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ABSTRACT 
 Solar power generation plays a pivotal role in Taiwan's 
pursuit of renewable energy, aligning with its ambitious target of 
generating over 27 GW by 2050 and achieving net-zero emissions 
by the same year. Notably, Taiwan stands as the world's second-
largest producer of solar photovoltaic (PV) energy, driven by the 
abundance of solar radiation, particularly in southern regions 
where it exceeds 145 watts per square meter. 

Building upon previous research that attained a 
remarkable low Mean Absolute Error (MAE) of 0.0223 through 
multivariate analysis with decomposition techniques, this study 
aims to further refine the forecasting models by focusing on the 
univariate decomposition. The hypothesis posits that this approach 
will lead to an even lower MAE, contributing to more accurate 
predictions. 

The research methodology involves extensive data 
preprocessing, which includes comparing and merging external 
datasets with information from the Taiwan Central Weather 
Bureau and Open Meteo. Feature engineering techniques are 
employed, incorporating transformations for time, wind direction, 
and wind speed. Recursive feature elimination is utilized for 
effective feature selection, enhancing the quality of input variables. 
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In conclusion, this project centers on the refinement of 
univariate decomposition techniques to optimize solar power 
generation forecasts in Taiwan. By improving the accuracy of the 
decomposition model, the anticipated outcome is a more precise 
overall prediction when the refined results are integrated into 
subsequent forecasting steps. This research contributes to the 
ongoing efforts to harness solar energy efficiently and aligns with 
Taiwan's commitment to a sustainable and renewable energy 
future. 
Keywords : Decomposition, Solar Power Prediction, Time Series, 
Univariate  
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CHAPTER I 
INTRODUCTION 

1.1. Background and Motivation 
  Taiwan's pursuit of solar power generation is 
pivotal, given its ambitious renewable energy target of 
over 27 GW by 2050 and the commitment to net-zero 
emissions. Solar energy is chosen for its abundant 
potential, with more than two-thirds of southern Taiwan 
receiving solar radiation exceeding 145 watts per square 
meter, establishing Taiwan as the world's second-largest 
solar PV producer. 

Previous research achieved a remarkable Mean 
Absolute Error (MAE) of 0.0223 through multivariate 
analysis. This study aims to refine forecasting by 
transforming multiple sequence decomposition techniques 
into a univariate model, seeking an even lower MAE for 
enhanced precision in solar power predictions. 

Reducing prediction errors is crucial for 
maintaining the delicate balance between energy supply 
and demand. As solar energy integrates into the power 
supply system, accurate forecasts become essential to 
manage fluctuations, avoiding excessive adjustments to 
traditional power generation units and preserving their 
lifespan. 

This research contributes to the effective 
integration of solar energy, aligning with Taiwan's 
sustainability goals and ensuring a resilient and balanced 
energy future.   

1.2. Objectives 
 The primary objective of this project is to fulfill 
the requirements for completing 3 SKS (academic credits) 
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in the internship program. The focus is on minimizing 
errors in decomposition results to improve the overall 
accuracy of solar power predictions. 

1.3. Contributions 
  The contribution achieved through an in-depth 
exploration of decomposition techniques is the 
enhancement of the solar power prediction model's 
accuracy. This improvement plays a crucial role in 
minimizing the need for frequent adjustments to the 
traditional power generation system. 

1.4. Problem Definition 
  The problems addressed in this project are 
outlined below: 
1. How can better decomposition techniques be 

implemented for more accurate solar power 
prediction? 

2. How to effectively implement the optimal architecture 
for a time-series model to predict univariate 
decomposed data? 

1.5. Location and Duration 
  The project spanned from September 12, 2023, to 
December 12, 2023. The initial month was conducted 
online, within a Work From Home environment, while the 
final two months took place offline at CITI - Center for IoT 
Innovation, NTUST, Taiwan. 
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1.6. Methodology 
The methodology in creating the internship report 
includes: 

1.6.1. Problem Formulation 
To understand the model requirements, an initial 

meeting was conducted with the supervisor, Mr. Indie. 
During this meeting, he emphasized the significance of 
accurate solar power prediction in Taiwan, a country 
heavily reliant on solar energy. Insights into the 
performance of previous models were shared, along 
with expectations for improvement in this project. With 
a clear understanding of the task at hand, the team 
commenced exploration, focusing specifically on the 
decomposition technique as a potential avenue to 
enhance the overall accuracy of solar power 
predictions. 

1.6.2. Literature Review 
After gaining a comprehensive understanding of 

the model's construction, we were instructed to review 
pertinent literature before commencing the project. The 
literature encompassed topics such as LSTM (Long 
Short-Term Memory), Decomposition Techniques, 
various EDA (Exploratory Data Analysis) techniques, 
including feature engineering and feature selection, 
among others. Additionally, guidance was provided on 
the specific considerations for handling time-series 
data. 

1.6.3. System Analysis and Design 
After conducting several literature reviews, it 

became evident that constructing a robust system would 
benefit from a comprehensive system architecture 
design. For this model, the decision was made to 
maintain the overall architecture from previous 
research, with planned modifications to the 
decomposition architecture for improvement. 
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1.6.4. System Implementation 
Implementation is the tangible realization of the 

design phase. In this stage, we commence the process 
of translating the system we previously designed into 
an actual, functional implementation. 

1.6.5. Result and Discussion 
Following the implementation of various 

decomposition techniques and architectures, an 
evaluation phase is essential to determine which model 
yields the most accurate predictions. The assessment 
will be based on the Mean Absolute Error (MAE) 
predictions, aiding in the selection of the most accurate 
model. 

1.6.6. Conclusion 
The conducted testing has met the desired criteria 

and proceeded well and smoothly. 

1.7. Report Structure 
1.7.1. Chapter I Introduction 

This chapter encompasses the background, 
objectives, benefits, problem formulation, location and 
duration of the internship, methodology, and the 
structure of the report. 

1.7.2. Chapter II Company Profile 
This chapter provides a general overview of CITI, 

NTUST, including its profile and location. 
1.7.3. Chapter III Literature Review 

This chapter contains the theoretical foundations 
of the technologies used in completing the internship 
project. 

