

TUGAS AKHIR - TL234839

ANALISIS PENGARUH pH BASA PADA SINTESIS TiO₂ DALAM FABRIKASI NANOKOMPOSIT TiO₂/GRAPHENE QUANTUM DOTS UNTUK DEGRADASI *METHYLENE BLUE*

JENNIFER THERESA HUTAPEA NRP 5011201112

Dosen Pembimbing Vania Mitha Prawiti, S.T., M.T. NIP 1989021320200122016 Dr. Hariyati Purwaningsih, S.Si., M.Si. NIP 1974101720006042001

Program Studi Teknik Material Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2024

TUGAS AKHIR - TL234839

ANALISIS PENGARUH pH BASA PADA SINTESIS TiO₂ DALAM FABRIKASI NANOKOMPOSIT TiO₂/GRAPHENE QUANTUM DOTS UNTUK DEGRADASI *METHYLENE BLUE*

JENNIFER THERESA HUTAPEA NRP 5011201112

Dosen Pembimbing Vania Mitha Prawiti, S.T., M.T. NIP 198902132020122016 Dr. Hariyati Purwaningsih, S.Si., M.Si. NIP 197410172006042001

Program Studi Teknik Material Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2024

FINAL PROJECT - TL234839

ANALYSIS OF THE ALKALINE PH ON TiO₂ SYNTHESIS IN THE FABRICATION OF TiO₂/GRAPHENE QUANTUM DOTS NANOCOMPOSITE FOR METHYLENE BLUE DEGRADATION

JENNIFER THERESA HUTAPEA NRP 5011201112

Advisor Vania Mitha Prawiti, S.T., M.T. NIP 198902132020122016 Dr. Hariyati Purwaningsih, S.Si., M.Si. NIP 197410172006042001

Study Program of Material Engineering Department of Materials and Metallurgical Engineering Faculty of Industrial Technology and Systems Engineering Institut Teknologi Sepuluh Nopember Surabaya 2024 (This page is intentionally blank)

LEMBAR PENGESAHAN

ANALISIS PENGARUH PH BASA PADA SINTESIS TiO2 DALAM FABRIKASI NANOKOMPOSIT TiO2/GRAPHENE QUANTUM DOTS UNTUK DEGRADASI METHYLENE BLUE

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi S-1 Teknik Material Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

Oleh : JENNIFER THERESA HUTAPEA NRP. 5011201112

Disetujui oleh Tim Penguji Tugas Akhir :

Pem

Ko-Pembir

Penguji

Penguji

v

- 1. Vania Mitha Prawiti, S.T., M.T.
- 2. Dr. Hariyati Purwaningsih, S.Si., M.Si.
- 3. Tubagus Noor Rohmannudin S.T., M.Sc
- 4. Haniffudin Nurdiansah, S.T., M.T.

SURABAYA Juli, 2024

APPROVAL SHEET

ANALYSIS OF THE ALKALINE PH ON TiO2 SYNTHESIS IN THE FABRICATION OF TiO2/GRAPHENE QUANTUM DOTS NANOCOMPOSITE FOR METHYLENE BLUE

FINAL PROJECT

Submitted to fulfill one of the rquirements for obtaining a degree of Bachelor of Engineering at Undergraduate Study Program of Material Engineering Department of Materials and Metallurgical Engineering Faculty of Industrial Technology and Systems Engineering Institut Teknologi Sepuluh Nopember

By : JENNIFER THERESA HUTAPEA NRP. 5011201112

Approved by Final Project Examiner Team :

Advisor

Examiner

(V. M.

Examiner

- 1. Vania Mitha Prawiti, S.T., M.T.
- 2. Dr. Hariyati Purwaningsih, S.Si., M.Si.
- 3. Tubagus Noor Rohmannudin S.T., M.Sc
- 4. Haniffudin Nurdiansah, S.T., M.T.

SURABAYA July, 2024 (This page is intentionally blank)

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa/NRP	: Jennifer Theresa Hutapea/5011201112
Departemen	: Teknik Material dan Metalurgi FTIRS-ITS
Dosen Pembimbing/NIP	: Vania Mitha Prawiti, S.T., M.T./ 198902132020122016
Dosen Ko-Pembimbing/NIP	: Dr. Hariyati Purwaningsih, S.Si., M.Si./
	197410172006042001

dengan ini menyatakan bahwa Tugas Akhir dengan judul "ANALISIS PENGARUH PH BASA PADA SINTESIS TiO₂ DALAM FABRIKASI NANOKOMPOSIT TiO₂/GRAPHENE QUANTUM DOTS UNTUK DEGRADASI METHYLENE BLUE" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penelitian ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Mengethaui Dosen Pembimbing

(Vania Mitha Prawiti, S.T., M.T.) NIP. 198902132020122016 Surabaya, 25 Juli 2024

Mahasiswa

(Jennifer Theresa Hutapea) NRP. 5011201112

STATEMENT OF ORIGINALITY

The undersigned below:

Name of Student/NRP	: Jennifer Theresa Hutapea/5011201112
Department	: Materials and Metallurgical Engineering INDSYS-ITS
Advisor/NIP	: Vania Mitha Prawiti, S.T., M.T./198902132020122016
Co-Advisor/NIP	: Dr. Hariyati Purwaningsih, S.Si., M.Si./197410172006042001

hereby declare that the Final Project with the title of "ANALYSIS OF THE ALKALINE PH EFFECT ON TiO₂ SYNTHESIS IN THE FABRICATION OF TiO₂/GRAPHENE QUANTUM DOTS NANOCOMPOSITE FOR METYHLENE BLUE DEGRADATION" is the result of my own work, is original, and is written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with the provisions that apply at Institut Teknologi Sepuluh Nopember.

Acknowledged Advisor

(Vania Mitha Prawiti, S.T., M.T.) NIP. 198902132020122016 Surabaya, July 25th 2024

Student

(Jennifer Theresa Hutapea) NRP. 5011201112 (This page is intentionally blank)

ANALISIS PENGARUH PH BASA PADA SINTESIS TIO2 DALAM FABRIKASI NANOKOMPOSIT TIO2/GRAPHENE QUANTUM DOTS UNTUK DEGRADASI METHYLENE BLUE

Nama Mahasiswa / NRP	: Jennifer Theresa Hutapea / 5011201112
Departemen	: Teknik Material dan Metalurgi FTIRS-ITS
Dosen Pembimbing	: Vania Mitha Prawiti, S.T., M.T
Dosen Ko-Pembimbing	: Dr. Hariyati Purwaningsih, S.Si., M.Si.

Abstrak

Pada penggunaan pewarna methylene blue pada industri tekstil, perlu dilakukan pendegradasian pewarna sebelum limbah tersebut dibuang. Degadrasi methylene blue bisa dilakukan dengan menggunakan fotokatalis. Pada penelitian ini digunakan TiO₂ untuk proses fotokatalis, namun terdapat kekurangan dalam penggunaan semikonduktor TiO₂. Kekurangan TiO₂ ialah dapat terjadi reaksi rekombinasi yang sangat cepat dan menghasilkan efisiensi kuantum rendah serta memerlukan waktu yang lama dalam pendegradasiannya serta juga daya serap sinar UV yang terbatas. Sehingga TiO₂ perlu disintesis dengan material lainnya untuk mengatasi kekurangan TiO₂ dalam aplikasi fotokatalis. TiO₂ di sintesis dengan Graphene Quantum Dots. Graphene Quantum Dots disintesis dengan cara memproses Graphene Oxide (GO) yang disintnesis menggunakan grafit dengan metode hummer. GQDs ini akan dikombinasikan dengan semikonduktor TiO2 menjadi nanokomposit karena memiliki luas permukaan yang tinggi yang mampu meningkatkan interaksi antara fotokatalis TiO₂ dengan polutan methylene blue sehingga dapat mendegradasi polutan dengan baik serta dapat mentransfer elektron lebih cepat yang mampu meningkatkan efisiensi degradasi polutan. Tujuan penelitian ini adalah menganalisis pengaruh variasi pH pembentuk TiO₂ terhadap karakteristik material TiO₂ dari prekursor TiCl₃ menggunakan metode *co-precipitation*, pengaruh penambahan GQDs terhadap karakterisasi material nanokomposit TiO2/GQDs dan aktivitas katalitik dari nanokomposit TiO2/GQDs dalam mendegradasi limbah methylene blue. Metode penelitian dilakukan dengan sintesis TiO₂, sintesis GQDs, dan sintesis komposit TiO₂/GQDs dengan variasi pH dalam pembentukan TiO₂ dari prekursor TiCl₃ pada pH 9, pH 10, dan pH 11. Kemudian dilakukan pengujian karakterisasi material meliputi uji XRD, FTIR, SEM/EDX, BET, PL dan performa fotokatalis dengan uji fotokatalisis. Berdasarkan pengujian karakterisasi XRD, FTIR, SEM/EDX menunjukkan bahwa nanokomposit TiO₂/GQDs berhasil terbentuk. Pada hasil uji BET diperoleh luas permukaan nanokomposit variasi pH 9 dan pH 10 sebesar 6,162 dan 6,417 m²/g dengan ukuran pori sebesar 4,53 dan 8,33 nm yang termasuk dalam jenis mesopori. Pada hasil uji PL menunjukkan pH 11 memiliki intensity paling rendah dan seiring dengan penurunan pH menyebabkan *intensity* meningkat pada *wavelength* 514 nm. Kemudian pada hasil uji fotokatalisis dan spektrofotometri UV-Vis menunjukkan persentase degradasi paling baik terdapat pada nanokomposit TiO2/GQDs dengan pH 11 pada waktu penyinaran 6 jam yaitu sebesar 99,425%.

Kata Kunci: Fotokatalis, GQDs, Methylene Blue, TiO2

ANALYSIS OF THE ALKALINE PH EFFECT ON TiO2 SYNTHESIS IN THE FABRICATION OF TiO2/GRAPHENE QUANTUM DOTS NANOCOMPOSITE FOR METYHLENE BLUE DEGRADATION

Student Name / NRP Department Advisor Co-Advisor : Jennifer Theresa Hutapea / 5011201112 : Materials and Metallurgical Engineering INDSYS-ITS : Vania Mitha Prawiti, S.T., M.T. : Dr. Hariyati Purwaningsih, S.Si., M.Si.

Abstract

In the context of using methylene blue dye in textile industries, it's crucial to degrade the dye before disposing of the wastewater. Degradation of methylene blue can be achieved through photocatalysis. This study employs TiO₂ as a photocatalyst, but there are limitations in its semiconductor properties. TiO₂ is known to suffer from rapid recombination reactions, resulting in low quantum efficiency and requiring extended degradation times, alongside limited UV light absorption. Therefore, TiO₂ needs to be synthesized with other materials to overcome these shortcomings in photocatalytic applications. TiO₂ is synthesized with Graphene Quantum Dots (GQDs), which are derived from Graphene Oxide (GO) processed using the Hummer method from graphite. These GQDs are combined with TiO₂ to form a nanocomposite due to their high surface area, enhancing interaction between TiO₂ photocatalyst and methylene blue pollutants, thereby enabling efficient pollutant degradation and faster electron transfer. The aim of this research is to analyze the impact of pH variation during TiO₂ formation from TiCl₃ precursor using the co-precipitation method, the influence of GQDs addition on the characterization of TiO2/GQDs nanocomposite materials, and the catalytic activity of TiO₂/GQDs nanocomposite in degrading methylene blue waste. The research methodology includes TiO₂ synthesis, GQDs synthesis, and synthesis of TiO₂/GQDs composite with pH variation (pH 9, pH 10, and pH 11) during TiO₂ formation. Material characterization tests encompass XRD, FTIR, SEM/EDX, BET, PL, and photocatalysis performance tests. Based on XRD, FTIR, SEM/EDX characterization, the TiO₂/GQDs nanocomposite was successfully formed. BET surface area tests revealed surface areas of 6.162 and 6.417 m2/g for pH 9 and pH 10 nanocomposites, with pore sizes of 4.53 and 8.33 nm, classified as mesoporous. PL tests indicated that pH 11 exhibited the lowest intensity, with intensity increasing as pH decreased at a wavelength of 514 nm. Moreover, photocatalysis and UV-Vis spectrophotometry results demonstrated that the TiO2/GQDs nanocomposite at pH 11 achieved a degradation efficiency of 99.425% after 6 hours of irradiation.

Keywords: Photocathalyst, GQDs, Methylene Blue, TiO2

(This page is intentionally blank)

KATA PENGANTAR

Puji syukur atas kehadirat Allah SWT atas rahmat dan karunia-Nya, sehingga penulis dapat menyelesaikan penelitian dan penulisan laporan Tugas Akhir yang berjudul "Analisis Pengaruh Ph Basa Pada Sintesis Tio₂ Dalam Fabrikasi Nanokomposit Tio₂/Graphene Quantum Dots Untuk Degradasi Methylene Blue" Selama proses penelitian, penulis ingin mengucapkan terima kasih kepada berbagai pihak yang telah membantu dan memberi dukungan kepada penulis, di antaranya adalah:

- 1. Bapak Sigit Tri Wicaksono, S.Si., M.Si., Ph.D. selaku Kepala Departemen Teknik Material dan Metalurgi FTIRS-ITS.
- 2. Ibu Vania Mitha Pratiwi, S.T., M.T selaku dosen pembimbing I tugas akhir atas segala ilmu, bimbingan, dan waktu yang telah diberikan selama pelaksanaan tugas akhir hingga laporan selesai.
- 3. Ibu Dr. Hariyati Purwaningsih, S.Si,M.Si. selaku dosen pembimbing II yang telah mencurahkan segenap waktu, tenaga, dan pikiran untuk membimbing penulis dalam penelitian ini, serta memberikan motivasi yang membangun.
- 4. Ibu Azzah Dyah Pramata, S.T., M.T., M.Eng., Ph.D. selaku dosen wali.

Penulis menyadari penulisan laporan ini masih jauh dari kesempurnaan. Oleh karena itu, penulis mengharapkan kritik dan saran yang membangun dari pembaca. Semoga laporan ini dapat berguna bagi penulis dan seluruh pihak terkait.

