaitu pompa air terhadap produksi padi (Y) disajikan pada gambar 4.4.

Gambar 4.4 Scatterplot antara Variabel X3 terhadap Variabel Y

Pada Gambar 4.4, dapat dilihat bahwa kecenderungan pola mebentuk pola yang mengikuti garis linier antara variabel pompa air terhadap produksi padi.

4.3 Hasil dan Pembahasan Model Regresi

Untuk menganalisis faktor faktor yang mempengaruhi produksi padi di provinsi Jawa Timur digunakan model regresi berganda dengan produksi padi sebagai variabel respon dan luas tanam, pupuk, pompa air sebagai variabel prediktor. Berikut model yang dihasilkan dari regresi berganda antara luas tanam, pupuk, dan pompa air terhadap produksi padi yang dihasilkan.

Produksi(Y) =
$$-2863 + 5,44(X_1) + 0,335(X_2) - 2,82(X_3)$$

Berdasarkan model yang dihasilkan dalam regresi berganda terdapat asumsi yang terlanggar yaitu residual tidak memenuhi asumsi independen (autokorelasi) dan identik(heteroskedastisitas). Hasilnya dapat dilihat pada lampiran 2. Berdasarkan hasil uji independen menggunakan pengujian Durbin Watson diperoleh nilai DW sebesar 1,30277 dengan nilai dL sebesar 1.5105 dan nilai dU sebesar 1.62108. sehingga dapat disimpulkan bahwa residual tidak independen karena nilai Dw < dL. Sedangkan berdasarkan hasil uji Park didapatkan kesimpulan

residual tidak identik karena pada uji Park secara parsial pada variabel luas lahan didapatkan nilai p-value $0,000 < \alpha(5\%)$.

Oleh karena itu perlu dilakukan pendugaan model regresi dengan menggunakan data transformasi Ln, dengan persamaan matematis sebagai berikut.

$$Ln\widehat{Y} = Ln\widehat{\beta}_0 + \widehat{\beta}_1 LnX_1 + \widehat{\beta}_2 LnX_2 + \widehat{\beta}_3 LnX_3$$

Hasil estimasi dari model di atas dengan bantuan software minitab ditunjukkan pada Tabel 4.4 berikut.

Tabel 4.4 Hasil Estimasi					
Variabel Independen	Koef Regresi				
Luas Tanam(LnX1)	0,9895				
Pupuk (LnX2)	0,0293				
Pompa air (LnX3)	-0,0013				
Konstanta	1,5129				

Tabel 4.4 Hasil Estimasi

Berdasarkan hasil regresi seperti pada Tabel 4.4 tersebut maka kondisi produksi padi di Provinsi Jawa Timur apabila diformulasikan dalam model adalah sebagai berikut.

$$Ln\hat{Y} = Ln1,5129 + 0.9895LnX_1 + 0.0293LnX_2 - 0.0013LnX_3$$

Berdasarkan hasil regresi menggunakan transformasi Ln pemeriksaan asumsi telah terpenuhi semua oleh karena itu, model hasil regresi menggunakan transformasi Ln dapat digunakan untuk mengetahui nilai elastisitas dari input yang mempengaruhi produksi padi.

Variabel luas tanam berpengaruh secara positif dan signifikan terhadap produksi padi di Jawa Timur yang berarti apabila luas tanam semakin besar maka semakin besar pula jumlah produksi padi yang akan diperoleh. Koefisien input produksi pada faktor produksi luas tanam sebesar 0,9895.

Variabel kedua yaitu pupuk berpengaruh positif terhadap produksi padi. Variabel pupuk mempunyai probabilitas signifikansi sebesar 0,030 dengan demikian dapat dikatakan bahwa variabel pupuk (X₂) adalah signifikan. Variabel pupuk secara statistik signifikan mempengaruhi produksi padi dan mempunyai nilai koefisien yang positif. Koefisien variabel pupuk sebesar 0,0294.

Variabel ketiga yaitu pompa air (X_3) yang mempunyai tanda koefisien (elastisitas) yang negatif dan tidak signifikan terhadap produksi padi di Jawa Timur dengan nilai koefisien regresi sebesar -0.0013

4.3.1 Uji Serentak

Uji statistik F digunakan untuk menunjukkan apakah semua variabel bebas yang dimasukkan dalam model mempunyai pengaruh secara bersama sama terhadap variabel terikat.

Hipotesis:

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$

 H_1 : minimal ada satu $\beta_i \neq 0$ dengan j = 1, 2,... p

Statistik uji :
$$F_{hitung} = \frac{RKR}{RKE}$$

 $Daerah\ penolakan: tolak\ H_{0,}jika\ F_{hitung}{>}\ F_{\alpha;\ p;\ n\text{-}(p+1)}$

Tabel 4.5 Hasil Uji Serentak

Tabel 4.5 Hash Of Scientar								
Sumber Variasi	Derajat Bebas	Jumlah Kuadrat	Rata- rata Kudrat	F_{hitung}	P- value			
Regresi	3	276,124	92,041	6175,07	0,000			
Residual	110	1,64	0,015					
Total	113	277,763						

Dari Tabel 4.5 menunjukkan bahwa secara bersama sama atau serentak variabel prediktor yang terdiri dari luas tanam, pupuk, dan pompa air mempunyai pengaruh yang signifikan terhadap variabel produksi padi di Jawa Timur pada selang kepercayaan $\alpha = 5\%$. Hal ini dapat dilihat nilai probabilitas signifikansi sebesar 0,000 yang nilainya kurang dari 0,05 (α). Atau nilai $F_{hitung} > F_{\alpha; p; n-(p+1)}$ yaitu sebesar 6175,07 > 2,687.