1.7.4. Chapter IV System Analysis and Design 
This chapter covers the system analysis stage of 

the application in completing the internship project. 
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1.7.5. Chapter V System Implementation 
This chapter describes the stages undertaken 

during the application implementation process. 
1.7.6. Chapter VI Result and Discussion 

This chapter presents the results of testing and 
evaluation of the developed application during the 
internship period. 

1.7.7. Chapter VII Conclusion 
This chapter contains conclusions and suggestions 

derived from the internship implementation process. 
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CHAPTER II 

COMPANY PROFILE 

2.1. Center for IoT Innovation (CITI) Profile 
 The Center for IoT Innovation (CITI) at the 
National Taiwan University of Science and Technology 
(NTUST) is a leading research center specializing in the 
fields of IoT and AI. With a focus on technology-enabled 
services, CITI explores innovative solutions to address 
contemporary global challenges. The center is dedicated to 
engaging with industry and applying cutting-edge 
knowledge and insights to real-world issues, aiming to 
enhance businesses, policies, practices, and overall 
outcomes. 

2.2. Location 
 MA012 (NTUST Management Building), No. 43
號, Section 4, Keelung Rd, Da’an District, Taipei City, 
Taiwan 106 
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CHAPTER III 
LITERATURE REVIEW 

3.1. Recursive Feature Elimination (RFE) 
 The The effectiveness of a feature ranking 
criterion doesn't necessarily translate into an effective 
feature subset ranking criterion. Criteria such as 
𝐷𝑗(𝑖) 𝑜𝑟 (𝑤𝑖)2 are designed to estimate the impact of 
removing one feature at a time on the objective function. 
However, they prove suboptimal when removing multiple 
features simultaneously, crucial for obtaining a concise 
feature subset. To address this, the Recursive Feature 
Elimination (RFE) method is introduced: 

1. Train the classifier by optimizing the weights 
𝑤𝑖 with respect to the objective function 𝐽. 

2.  Calculate the ranking criterion (e.g., 
𝐷𝑗(𝑖) 𝑜𝑟 (𝑤𝑖)2) for all features. 

3. Iteratively remove the feature with the 
smallest ranking criterion. 

RFE is a form of backward feature elimination, 
where, for computational efficiency, it may be practical to 
eliminate multiple features at once, even though this could 
lead to a potential degradation in classification 
performance. In such instances, the method provides a 
feature subset ranking rather than a feature ranking, with 
nested subsets 𝐹1 ⊂ 𝐹2 ⊂ . . . ⊂  𝐹. (GUYON et al., 
2002). While a feature ranking is still applicable when 
removing features one at a time, the top-ranked features 
(eliminated last) may not necessarily be individually the 
most relevant. It is crucial to recognize that RFE doesn't 
impact correlation methods, as the ranking criterion is 
computed using information about a single feature. 
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3.2. Decision Tree 
A Decision Tree is a versatile machine learning 

algorithm used for classification and regression tasks. 
Operating by recursively partitioning data based on the 
most significant attributes, it creates a tree-like structure 
where leaves represent predicted outcomes. Known for its 
transparency, Decision Trees are valuable for interpreting 
the decision-making process. While susceptible to 
overfitting, techniques like pruning can mitigate this issue. 
Often employed in ensemble methods like Random Forests 
and Gradient Boosting, Decision Trees serve as 
foundational concepts in machine learning. Their 
simplicity and interpretability make them useful for 
introductory education and as building blocks for more 
advanced models. (Friedman, 2009) 

3.3. Random Forest 
Random Forest is an ensemble learning algorithm 

that enhances predictive accuracy by constructing multiple 
decision trees during training. Each tree is trained on a 
bootstrap sample of the data, and at each node, a random 
subset of features is considered for splitting, mitigating 
overfitting and improving generalization. The algorithm 
outputs the mode of predictions for classification or the 
average prediction for regression. Known for versatility, 
Random Forest handles both classification and regression 
tasks, provides feature importance scores, and is robust 
against noisy data. Its ensemble nature combines the 
interpretability of individual decision trees with superior 
predictive performance, making it widely adopted across 
diverse domains. (BREIMAN, 2001) 
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3.4. eXtreme Gradient Boosting  (XGBoost) 
XGBoost, or Extreme Gradient Boosting, is a 

highly effective machine learning algorithm widely used 
for structured data challenges. Developed by Tianqi Chen, 
it operates within an ensemble learning framework, 
sequentially constructing decision trees to iteratively 
correct errors. A distinctive feature of XGBoost is its 
optimization of an objective function that combines a loss 
function measuring label prediction accuracy with 
regularization terms controlling model complexity. The 
final prediction results from a weighted sum of predictions 
from all trees in the ensemble. XGBoost stands out for its 
ability to handle missing data, incorporation of 
regularization techniques to prevent overfitting, and 
support for parallel and distributed computing. (Chen & 
Guestrin, 2016) 

3.5. Decomposition 
Signal decomposition techniques aim to break 

down complex signals into simpler components, providing 
insights into the underlying structures and patterns within 
the data. There are two decomposition techniques that are 
used in this project, Complex Empirical Mode 
Decomposition with Adaptive Noise  (CEEMDAN) and 
Empirical Wavelet Transform (EWT). 
3.5.1. Complex Empirical Mode Decomposition with 

Adaptive Noise  (CEEMDAN) 
Complex Empirical Mode Decomposition 

with Adaptive Noise (CEEMDAN) is a signal 
processing technique used for decomposing non-
linear and non-stationary signals into a set of 
intrinsic mode functions (IMFs). Unlike 
traditional Empirical Mode Decomposition 
(EMD), CEEMDAN introduces an adaptive noise 
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term to enhance decomposition performance, 
particularly in the presence of noise. (Torres et al., 
2011) The adaptive noise helps in addressing 
mode mixing issues, providing a more accurate 
representation of the signal's intrinsic components. 