Surabaya, 25 Juli 2024 Penulis

Jennifer Theresa Hutapea

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	V
APPROVAL SHEET	vii
PERNYATAAN ORISINALITAS	ix
STATEMENT OF ORIGINALITY	xi
Abstrak	xiii
	XV
KATA PENGANTAK	XVII
DAFIAR ISI	XIX
	XXI vviii
BARI DENDAHII HAN	
1 1 Latar Belakang	ـــــــــــــــــــــــــــــــــــــ
1.2 Perumusan Masalah	2
1.3 Batasan Masalah	2
1.4 Tujuan Penelitian	2
1.5 Manfaat Penelitian	
BAB II TINJAUAN PUSTAKA	
2.1 Fotokatalis	5
2.2 TiO ₂	6
2.3 Graphine Quantum Dots	
2.4 Nanokomposit TiO ₂ /Graphene Quantum Dots	
2.5 Lingkungan Limbah	
2.6 Kajian Penelitian Sebelumnya	
BAB III METODOLOGI PENELITIAN	
3.1 Bahan Penelitian	23
3.1.1 Bahan Penelitian	
3.1.2 Bahan Penelitian GQDs	
3.2 Alat Penelitian	
3.3 Diagram Alir	
3.3.1 Sintesis TiO ₂	
3.3.2 Pembuatan GQDs	
3.3.3 Diagram Alir Nanokomposit TiO ₂ /GQDs.	
3.4 Metode Penelitian	
3.4.1 Preparasi Sintesis TiO_2	
3.4.2 Preparasi Sintesis <i>Graphene Oxide</i>	
3.4.3 Preparasi Sintesis Graphene Quantum Dot	s
3.5 Pengujian	
3.5.1 Scanning Electron Microscopy/Energy Dis	spersive X-Ray (SEM/EDX)33
3.5.2 X-Ray Diffraction (XRD)	
3.5.3 Fourier Transform Infrared Spectroscopy ((FTIR)
3.5.4 Pengujian Fotokatalitik	
3.5.5 Spektrolotometri UV-VIS	
5.5.0 Brunaur, Emmett, and Teller (BET)	
3.3.7 FILOIOIUIIIIIIIESCENCE (PL)	
3.0 Kalicaligali Pellelillali	
DAD I V HAGH DAIN I ENDAHADAIN	

DAFTAR ISI

4.1 Ha	sil Pengujian	41		
4.1.1	Hasil Pengujian X-Ray Difraction (XRD)	41		
4.1.2	Hasil Pengujian Fourier Transform Infrared (FTIR)	44		
4.1.3	Hasil Pengujian Scanning Electron Microscrope (SEM) dan Energy Di	spersive		
	X-Ray Analysis (EDX)	48		
4.1.4	Hasil Pengujian Brunauer, Emmett, and Teller (BET)	53		
4.1.5	Hasil Pengujian UV-Vis	56		
4.1.6	Hasil Pengujian Micro Photoluminescence (PL)	60		
4.1.7	Hasil Pengujian Fotokatalitik	61		
BAB V KESIMPULAN DAN SARAN				
5.1 Ke	esimpulan			
5.2 Sa	ran			
DAFTAR PUSTAKA				
LAMPIRAN				
UCAPAN TERIMA KASIH 105				
BIODATA P	BIODATA PENULIS 107			

DAFTAR GAMBAR

Gambar 2. 1 Degradasi senyawa organik oleh proses fotokatalis TiO2	6
Gambar 2. 2 Hasil Uji SEM TiO2	7
Gambar 2. 3 FTIR dari TiO2	8
Gambar 2. 4 Pola Difraksi TiO2	8
Gambar 2. 5 Struktur Kristal TiO ₂	10
Gambar 2. 6 FTIR dari GQDs	13
Gambar 2. 7 Pola Difraksi GQDs	14
Gambar 2. 8 Hasil Uji SEM TiO ₂ /GQDs	15
Gambar 2. 9 Hasil uji FTIR TiO2/GQDs	15
Gambar 2. 10 Pola Difraksi Nanokomposit TiO2/GQDs	16
Gambar 2. 11 Struktur MB	16
Gambar 2. 12 Reaksi pembentukan MB	17
Gambar 3. 1 TiCl ₃ dengan 15% HCl	23
Gambar 3. 2 NH4OH	23
Gambar 3. 3 KOH	24
Gambar 3. 4 H ₂ SO ₄	24
Gambar 3. 5 KMnO ₄	24
Gambar 3. 6 NaNO ₃	25
Gambar 3. 7 HCl	25
Gambar 3. 8 H ₂ O ₂	25
Gambar 3. 9 Magnetic Stirrer	26
Gambar 3. 10 Kertas saring	26
Gambar 3. 11 Furnace	26
Gambar 3. 12 FTIR	27
Gambar 3. 13 XRD	27
Gambar 3. 14 SEM	28
Gambar 3. 15 Diagram alir sintesis T_1O_2	29
Gambar 3. 16 Diagram Alir Sintesis Graphene Oksida	30
Gambar 3. 17 Diagram alir sintesis graphene oksida	31
Gambar 3. 18 Sintesis Nanokomposit TiO ₂ /GQDs	31
Gambar 3. 19 Instrumen SEM	33
Gambar 3. 20 Alat Pengujian XRD	34
Gambar 3. 21 Alat uji FTIR	
Gambar 3. 22 Skema prinsip kerja FTIR	
Gambar 3. 23 Mesin UV-Vis Genesys IUS UV-Vis Spectrometer	37
Gambar 3. 24 Alat Pengujian BET	38
Gambar 3. 25 Skematik Instrumen Pengukuran <i>Photoluminescence</i> (PL)	38
Gambar 4. 1 Hasil pengujian XRD 110 ₂ pada variasi pH 9, pH 10, dan pH 11	41
Gambar 4. 2 Hash pengujian AKD Grant, Graphene Oxide, dan Graphene Quantum	1 /2
Cambar 4 3 Hasil penguijan XPD panokomposit TiO ₂ /GODs	43
Gambar 4. J Hasil Pengujian FTIR pada TiO ₂ nH 0 nH 10 dan nH 11	++ ۸۲
Gambar 4. 5 Hasil Pengujian FTIR Grafit Granhone Ovide dan Granhone Ouantum	+J 1
Dots	، 46
Gambar 4. 6 Hasil pengujian FTIR nanokomposit TiO ₂ /GODs	1 0 <u>1</u> 7
Gambar 4. 7 Hasil pengujian SFM TiO ₂ dengan variasi (a) nH 9 perbesaran 5000v (b)	. 7/)
pH 9 perbesaran 10000x, (c) pH 10 perbesaran 5000x, (d) pH 10)

perbesaran 10000x, (e) pH 11 perbesaran 5000x, (f) pH 11 perbesaran 10000x	. 49
 Gambar 4. 8 Hasil pengujian SEM pada (a) Grafit perbesaran 10000x, (b) Grafit perbesaran 15000x, (c) Graphene Oxide perbesaran 10000x, (d) Graphene Oxide perbesaran 15000x, (e) Graphene Quantum Dots perbesaran 10000x 	50
Gambar 4. 9 Hasil pengujian SEM pada nanokomposit TiO ₂ /GQDs (a) pH 9 perbesaran 5000x, (b) pH 9 perbesaran 10000x, (c) pH 10 perbesaran 5000x, (d) pH 10 perbesaran 10000x, (e) pH 11 perbesaran 5000x, (f) pH 11 perbesaran 10000x.	. 51
Gambar 4. 10 Hasil kurva EDX nanokomposit TiO ₂ /GODs pH 9	52
Gambar 4. 11 Hasil kurva EDX nanokomposit TiO ₂ /GODs pH 9	52
Gambar 4, 12 Hasil kurva EDX nanokomposit TiO ₂ /GODs pH 11	53
Gambar 4. 13 Kurva adsorpsi isothermal nanokomposit TiO ₂ /GODs pH 9	. 55
Gambar 4, 14 Hubungan ukuran pori dengan volume pori Nanokomposit TiO ₂ /GODs	
nada nH	55
Gambar 4 . 15 Kurva adsorpsi isothermal nanokomposit TiO ₂ /GODs pH 11	55
Gambar 4.16 Hubungan ukuran pori dengan volume pori Nanokomposit TiO ₂ /GODs	
nada nH 11	56
Gambar 4. 17 Hasil pengujian UV-Vis <i>methylene blue</i>	. 57
Gambar 4. 18 Kurva regresi linear hubungan konsentrasi terhadap absorbansi <i>methylene</i>	
blue	. 57
Gambar 4. 19 Energi band gap pada material TiO ₂ pada pH 9, pH 10, dan pH 11	. 58
Gambar 4. 20 Energi band gap nanokomposit TiO ₂ /GQDs pH 9, pH 10, dan pH 11	. 59
Gambar 4. 21 Spektrum PL nanokomposit TiO ₂ /GQDs pada pH 9, pH 10, dan pH 11	. 60
Gambar 4.22 Pengamatan vsual larutan methylene blue setelah uji fotokatalisis	
berdasarkan pH dengan (a) TiO ₂ pH 9, (b) TiO ₂ pH 10, (c) TiO ₂ pH 11,	
(d) TiO ₂ /GQDs pH 9, (e) TiO ₂ /GQDs pH 10, (f) TiO ₂ /GQDs pH 11	. 61
Gambar 4. 23 Kurva nilai absorbansi TiO ₂ dan nanokomposit TiO ₂ /GQDs pada variasi	
pH basa terhadap <i>methylene blue</i>	. 62
Gambar 4. 24 Diagram batang nilai absorbansi TiO ₂ dan nanokomposit TiO ₂ /GQDs pada	
variasi pH basa terhadap methylene blue	. 62
Gambar 4. 25 Grafik nilai persentase degradasi TiO ₂ dan nanokomposit TiO ₂ /GQDs	
pada variasi pH basa terhadap methylene blue	. 64
Gambar 4. 26 Kurva nilai persentase degradasi TiO ₂ dan nanokomposit TiO ₂ /GQDs pada	
variasi pH basa terhadap methylene blue	. 65
Gambar 4. 27 Grafik konsentrasi methylene blue terhadap waktu sesui kinetika zero	
order	. 66
Gambar 4. 28 Grafik In C terhadap waktu sesuai kinetika first order	. 67
Gambar 4. 29 Grafik 1/C terhadap waktu sesuai kinetika second order	. 67
Gambar 4. 30 Wavelength TiO ₂ dan TiO ₂ /GQDs pada variasi pH Basa	. 68

DAFTAR TABEL

Tabel 2. 1 Sifat fisika TiO2	7
Tabel 2. 2 Karakteristik fasa-fasa di dalam struktur kristal TiO ₂	9
Tabel 2. 3 Sifat dan Koordinat Energi Celah Pita TiO2	10
Tabel 2. 4 Sifat Fisika dan Kimia TiCl3	11
Tabel 2. 5 Sifat Fisika dan Kimia TiCl4	12
Tabel 2. 6 Sifat Fisika dan Kimia TTIP (Material Safety Data Sheet)	12
Tabel 2. 7 Pengaruh dosis MB terhadap mahluk hidup	17
Tabel 2. 8 Kajian penelitian sebelumnya	18
Tabel 3. 1 Informasi hasil pengujian XRD	35
Tabel 3. 2 Rancangan Penelitian.	38
Tabel 3. 3 Jadwal Penelitian	39
Tabel 4. 1 Hasil perhitungan nilai ukuran kristal dari sampel TiO2 dengan variasi pH basa	
	42
Tabel 4. 2 Gugus Fungsi dan nilai wavenumber TiO2	45
Tabel 4. 3 Gugus Fungsi dan nilai wavenumber Grafit, Graphene Oxide, dan Graphene	
Quantum Dots	46
Tabel 4. 4 Gugus fungsi dan nilai wavenumber nanokomposit TiO¬2/GQDs	47
Tabel 4. 5 Komposisi unsur pada nanokompost TiO2/GQDs pH 9	52
Tabel 4. 6 Komposisi unsur pada nanokompost TiO2/GQDs pH 10	53
Tabel 4. 7 Komposisi unsur pada nanokompost TiO2/GQDs pH 11	53
Tabel 4. 8 Hasil pengujian BET	54
Tabel 4. 9 Nilai absorbansi methylene blue	57
Tabel 4. 10 Hasil perhitungan energi band gap	59
Tabel 4. 11 Hasil perhitungan energi band gap	59
Tabel 4. 12 Nilai absorbansi larutan methylene blue setiap katalis sampel katalis	61
Tabel 4. 13 Nilai konsentrasi (ppm) larutan methylene-blue di setiap sampel	63
Tabel 4. 14 Nilai persentase degradasi larutan methylene blue di setiap sampel	64
Tabel 4. 15 Perbandingan kinetika degradi methylene blue sesuai zero order, first order,	
dan second order	67
	<u> </u>

BAB I PENDAHULUAN

1.1 Latar Belakang

Dunia tidak terlepas dari industri tekstil, karena industrik tekstil merupakan salah satu sumber Pembangunan sosial dan ekonomi yang penting bagi banyak negara terutama Indonesia. Menurut data statistik kementerian perindustrian tekstil mengalami pertumbuhan yang signifikan, yaitu sebesar 20.71% pada tahun 2019. Semakin bertambahnya produksi tekstil di dunia dan di Indonesia, ini akan memberi efek juga kepada kondisi air. Tekstil merupakan salah satu industri yang menggunakan berbagai bahan kimia beracun.

Diperkirakan bahwa tahun 2050, 9.2 miliar orang akan menghadapi tantangan air, energi, dan pangan, yang dimana 70% nya merupakan perkiraan populasi global (Rasul et al, 2014). Sepertiga populasi global akan menghadapi masalah kelangkaan minuman dan air bersih (Hajkowicz et al, 2012) dan diperkirakan akan meningkat 40% pada tahun 2030 (Hoff, 2011). Sehingga perlu dilakukan pengolahan untuk air limbah untuk mengatasi hal tersebut.

Salah satu limbah industri tekstil yang dihasilkan ialah methyletilene blue, bahan ini sering digunakan untuk industri tekstil sebagai pewarna tekstil. Apabila limbah ini dibuang secara sembanrangan, limbah ini dapat mencemari perairan di Indonesia. Methyletilene blue memiliki sifat toksisitas yang tinggi, sehingga cukup berbahaya jika air yang tercemari oleh polutan tersebut dikonsumsi oleh manusia (Safardoust-hojaghan & Salavati-niasari, 2017). Sehingga perlu dilakukan upaya untuk mengurai methyletile blue sebelum dibuang. Salah satu alternatif yang bisa dilakukan ialah penggunaan mekanisme atau prinsip fotokatalitik. Fotokatalitik adalah kombinasi dari proses fotokimia dan katalisis yang prosesnya diawali dengan perpindahan elektron dari pita valensi ke pita konduksi dengan menggunakan bahan semikonduktor sehingga nantinya terbentuk pasangan elektron dan lubang positif (Fauzi, 2022). Pada proses fotokatalitik terjadi reaksi reduksi dan oksidasi yang menghasilkan radikal hidroksil (OH) secara simultan yang berfungsi sebagai agen untuk mendegradasi polutan. Fotokatalitik baik digunakan untuk mendegradasi polutan karena sumber energi yang mudah didapatkan yaitu melalui pemanfaatan cahaya matahari dan juga oksida fotokatalis yang dapat mengubah senyawa berbahaya dan beracun menjadi senyawa yang tidak berbahaya, seperti CO2 menjadi H₂O (Fauzi, 2022).

Salah satu material semikonduktor yang sering digunakan ialah titanium dioksida (TiO₂) (Prastiwi et al., 2017). TiO₂ memiliki sifat yang memenuhi syarat sebagai fotokatalitik. Sifat yang dimiliki material ini ialah memiliki energi celah pita (*bandgap energy*) yang besar sebesar 3.2 eV - 3.8 eV, luas permukaan yang besar, aktivitas fotokatalis yang responsif, bersifat nontoksik, harga yang relatif murah, dan memiliki termal yang tinggi serta ramah lingkungan. Namun, terdapat pula kekurangan pada material ini yang dapat menghambat proses fotokatalitik seperti respon optik yang rendah terhadap energi foton di dalam rentang cahaya tampak dan cenderung terjadi aglomerasi serta seringnya terjadi reaksi rekombinasi yang sangat cepat dan menghasilkan efisiensi kuantum rendah (Fauzi, 2022). Sehingga perlu dilakukan pengkompositan atau penambahan dopan yang dapat mengatasi kekurangan dari material ini.