4.3.2 Uji Parsial

Uji statistik t digunakan untuk menunjukkan seberapa jauh pengaruh satu variabel prediktot secara individual dalam mempengaruhi variabel respon.

Hipotesis:

$$H_0: \beta_i = 0$$

$$H_1: \beta_j \neq 0$$
, dengan j =1,2,...p

Statistik uji :
$$t = \frac{\hat{\beta}_k}{se(\hat{\beta}_k)}$$

Daerah penolakan : tolak H₀, jika $|t_{hitung}| > t_{\frac{\alpha}{2}, n-p}$ atau p-value $< \alpha$

Tabel 4.6 Hasil Uji Parsial Parameter

Tuber ito riadir of randari aranieter							
Variabel Prediktor	P-value	Thitung	Keputusan				
Luas Tanam (Ha)	0,000	41,32	Tolak H ₀				
Pupuk (Ton)	0,03	21,21	Tolak H ₀				
Pompa air (Unit)	0,897	-0,13	Gagal Tolak H ₀				

Berdasarkan Tabel 4.6 menunjukkan bahwa secara parsial variabel prediktor luas areal tanam, pupuk, memberikan hasil yang signifikan sedangkan satu variabel prediktor yang memberikan hasil yang tidak signifikan yaitu pompa air. Hal ini dapat dilihat dari nilai probabilitas pompa air yang lebih besar

daripada nilai (α) 5% dan nilai probabilitas untuk variabel luas tanam dan pupuk mempunyai nilai kurang dari (α)5%. Atau berdasarkan t_{hitung} luas tanam dan pupuk yang mempunyai nilai > nilai $t_{\frac{\alpha}{2},n-p}$ yaitu sebesar 41,32 dan 21,21 > 2,27 sehingga

didapatkan kesimpulan Tolak H_0 yang artinya variabel luas tanam dan pupuk signifikan terhadap produksi padi, sedangkan untuk variabel pompa air mempunyai nilai $|t_{hitung}| < t_{\frac{\alpha}{2},n-p}$ yaitu sebesar

|0,13| < 2,27 sehingga memperoleh keputusan gagal tolak H₀ yang artinya tidak signifikan terhadap produksi padi.

Karena pada uji parsial ada satu parameter yang tidak signifikan, maka akan dilakukan pemilihan model terbaik. Berikut hasil pemilihan model terbaik dengan membuang parameter yang tidak signifikan yaitu variabel pompa air. Berdasarkan hasil regresi model tebaik didapatkan model terbaiknya adalah sebagai berikut.

$$Ln\hat{Y} = Ln1.52 + 0.98LnX_1 + 0.028LnX_2$$

Dari model akhir yang berpengaruh pada produksi padi di Jawa Timur adalah variabel luas tanam (X_1) dan pupuk (X_2) . Untuk mengetahui apakah model diatas sudah signifikan atau belum, maka harus dilakukan uji serentak dan uji parsial, yaitu sebagai berikut.

4.3.3 Uji Serentak Model Terbaik

Hipotesis:

 $H_0: \beta_1 = \beta_2 = 0$

 H_1 : minimal ada satu $\beta_j \neq 0$ dengan j = 1, 2,... p

Statistik uji : $F_{hitung} = \frac{RKR}{RKE}$

Daerah penolakan : tolak $H_{0,j}$ ika $F_{\text{hitung}} > F_{\alpha; p; n\text{-}(p+1)}$

	Tabel 4.7 Hasil Uji Serentak Model Terbaik							
Sumber Variasi	Derajat Bebas	Jumlah Rata- Kuadrat Kuadrat		F_{hitung}	P-value			
Regresi	2	276,12	138,06	9345,37	0,000			
Residual	111	1,64	0,01					
Total	113	277,76						

Dari Tabel 4.7 menunjukkan bahwa secara serentak variabel prediktor mempunyai pengaruh yang signifikan terhadap variabel produksi padi di Jawa Timur pada selang kepercayaan $\alpha = 5\%$. Hal ini dapat dilihat nilai probabilitas signifikansi sebesar 0,000 yang nilainya kurang dari 0,05 (α) atau nilai $F_{hitung} > F_{\alpha; p; n-(p+1)}$ yaitu sebesar 9345,37 > 3,078.