3.5.2. Empirical Wavelet Transform (EWT) 
Empirical Wavelet Transform (EWT) is a 

signal processing technique that decomposes a 
signal into components with different frequency 
bands and time localization. EWT combines the 
concept of wavelet transforms with empirical 
mode decomposition, providing a flexible and 
adaptive approach to analyze non-stationary and 
non-linear signals. The method aims to capture 
both frequency and time information effectively, 
making it suitable for a wide range of applications, 
including signal denoising and feature extraction. 
(Gilles, 2013) 

3.6. Long-Short Term Memory (LSTM) 

 In the realm of recurrent neural networks (RNNs), 
particularly Long Short-Term Memory (LSTM), the 
preservation of information over time stands out as a key 
mechanism, preventing the gradual fading of older signals 
during processing—reminiscent of the principles behind 
residual connections. To initiate a comprehensive 
exploration, let's commence with the SimpleRNN cell. 
Within this intricate structure, various weight matrices are 
denoted with the letter o such as Wo and Uo, specifically 
assigned for output-related computations. 
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Fig 2.1 SimpleRNN Diagram  
A pivotal augmentation to this framework 

involves introducing an additional data flow denoted as 
c_t, where the "C" signifies carry. This information 
intricately intertwines with input and recurrent 
connections, undergoing a dense transformation. (Chollet, 
2021) This transformation is characterized by a dot product 
with a weight matrix, a subsequent bias addition, and the 
application of an activation function. Furthermore, the 
information from c_t plays a significant role in shaping the 
state transmitted to the subsequent timestep, undergoing an 
activation function and a multiplication operation. 
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 Fig 2.2 SimpleRNN with cell state 

In a conceptual sense, this auxiliary carry dataflow 
acts as a modulating force, influencing both the subsequent 
output and state. Philosophically, the multiplication of c_t 
and f_t can be viewed as a purposeful mechanism for 
discarding irrelevant information within the carry 
dataflow, while i_t and k_t contribute insights into the 
present, infusing the carry track with updated information. 

 

 

 

 

 

Fig 2.3 LSTM Diagram 
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CHAPTER IV 
SYSTEM ANALYSIS AND DESIGN 

4.1. System Analysis 
This chapter will delineate the essential phases required 

for constructing a model to predict solar power generation, 
with a particular emphasis on the decomposition technique 
step. 
 

4.1.1. General Application Definition 
In general, the model for predicting solar power is 

built on LSTM. This model will utilize various 
decomposition techniques for univariate prediction, the 
results of which will be combined with other weather 
attributes to generate the final prediction of solar power 
generation.  

4.2. System Infrastructure Design 
4.2.1. System Design 

We commence the system design process with 
an initial phase dedicated to data exploration, termed 
Exploratory Data Analysis (EDA). In this stage, our 
focus lies in assessing the similarity between datasets 
and external data sources to augment our 
understanding. Upon establishing dataset similarities, 
we consolidate them to form a more comprehensive 
dataset. Subsequently, we meticulously cleanse the 
dataset, addressing missing values, detecting 
duplicates, and employing visualization techniques to 
enhance data comprehension. 

Transitioning from the exploration stage, we 
undertake data pre-processing to bolster the model's 
robustness. This involves pivotal steps such as feature 
selection and feature engineering. In the realm of 
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feature engineering, we transform the wind attribute 
and convert time data into a cyclical format. 
Simultaneously, in feature selection, Recursive Feature 
Elimination (RFE) aids in systematically narrowing 
down features until only the essential ones remain. 

With confidence in the cleanliness and 
readiness of the data for training, we progress to the 
decomposition stage. Various decomposition 
techniques are applied to attributes, enhancing the 
model's ability to discern signals effectively. The 
resultant prediction is then assimilated as a new 
attribute. 

Fig 3.1 System Design 
The concluding phase of the system involves 

constructing the Encoder-Decoder model, opting for the 
Seq2Seq model. In this architecture, historical weather 
data is input into the encoder, while the predicted 
outcome from the decomposition model and forecasted 
weather data are supplied to the decoder. The 
amalgamation of these components yields the final 
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prediction for solar photovoltaic output. Figure 3.1 
picturing comprehensive system design encapsulates 
the entire process. 

In this project, our primary emphasis lies on the 
decomposition technique. Therefore, the final stage, 
involving the construction of the encoder-decoder 
model, is not a requisite for our objectives. The project 
is tailored to encompass Data Retrieval, Data Pre-
Processing, Feature Engineering, with a specific focus 
on Decomposition. 

Table 4.1. Attributes and Data Types 
 

No Variabel Description Data Type 

1. timestamp Date and time of data acquisition Datetime64 

2. year Year  of data acquisition int64 

3. month Month  of data acquisition int64 

4. day Day of data acquisition int64 

5. hour Hour of data acquisition int64 

6. power The solar power generated at a specific 
timestamp. 

float64 

7. irradiance The irradiance level captured from the sun at 
a specific timestamp. 

float64 

8. temperature_2m 
(°C) 

Air temperature at 2 meters above ground float64 

9. relativehumidity_2
m (%) 

Relative humidity at 2 meters above ground float64 

10. dewpoint_2m (°C) Dew point temperature at 2 meters above 
ground 

float64 
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11. apparent_temperat
ure (°C) 

Apparent temperature is the perceived feels-
like temperature combining wind chill factor, 
relative humidity and solar radiation 

float64 

12. precipitation (mm) Total precipitation (rain, showers, snow) sum 
of the preceding hour 

float64 

13. rain (mm) Rain from large scale weather systems of the 
preceding hour in millimeter 

float64 

14. snowfall (cm) Snowfall amount of the preceding hour in 
centimeters. For the water equivalent in 
millimeter, divide by 7. E.g. 7 cm snow = 10 
mm precipitation water equivalent 

int64 

15. snow_depth (m) Snow depth on the ground int64 

16. weathercode (wmo 
code) 

Weather condition as a numeric code. Follow 
WMO weather interpretation codes 

int64 

17. pressure_msl (hPa) Atmospheric air pressure reduced to mean sea 
level (msl) or pressure at surface. Typically 
pressure on mean sea level is used in 
meteorology. 

float64 

18. surface_pressure 
(hPa) 

Surface pressure gets lower with increasing 
elevation. 