Untuk mengatasi kekurangan yang terdapat di material TiO₂ perlu dilakukan penambahan material yang dapat mengatasi kekurangan material semikonduktor tersebut atau bisa dilakukan dengan memodifikasi morfologi TiO₂ seperti dari nanopartikel menjadi nanotube dan mengkompositkan dengan material lain. Salah satu material yang dapat digunakan ialah *graphene quantum dots* (GQDs). Material GQDs memiliki sifat yang stabil baik fisik dan kimia, toksisitas rendah, biokompatibilitas yang baik, serta biayanya yang relatif murah (Selvakumar et al., 2022). GQDs dapat memberi fungsionalitas yang baik untuk penyerapan cahaya dan fotoluminesensi karena sifat optiknya yang dapat disesuaikan hanya dengan mengubah ukuran

yang dapat mengatasi kekurangan TiO₂ dalam penyerapan cahayanya yang rendah (Özönder et al., 2022). Selain itu, permasalah aglomerasi yang terjadi pada TiO₂ dapat dilakukan dengan mendispersikannya ke dalam matriks polimer alami atau sintetis material yang dapat diatasi dengan penggunaan GQDs pada material semikonduktor TiO₂ (Bungan et al., 2021) Kemudian, untuk mengatasi kekurangan TiO₂ pada rekombinasi elektron yang sangat cepat dapat dilakukan perubahan fase atparau morfologi pada TiO₂. Hal ini bisa dilakukan dengan memvariasikan pH larutan yang diberikan pada saat sintesis TiO₂ dari prekursor TiCl₃ (Widianti & Industri, 2015). Tujuan dari pemberian variasi pH terhadap fase dan morfologi TiO₂ ini untuk memperkecil ukuran kristal dari TiO₂ sehingga dapat mengurangi *defect* yang dapat mempengaruhi keseimbangan dari elektron yang mampu mengubah material semikonduktor manjadi material konduktor karena adanya aliran elektron.

Dari penelitian sebelumnya dilakukan Hojaghan et al, 2017 dilakukan penelitian degradasi *mentyhlene blue* dengan N-Doped GQDs/TiO₂ dengan cara mensintesis GQDs dengan dopan Nitrogen dengan metode hidrothermal yang kemudian N-GQDs dikompositkan dengan TiO₂ (menggunakan P25 TiO₂). Pada penelitian ini dilakukan degradasi metyhilene blue dalam larutan air, kemudian diradiasi dengan sinar UV. Hasil penelitan ini menunjukkan nanokomposit yang diolah menunjukkan perilaku fotodegradasi yang sangat baik terhadap methylene blue di bawah sinar UV dan efisiensi fotodegradasi yang didapatkan sebesar 85% dibandingkan dengan nanopartikel TiO₂ murni. Pada penelitian ini akan melakukan sintesis TiO₂ dengan penggunaan prekursor TiCl₃ dan memvariasikan penambahan pH larutan untuk menentukan fase dan morfologi dari TiO₂ sendiri yang bertujuan untuk mendegradasi polutan *methyletilene blue* hasil dari limbah tekstil.

1.2 Perumusan Masalah

Berdasarkan latar belakang yang telah dipaparkan, terdapat permasalahan yang akan dibahas pada penelitian tugas akhir ini adalah sebagai berikut:

- 1. Bagaimana pengaruh pH basa terhadap karakterisasi-material TiO₂ dari prekursor TiCl₃?
- 2. Bagaimana karakteristik dan properti komposit TiO₂/GQDs untuk aplikasi fotokatalis?
- 3. Bagaimana aktivitas katalitik komposit TiO₂/GQDs terhadap degradasi polutan *methyletilene-blue*?

1.3 Batasan Masalah

Batasan masalah dalam pelaksanaan penelitian tugas akhir ini antara lain sebagai berikut:

- 1. Konsentrasi methylene blue dianggap sama
- 2. Fluktuasi temperature furnace diabaikan
- 3. Tekanan dan temperature udara sekitar dianggap konstan
- 4. Material loss dianggap tidak ada pada saat reaksi
- 5. Kecepatan stirring dianggap konstan

1.4 Tujuan Penelitian

Tujuan dilakukannya penelitian ini ialah sebagai berikut:

- 1. Analisis pengaruh pH basa terhadap karakterisasi material TiO_2 dari prekursor $TiCl_3$
- 2. Analisis pengaruh penambahan GQDs terhadap karakteristik nanokomposit material $TiO_2/GQDs$
- 3. Analisis aktivitas katalitik komposit TiO₂/GQDs terhadap degradasi polutan *methylene blue*

1.5 Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

- 1. Memberi ilmu pengetahuan terkait bagaimana mengatasi limbah cair dari perusahaan tekstil berupa *methylene blue*.
- 2. Memberikan informasi dan rujukan terkait proses sintesis TiO₂ dari prekursor TiCl3, GQDs, dan komposit TiO₂/GQDs

LAPORAN TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

BAB II TINJAUAN PUSTAKA

2.1 Fotokatalis

Fotokatalis merupakan proses transformasi kimia dengan adanya katalis dan bantuan cahaya untuk melaksanakan prosesnya. Dalam prosesnya fotokatalis melibatkan elektron-*hole* (e- dan h+). Seperti namanya fotokatalis, menggunakan foton atau cahaya untuk dimanfaatkan untuk mengaktifkan katalis yang kemudian bereaksi dengan senyawa kimia yang berada di dekat ataupun di permukaan katalis. Namun, sumber cahaya yang digunakan harus lebih besar dari celah energi material semikonduktor yang digunakan. Hal ini bertujuan agar suatu material dapat menghasilkan elektron dan hole yang nantinya bisa mendegradasi senyawa-senyawa organik dan anorganik (Sutanto & Wibowo, 2015).

Fotokatalis bisa digunakan untuk penjernihan air (*water splitting*) dari suatu limbah atau polutan yang terkandung di dalamnya. Hasil dari fotokatalis ini ialah pasangan elektron di pita konduksi (e⁻) dan hole di pita valensi (h⁺). Muatan ini akan mengalami reaksi reduksi oksidasi (redoks) dan menghasilkan spesies aktif reaktif seperti radikal hidroksil (OH), radikal superoksida (O). Setelah itu hasil spesies aktif reaktif ini akan bereaksi dengan Sebagian besar senyawa organic yang berbahaya dan mengubah menjadi senyawa yang tidak berbahaya atau dengan kata lain termineralisasi menjadi CO₂ dan H₂O. Seperti pada penelitian ini, fotokatalis akan dimanfaatkan untuk penjernihan air limbah dari pencemaran polutan *methylene blue* menjadi senyawa-senyawa yang tidak berbahaya (Sutanto & Wibowo, 2015).

Pada dasarnya proses fotokatalis bisa terjadi ketika ada foton dengan energi hv yang sama atau melebihi jumlah energi celah pita yang dimiliki material katalis tersebut, lalu elektron dari pita valensi akan tereksitasi ke pita konduksi meninggalkan hole positif sehingga menghasilkan pasangan elektron-hole. Sebagian besar pasangan elektron-hole akan berekombinasi kembali. Namun, Sebagian yang lain dari pasangan tersebut dapat bertahan sampai di permukaan semikonduktor dan mengalami reaksi redoks terhadap molekul yang teradsorpsi pada permukaan fotokatalis. Sehingga, hole dapat menginisiasi reaksi oksidasi dan di lain pihak elektron akan menginisasi reaksi reduksi zat kimia yang terdapat pada sekitar permukaan semikonduktor (Sutanto & Wibowo, 2015).

Lalu reaksi oksidasi terjadi pada saat elektron yang tereksitasi berdifusi ke permukaan katalis. Lalu (h^+) bereaksi dengan permukaan H_2O atau OH^- untuk menghasilkan radikal hidroksil (OH) dan reduksi terjadi saat pita konduksi bereaksi dengan oksigen untuk menghasilkan anion radikal super (Sutanto & Wibowo, 2015).

Reaksi fotokatalis bisa terjadi pada material TiO₂ yang reaksinya dapat dilihat sebagai berikut.

Т

$$TiO_2 + hv \rightarrow TiO_2 \left(e_{cb}^- + h_{vb}^+ \right) \tag{2.1}$$

$$TiO_2(h_{vb}^+) + H_2O \to TiO_2 + H^+ + OH^{\bullet}$$
 (2.2)

$$iO_2(h_{vb}^+) + OH^- \to TiO_2 + OH^{\bullet}$$

$$\tag{2.3}$$

$$TiO_2(e_{cb}^-) + O_2 \rightarrow TiO_2m + O_2^{\bullet-}$$

$$\tag{2.4}$$

$$0^{\bullet-}_{2} + H^{+} \rightarrow H0^{\bullet-}_{2}$$

$$(2.5)$$

$$U0^{\bullet}_{2} + H0^{\bullet}_{2} \rightarrow H0^{\bullet-}_{2} \qquad (2.5)$$

$$HO_2^{\bullet} + HO_2^{\bullet} \rightarrow H_2O_2 + O_2 \tag{2.6}$$
$$TiO_2(a^-) + HO_2 \rightarrow OH^{\bullet} + OH^{-} \tag{2.7}$$

$$H_{2}O_{2} + O_{2}^{\bullet-} \rightarrow OH^{\bullet} + OH^{-} + O_{2}$$

$$(2.8)$$

$$Polutan organik + OH^{\bullet} \rightarrow produk degradasi$$
(2.9)

$$Polutan \ organik + \ TiO_2(h_{\nu b}^+) \rightarrow produk \ oksidasi$$
(2.10)

 $Polutan \ organik + TiO_2(e_{cb}) \rightarrow produk \ reduksi$ (2.11)

Muatan yang ada pada material TiO₂ (e_{cb} ⁻ + h_{vb} ⁺) mengalami rekombinasi. H_{vb} ⁺ bereaksi dengan spesies oksidatif (H₂O, OH⁻, dan polutan organik), sedangkan e_{cb} ⁻ bereaksi dengan spesies reduktif (O₂) dalam larutan. Hasil dari kombinasi ini terbentuk senyawa radikal hidroksil (OH \bullet), dan juga senyawa anion radikal superoksida (O₂ \bullet ⁻) serta terbentuk radikal hidroperoksil (HOO \bullet) pada bagian permukaan material fotokatalis. Hasil dari reaksi ini dapat mendegradasi polutan organik (Maulana, 2022). Degradasi senyawa organik menggunakan proses

Gambar 2. 1 Degradasi senyawa organik oleh proses fotokatalis TiO2 (Schiavello, 1997)

Material fotokatalis biasanya menggunakan material semikonduktor karena banyak kelebihan yang dimilikinya seperti proses mineralisasi yang lengkap, biaya relative murah, dan dapat digunakan pada tekanan dan temperature rendah. Namun, material semikonduktor yang digunakan juga memiliki kriteria tertentu agar bisa diaplikasikan untuk fotokatalis seperti bersifat fotoaktif, dapat terjadi fotoinduksi pada rentang penyinaran cahaya tampak atau uv, inert secara kimia dan biologi, bersifat stabil terhadap fotokorosi, serta tidak memiliki toksisitas (Maulana, 2022).

Selain TiO₂, terdapat material semikonduktor lainnya yang dapat digunakan dalam fotokatalis. Material semikonduktor yaitu Zinc Oxide (ZnO) dan Cadmium Sulfide (CdS). Pada penggunaan ZnO dapat digunakan pada fotokatalis, namun terdapat kekurangan dalam penggunaannya yaitu lebih muda mengalami korosi dibandingkan TiO₂ dan dapat menjadi toksik pada konsentrasi tinggi (Geldasa et al., 2023). Kemudian pada penggunaan CdS, karena menggunakan kadmium yang merupakan logam berat dan beracun sehingga mempengerahui toksisitas pada materialnya(Nagamine et al., 2020). Sehingga dapat disimpulkan TiO₂ merupakan material semikonduktor terbaik yang dapat digunakan dalam pengaplikasiannya sebagai fotokatalis.

2.2 TiO₂

Titanium Oksida (TiO₂) merupakan material yang sering digunakan karena sifatnya yang kuat untuk pengoksida yang kuat, tidak beracun, dan sifatnya yang stabil. TiO₂ memiliki sifat optik yang baik dan mempunyai nilai celah pita energi yang lebar 3.2 eV yang hanya bisa digunakan aktif pada saat dipaparkan cahaya ultraviolet membentuk radikal hidroksil sebagai bahan fotokatalis (Alma, 2021). Sifat fisika dari TiO₂ dapat dilihat pada **Tabel 2.1**.

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Tabel 2. 1 Sifat fisika TiO ₂ (Alma, 2021).			
No	Sifat	Nilai	
1	Densitas	4 g.cm ⁻³	
2	Porositas	0%	
3	Modulus shear	90 Gpa	
4	Elastisitas	23 Gpa	
5	Resisvitas (25 ⁰ C)	$10^{12} \Omega.\mathrm{cm}$	
6	Resisvitas (700 ⁰ C)	$2,5 \times 10^4 \ \Omega.cm$	
7	Konstanta dielektrik 1 MHz	85 Volt/mil	
8	Ekspansi termal RT ⁻ 1000 ⁰ C	$9 imes 10^{-6}$ K $^{-1}$	
9	Konduktivitas termal 25 ⁰ C	11,7 WmK ⁻¹	

TiO₂ memiliki peranan penting dalam dunia fotokatalis karena memiliki banyak kelebihan. Kelebihan TiO₂ antara lain seperti memiliki sifat optik yang baik, tidak memilik toksisitas, fotokatalitik yang baik, banyak ditemukan, tidak larut dalam air, energi celah pita yang besar untuk fase anatase, luas permukaan yang besar, cukup ramah lingkungan, sifatnya yang stabil, biokompatibilitas yang baik, serta ketahanan terhadap bahan kimia yang tinggi. Dalam pengaplikasian TiO₂ biasanya digunakan untuk penjernih air (*water-splitting*), penghasil hidrogen dan pemutusan ikatan air, sel surya, dan masih banyak lainnya (Fauzi, 2022).

Morfologi TiO₂ berbentuk *spherical* dan cenderung memiliki aglomerat (Saud & Al-Taweel, 2016).

26 KV 40.0 KX 1 um KYKY-EM3200 SN:0669 Gambar 2. 2 Hasil Uji SEM TiO2 (Saud & Al-Taweel, 2016)

Observasi gugus fungsi dilakukan untuk mengetahui kandungan yang terdapat pada TiO₂ dengan menggunakan FTIR seperti pada **gambar 2.2.** Adapun rentang *wavenumber* (cm⁻¹) yaitu 400 – 4000. Hasil karakterisasi FTIR TiO₂ menunjukkan terdapat vibrasi atom Ti-O pada bilangan gelombang 633 cm⁻¹ dan 732 cm⁻¹, pada bilangan gelombang 1400 cm⁻¹ terdapat vibrasi atom Ti-O-Ti, dan terdapat absorpsi Ti-O-O pada bilangan gelombang 503 cm⁻¹. Pada bilangan gelombang 1047 cm⁻¹ terdapat regangan O-C-O. Terdapat vibrasi O-H terdapat pada bilangan gelombang 1632 cm⁻¹ dan 3368 cm⁻¹. Kemudian terjadi adsorbsi H₂O terdapat pada *wavenuumber* 2377 cm⁻¹(Listanti et al., 2018).