4.3.4 Uji Parsial Model Terbaik

Hipotesis:

$$H_0: \beta_i = 0$$

$$H_1: \beta_j \neq 0$$
, dengan j =1,2,...p

Statistik uji :
$$t_{hitung} = \frac{\hat{\beta}_k}{se(\hat{\beta}_k)}$$

Daerah penolakan : tolak H₀, jika $|t_{hitung}| > t_{\frac{\alpha}{2},n-i}$ atau p-value $< \alpha$

Tabel 4.8 Hasil Uji Parsial Model Terbaik

Variabel Prediktor	P-Value	Thitung	Keputusan
Luas Tanam (Ha)	0,000	42,99	Tolak H ₀
Pupuk (Ton)	0,03	21,21	Tolak H ₀

Berdasarkan Tabel 4.8 menunjukkan bahwa secara parsial variabel prediktor luas areal tanam, dan pupuk, memberikan hasil yang signifikan karena mempunyai nilai probabilitas kurang dari

(α)5%. Atau berdasarkan nilai $|t_{\text{hitung}}| > t_{\frac{\alpha}{2},n-i}$ yaitu sebesar 42,99

untuk luas tanam dan 21,21 untuk variabel pupuk > 2,27 sehingga memperoleh keputusan tolak H_0 , yang artinya luastanam dan pupuk signifikan terhadap produksi padi.

4.3.4 Koefisien Determinasi

Berdasarkan hasil analisis diperoleh nilai R² sebesar 99,4% yang artinya variasi variabel produksi padi di Provinsi Jawa Timur dapat dijelaskan oleh variabel – variabel luas tanam, dan pupuk, sebesar 99,4%, sedangkan sisanya sebesar 0,06% dijelaskan faktor – faktor lainnya diluar model. Artinya jika peningkatan produksi padi hanya dilakukan dengan meningkatkan penggunaan variabel – variabel tersebut maka hanya ada peluang peningkatan produksi sebesar 99,4% sedangkan 0,06% sisanya ditentukan oleh faktor lain seperti curah hujan, benih serta kondisi lingkungan lainnya.

4.4 Uji Asumsi Residual

Langkah pertama yang dilakukan untuk menguji model regresi adalah menguji apakah residual memenuhi asumsi IIDN.

4.4.1 Uji Identik (Homokedastisitas)

Asumsi penting dari model regresi klasik adalah bahwa gangguan (*Disturbance/standar error*) yang muncul dalam fungsi regresi populasi harus memenuhi asumsi homokedastisitas, yaitu semua standar *error* mempunyai varians yang sama. Untuk memeriksa asumsi homokedastisitas dilakukan dengan pengujian terhadap gejala heterokedastisitas. Pengujian terhadap gejala heterokedastisitas memakai Uji Glejser (Gujarati, 2003) dengan hipotesis sebagai berikut.

$$H_{0}: \sigma_{i}^{2} = \sigma^{2}$$

$$H_{1}: \sigma_{i}^{2} \neq \sigma^{2}, i = 1,2,...,n$$

$$Statistik uji: F_{hitung} = \frac{\sum_{i=1}^{n} (|\hat{\varepsilon}_{i}| - |\bar{\varepsilon}|)^{2}}{\sum_{i=1}^{n} (|\varepsilon_{i}| - |\hat{\varepsilon}_{i}|)^{2}}$$

$$\frac{n-p}{n-p}$$

Taraf signifikan : α (5%)

Daerah penolakan dalam uji heterokedastisitas apabila tolak H_0 , jika nilai p-value $< \alpha$ (5%) maka dapat disimpulkan bahwa data heterokedastisitas, sebaliknya jika gagal tolak H_0 jika nilai p-value $> \alpha$ (5%) maka data dapat dikatakan bebas heterokedastisitas atau dengan kata lain sudah homokedastisitas.

Berdasarkan hasil perhitungan menggunakan Minitab didapatkan hasil sebagai berikut.

Tabel 4.9 Uji Glejser

Variabel Prediktor	P-Value	Keterangan
Luas Tanam (Ha)	0,610	Bebas Heteroskedastisitas
Pupuk (Ton)	0,141	Bebas Heteroskedastisitas

Dari Tabel 4.9 dapat dijelaskan bahwa semua variabel prediktor tidak terjadi heteroskedastistas karena nilai p-value yang dihasilkan > α (5%) yang artinya gagal tolak H_0 . Sehingga dapat disimpulkan bahwa tidak terdapat hubungan yang sigifikan secara statistik untuk semua variabel prediktor. Asumsi tidak terdapat heteroskedastisitas dalam varians sudah terpenuhi.

4.4.2 Uji Independen (Otokorelasi)

Uji independen atau otokorelasi adalah pengujian untuk memeriksa apakah residual telah memenuhi asumsi independen

atau tidak. Pelanggaran tehadap asumsi ini biasa disebut dengan autokorelasi. Pengujian autokorelasi dalam persamaan regresi dilakukan dengan melihat nilai Durbin Watson (*Dw* test). Berikut hipotesis dari uji autokorelasi.