float64 

19. cloudcover (%) Total cloud cover as an area fraction int64 

20. cloudcover_low 
(%) 

Low level clouds and fog up to 3 km altitude int64 

21. cloudcover_mid 
(%) 

Mid level clouds from 3 to 8 km altitude int64 

22. cloudcover_high 
(%) 

High level clouds from 8 km altitude int64 

23. et0_fao_evapotran
spiration (mm) 

ET₀ Reference Evapotranspiration of a well 
watered grass field. 

float64 
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24 vapor_pressure_de
ficit (kPa) 

Vapour Pressure Deficit (VPD) in kilopascal 
(kPa). 

float64 

25 windspeed_10m 
(m/s) 

Wind speed at 10 meters above ground.  float64 

26 windspeed_100m 
(m/s) 

Wind speed at 100 meters above ground. float64 

27 winddirection_10
m (°) 

Wind direction at 10 meters above ground. int64 

28 winddirection_100
m (°) 

Wind direction at 100 meters above ground. int64 

29 windgusts_10m 
(m/s) 

Gusts at 10 meters above ground as a 
maximum of the preceding hour 

float64 

30 is_day () 1 if the current time step has daylight, 0 at 
night. 

int64 

31 shortwave_radiatio
n_instant (W/m²) 

Shortwave solar radiation as average of the 
preceding hour. 

float64 

32 direct_radiation_in
stant (W/m²) 

Direct solar radiation as average of the 
preceding hour on the horizontal plane and 
the normal plane (perpendicular to the sun) 

float64 

33 diffuse_radiation_i
nstant (W/m²) 

Diffuse solar radiation as average of the 
preceding hour 

float64 

34 direct_normal_irra
diance_instant 
(W/m²)' 

Direct solar radiation as average of the 
preceding hour on the horizontal plane and 
the normal plane (perpendicular to the sun 

float64 

35 terrestrial_radiatio
n_instant (W/m²) 

Amount of solar radiation received at the 
Earth's surface at a specific moment in time 

float64 
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CHAPTER V 
SYSTEM IMPLEMENTATION 

 This chapter discusses the implementation of the system 
we created. The implementation will be divided into several parts, 
namely Exploratory Data Analysis (EDA), Feature Engineering, 
and Decomposition. 

5.1. Exploratory Data Analysis 
5.1.1. Similarity of Datasets 

To assess the similarity of datasets, we employ 
two distinct methods: Kullback-Leibler divergence and 
Cosine Similarity. Our analysis focuses on comparing 
the similarity of specific columns present in both 
datasets, CWB and Open Meteo. These shared columns 
encompass pressure, temperature, Relative Humidity, 
Wind Speed, and Wind Direction. 

Kullback-Leibler (KL) divergence serves as a 
measure to quantify the difference between two 
probability distributions. It serves as an initial step to 
determine whether the data distributions are congruent 
or divergent. A KL score close to zero indicates a high 
degree of similarity between the probability 
distributions of the two datasets. The average KL 
divergence across corresponding attributes from the 
CWB dataset and Open Meteo dataset is calculated to 
be 0.10325426163906415. This result suggests a 
noteworthy similarity between the datasets, given the 
proximity of the KL score to zero. 

Concurrently, Cosine Similarity is employed to 
gauge the similarity between two vectors, providing a 
precise calculation of the distance between each pair of 
corresponding data points. A score of 1 denotes perfect 
similarity, 0 signifies no similarity, and -1 indicates 
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perfect dissimilarity. The average cosine similarity 
score for corresponding attributes in both datasets is 
determined to be 0.94245929. This outcome 
underscores a high degree of similarity between the 
datasets, as the cosine similarity score approaches 1. 

 
5.1.2. Concatenating Datasets 

Given the observed high similarity between both 
datasets, we can confidently conclude that it is safe to 
concatenate them. To achieve this, we employ the 
`pd.concat` function, a functionality offered by the 
pandas library. This process allows for a seamless 
integration of the CWB and Open Meteo datasets, 
leveraging their shared attributes and ensuring a unified 
dataset for further analysis. 

 
5.1.3. Missing Value Imputation 

In the dataset, two attributes, Power and 
Irradiance, contain missing values, as outlined in the 
Table 5.1. 

Table 5.1 Missing Values 

Attributes Timestamp 

2020-01-01 
06:00:00 

2020-01-01 
07:00:00 

2021-03-24 
16:00:00 

2021-09-23 
15:00:00 

Power NaN NaN 0.0 NaN 

Irradiance NaN NaN NaN NaN 

 
Given the limited number of missing 

values (3 in Power and 4 in Irradiance), employing 
complex machine learning models for imputation 
is deemed unnecessary. Instead, we opt for a more 
straightforward approach using interpolation, a 
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method that smoothly connects data points within 
a sequence to estimate missing values. 

Three types of interpolation methods are 
employed for filling in the missing values: 

● Linear Interpolation: Estimates missing 
values by assuming a straight line. 

● Polynomial Interpolation: Fits a single 
polynomial function. 

● Spline Interpolation: Divides the data 
range into smaller segments and fits a 
separate polynomial function for each 
segment. 
Following the application of these 

interpolation methods, the detailed values that 
have been filled in are summarized in the Table 
5.2 and Table 5.3 

Table 5.2 Imputed Values for Power 

Attributes 
(Power) 

Timestamp 

2020-01-01 06:00:00 2020-01-01 07:00:00 2021-09-23 15:00:00 

Linear 13.733333 27.466666 5.088 

Polynomial 4.247753 16.763111 6.260022 

Spline 4.834627 17.133257 6.72753 

Table 5.3 Imputed Values for Irradiance 

Attributes 
(Irradiance) 

Timestamp 

2020-01-01 
06:00:00 

2020-01-01 
07:00:00 

2021-03-24 
16:00:00 

2021-09-23 
15:00:00 

Linear 31.708009 63.416018 180.17327 400.476829 

Polynomial 12.878807 43.844149 229.42008 403.799687 
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Spline 16.166958 44.309713 229.82424 404.048076 

The selection of spline interpolation was 
based on the observation that the previous pattern 
did not conform to a straight line; instead, it 
exhibited a more polynomial shape. Spline 
interpolation was preferred due to its ability to 
capture the smoother curve evident in the data, 
providing a more accurate representation of the 
missing values. 