LAPORAN TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Gambar 2. 3 FTIR dari TiO2 (Listanti et al., 2018)

Pola XRD dari TiO₂ Pola XRD eksperimental sesuai dengan kartu JCPDS nomor 21-1272 (anatase TiO₂). Nilai 20 pada puncak 25,4° mengkonfirmasi struktur anatase TiO₂. Puncak difraksi kuat pada 25° dan 48° mengindikasikan TiO₂ dalam fase anatase. Puncak 20 pada 25,27° dan 48,01° mengkonfirmasi struktur anatasenya(Theivasanthi & Alagar, 2013).

Gambar 2. 4 Pola Difraksi TiO2 (Theivasanthi & Alagar, 2013)

2.2.1 Struktur Kristal TiO₂

Struktur kristal (polimorf) dari TiO₂ dibagi menjadi tiga jenis, yaitu anatase, rutile, dan brookite. Anatase dan rutile memiliki polimorf yang tetragonal, tetapi berbeda dalam kelompok ruangnya (*space group*). Sedangkan brookite merupakan polimorf othorombik. Rutile memiliki P4(2)/mnm dengan dua unit TiO₂ dalam unit selnya, sedangkan anatase memiliki grup ruang IA(1)/amd dengan empat unit dalam satu unit sel (Zhang et al, 1999). Untuk fasa anatase memiliki celah pita 3.2 eV dan rutile memiliki fase 3.02 eV, fase anatase memiliki celah pita yang lebih besar dibanding rutile. Lalu untuk reaktifitas dalam proses fotokatalisnya juga

anatase memiliki potensi yang lebih besar karena memiliki struktur kisi yang lebih sesuai dengan aktivitas fotokatalis yang tinggi.

Anatase memiliki celah pita yang lebih besar dari pada rutile. Namun, anatase dapat meningkatkan pita valensi ke maksimum ke tingkat energi yang lebih tinggi relatif terhadap potensial redoks molekul teradsorpsi. Hal ini dapat meningkatkan kekuatan oksidasi elektron dalam melakukan transfer elektron dari TiO₂ ke molekul yang teradsorpsi.

Selain polimorf, proses adsorpsi molekul dan transfer muatan juga tergantung oleh sifat permukaan. Jika suatu material memiliki permukaan yang berbeda maka akan menghasilkan celah pita yang berbeda juga. Sifat suatu permukaan material dikategorikan berdasarkan efek kimia (struktur koordinasi permukaan yang berperan untuk mengontrol adsropsi molekul), lalu dari struktur elektronik (permukaan yang terinduksi adsorbat seperti hidroksil yang mungkin menjadi penting untuk menangkap muatan dan pemisahannya di permukaan), permukaan juga dikategorikan melalui interkasi molekul dengan permukaan yang cacat, lalu perbedaan potensial permukaan (dapat diukur dalam vakum atau potensial pita datar dalam larutan).

Terbentuknya struktur kristal dari TiO₂ ini dapat terjadi karena pengaruh pH. Derajat keasaman yang tinggi dalam larutan medium dapat menghasilkan TiO₂ dengan fase rutile, sedangkan derajat keasaman yang rendah dapat membentuk fase anatase (Ibrahim et al., 2022). Hal ini dijelaskan dengan menggunakan konsep model muatan parsial, di mana konsep ini menjelaskan hidrolisis kation titatinum terjadi pada kondisi keasaman yang kuat. Pada kondisi ini $[Ti(OH)(OH_2)_5]^{3+}$ akan terbentuk, tetapi karena adanya muatan positif dari gugus hidrokso, maka spesies tersebut tidak terbentuk. Ketika kadar keasaman tidak cukup rendah untuk menstabilkan prekursor ini, akan terjadi deprotonasi untuk membentuk spesies baru [Ti(OH) 2 (OH₂)₅]²⁺. Namun, spesies ini juga tidak terjadi kondensasi karena oksolasi intramolekul spontan yang membentuk [TiO(OH₂)₅]²⁺. Selanjutnya, kondensasi anatase dan rutile dimulai ketika aktivitas larutan aktif cukup untuk terjadi deprotonasi lebih lanjut menjadi [TiO(OH)(OH₂)₄]⁺, yang mana ini dapat mengalami deoksolasi intramolekul [TiO(OH)₃ (OH₂)₃]⁺ tergantung derajat keasaman. Pada pH rendah tidak terjadi deoksolasi, tetapi terjadi oksolasi yang menyebabkan pertumbuhan linier sepanjang bidang ekuator kation. Reaksi ini membentuk fase rutile karena oksolasi yang beada pada antara rantai linier yang dihasilkan. Sedangkan pada pH yang tinggi, ketika terjadi deoksolasi, kondensasi dapat terjadi di sepanjang arah apikal yang menuju ke rantai struktur anatase. Dapat disimpulkan bahwa pH memengaruhi pembentukan struktur kristal dengan keasaman yang tinggi mendorong pembentukan rutile dan keasaman yang lebih rendah menyebabkan pembentukan anatase (Ibrahim et al., 2022).

Berikut merupakan karakteristik dasar dari fasa-fasa yang terdapat pada struktur kristal ${\rm TiO}_{2}$

Sifat	Anatase	Rutile	Brookite
Bentuk kristal	Tetragonal	Tetragonal	Orthorombik
Energi celah pita	3.2	3.02	Tidak tersedia
Banyaknya TiO ₂ (unit cell)	4	2	8
Volume per TiO ₂ (nm ³)	0.03407	0.03122	0.03211
Massa jenis teoritis (Kg/m ³)	3895	4250	4133
Tingkat kekerasa (Mpa)	5.5-6	7-7.5	5.5-6

Tabel 2. 2 Karakteristik fasa-fasa di dalam struktur kristal TiO₂ (Fauzi, 2022)

LAPORAN TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Gambar 2. 5 Struktur Kristal TiO₂ (Fauzi, 2022)

2.2.2 Sifat Optik

Pada TiO_2 memiliki celah pita energi yang berbeda pada anatase dan rutile. Pada anatase memiliki celah pita energi tidak langsung, sedangkan pada rutile memiliki celah pita energi langsung. Celah pita energi langsung adalah kondisi di mana titik maksimum pita valensi berada tepat di bawah titik minimum pita konduksi. Jika dilihat dari celah pita, cahaya foton lebih besar tersepat pada celah pita energi langsung dibandingkan celah pita tidak langsung karena elektron yang tereksitasi dari pita valensi ke pita konduksi terjadi langsung tanpa melibatkan absorpsi foton (Fauzi, 2022).

Dari penelitian yang sudah dilakukan sebelumnya untuk sifat elektronik dan optik dari polimorf TiO₂ rutile didapatkan sebesar 3,3±0,5 eV (photoemission spektroskopi (PES) dan photoemission spektroskopi (IPES), 3,6±0,2 eV (PES dan IPES untuk rutile pada permukaan. Dari penelitian Hardman dkk, melaporkan pengukuran pita valensi rutile sepanjang Γ - Σ -X dan Γ - Σ -M secara langsung oleh PES, sedangkan untuk anatase dan brookite, tidak ada pengukuran celah pita elektronik. Energi celah pita optik pada fase rutile ~3.0 eV, pada fase anatase ~3.4 eV, dan pada fase brookite ~3.3 eV (Fauzi, 2022).

Energi celah pita dapat diukur juga dengan menggunakan *density functional teory* (DFT). DFT=U adalah metode yang digunakan untuk melakukan koreksi terhadap akurasi DFT. Pada perhitungan DFT+U didapatkan celah pita TiO₂ fasa anatase bersifat *indirect bandgap*.

	Tuber 2: 9 Shat dan Koordinat Energi Celan Tita TiO ₂ (Tuber, 2022)		
	Sifat	Koordinat	Energi struktur pita
U0eV	Indirect	M dan Γ	2.0 eV
U+3eV	Indirect	M dan Γ	2.5 eV
U+5eV	Indirect	M dan Γ	2.7 eV
U+7eV	Indirect	M dan Γ	3.2 eV

Tabel 2. 3 Sifat dan Koordinat Energi Celah Pita TiO₂ (Fauzi, 2022)

Jika, dilihat dari tabel tersebut celah pita terpendek terbentuk diantara koordinat M dan Γ dengan besar celah 2.0 eV. Pada fasa anatase sifat *direct bandgap* dapat dilihat besar celah terpendek sebesar 2.1 eV. Nilai bandgap direct lebih besar daripada bandgap indirect, yang menunjukkan bahwa dalam fasa anatase TiO₂ dengan nilai Hubart U 0 eV, band gapnya bersifat *indirect. Band gap* dari fotokatalis seharusnya lebih besar daripada energi minimum yang dibutuhkan untuk reaksi redoks dari pewarna. Sifat *band gap* ini akan memengaruhi tingkat absorpsi terhadap cahaya dan tingkat rekombinasi antara elektron dan lubang. Bahan dengan *band gap direct* akan memiliki tingkat absorpsi yang tinggi dengan tingkat rekombinasi yang tinggi juga, sementara bahan dengan *band gap indirect* umumnya akan memiliki tingkat

absorpsi yang lebih rendah dengan tingkat rekombinasi yang lebih rendah. Energi struktur bandgap pada fasa TiO₂ adalah sebesar 3,20 eV (Fauzi, 2022).

2.2.3 Nanopartikel

Dari penelitian sebelumnya yang telah dilakukan, TiO₂ dalam fotokatalis lebih efektif dilakukan dengan ukuran nanopartikel daripada dalam ukuran besar. Ukuran nanopartikel yang efektif didapatkan ketika diameter kristalit pada partikel semikonduktor sebesar jari-jari minimal sekitar 10 nm. Nanopartikel memiliki ukuran yang kecil, tetapi memiliki luas area permukaan yang besar, hal ini yang dapat membuat nanopartikel bersifat lebih reaktif (Fauzi, 2022).

Sifat nanopartikel ini berhubungan dengan fenomena kuantum sebagai keterbatasan ruang gerak elektron dan pembawa muatan lainnya dalam partikel. Hal ini akan memberi efek pada beberapa sifat material seperti perubahan warna yang dipancarkan, kekuatan mekanik, transparansi, konduktivitas listrik, dan sifat optik. Perubahan yang terjadi dapat dilihat pada partikel ukuran 100 nm. Selain itu, terdapat fenomena lainnya yang terjadi seperti perubahan rasio jumlah atom yang menempati permukaan terhadap jumlah total atom, hal ini dapat menyebabkan perubahan titik didih, titik beku, dan reaktivitas kimia (Fauzi, 2022).

Jika sifat partikel ukuran dari TiO₂ diubah menjadi skala nanometer, TiO₂ akan berwarna transparan dan juga efektif untuk menghalangi radiasi ultraviolet. Untuk meningkatkan kinerja nanopartikel TiO₂, dapat dilakukan dengan meningkatkan aktivitas optiknya agar penyerapan cahaya beralih dari UV ke cahaya tampak (*visible*). Ada beberapa metode yang dapat digunakan untuk mencapai perbaikan ini, salah satunya adalah dengan melakukan doping nanomaterial TiO₂ menggunakan unsur-unsur lain. Tujuannya adalah untuk menyempitkan sifat elektroniknya dan mengubah sifat optik nanomaterial TiO₂. Ketika nanopartikel TiO₂ didoping dengan ion logam, ini dapat mempengaruhi fotokatalisis, tingkat rekombinasi pembawa muatan, dan kecepatan transfer elektron di antarmuka. Pergeseran penyerapan terjadi dalam transisi celah pita, atau spektrum penyerapannya bergeser ke tingkat energi yang lebih rendah dengan meningkatnya konsentrasi dopan atau elektron yang terlokalisasi di sekitar dopan tersebut. Pergeseran penyerapan ini disebabkan oleh transisi elektron antara elektron-elektron dari dopan dan pita konduksi TiO₂. Akibatnya, TiO₂ yang telah didoping memiliki keadaan elektronik yang lebih tinggi di atas pita valensinya (Fauzi, 2022).

2.2.4 Prekursor Pembentuk TiO₂

Prekursor adalah zat atau bahan kimia tertentu yang digunakan untuk bahan baku untuk melakukan sintesis dengan bahan lainnya. Diperlukan beberapa kriteria untuk bisa menjadi prekursor seperti reaktif, mudah berubah menjadi zat lain, dan mudah menjadi radikal jika diberi perlakuan termal maupun proses kimia.

Prekursor yang dapat digunakan untuk sintesis TiO₂ adalah TiCl₃, TiCl₄, TTIP (Titanium Tetra Isopropoxide). Penggunaan prekursor ini akan memengaruhi morfologi dari TiO₂ (Uyun, 2015).

Prekursor yang paling banyak digunakan biasanya adalah TiCl₃ karena cukup murah dan mudah didapatkan dibanding larutan lainnya (Uyun, 2015). TiCl₃ memiliki sifat kimia yang dapat dilihat pada **Tabel 2.4**.

Tabel 2. 4 Sifat Fisika dan Kimia TiCl₃ (Uyun, 2015).

N0.	Sifat	Nilai
1.	Massa atom relatif	154,225 (g/mol)
2.	Kelarutan dalam air	Larut $(25^{\circ}C)$

3.	Densitas	1,12 g/cm ³
4.	Titik lebur	425

TiCl₄ juga sering digunakan seperti TiCl₃ karena bahannya yang murah dan juga mudah didapatkan. TiCl₄ bisa digunakan sebagai prekursor karena merupakan senyawa atsiri (volatile). Senyawa ini dapat dimurnikan dengan proses penyulingan dan kemudian dapat dioksidasi menjadi titanium oksida murni. Proses sintesis ini menggunakan metode hidrolisis. TiCl₄ dihidrolisis hingga menghasilkan Ti(OH)₂ dan HCl, kemudian Ti(OH)₂ mengalami perubahan menjadi TiO₂ (Uyun, 2015). TiCl₄ memiliki sifat kimia yang dapat dilihat pada **Tabel 2.5**

Tabel 2. 5 Sifat Fisika dan Kimia TiCl₄ (Uyun, 2015).

No.	Sifat	Nilai	
1.	Massa atom relatif	189,73 (g/mol)	
2.	Kelarutan dalam air	-	
3.	Densitias	$1,73 \text{ g/cm}^3$	
4.	Titik lebur	-24,1 ⁰ C (-11,4 ⁰ F)	

Dalam sintesis TiO₂ dapat menggunakan prekursor Titanium Tetraisopropoxide (TTIP). TTIP merupakan cairan yang berwarna jerami dan memiliki titik didih 238⁰C pada suhu kamar. TTIP jjuga bisa disebut sebagai titanium tetraisopropoxide yang merupakan molekul tetra hedral diamagnetic dan salah satu struktur alkoksida yang kompleks (Prabowo, 2019). Sifat kimia dari TTIP dapat dilihat pada **Tabel 2.6**.