Hipotesis:

 $H_0: \rho_k = 0$

 $H_1: \rho_k \neq 0$

Statistik uji : $Dw = \frac{\sum_{i=1}^{n} (e_i - e_{i-1})^2}{\sum_{i=1}^{n} e_i^2}$

Daerah penolakan:

Tolak H_0 , jika nilai Dw < dL

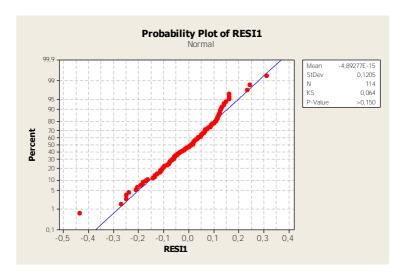
Dari hasil perhitungan, uji Durbin Watson diperoleh angka Dw sebesar 1,727. Dengan jumlah data (n) sama dengan 114 dan jumlah variabel (k) sama dengan 3 dengan α (5%) diperoleh nilai dL sebesar 1.5105 dan nilai dU sebesar 1.62108. sehingga dapat disimpulkan bahwa residual independen tidak ada korelasi positif atau negatif karena nilai d > dL sehingga didapatkan keputusan gagal tolak H_0 .

4.4.3 Uji Normalitas

Uji asumsi normalitas digunakan untuk mengetahui residual mengikuti distribusi normal atau tidak maka dilakukan uji asusmsi residual distribusi normal dengan hipotesis sebagai berikut.

H₀: Residual berdistribusi normal

H₁: Residual tidak berdistribusi normal


Statsitik uji:

$$D=\sup_{x} \left| F_n(x) - F_0(x) \right|$$

Taraf signifikan : α (5%)

Daerah penolakan : Tolak H_0 jika $D > D_{tabel}$ atau p-value $< \alpha$ (5%)

Berikut adalah gambar yang menampilkan uji asumsi residual berdistribusi normal dengan menggunakan uji Kolmogorov Smirnov.

Gambar 4.5 Uji Normalitas

Berdasarkan hasil uji *Kolmogorov Smirnov* didapatkan nila p- $value \ge \alpha$ (5%) sehingga menghasilkan keputusan gagal tolak H_0 , yang artinya residual berdistribusi normal.

4.4.4 Pemeriksaan Multikolinearitas

Multikolinearitas terjadi jika terdapat hubungan yang sempurna atau pasti di antara beberapa variabel atau semua variabel independen dalam model. Multikolinearitas berarti adanya hubungan yang sempurna atau pasti dianatara beberapa variabel atau semua variabel yang menjelaskan dari model regresi. Hasil perhitungan dengan menggunakan Minitab diperoleh nilai sebagai berikut.

No Variabel Nilai VIF Keterangan

1 Luas tanam (Ha) 9,598 Bebas Multikolinearitas

2 Pupuk (Ton) 9,598 Bebas Multikolinearitas

Tabel 4.10 Uji Multikolinearitas

Berdasarkan Tabel 4.10 dapat dijelaskan bahwa nilai VIF variabel luas tanam, dan pupuk sebesar 9,598 karena nilai VIF nya kurang dari 10, sehingga dapat disimpulkan bahwa tidak terdapat penyimpangan asumsi multikolinearitas.

4.5 Analisis Fungsi Produksi Padi

Pada model awal produksi padi dengan menggunakan variabel prediktor luas tanam (X_1) , pupuk (X_2) , dan pompa air (X_3) diketahui bahwa ada satu parameter yang tidak signifikan yaitu variabel pompa air, setelah dikeluarkan satu variabel yang tidak signifikan maka diperoleh model terbaik dengan dua variabel prediktor.

Setelah ditemukan model terbaik yaitu dengan variabel prediktor luas tanam, dan pupuk maka dlakukan pengujian asumsi residual, uji secara serentak, dan uji secara parsial. Semua asumsi terlah terpenuhi, sehingga dapat disimpulkan bahwa model tersebut sudah layak dipakai. Maka dapat disimpulkan fungsi produksi adalah sebagai berikut.

$$Ln\hat{Y} = Ln1.52 + 0.98LnX_1 + 0.028LnX_2$$

Dari fungsi produksi diatas dapat diketahui bahwa elastisitas perubahan luas tanam terhadap produksi padi adalah 0,98. Koefisien input produksi pada faktor produksi luas tanam sebesar 0,98. Artinya bila ada penambahan luas tanam sebesar 1% maka akan ada kecenderungan bahwa produksi padi dapat ditingkatkan sebesar 0,98%, dengan variabel lain dianggap konstan. Nilai elastisitas ini mendekati 1(*elastis*) oleh karena itu variabel luas tanam sangat berpengaruh terhadap produksi padi di wilayah Jawa Timur. Sedangkan untuk variabel pupuk di wilayah

Jawa Timur mempunyai elastisitas sebesar 0,028, nilai elastisitas ini kurang dari satu (*inelastis*). Koefisien variabel pupuk sebesar 0,028, artinya bila ada penambahan pupuk secara agregat sebesar 1% maka akan ada kecenderungan bahwa produksi padi dapat ditingkatkan sebesar 0,028% dengan variabel lain dianggap konstan. Sehingga dapat disimpulkan bahwa variabel yang paling mempengaruhi produksi padi di Wilayah Jawa Timur adalah luas tanam, jadi semakin bertambah luas tanam maka semakin bertambah pula produksi padi, sedangkan penambahan produksi padi akibat penambahan jumlah pupuk hanya sedikit.