5.2. Feature Engineering 
5.2.1. Transformation of Wind Direction 

The collected data incorporates wind direction, 
represented in degrees. However, analyzing angles in 
their raw degree form poses challenges, as 0° and 360° 
denote the same wind direction. This lack of distinction 
makes the interpretation of the original meaning 
problematic. To address this issue and enhance 
interpretability, we have undertaken a transformation of 
the wind direction unit, converting it from degrees to 
radians. This transformation preserves the directional 
information while overcoming the ambiguity 
associated with the cyclic nature of wind direction data. 
 

5.2.2. Cyclical Features of Time 
In time series data, the date information typically 

represents only the time component. However, hidden 
patterns or valuable information may be embedded 
within the dataset. Consequently, it becomes imperative 
to transform the original temporal information into 
more interpretable features. Recognizing that time 
exhibits cyclic behavior, a normalization approach 
using the cosine function is employed. This method 
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may result in the same cosine value for different time 
points, necessitating the introduction of an additional 
cyclic feature to distinguish between such points. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 FFT Plot for Power and Irradiance 

Before proceeding with the transformation of 
specific time data, it is crucial to identify the most 
important period or frequency within the dataset. Fast-
Fourier Transform (FFT) is utilized for this purpose, 
breaking down the time-domain signal into its 
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constituent frequency components. The results of FFT 
for some attributes are illustrated in the Figure 3.2. 

Analysis of the plot suggests that the high-
frequency component occurs at intervals of either one 
year or one day. Given that the training data spans only 
one year, the focus is directed toward the one-day 
interval. Subsequently, the plot results for a one-day 
(24-hour) span of time data are presented in Figure 3.3 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3 Day Sin and Hour Plot 

 

5.2.3. Features Selection 
In the original weather dataset, the multitude of 

variables introduces challenges related to redundancy 
and the potential for overfitting during the machine 
learning process. To enhance the efficiency of the 
machine learning model, a feature selection technique 
is employed to identify and choose the most pertinent 



28 
 

features from the dataset. It is crucial to distinguish 
feature selection from dimension reduction, as the 
former does not modify the fundamental content of the 
data beneath the selected features. Recursive Feature 
Elimination (RFE) is chosen as the feature selection 
method for this research. 

Three core machine learning methods are 
employed within the RFE framework: 

1. Decision Tree: A fast and basic algorithm 
chosen for its expediency. 

2. Random Forest: Selected for its improved 
accuracy compared to a single Decision Tree. 

3. XGBoost: Chosen for its superior accuracy in 
modeling complex relationships. 

The number of attributes chosen will be systematically 
tested, ranging from 2 attributes to the total number of 
attributes, which is 31. 
Three distinct scenarios are explored in this project 
concerning feature selection: 

1. Scenario 1: The attribute "Power" is chosen as 
the target, with the remaining attributes used to 
aid in predicting the target. This scenario is 
particularly relevant as Power is the primary 
target for prediction. 

2. Scenario 2: The attribute "Irradiance" is 
selected as the target, with the remaining 
attributes aiding in predicting this target. This 
is motivated by the similar signal pattern 
between Irradiance and Power, the main class 
target. 

3. Scenario 3: Similar to Scenario 2, Irradiance is 
chosen as the target, but without attributes 
directly related to Irradiance. Attributes such as 
'shortwave_radiation_instant,' 
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'direct_radiation_instant,' 
'diffuse_radiation_instant,' 
'direct_normal_irradiance_instant,' and 
'terrestrial_radiation_instant' are excluded. 
These attributes are theoretically closely related 
to Irradiance, but belong to a different category. 
This exclusion aims to avoid potential bias in 
the results. 

For each scenario, the result with the lowest MAE will 
be presented in the Table 5.4. 

Table 5.4 Features Selection 

Scenario 
Number 

Method MAE Number 
of 
Features 

List of Features 

1 XGBoost 4.341154 12 ['temperature_2m (°C)', 
'apparent_temperature 
(°C)', 'weathercode (wmo 
code)', 'cloudcover_mid 
(%)', 
'vapor_pressure_deficit 
(kPa)', 'windspeed_10m 
(m/s)', 'windgusts_10m 
(m/s)', 
'diffuse_radiation_instant 
(W/m²)', 
'terrestrial_radiation_inst
ant (W/m²)', 
'winddirection_100m 
(rad)', 'I_Spline order 3', 
'Day sin'] 
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2 Random 
Forest 

83.95916 27 ['temperature_2m (°C)', 
'relativehumidity_2m 
(%)', 'dewpoint_2m (°C)', 
'apparent_temperature 
(°C)', 'precipitation 
(mm)', 'rain (mm)', 
'weathercode (wmo 
code)', 'pressure_msl 
(hPa)', 'surface_pressure 
(hPa)', 'cloudcover (%)', 
'cloudcover_low (%)', 
'cloudcover_mid (%)', 
'cloudcover_high (%)', 
'et0_fao_evapotranspirati
on (mm)', 
'vapor_pressure_deficit 
(kPa)', 'windspeed_10m 
(m/s)', 'windspeed_100m 
(m/s)', 'windgusts_10m 
(m/s)', 
'shortwave_radiation_inst
ant (W/m²)', 
'direct_radiation_instant 
(W/m²)', 
'diffuse_radiation_instant 
(W/m²)', 
'direct_normal_irradiance
_instant (W/m²)', 
'terrestrial_radiation_inst
ant (W/m²)', 
'winddirection_100m 
(rad)', 
'winddirection_10m 
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(rad)', 'Day sin', 'Day 
cos'] 