No.	Sifat	Nilai
1.	Massa atom relatif	284,26 (g/mol)
2.	Kelarutan dalam air	Hidrolisis
3.	Densitas	9,8 g/cm ³
4.	Titik lebur	> 15 °C / 59 °

Tabel 2. 6 Sifat Fisika dan Kimia TTIP (Material Safety Data Sheet)

2.3 Graphine Quantum Dots

Graphine Quantum Dots (GQDs) merupakan blok graphene yang memiliki ukuran melintang dua dimensi (<100 mm) dan memiliki sifat kimia dan biologis yang sangat baik (Zonder et al, 2023). GQDs memiliki sifat fungsionalitas yang baik dalan aplikasi penyerapan cahaya dan fotoluminesensi karena sifat optiknya bisa disesuaikan dengan cara merubah ukuran atau penambahan dopan kimia. Namun, Graphine sendiri masih perlu dipertimbangkan dalam biokompatibilitas dan toksisitasnya, karena di beberapa penelitian yang ada terdapat GQDs yang memiliki biokompatibilitas baik dan juga biokompatibilitas rendah (Zhao et al., 2020). Biasanya Graphine digunakan dalam aplikasi sel surya, semikonduktor, dan juga penyimpanan energi serta penelitian biomedis karena ketersediaan karbon yang melimpah.

Graphene sendiri bergantung pada sumber dan proses untuk sintesisnya, serta gugus fungsinya yang dapat disesuaikan. Hingga saat ini, Graphine disintesis menjadi dua metode utama yaitu pemotongan *top-down* dari sumber karbon yang berbeda, dan sintesis *bottom-up* dari molekul atau polimer organic serta fungsi permukaan atau pasif. Metode *top-down* mengacu pada pengukiran bahan karbon massal menjadi nanopartikel dengan menggunakan pendekatan fisik atau kimia seperti oksidasi asam, elektrokimia, dan hydrothermal. Lalu untuk metode *bottom-up* lebih baik dari metode *top-down* karena memiliki keuntungan yang jelas dalam penyesuaian komposisinya dan sifat fisik Graphine dengan pemilihan prekursor yang baik serta kondisi karbonisasi yang baik (Qu et al., 2014). Lalu untuk mengontrol Graphine

dapat dicapai dengan mengontrol parameter sintesis seperti suhu, tekanan, prekursor karbon, dan pelarut. Selain itu, komposisi Graphine dapat dikontrol dengan penambahan prekursor heteroatom ekstra seperti N, B, S, dan P.

Sumber yang digunakan untuk mensintesis graphine dapat menggunakan graphite. Graphite dibentuk lembaran-lembaran Tunggal graphene. Proses berikutnya graphite dioksidasi menjadi graphite oksida, setelah itu lembaran-lembaran oksida graphite dikelupas dalam air hingga terbentuk graphene oksida . Ikatan yang ada di dalam graphine oksida dapat direduksi kembali hingga habis dan menyisakan lapisan graphene. Hal ini dapat digunakan untuk menjadi prekursor untuk memproduksi graphene dalam skala besar.

Dalam mengubah graphite menjadi graphine dapat dilakukan dengan menggunakan metode Hummers. Metode Hummers dilakukan dengan mengubah reaksi oksidasi menjadi graphite menjadi graphite oksida (Hummers and Offeman, 1958). Oksidasi dilakukan dengan mereaksikan graphite dengan kalium permanganate (KMnO₄) dan natrium nitrat (NaNO₃) dalam larutan asam sulfat (H₂SO₄). Kelebihan dari penggunaan metode ini ialah proses oksidasi tidak mengeluarkan gas ClO₂. Gas ini sangat sensitif dan harus ditangani dengan hati-hati karena gas ini dapat menimbulkan ledakan. Metode ini juga dapat berlangsung dengan cepat pada suhu yang lebih rendah. Hasil yang dihasilkan dari metode Hummers adalah GO yang memiliki tingkat oksidasi yang lebih tinggi dibandingkan dengan produk akhir dari metode Staudenmaier.

Graphine memiliki kelebihan yakni luas permukaan yang tinggi, stabilitas kimia yang cukup, fabrikasi yang murah, serta dapat membangun perangkat yang efisien. Lembaran graphine yang sudah jadi, selanjutnya dipotong menjadi beberapa nanometer yang kurang dari 10 nm agar bisa menghasilkan sifat fisikokimia yang menarik. Lembaran yang dibawah 10 nm ini disebut Graphine Quantum Dots (GQDs). Sifat yang dihasilkan dari graphene dan kuantum dots ini sangat baik dan bisa digunakan untuk aplikasi optoelektronik, penyimpanan energi, dan aplikasi konversi.

Observasi gugus fungsi dilakukan untuk mengetahui kandungan yang terdapat pada GQDs dengan menggunakan FTIR seperti pada **gambar 2.6.** Karakterisasi FTIR GQDs menunjukkan absorpsi dari gugus karboksil dan gugus hidroksil. Pada GQDs terdapat gugus fungsi C-OH *stretching vibration* yang ada pada rentang 1.115 cm⁻¹, terdapat pita bsorpsi karakteristik dari senyawa aromatik yakni C-H *stretching vibration* yang ada pada rentang sekitar 3.000 - 3.100 cm⁻¹ (Fan et al., 2015).

Pola XRD dari GQDs digunakan untuk fase kristal dari GQDs. Pada sintesis *graphene oxide* yang dilakukan menunjukan puncak difraksi karakteristik pada $2\theta = 10,58^{\circ}$ yang sesuai dengan bidang (002). Puncak difraksi berubah ketika GO disintesis menjadi GQDs. Puncak difraksi diamati pada $2\theta = 25,01^{\circ}$ sesuai dengan bidang (002) (Ahmed et al., 2018).

Gambar 2. 7 Pola Difraksi GQDs (Ahmed et al., 2018)

2.4 Nanokomposit TiO₂/Graphene Quantum Dots

Pada pengaplikasian fotokatalis ini menggunakan material superkonduktor TiO₂ karena sifatnya yang baik dalam fotokatalitik. Namun, TiO₂ memiliki *bandgap* yang besar dan juga terjadi proses rekombinasi yang cepat. Sehingga dilakukan nanokomposit TiO₂ dengan Graphene Quantum Dots untuk mengatasi kekurangannya. Ketika nanopartikel TiO₂ dimodifikasikan dengan Graphene Quantum Dots terjadi perkembangan yang signifikan, seperti memperluas panjang gelombang serapan cahaya, mengontrol rekombinasi elektronhole, dan membantu membentuk jalur reaksi aktif (Bokare et al., 2021).

Material semikonduktor TiO₂ dikompositkan dengan Graphene Quantum Dots dengan menggunakan metode *physical mixing*. Metode ini dipilih karena persiapannya yang cukup mudah. Metode ini dilakukan dengan cara mencampurkan TiO₂ dengan Graphene Quantum Dots menggunakan *electromagnetic stirrer* selama 1 jam. Selanjutnya, nanokomposit tersebut disonifikasi selama 1 jam dan dilakukan *drying* pada suhu 80°C selama 24 jam.

Karakterisasi juga dilakukan pada nanokomposit TiO₂/GQDs dengan melakukan uji FTIR dan XRD. Pada hasil uji FTIR ditemukan gugus fungsi O-H *stretching* pada *wavenumber* 3432 cm⁻¹ lalu diatribusikan pada C-H *stretching*. Gugus fungsi O-C-O pada rentang 1593 cm⁻¹ dan 1416 cm⁻¹. Pada puncak 1090 cm⁻¹ dan 990 cm⁻¹ berkaitan dengan ikatan C-O dan gugus epoksi. Kemudian pada pita absorpsi pada 480 – 700 cm⁻¹ dikaitkan dengan Ti-O-Ti *vibration stretching* dan Ti-O-C (Hao et al., 2016).

Morfologi dari TiO₂/GQDs dapat dilihat dengan melakukan uji SEM. Uji SEM TiO₂/GQDs dapat dilihat pada gambar berikut.

Gambar 2. 8 Hasil Uji SEM TiO₂/GQDs (Ali & Al-bahrani, 2020)

Hasil SEM menunjukkan bahwa TiO_2 menyatu membentuk aglomerat yang relatif besar. Aglomerat pada TiO_2 lebih besar dari pada GQDs. Bentuk dari nanokomposit ini terdiri dari lapisan GQDs yang tercampur (Ali & Al-bahrani, 2020).

Gambar 2. 9 Hasil uji FTIR TiO2/GQDs (Hao et al., 2016)

Hasil XRD ditunjukkan pada **gambar 2.8** Puncak-puncak difraksi karakteristik TiO₂ murni menunju Po kkan keberadaan fase anatas (JCPDS # 21-1272) dan rutile (JCPDS # 21-1275). Secara khusus, puncak-puncak yang teramati pada 25.28°, 36.86°, 37.8°, 48.05°, 53.89°, 55.02°, 62.7°, 70.26°, dan 74.92° sesuai dengan berbagai bidang anatas TiO₂ seperti (101), (103), (004), (200), (105), (211), (116), (200), dan (215). Secara penting, pola XRD dari nanokomposit TiO₂/GQDs tidak menunjukkan puncak tambahan dibandingkan dengan TiO₂ murni, dan posisi serta intensitas puncak difraksi tidak berubah. Hal ini dengan jelas menunjukkan bahwa penambahan GQDs tidak mempengaruhi struktur kristal atau ukuran TiO₂ (Hao et al., 2016).

Gambar 2. 10 Pola Difraksi Nanokomposit TiO2/GQDs (Hao et al., 2016)

2.5 Lingkungan Limbah

Lingkungan yang tercemar limbah menjadi masalah serius terutama pada masalah pencemaran air. Pencemaran air ini bisa disebabkan oleh industri dari pabrik-pabrik yang membuat begitu saja air limbahna tanpa dikelolaa lebih dahulu ke perairan. Salah satu contoh pencemaran lingkungan limbah pada pencemaran air ialah air limbah industri tekstil seperti perusahaan laundry yang rata-rata bisa membuang air limbah berwarna biru-hitam sekitar 15-90 m³/hari ke kali yang ada pada wilayah Jakarta Barat (Yudo & Said, 2001). Limbah industri tekstil dapat berasal dari beberapa kegiatan seperti pencucian tekstil, pencelupan dan sistem pewarnaan lainnya. Salah satu contoh limbah lingkungan yang dihasilkan dari industri tekstil ialah *methylene blue*.

Gambar 2. 11 Struktur MB (Azizah, 2018).

Methylene blue merupakan salah satu senyawa pewarna yang larut dalam air, memiliki sifat kationik dan sering digunakan dalam bidang kimia, biologi, dan juga di industri tekstil. *Methylene blue* (MB) juga merupakan pewarna thiazine kationik yang merupakan senyawa kimia aromatic heterosiklik. Rumus molekul MB adalah C₁₆H₁₈N₃₅Cl (Mr = 319,65 g/mol) (Taufantri et al., 2016). MB memiliki titik leleh pada 180°C dan larut dalam air dengan kelarutan sebesar 35,5 g/l (Azizah, 2018).

MB pada keadaan teroksidasi berwarna biru gelap dan pada keadaan tereduksi MB tidak berwarna atau biasa disebut leuco MB. MB dan Leuco MB termasuk ke dalm larutan dan menjadi pasangan reaksi reduksi oksidasi reversible atau biasa disebut pasangan pemberi dan penerima elektro (Azizah, 2018). MB terbuat dengan cara di sintesis dengan mengoksidasi dimethylparaphenylenediamin dalam hidrogen tersulfurasi.

Cara yang lebih umum, MB diibuat dengan menitrasi dan mereduksi N, Ndimethylaniline menjadi paraaminodimethylaniline. Kemudian paraaminodimethylaniline diubah menjadi asam thiosulfate dengan diberi sodium thiosulphate, sodium dichromate, dan asam sulfat. Setelah terentuk paraaminodimethyl aniline thiosuphonic acid selanjutnya ditambahkan dimethylaniline dalam kondisi oksida yang bertujuan membentuk indamine thiosulphonic acid. Selanjutnya indamine thiosulphonic acid dioksidasi dengan penambahan HCl dan ZnCl₂ hingga terbentuk MB (Azizah, 2018).

Gambar 2. 12 Reaksi pembentukan MB (Azizah, 2018)

MB bersifat karsinogenik dan tidak terurai secara biologi karena stabilitas cincin aromatik dalam struktur molekulnya yang dimana senyawa ini menyebabkan sifat toksisitas pada MB(Oladoye et al., 2022). MB tidak terlalu beracun, tetapi dapat menyebabkan efek samping bagi manusia seperti iritasi mata, iritasi kulit, dan juga efek sistematik termasuk perubahan darah. Jika di konsumsi, dapat menyebabkan muntah, mual, diare, pusing, dan keringat yang belebihan serta gangguan pencernaan (Sen et al, 2011). Pengaruh dosis MB terhadap mahluk hidup dapat dilihat pada **Tabel 2.7.**

Objek Pengamatan	Dosis MB	Dampak
Tikus got Tikus putih	5-50 mg/kg 1250 mg/kg (LD50) 3500 mg/kg	 Kerusakan neuron Pengurangan isofluran MAC
Kambing	40 mg/kg	HipotensiPengurangan SVR
Anjing	10-20 mg/kg	 Penyumbatan aliran darah Hipertensi pulmonary Hemolitik ammonia, kerusakan kulit pada bayi
Manusia	 2-4 mg/kg 7 mg/kg 7,5 mg/kg 20 mg/kg 80 mg/kg 	 Mual, muntah, gangguan pencernaan, nyeri pada dada, demam, perusakan hemoglobin Hyperpyrexia, pusing Hipotensi Sianosis, Pembiruan kulit

Tabel 2. 7 Pengaruh dosis MB terhadap mahluk hidup (Azizah, 2018).

Ditinjau dari pengaruh MB terhadap mahluk hidup selain manusia memiliki banyak dampak negatif jika tidak sengaja terkonsumsi, maka diperlukan pengolahan limbah MB sebelum dibuang ke perairan.