Halaman Ini Sengaja Dikosongkan

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis yang telah dilakukan, maka dapat diambil beberapa kesimpulan antara lain:

- 1. Berdasarkan deskripsi kondisi produksi padi di Jawa Timur tahun 2010 - 2012, didapatkan kesimpulan bahwa produksi padi tahun 2010 sebesar 11,6 juta ton dan mengalami penurunan pada tahun 2011 sebesar 1.06 juta ton atau sekitar 9,16% dan mengalami peningkatan kembali pada tahun 2012 yaitu sebesar 1,62 juta ton atau sekitar 15,33%. Berdasarkan variabel luas tanam tahun 2010 – 2012 yang memiliki luas tanam maximum adalah Kabupaten Jember dengan luas 162.842 Ha pada tahun 2012. Sedangkan luas tanam yang paling sedikit pada tahun 2010 dan 2011 adalah terdapat pada Kota Mojokerto yaitu sebesar 1.123 Ha dan 979 Ha. Sedangkan pada tahun 2012 luas tanam yang paling sedikit terdapat pada Kota Batu yaitu sebesar 1.074 Ha. Untuk kota yang memiliki paling sedikit pompa air selama tahun 2010 -2012 adalah Kota Malang yaitu sebesar 9 unit. Sedangkan untuk variabel pupuk, daerah yang paling menggunakan pupuk pada tahun 2010 - 2012 adalah kabupaten Jember.
- 2. Hasil analisis yang telah dilakukan, didapatkan kesimpulan bahwa faktor faktor yang mempengaruhi produksi padi pada tahun 2010 2012 adalah luas tanam (X₁) dan pupuk (X₂) dengam model terbaiknya terbentuk fungsi produksi padi dengan nilai R² sebesar 99,4 persen dan nilai MSE sebesar 0,015 sehingga dapat dikatakan baik dalam pemodelan. Variabel luas tanam dan pupuk mempunyai pengaruh positif dan signifikan terhadap model dengan koefisien (elastisitas) masing masing sebesar 0,98 untuk luas tanam dan 0,028 untuk variabel pupuk. Sehingga dapat disimpulkan bahwa variabel yang paling mempengaruhi produksi padi tahun 2010 2012 di

wilayah Jawa Timur adalah luas tanam. Nilai elastisitas produksi adalah 1,008 (elastis). Ini berarti bahwa secara umum usaha padi di Jawa Timur masih bisa beroperasi dengan skala usaha yang meningkat (increasing returns to scale), tetapi sudah mendekati kondisi konstan (constant return to scale).

5.2 Saran

Saran yang dapat diberikan melalui penelitian ini adalah sebagai berikut :

- Pada penelitian ini, pemodelan fungsi produksi padi terbatas menggunakan variabel prediktor yang berhubungan dengan teknis. Penelitian selanjutnya disarankan untuk menggunakan variabel prediktor dari aspek yang lain secara ekonomi dari segi harga sehingga diperoleh hasil yang lebih informatif.
- 2. Variabel prediktor yang telah ditentukan terdapat satu variabel yang tidak signifikan terhadap produksi padi yaitu pompa air, oleh karena itu untuk penelitian selanjutnya disarankan untuk menggunakan variabel volume air yang keluar dari pompa air sehingga bagi pemerintah perlu dilakukan pencatatan data untuk mengetahui volume debit air yang keluar dari pompa air.
- 3. Supaya melakukan diversifikasi pertanian di luar padi karena nilai elastisitas produksi sudah mendekati ke arah *constant* return to scale.

DAFTAR PUSTAKA

- Badan Pusat Statistik Propinsi Jawa Timur, "Berita Resmi Statistik", 2012.
- Dispertan. 2011. Laporan Tahunan Dinas Pertanian Tanaman Pangan Provinsi Jawa Timur. Surabaya.
- Dispertan. 2012. Laporan Tahunan Dinas Pertanian Tanaman Pangan Provinsi Jawa Timur. Surabaya.
- Dispertan. 2013. Laporan Tahunan Dinas Pertanian Tanaman Pangan Provinsi Jawa Timur. Surabaya.
- Draper, Norman. 1992. *Analisis Regresi Terapan Edisi Kedua*. PT. Gramedia Pustaka Utama: Jakarta.
- Faradila.(2012). *TanamanPadi*, http://blog.ub.ac.id/faradila/2012/05/04/tanaman-padi/ (diakses 29 Desember 2013, pukul 09.15 WIB)
- Gujarati, Damodar, 1999, *Ekonometrika Dasar*, Edisi Pertama, Terjemahan oleh Sumarno Zain, Penerbit: Erlangga, Jakarta.
- Hanafi, Safril. (2007). *Pengertian Padi*, http://safrilhanafi.blogspot.com/2012/02/pengertianpadi.html (diakses 29 Desember, pukul 09.40 WIB)
- Norman, Ike., (2001). Analisis Statistik Faktor Faktor Yang Mempengaruhi Produksi Padi. Surabaya.
- Purba, Hendri.(2005). Analisis Pendapatan Dan faktor-Faktor Yang Mempengaruhi produksi cabang Usaha Tani Padi Ladang Di Kabupaten Karawang, http://academi.edu/14526/2/Metro_Purba (diakses 29 Desember 2013, pukul 13.15)
- Setiawan, Endah, Dwi. 2010. *Ekonometrika*. CV. ANDI: Yogyakarta.
- Soekartawi. (2003). Teori Ekonomi Produksi, dengan pokok bahasan Analisis Fungsi Produksi Cobb Douglas. Jakarta: Rajawali Press.
- Sri Widodo Dkk. 2002, Kebijakan Pangan Nasional dalam Kerangka Otonomi Daerah, MM Agribisnis UGM.