3 Random 
Forest 

87.62310 22 ['temperature_2m (°C)', 
'relativehumidity_2m 
(%)', 'dewpoint_2m (°C)', 
'apparent_temperature 
(°C)', 'precipitation 
(mm)', 'rain (mm)', 
'weathercode (wmo 
code)', 'pressure_msl 
(hPa)', 'surface_pressure 
(hPa)', 'cloudcover (%)', 
'cloudcover_low (%)', 
'cloudcover_mid (%)', 
'cloudcover_high (%)', 
'et0_fao_evapotranspirati
on (mm)', 
'vapor_pressure_deficit 
(kPa)', 'windspeed_10m 
(m/s)', 'windspeed_100m 
(m/s)', 'windgusts_10m 
(m/s)', 
'winddirection_100m 
(rad)', 
'winddirection_10m 
(rad)', 'Day sin', 'Day 
cos'] 

5.3. Decomposition 
Following the selection of Irradiance as the 

attribute for decomposition and forecasting, it becomes 
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imperative to leverage decomposition techniques for a 
nuanced understanding of its signal patterns. Irradiance 
serves as the target attribute due to its established 
similarity to the main class target, Power, and the 
documented strong correlation between the two variables. 
The decomposition stage encompasses three distinctive 
scenarios, each employing a specific technique: 

1. CEEMDAN Decomposition: 
The Irradiance attribute undergoes 

decomposition using the Complex Empirical 
Mode Decomposition with Adaptive Noise 
(CEEMDAN) technique. This method maximizes 
the number of result components, providing a 
detailed breakdown of the signal patterns. 

 

 

 

 

 

 

 

 

Fig 3.4 Decomposition Scenario 1 

2. EWT Decomposition: 
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The Empirical Wavelet Transform (EWT) 
technique is applied to decompose the Irradiance 
attribute. In this scenario, the number of result 
components from the decomposition is 
deliberately set to three, allowing for a focused 
analysis of key frequency components. 

 

 

 

 

 

 

 

 

 

 

Fig 3.5 Decomposition Scenario 2 

3. Combination of EWT and CEEMDAN: 

A combination approach involves an 
initial decomposition using CEEMDAN, followed 
by a secondary decomposition of the first and last 
components using EWT. This method addresses 
challenges encountered in forecasting the initial 
and final components, presenting a nuanced 
solution. 
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Fig 3.6 Decomposition Scenario 3 
The subsequent steps in the analysis 

involve systematic handling of the decomposed 
components. This includes data splitting into 
training, validation, and testing sets, scaling the 
splitted data, model building tailored to the 
characteristics of each component, and the 
meticulous reconstruction of forecasted results. 
Detailed explanations of each step will follow. 

 
5.3.1. Split into Train, Val, and Test 

The Irradiance data for the year 2020 is divided 
into monthly intervals to mimic the "Cross Validation" 
method, promoting model robustness. The dataset is 
split into 75% for training and validation and 25% for 
testing. Within the training and validation set, an 
additional split of 75% for training and 25% for 
validation is applied. This method ensures diverse data 
training to prevent overfitting. The plot illustrates the 
distribution of train (blue), validation (orange), and test 
(green) data. 

 
5.3.2. Scaling the Data 

To enhance the model's ability to learn, the data 
undergoes scaling using the "Standard Scaler." This 
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scaler transforms the data to a standardized range (0 to 
1 or -1 to 1) without altering their intrinsic values. The 
use of the "Standard Scaler" maintains the original 
data's standard deviation and variance. The plot 
presents the result of the scaled data. 

 
5.3.3. Model Building 

The LSTM (Long Short-Term Memory) model is 
employed for forecasting the decomposed data 
components. The configuration for LSTM is tailored 
for all decomposed components, with an exception 
made for the last imfs component due to unique 
characteristics. The adjusted configuration is presented 
below. 

● LSTM Configuration (except for the last imfs 
component): 

○ Number of LSTM layer: 1 
○ Number of neurons in LSTM layer: 300 
○ Regularizer of LSTM: L2 Regularizer  
○ Number of Dense  layer: 2 
○ Number of neurons in each Dense Layer  

respectively:  100, 50 
○ Loss Function: Huber 
○ Optimizer: Adam 
○ Learning Rate: 0.00004 
○ Metrics: MAE and MSE 

● LSTM Configuration (last imfs component): 
○ Number of LSTM layer: 1 
○ Number of neurons in LSTM layer: 2400 
○ Regularizer of LSTM: L2 Regularizer  
○ Number of Dense  layer: 2 
○ Number of neurons in each Dense Layer 

respectively:  2400, 1600 
○ Loss Function: Huber 
○ Optimizer: Adam 



36 
 

○ Learning Rate: 0.000005 
○ Metrics: MAE and MSE 

Plots illustrate the forecasted values of the imfs-0 
component for the month of January compared to the 
original data. 
 

5.3.4. Reconstruction of Forecasted Results 
Once each component has been forecasted, a 

reconstruction process aggregates all forecasted 
component values. The Mean Absolute Error (MAE) is 
then calculated by comparing the reconstructed values 
to the original data.  
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CHAPTER VI 
Results and Discussion 

This chapter explains the testing phase of several 
architectures and decomposition models that have been created. 
Testing is conducted to determine which decomposition technique 
produces more accurate predictions. 

6.1. Testing Objectives 
 Testing is carried out on various decomposition 
techniques and architectures to determine which model 
produces more accurate predictions. 
 

6.2. Result of Different Decomposition Scenarios 
6.2.1. CEEMDAN Decomposition 

  To ensure the robustness and efficacy of 
the model in learning our data, we delve into the 
learning process for each decomposed component. 
For clarity and comprehensibility, our analysis 
focuses specifically on the first component (imfs-
0) during the first month (January). The Mean 
Absolute Error (MAE) for component "imfs-0" in 
January is computed as 25.2688407897949. Figure 
4.1 illustrates the learning curve of the model, 
represented by the loss curve, providing insights 
into the model's performance during the training 
process. 

 
 
 
 

Fig 4.1 Loss Plot for Scenario 1 
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The comprehensive MAE values are 
provided in Table 6.1 for the reconstructed 
forecasted values of each decomposed component 
across all months from January to December in 
2020. 