	Tabel 2. 8 Kajian pe	enelitian sebelumnya		
Peneliti	Penelitian	Proses	Hasil	
(Fauzi, 2022)	Modifikasi Nanostruktur Titanium Dioksida Hasil Pengolahan Mineral Ilmenit Lokal Indonesia Untuk Aplikasi Fotokatalis	Memodifikasi TiO ₂ dengan FeTiO ₃ sebagai prekursor. Dilakukan persiapan mineral ilmenite, kemudian diberikan proses pretreatment ilmenit dengan proses dekomposisi NaOH. Pada TiOSO4 dilakukan proses hidrolisis untuk mendapatkan TiO ₂ . Setelah TiO ₂ didapatkan, dilakukan modifikasi nanostruktur dari 0D menjadi 1D (nanotube) menggunakan prekursor TiO ₂ , P-24 Degussa, dan residu ilmenite. Metode yang dilakukan adalah hydrothermal dengan temperature 150° C selama 12 jam. Setelah dilakukan pembentukan nanostruktur selanjutnya diuji performa foto katalisnya.	Kristalinitas yang tinggi dan sifat optik (energi celah pita) yang rendah dapat meningkatkan efisiensi degradasi sekitar 96,50%. Kemudian pada uji fotokatalitik dengan menggunakan cahaya tampak pada nanostruktur TiO ₂ yang terbaik pada sampel nanotube TiO ₂ prekursor alam dan nanosheet TiO ₂ dengan efisiensi degradasi sebesar 97,96% dan 98,34%.	
(Safardoust- hojaghan & Salavati- niasari, 2017)	Degradation of Methylene Blue as a Pollutant with N- Doped Graphine Quantum Dot/Titanium	GQD dengan N dengan melarutkan asam sitrat dan etilen diamina ke dalam air hingga terbentuk solusi transparan,	untuk mendegradasi, setelah 70 menit hanya 40% polutan yang terdegradasi. Sedangkan ketika TiO ₂ /N-Gqds	

2.6 Kajian Penelitian Sebelumnya

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

	Dioxide Nanocomposite	kemudian dimasukkan kedalam autoklaf dan diapanaskan dalam oven selama 8 jam hingga memperoleh larutan warna coklat tua yang selanjutnya di sentrifugasi pada 10.000 rpm selama 15 menit. Selanjutnya mengompositkan N- GQD dengan TiO ₂ dengan cara P25 TiO ₂ didispersikan ke dalam larutan N- GQD dan diaduk selamat 24 jam. Setelah itu disentrifugasi pada 10.000 rpm/menit selama 20 menit dan dikeringkan dalam kondisi vakum pada 60 C selama 10 jam. Tahap akhir dilakukan uji	digunakan, terjadi degradasi sebesar 85%
Siti Nuraisyah, 2023	Sintesis Komposit TiO ₂ /Cdots menggunakan Microwave serta Aplikasinya sebagai Fotokatalis untuk Mendegradasi Methylene Blue	polutan methylene blue. Mensintesis CDots dengan melarutkan asam sitrat dan urea ke dalam air, kemudian diaduk menggunakan magnetic stirrer selama 10 menit dan 700 rpm. Setelah itu dioven pada suhu 100 C selama 1 jam. Setelah itu mensintesis TiO ₂ dengan CDots dengan mencampurkan TiO ₂ dengan CDots dengan beberapa	Komposit TiO ₂ /CDots memiliki efektivitas yang baik pada fotodegradasi methylene blue daripada TiO ₂ murni. Efektivitas degradasi sebesar 88,84% dibawah 120 menit radiasi cahaya tampak.

			variasi ke dalam air. Kemudian diaduk menggunakan	
			magnetic stirrer	
			selama 2 jam dengan	
			700rpm dan	
			dipanaskan di	
			microwave selama 5	
			menit. Setelah itu	
			diuii nada	
			fotokatalis.	
			Mensintesis koloid	
			TiO ₂ nanopartikel dengan	
			menggunakan	Percobaan dilakukan
			prekursor TTIP dan	dengan
			Titanium butoksida	menggunakan
			hingga didapatkan	polutan rehumasol
			hasilnya di sintesis	orange 0,001%
			meniadi TiO ₂	dengan waktu 48
			nanopartikel dengan	jam, menggunakan
			sol yang ada	katalis ITIP
			diccampur air lalu	degradasi warna dari
			dilakukan	88.25 menjadi 53.35
			penyulingan dan	Pt/Co. Dilihat pada
		Degradasi	dipanaskan pada	hasilnya juga,
		Fotokatalitik Polutan	diaduk selama 1 iam	degradasi
(Djarwanti	&	Organik dalam Air	dan dipanaskan di	fotokatalitik pada
Yuniati, 2009)		Limbah T_1O_2 Nano	oven pada suhu 55 ⁰ C	warna teksttil
		Lapisan Tipis-Alir	selama 3x24 jam.	konsentrasi awal
		Lapisan Tipis-Ani	Selanjutnya	semakin tinggi
			mensintesis TiO_2	menunjukkan laju
			nano partikel dengan	degradasi semakin
			butoksida dengan	rendah. Pada
			mencampurkan sol	konsenntrasi awal
			TiO ₂ dan Titanium	COD 1761 ppm,
			butoksida dengan	880,1 pm, dan 305
			isopropyl alcohol	iam menghasilkan
			lalu diaduk pada	degradasi sebesar
			magnetic stirrer	10,38%, 39.25%, dan
			selama 8 jam dengan	75,29%.
			disaring dan	
			dipanaskan pada	
			oven di suhu 120° C	

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

selama 2 jam. Selanjutnya TiO₂ dilapisi dan dibentuk reactor fotokatalitik.

(Halaman ini sengaja dikosongkan)

BAB III METODOLOGI PENELITIAN

3.1 Bahan Penelitian

Bahan yang digunakan dalam proses penelitian ini adalah sebagai berikut :

3.1.1 Bahan Penelitian

1. TiCl₃

Gambar 3.1 merupakan gambar yang digunakan yaitu TiCl $_3$ dengan kandungan 15% HCl

Gambar 3. 1 TiCl₃ dengan 15% HCl

- 2. Akuades
- 3. NH₄OH

Gambar 3.2 merupakan gambar yang digunakan yaitu NH4OH

Gambar 3. 2 NH₄OH

3.1.2 Bahan Penelitian GQDs

- 1. Arang Tempurung Kelapa
- 2. KOH

Gambar 3.3 merupakan gambar yang digunakan yaitu KOH

Gambar 3. 3 KOH

- 3. N₂
- 4. H₂SO₄

Gambar 3.4 merupakan gambar yang digunakan yaitu H₂SO₄

5. DI Water

- Gainbar
- 6. KMnO₄

Gambar 3.5 merupakan gambar yang digunakan yaitu KMnO4

7. NaNO₃

Gambar 3.6 merupakan gambar yang digunakan yaitu NaNO3

8. HCl

Gambar 3.7 merupakan gambar yang digunakan yaitu HCl

9. H₂O₂ Gambar 3.8 merupakan gambar H_2O_2

Gambar 3. 8 H₂O₂

3.2 **Alat Penelitian**

Alat yang digunakan dalam proses penelitian ini adalah sebagai berikut:

- 1. Beakerglass
 - Digunakan sebagai wadah untuk merendam dan melarutkan sampel
- 2. Neraca Analitik Digunakan untuk menimbang massa serbuk
- 3. Pengaduk Digunakan untuk mengaduk larutan
- 4. *Hot plate* dan *magnetic stirrer* Digunakan untuk membentuk *solution* dari sampel

Gambar 3. 9 Magnetic Stirrer

5. Tabung ukur

Digunakan untuk mengukur volume larutan 6. Pipet tetes

Digunakan untuk mengambil cairan/larutan

7. Kertas saring

Digunakan untuk memisahkan endapan TiO₂ dari larutan

Gambar 3. 10 Kertas saring

8. Furnace

Digunakan untuk proses pemanasan, seperti drying, kalsinasi, dan sintering.

Gambar 3. 11 Furnace

9. Stopwatch

Digunakan untuk menghitung waktu untuk melaksanakan proses, seperti waktu untuk stirring, waktu untuk drying, dsb.

- 10. Cawan keramik Digunakan sebagai wadah pada saat proses pemanasan
- 11. *Mortar* dan *pestle Mortar* adalah wadah dan *pestle* adalah penumbuk. Kedua alat ini digunakan untuk menghancurkan spesimen serbuk yang menggumpal
- 12. Sarung tangan dan masker
 - Sebagai alat kesehatan dan keselamatan selama melakukan penelitian
- 13. pH meter Digunakan untuk mengukur derajat keasaman dari larutan TiO₂
- 14. Alat Uji FTIR

Digunakan untuk mengetahui gugus fungsi yang terkandung dalam sampel

Gambar 3. 12 FTIR

15. Alat Uji UV-Vis

Digunakan untuk mendapatkan absorbance spectra dari suatu material dan mengukur intensitas cahaya

16. Alat Uji PL

Digunakan untuk menganalisis profil fotodegradasi polutan

17. Alat Uji XRD

Digunakan untuk mengidentifikasi senyawa dalam sampel beserta struktur dan ukuran kristalnya

Gambar 3. 13 XRD

18. Alat Uji SEM/EDX

Digunakan untuk menganalisis morfologi, yaitu bentuk dan ukuran unsur-unsur penyusun objek

19. Alat Uji BET

Digunakan untuk menganalisis luas permukaan dan volume porositas serta karakterisasi permukaan pada suatu sampel

Gambar 3. 14 SEM

3.3 Diagram Alir

Adapun diagram alir pada penelitian ini yang akan dijelaskan sebagai berikut.

3.3.1 Sintesis TiO₂

Gambar 3.15 merupakan diagram alir proses sintesis ${\rm TiO}_2$ yang digambarkan sebagai berikut.

Gambar 3. 15 Diagram alir sintesis TiO₂

3.3.2 Pembuatan GQDs

Gambar 3.16 merupakan proses sintesis graphene oksida yang digambarkan sebagai berikut.

Gambar 3. 16 Diagram Alir Sintesis Graphene Oksida

Gambar 3.17 merupakan proses pembuatan GQDs dari graphene oksida yang digambarkan sebagai berikut (dilengkapi, atau diganti yang baru)

Gambar 3. 17 Diagram alir sintesis graphene oksida

3.3.3 Diagram Alir Nanokomposit TiO₂/GQDs

Gambar 3.18 merupakan proses sintesis nanokomposit $TiO_2/GQDs$ yang digambarkan sebagai berikut.

Gambar 3. 18 Sintesis Nanokomposit TiO₂/GQDs

3.4 Metode Penelitian

Proses penelitian akan dilakukan melalui 4 tahapan, yaitu proses sintesis TiO_2 , dilanjutkan dengan pembuatan GQDs, kemudian tahapan berikutnya pembuatan komposit $TiO_2/GQDs$, dan tahapan yang terakhir yaitu pengujian fotokatalis.

3.4.1 Preparasi Sintesis TiO₂

Bahan material TiO₂ dibuat menggunakan TiCl₃ dengan komposisi sebesar 20 mL Titanium tetrachloride (TiCl₃) dengan kandungan 15% HCl; dan 100 mL akuades. Kedua bahan tersebut dicampur dengan magnetic strirrer selama 60 menit. Setelah itu, ke dalam larutan yang masih dalam proses pengadukan dengan magnetic stirrer, diteteskan NH4OH untuk mencapai variasi pH yang diinginkan. Pada pengujian ini variasi yang diambil pada pH 9, pH 10, dan pH 11. Larutan yang dihasilkan akan menjadi warna putih selama kurang lebih 20 menit pengadukan, setelah itu larutan berwarna putih tersebut didiamkan selama beberapa hari hingga membentuk endapan. Endapan lalu disaring dengan kertas saring dan dilakukan pencucian dengan akuades hingga pH netral. Setelah itu hasil saring dikeringkan dengan oven pada suhu 60°C selama 24 jam. Hasil pengeringan yang mengeras kemudian dilakukan uji XRD apakah ada kandungan NH₃ atau senyawa hidrat lainnya. Jika dalam uji XRD tersebut ditemukan kandungan NH₃ atau senyawa hidrat akan dilakukan penggerusan dengan pestle hingga berbentuk bubuk dan dikalsinasi selama 2 jam pada suhu 350°C dengan furnace.

3.4.2 Preparasi Sintesis Graphene Oxide

Sintesis dilakukan dengan perendaman grafit ke dalam 80ml H2SO4 98%. Hasil perendaman tersebut dilakukan stirring pada 300 rpm selama 2 jam dalam ice -bath 5°C dan dilanjutkan stirring 300 rpm selama 20 jam dalam water-bath 40°C. Setelah itu, dilakukan penambahan DI Water sebanyak 80ml kemudian distiriing pada 300 rpm selama 1 jam dalam ice -bath 5°C dan ditambahkan 200ml DI water yang kemudian dilakukan stirring Kembali pada 300 rpm selama 1 jam dalam ice -bath 5°C. Setelah itu, dilakukan penambaha H2O2 sebanyak 20 ml yang kemudian distirring pada 300 rpm selama 1 jam dalam ice -bath 5°C. Setelah itu, dilakukan penambaha H2O2 sebanyak 20 ml yang kemudian distirring pada 300 rpm selama 1 jam dalam ice -bath 5°C. Hasil dari stirring tersebut, dilakukan pencucian dalam 100ml HCl 10% dan diendapkan. Pemisahan endapan dilakukan dengan pencucian menggunakan DI water dan centrifuge selama 10 menit hingga rentang pH 5-6 kemudian dikeringkan pada suhu 120°C selama 12 jam.

3.4.3 Preparasi Sintesis Graphene Quantum Dots

Setelah Graphene Oksida berhasil terbentuk, kemudian proses dilanjutkan dengan membentuk Graphene Quantum Dots dimana Graphene Oksida direflux dengan HNO3 pada 80°C dengan perbandingan GQDs dengan HNO3 yakni 0.15 : 30. Kemudian dilanjutkan dengan penambahan NaOH hingga menyentuh pH 7 dan dilakukan hidrothermal pada suhu 200°C selama 8 jam dan dilakukan pelarutan dengan H2O hingga membentuk koloid GQDs.

3.4.4 Sintesis Nanokomposit TiO₂/GQDs

Setelah TiO₂ dan GQDs berhasil terbentuk kemudian dilanjutkan proses komposit dengan cara melarutkan TiO₂ dengan variasi pH 9, pH 10, dan pH 11 ke dalam 60 mL aquades dan diaduk salama 10 menit. Selanjutnya ditambahkan GQDs dengan perbandingan TiO₂ : GQDs = 5 : 1. Kemudian disonikasi selama 1 jam. Setelah itu, diaduk selama 30 menit menggunakan magnetic stirrer. Kemudian di filtrasi dan dikeringkan pada suhu 1100C selama 2 jam. Selanjutnya nanokomposit ini di uji karakterisasi dengan pengujian XRD, pengujian SEM, pengujian FTIR, pengujian BET, pengujian UV-Vis, dan pengujian PL.

3.5 Pengujian

Pada penelitian ini akan dilakukan beberapa uji coba untuk mengetahui struktur kristal, morfologi, serta sifat fotokatalitik komposit TiO₂/GQDs untuk degradasi methylene blue.

3.5.1 Scanning Electron Microscopy/Energy Dispersive X-Ray (SEM/EDX)

Penggunaan SEM ditujukan untuk mengetahui morfologi dari komposit TiO₂/GQDs. Pengujian ini dilakukan di Divisi Karakterisasi Material, Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri ITS. Mesin SEM yang digunakan ialah SEM Inspect S50 seperti pada **gambar 3.19**. Adapun standar yang digunakan adalah ASTM E986. Perbesaran yang digunakan pada pengujian ini adalah antara 50 – 1000 kali. Mekanisme SEM sendiri dilakukan dengan cara menembakkan elektron dari *electron gun*, kemudian melewati *condencing lenses* dan pancaran elektron akan diperkuat dengan sebuah kumparan, setelah itu elektron akan difokuskan ke sampel oleh lensa objektif yang ada dibagian bawah. Pantulan elektron yang mengenai permukaan sampel akan ditangkap oleh *backscattered electron detector* dan *secondary electron detector* yang kemudian hasilnya akan diterjemahkan dalam bentuk gambar pada *display computer*.

Gambar 3. 19 Instrumen SEM (Dokumen Pribadi)

Langkah-langkah yang dilakukan pada pengujian SEM sebagai berikut:

- 1. Menyiapkan spesimen uji termasuk melakukan pemotongan untuk melihat daerah melintang dengan ukuran 10 x 10 mm.
- 2. Membersihkan permukaan spesimen agar tidak ada pengotor.
- 3. Meletakkan spesimen pada *holder* dan diberikan perekat *carbon tape*.
- 4. Memasukkan spesimen ke dalam mesin SEM.
- 5. Melakukan perbesaran optik 70 500x, dengan tegangan 2 kV
- 6. Mengamati hasil yang terlihat pada *display computer*.