- Suryana, Achmad. 2003. Kapita Selekta Evolusi Pemikiran Kebijakan Ketahanan Pangan, FE UGM.
- Triyanto, Joko. (2009). *Analisis Produksi Padi di Jawa Tengah Eprints Undip*,

 http://eprints.undip.ac.id/15686/1/Joko_Triyanto.pdf
 (diakses 29 Desember 2013, pukul 13.05)
- Wallpole, Ronald E. 1998. *Pengantar Metode Statistika*. Jakarta: PT. Gramedia Pustaka Utama.

BIOGRAFI PENULIS

Penulis dengan nama lengkap Wilujeng Agustin Prihatini dilahirkan di Mojokerto pada Agustus tanggal 21 1992. merupakan anak kedua dari dua bersaudara pasangan Sutiknyo dan Susilah. Pendidikan formal yang pernah ditempuh penulis adalah SDN Kesamben 1 (1999-2005), SMPN 1 Kesamben (2005-2008), SMAN 2 Jombang (2008-2011). Pada tahun 2011, penulis diterima di Jurusan Statistika Institut

Teknologi Sepuluh Nopember (ITS) Surabaya melalui jalur Seleksi Penerimaan Mahasiswa Baru Diploma dan terdaftar dengan NRP 1311 030 101. Selama perkuliahan, penulis berpartisipasi dalam berbagai kepanitiaan, antara lain dalam kegiatan Station (*Statistic Competition*) tingkat Jawa-Bali. Segala saran dan kritik yang membangun serta bagi yang ingin berdiskusi lebih lanjut dengan penulis mengenai Tugas Akhir ini dapat dikirimkan melalui email: wilujengagustinp@gmail.com

DAFTAR LAMPIRAN

Lampiran 1	Data faktor-faktor yang mempengaruhi pro	oduksi
	padi di Jawa Timur tahun 2010-2012	45
Lampiran 2	Hasil analisis regresi dan model terbaik	fungsi
	produksi Cobb Douglas	49

Halaman Ini Sengaja Dikosongkan

LAMPIRAN 1

Data faktor-faktor yang mempengaruhi produksi padi di Jawa Timur tahun 2010-2012.

*** 1 (***		Υ			X1			
Kab/Kota	2010	2011	2012	2010	2011	2012		
Pacitan	153.328	160.269	172.688	37416	36584	37704		
Ponorogo	398.144	300.603	406.678	66542	67043	67155		
Trenggalek	165.343	148.379	167.222	33831	28770	29193		
Tulungagung	271.668	266.658	299.755	50222	50201	49226		
Blitar	314.297	326.780	303.332	56654	60023	52001		
Kediri	314.594	300.889	306.175	57810	55728	53127		
Malang	407.564	444.990	416.607	67456	68558	62277		
Lumajang	396.411	357.761	408.635	75503	71784	78005		
Jember	851.598	813.514	968.505	156921	161101	162842		
Banyuwangi	788.742	695.962	732.262	126290	121257	122654		
Bondowoso	336.968	304.025	317.439	61257	58723	60487		
Situbondo	234.719	213.330	266.005	42104	42231	46213		
Probolinggo	276.932	304.197	302.572	53769	60527	57315		
Pasuruan	574.679	585.734	571.510	92219	91609	92539		
Sidoarjo	187.963	157.883	203.573	33991	31616	32779		
Mojokerto	309.678	276.301	306.881	52154	52180	50768		
Jombang	463.979	380.819	462.628	75253	74792	73042		
Nganjuk	429.348	411.107	507.670	82278	85020	87830		
Madiun	409.094	399.810	499.679	77581	76863	77144		
Magetan	277.488	262.993	288.756	44454	45042	46024		