Table 6.1 MAE Scores for Scenario 1 

Month Reconstructed Reconstructed Clean 

1 33.14865112 28.72327232 

2 55.48101807 36.06703568 

3 61.75348663 47.80811691 

4 43.56692886 29.65018082 

5 51.69427109 45.71088028 

6 39.01631546 31.31210327 

7 65.79121399 58.19694519 

8 53.09525681 39.75491333 

9 37.68969345 33.81318665 

10 34.40693283 28.39392662 

11 29.80125618 21.57585907 

12 29.91107941 24.82316589 

 

The "Reconstructed" values represent the 
sum of each decomposed component without 
additional processing steps. In contrast, the 
"Reconstructed_clean" values result from 
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summing up each decomposed component and 
subsequently nullifying any negative values, as 
Irradiance cannot be negative, with a minimum 
value defaulting to 0. To enhance clarity, Figure 
4.2 visually depicts the relationship between the 
"Reconstructed" values for January 2020 and the 
corresponding actual data, along with the 
comparison of "Reconstructed_clean" values with 
the actual data. 

 
 
 
 
 
 
 

Fig 4.2 Predicted Plot for Scenario 1 
 

6.2.2. EWT Decomposition 

  The Mean Absolute Error (MAE) for 
component "ewt-0" in January is computed as 
9.6764030456543. Figure 4.3 illustrates the 
learning curve of the model, represented by the 
loss curve, providing insights into the model's 
performance during the training process. 

 
 
 

Fig 4.3 Loss Plot for Scenario 2 

Reconstructed 

Reconstructed Clean 
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The comprehensive MAE values are 
provided in Table 6.2 for the reconstructed 
forecasted values of each decomposed component 
across all months from January to December in 
2020. 

Table 6.2 MAE Scores for Scenario 2 

Month Reconstructed Reconstructed Clean 

1 33.96727371 24.777174 

2 44.69127274 38.68215942 

3 43.04001236 37.54597855 

4 36.20227432 31.50611687 

5 55.57238007 49.32036972 

6 31.6230526 27.00141335 

7 67.2972641 59.67206955 

8 56.0909996 53.75978088 

9 47.98468399 38.05131912 

10 37.05989838 29.90947342 

11 27.06363297 22.0721035 

12 27.66106415 25.4824543 

  To enhance clarity, Figure 4.4 visually 
depicts the relationship between the 
"Reconstructed" values for January 2020 and the 
corresponding actual data, along with the 
comparison of "Reconstructed_clean" values with 
the actual data. 
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Fig 4.4 Predicted Plot for Scenario 2 
 

6.2.3. Combination of EWT and CEEMDAN 

  The Mean Absolute Error (MAE) for 
component "imfs-0" in January is computed as 
18.8876750789723. Figure 4.5 illustrates the 
learning curve of the model, represented by the 
loss curve, providing insights into the model's 
performance during the training process. 

 

 

 

 

Fig 4.5 Loss Plot for Scenario 3 

The comprehensive MAE values are 
provided in Table 6.3 for the reconstructed 
forecasted values of each decomposed component 
across all months from January to December in 
2020. 

 
 

Reconstructed_Clean 

Reconstructed 
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Table 6.3 MAE Scores for Scenario 3 

Month Reconstructed Reconstructed Clean 

1 24.60662261 21.34564159 

2 43.78833257 29.28154414 

3 58.95116753 46.42009368 

4 28.95876533 21.75088235 

5 36.90345347 30.85139233 

6 41.48620413 35.31233607 

7 47.43954366 39.81791305 

8 38.52378984 30.30232567 

9 19.83969885 15.87964439 

10 32.43910852 25.66001539 

11 25.76553588 21.57624035 

12 22.76674438 17.41699576 
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Fig 4.6 Predicted Plot for Scenario 3 
To enhance clarity, Figure 4.6 visually 

depicts the relationship between the 
"Reconstructed" values for January 2020 and the 
corresponding actual data, along with the 
comparison of "Reconstructed_clean" values with 
the actual data. 

 
6.2.4. Comparison between All Decomposition 

Scenarios 

For a comprehensive understanding and 
analysis of the results, Table 6.4 will present a 
comparative overview of the methods, including 
their individual performance metrics, with a focus 
on the average for enhanced clarity. 

 
 
 
 
 
 
 
 

Reconstructed_Clean 

Reconstructed 
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Table 6.4 Comparison of MAE Scores Between All Scenarios 

 

Month 

Scenario 1 - 

Reconstructed 

(CEEMDAN) 

Scenario 2 - 

Reconstructed 

(EWT) 

Scenario 3 - 

Reconstructed 

(CEEMDAN + 

EWT) 

Scenario 1 - 

Reconstructed 

Clean 

(CEEMDAN) 

Scenario 2 - 

Reconstructed 

Clean (EWT) 

Scenario 3 - 

Reconstructed 

Clean (CEEMDAN 

+ EWT) 

1 33,14865112 33,96727371 24.60662261 28,72327232 24,777174 21.34564159 

2 55,48101807 44,69127274 43.78833257 36,06703568 38,68215942 29.28154414 

3 61,75348663 43,04001236 58.95116753 47,80811691 37,54597855 46.42009368 

4 43,56692886 36,20227432 28.95876533 29,65018082 31,50611687 21.75088235 

5 51,69427109 55,57238007 36.90345347 45,71088028 49,32036972 30.85139233 

6 39,01631546 31,6230526 41.48620413 31,31210327 27,00141335 35.31233607 

7 65,79121399 67,2972641 47.43954366 58,19694519 59,67206955 39.81791305 

8 53,09525681 56,0909996 38.52378984 39,75491333 53,75978088 30.30232567 

9 37,68969345 47,98468399 19.83969885 33,81318665 38,05131912 15.87964439 

10 34,40693283 37,05989838 32.43910852 28,39392662 29,90947342 25.66001539 

11 29,80125618 27,06363297 25.76553588 21,57585907 22,0721035 21.57624035 

12 29,91107941 27,66106415 22.76674438 24,82316589 25,4824543 17.41699576 

Mean 44,6130087 42,3544841 35,1224139 35,4857988 36,4817011 27,96791873 
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6.3. Evaluation 
Based on the findings in the Table 6.4, it can be 

inferred that the third scenario exhibits the lowest Mean 
Absolute Error (MAE) scores compared to the other 
scenarios. This conclusion is drawn from the observation 
that the average "Reconstructed" score for 12 months in 
the third scenario is 35.1224139, whereas the first scenario 
reaches 44.6130087, and the second scenario reaches 
42.3544841. Another noteworthy observation is evident 
after the MAE scores have been cleaned, wherein negative 
values are nullified (Reconstructed Clean). In this case, the 
average for 12 months in the third scenario is 27.9679187, 
while the first scenario reaches 35.4857988, and the 
second scenario reaches 36.4817011. 