EDX merupakan detektor pada SEM yang berfungsi untuk menangkap informasi mengenai komposisi sampel pada skala mikro. Pada saat elektron yang dihasilkan bertumbukan di dalam SEM, tumbukan tersebut menghasilkan sinar-X yang khas. Setiap unsur memiliki spektrum emisi sinar-X yang berbeda, maka unsur-unsur yang diperoleh dapat diidentifikasi (Abd Mutalib et al., 2017).

3.5.2 X-Ray Diffraction (XRD)

XRD adalah alat yang digunakan untuk mengkarakterisasi struktur kristal dan ukuran kristal dari suatu bahan padat. Metode difraksi umumnya digunakan untuk mengidentifikasi senyawa yang belum diketahui yang terkandung dalam suatu padatan dengan cara membandingkan dengan data difraksi dengan database yang dikeluarkan oleh JCPDS (*Joint Committee of Powder Diffraction Standard*). Semua bahan yang mengandung kristal

tertentu ketika dianalisa menggunakan XRD akan memunculkan puncak-puncak yang spesifik. Sehingga kelemahan alat ini yaitu tidak dapat untuk mengkarakterisasi bahan yang bersifat amorf. Prinsip kerja XRD yaitu dimana tabung sinar-X menembak sampel padatan kristalin, selanjutnya mendifraksikan sinar ke segala arah dengan memenuhi Hukum Bragg pada Persamaan 3.1 Detektor bergerak dengan kecepatan sudut yang konstan untuk mendeteksi berkas sinar-X yang didifraksikan oleh sampel. Sampel serbuk atau padatan kristalin memiliki bidang-bidang kisi yang tersusun secara acak dengan berbagai kemungkinan orientasi, begitu pula partikel-partikel kristal yang terdapat di dalamnya. Setiap kumpulan bidang kisi tersebut memilih beberapa sudut orientasi tertentu sehingga difraksi sinar-X memenuhi:

$$n\lambda = 2d\sin\theta \tag{3.1}$$

dimana, n = orde difraksi (1,2,3,...) $\lambda = Panjang sinar-X$ d = jarak kisi $\theta = sudut difraksi$

Perhitungan jarak antar layer pada hasil grait XRD (dspacing) dapat menggunakan Hukum Bragg pada Persamaan 3.2 yang digunakan untuk menganalisa pengaruh sintesis khususnya jarak layer pada sampel.

$$d_{002} = \frac{\lambda}{2\sin\theta} \tag{3.2}$$

dimana, $d_{002} =$ Jarak antar layer $\lambda =$ Panjang gelombang (1,54 A) $\theta =$ Sudut difraksi (°)

Dari hasil keluaran XRD dapat memberikan informasi untuk melihat ukuran kristal sampel. Hal ini dapat didapatkan dengan Persamaan Scherrer pada persamaan 3.3.

$$D = \frac{k\lambda}{2\sin\theta} \tag{3.3}$$

dimana, D = Ukuran kristal λ = Panjang gelombang Cu-K α (1.54060A) B = FWHM (rad) K = Konstan Scherrer dengan nilai 0.9

Bentuk keluaran dari difraktometer dapat berupa data analog atau digital. Rekaman data analog berupa grafit garis-garis yang terekam per menitnya, dengan detektor sudut 2θ per menit sehingga sumbu-X setara dengan sudut 2θ . Sedangkan rekaman digital menginformasikan intensitas sinar-X terhadap jumlah intensitas cahaya per detik.

Gambar 3. 20 Alat Pengujian XRD (Dokumen Pribadi)

Karakterisasi material menggunakan XRD alat instrument XRD PAN *Alytcal* yang ditunjukkan pada **Gambar 3.20**. Karakterisasi XRD menghasilkan beberapa data, baik data kualitatif maupun data kuantitatif seperti yang ditunjukkan pada **Tabel 3.1**.

No	Karakter	Informasi dari material
1	Posisik Puncak (2θ)	 Fasa Identifikasi kristal Struktur kristal Parameter kisi Regangan seragam
2	Tinggi Puncak (Intensitas)	 Identifikasi Komposisi Hamburan tak Koheren Extinction Preferred orientation
3	Lebar dan Bentuk Puncak	- Ukuran kristal (bukan partikel atau bukan grain)

3.5.3 Fourier Transform Infrared Spectroscopy (FTIR)

FTIR merupakan sebuah alat pengujian yang menggunakan penyerapan radiasi infra merah dan juga salah satu instrumen spektroskopi. Pada spektroskopi infra merah, radiasi inframerah dipancarkan mengenai sampel. Sebagian radiasi infra merah diserap oleh sampel sebagian yang lain ditransmisikan. Hasil spektrum infra merah menggambarkan penyerapan molekul dan transmisi, menggambarkan ciri khas sampel. Setiap molekul memiliki penyerapan berbeda sesuai dengan pola vibrasi dan pola ikatan antar atomnya. Tidak ada dua molekul yang menghasilkan spektrum infra merah yang sama. Oleh karena itu spektroskopi infra merah sangat berguna untuk berbagai analisis. FTIR dapat memberian informasi mengenai material yang belum diketahui (teridentifikasi), mengenai kualitas sampel, dan mengetahui jumlah komponen dalam suatu campuran. **Gambar 3.21** memperlihatkan instrumen uji FTIR.

Gambar 3. 21 Alat uji FTIR (Dokumen Pribadi)

Prinsip kerja FTIR yaitu berdasarkan penyerapan radiasi infra merah. Infra merah dipancarkan melalui interferometer kemudian dipancarkan melalui sampel, sebagaian radiasi infrared diserap sampel dan sebagian lain dipancarkan kembali dan tertangkap oleh detector. Besarnya radiasi infra merah yang tertangkap oleh detektor kemudian diubah menjadi spektrum oleh interferogram. Untuk dapat menyerap radiasi infra merah (aktif inframerah), vibrasi molekul harus menghasilkan perubahan momen dwikutub. Setiap molekul memiliki penyerapan berbeda sesuai dengan pola vibrasi dan pola ikatan antar atomnya (Di Gianfrancesco, 2017). Mekanisme kerja FTIR di gambarkan pada **Gambar 3.22.**

Gambar 3. 22 Skema prinsip kerja FTIR (Di Gianfrancesco, 2017)

3.5.4 Pengujian Fotokatalitik

Pengujian fotokatalis digunakan untuk mengamati seberapa besar pengaruh penambahan GQDs pada komposit TiO₂/GQDs untuk degadrasi *methylene blue*. Prosedur pengujian fotokatalisis yang dilakukan sebagai berikut.

1. Pembuatan larutan uji dan penentuan panjang gelombang maksimum

Serbuk methylene blue ditimbang sebanyak 0,01 gram kemudian dilarutkan ke dalam 100 mL aquades hingga didapatkan larutan methylene blue dengan konsentrasi 100 mg.L-1. Larutan baku 100 mg.L⁻¹ selanjutnya di pipet masing masing 2, 4, 6, 8, dan 10 mL ke dalam labu takar 100 mL dam diencerkan dengan aquades sehingga diperoleh larutan dengan konsentrasi 2, 4, 6, 8, dan 10 mg.L⁻¹. Selanjutnya ditentukan panjang gelombang maksimum methylene blue dengan menggunakan spektrofotometer UV-Vis.

2. Penentuan kurva standar methylene blue

Larutan *methylene blue* dengan konsentrasi 2, 4, 6, 8, dan 10 mg.L⁻¹. Ditentukan nilai absorben dari masing-masing konsentrasi menggunakan panjang gelombang maksimum yang telah ditentukan sebelumnya. Kurva standar dibuat dengan menghubungkan antara konsentrasi dengan absorbansi.

3. Uji degadrasi zat warna *methylene blue* dengan variasi penambahan TiO/GQDs pada pH basa

Degradasi *methylene blue* dilakukan dengan menggunakan variasi TiO₂ pada pH 9, pH 10, dan pH 11. Kemudian 4 buah gelas kimia berukuran 250 mL. masing-masing dimasukkan 100 mL larutan *methylene blue*. Selanjutnya masing-masing gelas dimasukkan katalis TiO₂/GQDs 0,5 gram. Reaktor disinari lampu UV 22 watt dengan variasi waktu per 1 menit, hasil degradasi dianalisis absorbannya dengan alat spektrofotometer pada Panjang gelombang maksimum 540 nm. Hasil analisis dibandingkan dengan konsentrasi zat warna hasil degradasi secara fotokatalis ditentukan presentase degradasi zat warna. Presentase degradasi methylene blue ditentukan dengan persamaan berikut:

$$(\%D) = \frac{Co - Ct}{Co} x \ 100\%$$
 (3.4)

Dimana C_0 adalah konsentrasi awal zat warna sebelum iradiasi, Ct adalah konsentrasi zat warna pada t. Berdasarkan hasil analisis, dibuat profil hubungan antara waktu degradasi dengan presentase degradasi

3.5.5 Spektrofotometri UV-Vis

Spektrofotometri UV-Vis adalah teknik analisis spektroskopik yang memakai sumber radiasi elektromagnetik ultra violet dekat(190-380 nm) dan sinar tampak (380-780 nm) dengan memakai alat spektrofotometer. Spektrofotometer UV-VIS digunakan untuk mendapatkan absorbance spectra dari suatu material, mengukur intensitas cahaya yang melewati larutan sampel dalam kuvet, dan membandingkannya dengan intensitas cahaya sebelum melewati

sampel. Pengujian UV-Vis bertujuan untuk mengetahui panjang gelombang (λ) dan nilai absorbansi dengan cara menembakkan sinar ultraviolet (UV) pada larutan. Prinsip pengujian UV-Vis adalah mengamati elektron yang tereksitasi menuju level energi yang tinggi diamati sebagai absorbansi cahaya atau radiasi elektromagnetik. Pada pengujian UV-Vis menggunakan panjang gelombang UV visible light dengan rentang 200-800 nm yang memiliki energi sebesar 1.5-6.2 eV.(Henry & Yanuar, 2002) Alat pengujian spektrofotometer UV-VIS seperti **Gambar 3.23.**

Gambar 3. 23 Mesin UV-Vis Genesys 10S UV-Vis Spectrometer (Dokumen Pribadi)

Radiasi maksimal yang diserap oleh larutan tersebut akan ditunjukkan pada panjang gelombang tertinggi dari nilai absorbansi maksimum dan persentase nilai transmisi minimum yang dihasilkan larutan tersebut. Untuk perhitungan nilai absorbansi digunakan Hukum Lambert-Beer yang dirumuskan seperti pada Persamaan (3.5) sebagai berikut.

$$A = \varepsilon. \ b. \ c \tag{3.5}$$

dimana,

A : absorbansi (arb. units atau arbitrary units)

 ε : absorptivitas molar dari material (M-1 cm-1)

b : panjang dari cuvette atau sample holder (~1 cm)

c : konsentrasi (M)

3.5.6 Brunaur, Emmett, and Teller (BET)

Pengujian BET (*Bruner Emmet Teller*) merupakan pengujian yang bertujuan untuk mengetahui besar luas permukaan aktif atau karakterisasi permukaan pada suatu sampel. Sampel dengan data yang dihasilkan yaitu Spesific surface area (SA, m²/g) dan Volume pori (Vpr, mm³/g). Prinsip kerja pengujian BET yaitu dengan memanfaatkan daya serap sampel terhadap gas nitrogen. Gas nitrogen umumnya digunakan sebagai molekul probe dan diekspos ke benda padat pada kondisi nitrogen cair. Sampel yang diuji minimal memiliki massa 0,1 g. Pada pengujian BET sampel akan dipanaskan namun temperatur pemanasannya dibawah perlakuan aktivasi fisikanya agar tidak mempengaruhi hasil sampel karbon aktif.

Teknik pengujian BET keseluruhan dari prosesnya dilakukan secara otomatis. Data sampel yang diuji akan otomatis didapatkan pada komputer yang terhubung dengan BET Analyzer berupa grafik dan tabel data isotherm, grafik dan tabel data Multiple BET plot, grafik dan tabel data pore diameter dan luas Specific surface. Untuk mengetahui specific surface area maka dilakukan pengujian BET specific surface area measurment. Specific surface area benda padat yang diukur didapatkan dari measured monolayer capacity dan data cross sectional area dari molekul yang dijadikan probe. Alat pengujian BET digambarkan pada **Gambar 3.25**.

Gambar 3. 24 Alat Pengujian BET

3.5.7 Photoluminescence (PL)

Pengujian fotoluminens menggunakan laser dioda sebagai sumber cahaya dengan panjang gelombang 420 nm. Laser yang beroperasi secara Continues Wavelength (CW) diarahkan ke sampel. Cahaya yang dipancarkan oleh sampel ditangkap oleh fiber optic dan dikarakterisasi dengan Spektrofotometer Ocean Optic Maya2000Pro yang terhubung dengan aplikasi di komputer. Foton dari emisi yang terdeteksi dihitung oleh *Photomultiplier Tube* dan diubah menjadi sinyal listrik yang dapat ditampilkan dalam bentuk grafik di Spectra Suit. Berikut merupakan gambar Prinsip Spektroskopi PL terdapat pada **Gambar 3.27**.

Gambar 3. 25 Skematik Instrumen Pengukuran Photoluminescence (PL)

3.6 Rancangan Penelitian

Adapun rancangan penelitian yang digunakan pada penelitian ini ditunjukkan pada **tabel 3.2** sebagai berikut.

Table 5. 2 Kancangan Tenentian						
Material	Pe	ngujian Karak	Pengujian Elektrokimia			
_	XRD	SEM/EDX	FTIR	BET	UV-Vis	PL
GQDs	\checkmark	\checkmark	\checkmark	-	-	-
TiO ₂	\checkmark	\checkmark	\checkmark	-	\checkmark	-
TiO ₂ /GQDs - 9	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TiO ₂ /GQDs -10	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
TiO ₂ /GQDs	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

T	`abel	3.	2	Rancangan	Penel	litian
	anci	J •	-	Rancangan	I CHC	iiiiaii

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

-11						
MB	-	-	-	-	\checkmark	-
MB-n	-	-	-	-	\checkmark	-

Keterangan:

\mathcal{U}	
GQDs	: Graphine Qauantum Dots
TiO ₂	: TiO_2
TiO ₂ /GQDs 9	: Komposit TiO2/GQDs variasi pH 9
TiO ₂ /GQDs 10	: Komposit TiO ₂ /GQDs variasi pH 10
TiO ₂ /GQDs 11	: Komposit TiO ₂ /GQDs variasi pH 11
MB	: Larutan Methylene blue sebelum terdegradasi
MB-n	: Larutan Methylene blue sesudah terdegradasi

3.7 Jadwal Penelitian

No	o Kegiatan		November			Desember				Januari				Februari			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Studi Literatur																
2	2 Asistensi kepada dosen pembimbing																
3	Penyusunan Laporan																
4	Persiapan alat dan bahan																
5	Preparasi TiO ₂																
6	Preparasi GQDs																
6	Preparasi Komposit																
7	Pengujian XRD																
8	Pengujian FTIR																
9	Pengujian SEM/EDX																
10	Pengujian UV-Vis																
11	Pengujian BET																
12	Analisa dan Pembahasan																

Tabel 3. 3 Jadwal Penelitian

No	Kegiatan		Maret			April				Mei				Juni			
		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Studi Literatur																
2	2 Asistensi kepada dosen pembimbing																
3	Penyusunan Laporan																
4	Persiapan alat dan bahan																
5	Preparasi TiO ₂																
6	Preparasi GQDs																
6	Preparasi Komposit																
7	Pengujian XRD																
8	Pengujian FTIR																
9	Pengujian SEM/EDX																
10	Pengujian UV-Vis																
11	Pengujian BET																
12	Pengujian PL																
13	Analisa dan Pembahasan																

BAB IV HASIL DAN PEMBAHASAN

4.1 Hasil Pengujian

4.1.1 Hasil Pengujian X-Ray Difraction (XRD)

Pada pengujian X-Ray Difraction (XRD) ini menggunakan alat XRD Philip Analitical dengan parameter $2\theta = 5 - 90^{\circ}$. Pada sintesis TiO₂ pengujian dilakukan untuk mengetahui karakterisasi struktur kristal serta mengetahui perbedaan posisi puncak (*peak*) dari sampel yang disintesis dengan perbedaan pH. Grafik perbedaan puncak (*peak*) pada tiap-tiap sampel dapat dilihat pada **Gambar 4.1**.