Ngawi	668.024	574.224	708.694	118220	116988	120831
Bojonegoro	900.328	675.697	808.112	151996	153585	141159
Tuban	493.106	454.177	576.738	84496	92532	87806
Lamongan	838.596	601.505	856.890	147753	137683	149799
Gresik	330.864	272.323	386.435	58197	58681	60974
Bangkalan	225.277	253.693	259.861	46536	49466	48406
Sampang	217.984	213.821	245.536	36637	35396	44165
Pamekasan	130.991	147.232	178.801	23396	24455	25667
Sumenep	177.575	176.175	160.365	32971	34461	31529
Kota Kediri	13.890	15.040	9.770	2315	2654	1638
Kota Blitar	12.429	8.474	10.899	2240	2503	1857
Kota Malang	11.087	11.523	12.563	2080	2113	2050
Kota Probolinggo	11.596	9.627	13.178	1927	2323	2357
Kota Pasuruan	12.299	13.825	19.830	2729	2346	2819
Kota Majokerto	4.785	4.683	6.674	1123	979	1295
Kota Madiun	12.523	14.150	17.135	2122	2550	2581
Kota Surabaya	12.842	13.120	13.776	2783	2921	2450
Kota Batu	7.037	5.250	4.878	1393	1147	1074

Keterangan : Y : Produksi padi (Ton) : Luas tanam (Ha) : Pupuk (Ton) : Pompa air (Unit) X1 X2 X3

Lampiran 1 lanjutan

Lampiran 1	lanjutan						
Kab/Kota	X2			X3			
	2010	2011	2012	2010	2011	2012	
Pacitan	16025	16489	19396	465	543	499	
Ponorogo	60047	63463	69320	4.560	4.953	5.296	
Trenggalek	22592	23108,5	23630,5	2.503	2.704	3.367	
Tulungagung	40015	48004,5	56939	4.358	4.367	3.914	
Blitar	55616	73476,1	87275,1	1.236	1.338	1.451	
Kediri	106842	119468	127219	5.455	5.530	5.659	
Malang	124157	137934	134049	346	367	434	
Lumajang	72558	73909,4	83095,4	851	890	759	
Jember	125935	147734	154466	11.506	11.426	12.261	
Banyuwangi	96370	98182,1	103566	1.593	1.694	1.750	
Bondowoso	55372	65337	63256	277	278	510	
Situbondo	50551	60357	57387,3	1.269	1.268	1.488	
Probolinggo	66885	71827,8	80480,5	1.365	1.594	1.655	
Pasuruan	57310	68265,3	72959,5	920	1.026	1.081	
Sidoarjo	29315	36263,5	43075,8	394	437	556	
Mojokerto	46564	58436,5	75638,2	1.290	3.129	1.240	
Jombang	58488	71995,5	74656,7	4.912	4.888	5.094	
Nganjuk	85230	89804,5	100782	12.993	13.329	14.052	
Madiun	54994	55120,6	58213,4	6.062	6.606	7.040	
Magetan	56692	56079	61912,5	4.100	4.149	5.688	
Ngawi	101395	95196	111025	9.148	9.135	9.204	
Bojonegoro	101451	111415	122159	5.890	6.134	6.577	
Tuban	79303	95153	95387	7.224	7.012	7.154	
Lamongan	113559	127615	136864	13.696	14.612	19.708	
Gresik	38110	48684	46672,8	3.544	3.759	3.178	
Bangkalan	23556	22615	32029	630	668	784	

Sampang	26186	27212,4	29505,4	688	762	892
Pamekasan	30395	34887	34935	480	676	682
Sumenep	33632	41958	44062,8	1.573	1.740	1.352
Kota Kediri	3664	4450,7	3737,95	188	364	364
Kota Blitar	1833	2462,25	2470	118	117	124
Kota Malang	3423	3385	2686,5	9	9	9
Kota Probolinggo	3866	4285	4211	806	829	856
Kota Pasuruan	1352	1493,5	1324,4	17	19	17
Kota Majokerto	745	940,5	1343,45	18	18	12
Kota Madiun	1883	2064,45	2183,05	338	912	3.129
Kota Surabaya	1661	1414,5	1123,45	147	158	144
Kota Batu	6420	9730	9976	70	94	70

Keterangan:

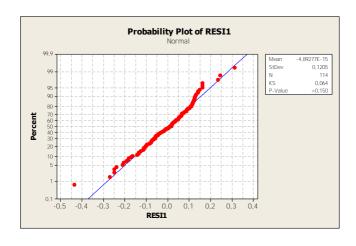
Y : Produksi padi (Ton)
X1 : Luas tanam (Ha)
X2 : Pupuk (Ton)
X3 : Pompa air (Unit)

LAMPIRAN 2

Hasil analisis regresi dan model terbaik fungsi produksi Cobb Douglas menggunakan *Software* Minitab.

```
Regression Analysis: produksi versus luas; pupuk; pompaair
The regression equation is
produksi = -2863 + 5,44 luas + 0,335 pupuk - 2,82
pompaair
Predictor Coef SE Coef
                         Т
                                P VIF
Constant -2863
                  6148 -0,47 0,642
       5,4409 0,1961 27,75 0,000 5,286
luas
pupuk
        0,3349 0,1890 1,77 0,079 4,523
pompaair -2,816 1,352 -2,08 0,040 2,110
S = 39208,3 R-Sq = 97,5% R-Sq(adj) = 97,4%
Analysis of Variance
Source
             DF
                           SS
                                      MS
                                               F
Regression 3 6,49337E+12 2,16446E+12 1407,97
0,000
Residual Error 110 1,69102E+11 1537292080
             113 6,66247E+12
Total
Source DF
                 Seq SS
        1 6,48276E+12
luas
pupuk 1 3941803000
pompaair 1 6666147955
Durbin-Watson statistic = 1,30277
```