The superior performance of the third scenario can 
be attributed to its approach of decomposing components 
that prove challenging to predict. This strategic 
decomposition enhances the model's understanding of 
intricate signals, consequently leading to more accurate 
predictions 

While the average Mean Absolute Error (MAE) 
score strongly indicates the superior forecasting capability 
of the third scenario, a more detailed examination of 
individual monthly results is crucial. The monthly MAE 
results reveal that, in 10 out of the 12 months, the third 
scenario demonstrates more accurate predictions. This is 
evident in both "Reconstructed" and 
"Reconstructed_Clean" scores, where the third scenario 
consistently exhibits lower scores compared to the other 
two scenarios. 

However, it's noteworthy that in March and June, 
the second scenario outperforms the others, achieving the 
lowest scores. The second scenario employs only the 
Empirical Wavelet Transform (EWT) technique. The 
specific reasons why EWT (Scenario 2) outperforms the 
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other scenarios in March and June are yet to be determined. 
This anomaly highlights an area for further investigation 
in future research, aiming to uncover the conditions or 
characteristics under which EWT decomposition proves 
more effective than CEEMDAN. 

Given that the third scenario consistently 
demonstrates the most accurate prediction results for the 
majority of our data (10 out of 12 months), we leverage 
this scenario for further predictions. Previous predictions 
were made for each decomposition scenario, with a focus 
on a one-hour forecast after the input data. Table 6.5 
presents the results for the next 3-hour prediction.  

Upon examination of Table 6.5 becomes evident 
that the prediction accuracy diminishes as the model 
forecasts multi-step further into the future beyond the input 
data. This is substantiated by the observation that the 
model encounters increasing difficulty in predicting 3 
hours ahead compared to 2 hours or 1 hour after the input 
data. The Mean Absolute Error (MAE) consistently rises 
as the time interval increases, indicating a decline in 
predictive performance with an extended forecast horizon. 

 

 

 

 

 

 

 

 Fig 4.7 Multi-Step Prediction Plot 
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To provide a visual representation of the 

diminishing prediction accuracy with extended forecast 
horizons, Figure 4.7 illustrates the plot for data points at 
t+24, t+25, and t+26 based on the input data from t to t+23 
in month November. 

Table 6.5 MAE Scores for Multi-Step Prediction 

Month Reconstructed Reconstructed Clean 

1 [41.87842036544779, 57.24819747211171,  
79.60328083582337] 

[36.15591490873973, 50.26286508408373,  
67.88735718599666] 

2 [43.57846315843028, 61.45683529370894,  
78.64361984568002] 

[31.064097406242436, 44.57518325335551, 
57.507566670971165] 

3 [84.29885966678745, 82.96855168866031,  
148.993261423679] 

[62.30203982800183, 65.97937337554521, 
112.80962838414918] 

4 [47.73099644333601, 60.91945478875778,  
71.90141584784529] 

[35.476656578310376, 
48.753432910251504, 60.21449813773968] 

5 [49.95187751138506,  
79.0888467026741,  
103.46112062669403] 

[44.31978150799664, 71.83574408005475, 
 94.3548517464366] 

6 [40.75797383036858, 
57.969726275419696,  
93.3074683267508] 

[35.766719877702606, 
49.839266775323935, 77.76083758589733] 

7 [62.10751302450047, 89.22295434370159, 
121.56589248582658] 

[53.46963775977511, 75.01552837402814, 
100.73265669314566] 

8 [47.96898645815802, 67.06859926490823, 
 80.6208538385582] 

[36.38188360906697, 51.362521200816104, 
60.726247806778524] 
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The observed increase in Mean Absolute Error 

(MAE) with extended prediction horizons is 
understandable given the model's data input constraints. 
When predicting one hour ahead, the model has access to 
sufficient preceding data. However, for two hours ahead, 
the model lacks the data from the intervening hour, and for 
three hours ahead, the model misses data from both the 
first and second hours after the input data. This limitation 
in available historical data explains the rising MAE, as the 
model faces increasing challenges in accurately predicting 
further into the future without complete information from 
the preceding hours. 

 
 

 

 

 

9 [33.70004205242214, 
48.132446104514194, 
54.049625823870045] 

[24.80022772355784, 35.52049235783853, 
 39.37926769434087] 

10 [32.73233478946002, 39.80376825282982, 
46.262254582411416] 

[25.786977377728466, 32.25886576868561, 
37.597324779148686] 

11 [33.77999706922027, 44.77855868566453, 
56.112338053103514] 

[26.57083638538509, 35.83619133171333, 
44.907667585923264] 

12 [29.656028700312802, 
43.89570067043935,  
54.79801975408355] 

[21.800606990924464, 34.85957333105303,  
44.3720940854381] 
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CHAPTER VII 
Conclusion 

7.1. Conclusion 
 The study has demonstrated the effectiveness of 
advanced decomposition techniques, particularly in the 
third scenario, to achieve more accurate solar power 
predictions. The strategic use of CEEMDAN and EWT 
contributed to consistently lower Mean Absolute Error 
(MAE) scores, highlighting the importance of thoughtful 
decomposition in addressing challenging prediction 
components.  
 

7.2. Suggestion 
 Suggestions for the design of the solar power 
forecasting model architecture are as follows: 

a. Explore Diverse Decomposition Techniques: 
Investigate alternative methods for enhanced solar 
power prediction. 

b. Refine Time-Series Models: Optimize 
architectures to address temporal dependencies 
and data limitations. 

c. Incorporate ML Advances: Integrate newer 
machine learning techniques for improved 
accuracy and robustness.  
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