Uji Glejser Regression Analysis: C21 versus luas; pupuk; pompaair


The regression equation is C21 = -6,45E+08 + 62326 luas -24244 pupuk + 16414 pompaair

Predictor	Coef	SE Coef	T	P
Constant	-644625615	514997163	-1,25	0,213
luas	62326	16422	3,80	0,000
pupuk	-24244	15831	-1 , 53	0,129
pompaair	16414	113266	0,14	0,885

S = 3284223979 R-Sq = 25,9% R-Sq(adj) = 23,9%

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	4,14367E+20	1,38122E+20	12,81	0,000
Residual Error	110	1,18647E+21	1,07861E+19		
Total	113	1,60084E+21			

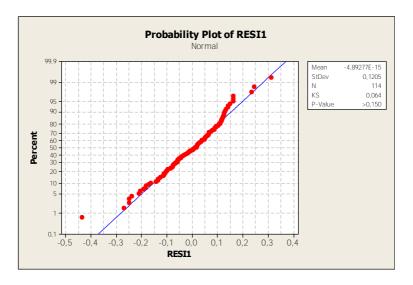
Lampiran 2 lanjutan

Regression Analysis: In produksi versus In luas; In pupuk; In pompaair

```
The regression equation is ln produksi = 1,51 + 0,990 ln luas + 0,0293 ln pupuk - 0,0013 ln pompaair
```

Uji Parsial dan Estimasi Parameter

```
Predictor Coef SE Coef T P
Constant 1,51290 0,08658 17,47 0,000
ln luas 0,98952 0,02395 41,32 0,000
ln pupuk 0,00934 0,00133 21,21 0,030
ln pompaair -0,00134 0,01029 -0,13 0,897
```


```
S = 0,122087  R-Sq = 99,4%  R-Sq(adj) = 99,4%
```

Uji serentak

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	276,124	92,041	6175,07	0,000
Residual Error	110	1,640	0,015		
Total	113	277.763			

```
Source DF Seq SS
1n luas 1 276,102
1n pupuk 1 0,021
1n pompaair 1 0,000
```

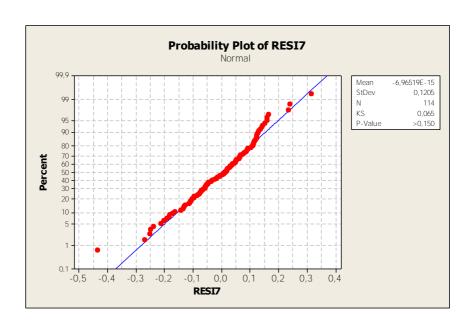

Hasil Analisis Model Terbaik

Regression Analysis: In produksi versus In luas; In pupuk

The regression equation is ln produksi = 1,52 + 0,989 ln luas + 0,0288 ln pupuk

Predictor Coef SE Coef T P VIF Constant 1,51708 0,08005 18,95 0,000 ln luas 0,98870 0,02300 42,99 0,000 9,598 ln pupuk 0,00884 0,00135 21,21 0,030 9,598

S = 0,121545 R-Sq = 99,4% R-Sq(adj) = 99,4%


Uji serentak

Analysis of Variance

Source DF SS MS F P Regression 2 276,12 138,06 9345,37 0,000 Residual Error 111 1,64 0,01

Total 113 277,76

Source DF Seq SS ln luas 1 276,10 ln pupuk 1 0,02

Hasil Analisis untuk uji asumsi heteroskedastisitas

```
Regression Analysis: kuadratresi versus In luas
The regression equation is
kuadratresi = 0,0539 + 0,00387 ln luas
Predictor
              Coef SE Coef
                                 T
           0,05392 0,01456 3,70 0,000
Constant
ln luas
          0,003866 0,001408 2,74 0,610
S = 0.0230556 R-Sq = 6.3% R-Sq(adj) = 5.5%
Analysis of Variance
                DF
                           SS
                                      MS
                                            F
Source
Regression
                1 0,0040050 0,0040050 7,53 0,087
Residual Error 112 0,0595350 0,0005316
               113 0,0635400
Regression Analysis: kuadratresi versus In pupuk
The regression equation is
kuadratresi = 0,0605 + 0,00450 ln pupuk
Predictor
               Coef SE Coef
                                 T
Constant 0,06055 0,01504 4,02 0,000 ln pupuk 0,004500 0,001452 3,10 0,141
S = 0.0228580 R-Sq = 7.9% R-Sq(adj) = 7.1%
Analysis of Variance
Source
                DF
                           SS
                                      MS
                                            F
Regression 1 0,0050212 0,0050212 9,61 0,052
Residual Error 112 0,0585188 0,0005225
                113 0,0635400
Total
```