Gambar 4.1 Hasil pengujian XRD TiO₂ pada variasi pH 9, pH 10, dan pH 11

Dari Gambar 4.1 ditunjukkan hasil pengujian XRD dari masing-masing TiO₂ pada variasi pH basa. Pada TiO₂ pH 9 didapatkan puncak (*peak*) tertinggi terletak pada $2\theta = 25,652$ mewakili bidang (101), lalu diperoleh puncak 20 lainnya pada 37,604°, 38,958°, 48,376°, 54,233°, 55,660°, 68,999°, 70,311° dengan bidang difraksi (004), (112), (200), (105), (211), (116), dan (220). Kemudian pada TiO₂ pH 10 didapatkan puncak tertinggi terletak pada $2\theta =$ 25,367 yang mewakili bidang (101), lalu diperoleh puncak 2θ lainnya pada 37,909°, 38,667°, 48,158°, 54,051°, 55,204°, 68,976°, dan 70,479° dengan bidang difraksi yang sama dengan sebelumnya. Pada TiO₂ pH 10 terbentuk *peak* 20 yang melebar pada *peak* 37,99°, 48,26°, 54,03°, 55,12°, dan 62,68° yang mengindikasi titania menjadi material berpori. Perlu dilakukan analisis lebih lanjut untuk memastikan mekanisme pada sintesis TiO₂ pH 10. Kemudian pada pH 11 diperoleh puncak tertinggi pada $2\theta = 25,367$, kemudian pada puncak lainnya diperoleh 37,909°, 38,667°, 48,158°, 54,051°, 55,204°, 68,976°, dan 70,479°. Hal ini menunjukkan puncak XRD TiO₂ pada variasi pH basa yang diamati sesuai dengan JCPDS (Joint Committee of Powder Diffraction Standard) card no. 021-1272 dengan space group 141/amd dan crystal system berbentuk tetragonal. Pada TiO₂ memiliki parameter *lattice* a = 3,785 Å, b = 3,785 Å, c = 9,513 Å. Kemudian puncak 2θ terdapat pada 25, 281°, 37,801°, 38,576°, 48,050°, 53,891°,

55,062°, 68,762°, dan 70,311°. Jika dilihat pada puncak yang terbentuk, terdapat perbedaan pada puncak TiO₂ pH 9, pH 10, dan pH 11, namun perbedaan yang terjadi hanya berbeda sedikit. Kemudian jika dilihat dari *peak* yang ditemukan pada *peak* 25° dan 48° menunjukkan terbentuknya TiO₂ fase anatase. Intensitas yang ditunjukkan oleh *peak* pengujian XRD tersebut menunjukkan bahwa TiO₂ yang terbentuk berbentuk kristalin dan pada difraksi yang luas pada *peak* menunjukkan kristalit yang kecil (Theivasanthi & Alagar, 2013).

Pada hasil pengujian XRD TiO₂ pada variasi pH 9, pH 10, dan pH 11 terlihat adanya perubahan FWHM (*broadening*) akibat dari perbedaan dari pH. *Peak broadening* ini mengindikasikan adanya perubahan *crystallie size* yang terjadi setelah TiO₂ di sintesis dengan pH yang berbeda. Hal ini didapatkan dengan persamaan *Scherrer* pada persamaan 3.3. Dengan mengetahui ukuran kristalin dari material. Kita dapat mengetahui pengaruh ukuran kristal terhadap proses fotokatalitik. Ukuran kristal dapat berpengaruh terhadap lebarnya luas permukaan penampang material. Semakin kecil ukuran kristal, maka semakin besar ukuran luas permukaan yang dihasilkan. Hasil perhitungan nilai ukuran kristal dari setiap sampel dapat dilihat pada **Tabel 4.1.**

	1 0		0	
No	Sampel	FWHM (rad)	2θ (°)	Ukuran Kristal (nm)
1	TiO ₂ pH 9	0,234	25,652	34,790
2	TiO ₂ pH 10	0,401	25,367	20,282
3	TiO ₂ pH 11	0,150	25,367	54,087
3	TiO ₂ pH 10 TiO ₂ pH 11	0,401	25,367	54,087

Tabel 4. 1 Hasil perhitungan nilai ukuran kristal dari sampel TiO₂ dengan variasi pH basa

Menentukan ukuran kristal dari TiO₂ digunakan puncak dengan intensitas tertinggi, yakni pada puncak $2\theta = 25^{\circ}$. Nilai ukuran kristal dapat diketahui dengan mengetahui nilai FWHM, semakin besar nilai FWHM maka semakin kecil ukuran kristal, dan juga semakin besar luas permukaan. Adapun nilai ukuran kristal dari TiO₂ pada variasi pH 9, pH 10, dan pH 11 secara berturut-turut ialah 34,790 nm, 20,282 nm, dan 54,087 nm. Ukuran kristal tertinggi diperoleh pada sampel TiO₂ pH 11 dan paling kecil terdapat pada TiO₂ pH 10. Ukuran kristalit ini dapat mempengaruhi uji fotokatalitik. Semakin kecil ukuran kristalin maka semakin tinggi persentase degradasi (Ichzan, 2015).

Lalu selanjutnya setelah sintesis TiO₂ terbentuk, dilakukan sintesis Graphene Quantum Dots untuk dinanokompositkan dengan TiO₂. Sebelum GQDs di nanokompositkan dengan TiO₂, dilakukan pengujian XRD untuk mengetahui karakterisasi dari material. Hasil pengujian XRD pada grafit, *graphene oxide*, dan *graphene quantum dots* dapat dilihat pada **Gambar 4.2**.

Gambar 4. 2 Hasil pengujian XRD Grafit, Graphene Oxide, dan Graphene Quantum Dots

Pada grafik tersebut menunjukkan adanya perbedaan pada puncak (peak) grafit, graphene oxide, dan graphene quantum dots. Pada grafit menunjukkan puncak pada $2\theta = 26,7^{\circ}$, 44,8°, dan 54,9° dengan bidang difraksi (002), (101), dan (004) (Todica et al., 2014). Kemudian hasil uji XRD pada graphene oxide ditemukan pada $2\theta = 12.6^{\circ}$ dan 25.1° . Pada peak 25.1° masih tersisa grafit yang disebabkan kurangnya teroksidasi grafit oleh KMnO₄. KMnO₄ memiliki peranan sebagai agen oksidasi yang kuat dalam sintesis GO. Semakin besar rasio KMnO₄ yang diberikan terhadap grafit, maka semakin tinggi oksidasi yang terjadi yang berefek pada puncak difraksi. Pada puncak difraksi, KMnO₄ dapat menyebabkan pelebaran atau menggeser puncak difraksi, yang dapat dilihat pada grafit peak 26,7° berubah menjadi GO di peak 12,6° (Krishnamoorthy et al., 2013). Selanjutnya dilakukan sintesis GQDs dengan mereflux HNO3 pada GO yang terbentuk. HNO3 digunakan sebagai pemotong oksidatif karbon dengan cara mengoksidasi permukaan GO(Abbas et al., 2020). Kemudian pada hasil uji XRD GQDs didapatkan *peak* pada $2\theta = 22.8^{\circ}$ dan 29.4°. Pada *peak* 22.8° mengindikasikan adanya GQDs yang terbentuk dengan ditandai pada bidang difraksi (002) dari grafit, yang menunjukkan sifat grafit dari GQDs dengan aom karbon yang tidak teratur. Menurut penelitian yang dilakukan sebelumnya hal ini menunjukkan hipotesis bahwa GQDs yang disintesis memiliki struktur grafit dengan jumlah carbon amorf yang sedikit (Kadyan et al., 2024). Pada peak 29,4° menunjukkan adanya pengotor pada GODs yang disintesis yaitu CaCO₃.

Selanjutnya perbedaan puncak pada nanokomposit TiO₂/GQDs pada variasi pH basa, yakni pada TiO₂ pH 9, pH 10, dan pH 11 dapat dilihat pada **Gambar 4.3**

Gambar 4. 3 Hasil pengujian XRD nanokomposit TiO₂/GQDs

Pengujian XRD dilakukan untuk mengetahui karakterisasi struktur kristal dan ukuran kristal dari nanokomposit TiO₂/GQDs pada pH 9, pH 10, dan pH 11. Berdasarkan **Gambar 4.3** menunjukkan adanya puncak khas yang berada pada posisi $2\theta = 25^{0}$ untuk TiO₂ dan GQDs, yang menunjukkan bahwa terdapat GQDs berada di *peak* yang sama dengan TiO₂. *Peak* GQDs yang tertutupi dengan *peak* TiO₂ yang disebabkan karena *peak* TiO₂ yang lebih dominan dibandingkan GQDs yang diakibatkan rasio berat TiO₂ yang lebih besar dari pada GQDs . Namun, pada peak 29^{0} terdapat unsur lain yang terkandung dalam nanokomposit yakni CaCO₃. Tidak diketahui penyebab adanya CaCO₃ pada nanokomposit ini.

Jika dilihat pada pengujian XRD nanokomposit ini, tidak menunjukkan adanya pergeseran puncak yang signifikan di setiap perbedaan pH pada nanokomposit. Adapun karakteristik puncak difraksi XRD GQDs terdapat pada $2\theta = 25^{\circ}$ diamati dari pengujian XRD pada GQDs sebelumnya, yang mewakili masing-masing bidang yaitu (002)(Ahmed et al., 2018). Namun, ditemukan pula kadar Carbon pada $2\theta = 31^{\circ}$ dan 37° yang mengindikasi adanya kandungan tersebut akibat pembentukan GQDs pada nanokomposit tersebut. Sedangkan pada puncak $2\theta = 25^{\circ}$, 37°, 38°, 48°, 54°, 55°, 68°, dan 70° dengan bidang difraksi (101), (004), (112), (200), (105), (211), (116), dan (220) menunjukkan kristalinitas TiO₂ anatase yang dimana ini sesuai dengan JCPDS *card no*. 021-1272. Tidak ditemukan adanya puncak karakteristik TiO₂ *rutile* dan *brookite*. Tidak ada puncak yang berbeda diamati dari nanokomposit TiO₂/GQDs dibandingkan dengan TiO₂ murni, dan posisi serta intensitas puncak difraksi juga tidak terjadi perubahan yang signifikan, yang menunjukkan GQDs tidak memiliki dampak pada struktur kristal dan ukuran TiO₂, hal ini disebabkan karena penambahan GQDs yang lebih sedikit dibanding TiO₂ sehingga tidak terjadi perubahaan difraksi (Hao et al., 2016).

Jika dilihat dari hasil pengujian XRD yang dilakukan pada nanokomposit ini, GQDs berhasil ternanokomposit dengan TiO₂ dengan ditandai terdapat *peak* yang sesuai dengan penelitian yang dilakukan sebelumnya.

4.1.2 Hasil Pengujian Fourier Transform Infrared (FTIR)

Pengujian *Fourier Tranform Infrared* (FTIR) dilakukan dengan menggunakan mesin Shimadzu IRTracer-1000 dengan range panjang gelombang sebesar 500-4000 cm⁻¹. Pengujian

ini dilakukan untuk mengetahui gugus fungsi yang terkandung dalam sampel. Pengujian dilakukan pada sampel TiO₂ pada variasi pH. Hasil pengujian dapat dilihat pada **Gambar 4.4**.

Gambar 4. 4 Hasil Pengujian FTIR pada TiO₂ pH 9, pH 10, dan pH 11

No.	Wave	Referensi	Gugus Fungsi				
	pH 9	pH 10	pH 11	(0)	Cugus I ungor		
$\frac{1}{2}$	3441 1635	3441 1629	3747 1629	3443 1632	Vibrasi O-H Vibrasi Ti-OH		
3	1392	1400	1396	1400	Vibrasi Ti-O- Ti		
4	665	659	671	633	Vibrasi Ti-O		
5	511	524	478	503	Absorbsi Ti- O-O		

Tabel 4. 2 Gugus Fungsi dan nilai wavenumber TiO₂

Pada **Tabel 4.2** merupakan hasil pengujian FTIR dari sintesis TiO₂ pada variasi pH basa yakni pH 9, pH 10, dan pH 11. Hasil uji FTIR pada TiO₂ variasi pH berturut-turut pada *peak* 3441, 3441, dan 3747 terdapat ikatan vibrasi O-H. Terjadi juga adsorbsi H₂O pada rentang gelombang 2377 cm⁻¹ lalu pada *peak* 1635, 1629, dan 1629 terdapat ikatan Vibrasi Ti-OH, pada *peak* 1392, 1400, dan 1396 terbentuk gugus fungsi Vibrasi Ti-O-Ti, dan pada *peak* 655, 659, dan 671 terbentuk gugus fungsi Vibrasi Ti-O, kemudian pada *peak* 511, 524, dan 478 terbentuk absorbsi Ti-O-O yang dimana ini sesuai dengan karakterisasi hasil FTIR dari material TiO₂ anatase yang dilakukan oleh penelitian sebelumnya (Listanti et al., 2018). Terbentuknya gugus hidroksil ini membuktikan terbentuknya TiO₂.

Selanjutnya dilakukan pengujian FTIR untuk sampel grafit, *graphene oxide*, dan *graphene quantum dots*. Pengujian dilakukan untuk mengetahui gugus fungsi yang terbentuk pada grafit, GO, dan GQDs. Hasil pengujian dapat dilihat pada **Gambar 4.5**.

Gambar 4. 5 Hasil Pengujian FTIR Grafit, Graphene Oxide, dan Graphene Quantum Dots

		~				
No.	Waver	Referensi	Guous Funosi			
	Grafit	GO	GQDs			
1	3462	3479	3454	3200-3550	O-H stretching	
2	1654	1637	1633	1600-1700	C=C stretching	
3	-	1398	-	1350-1400	C-O stretching	
4	-	-	1382	-	Vibrasi COO	
5	-	1112	1031	1000-1150	C-O stretching	
6	-	667	613	-	Vibrasi C-O- C	

Tabel 4. 3 Gugus Fungsi dan nilai wavenumber Grafit, Graphene Oxide, dan GrapheneQuantum Dots

Pada **Tabel 4.3** merupakan hasil pengujian FTIR dari sintesis Grafit, *Graphene Oxide*, dan *Graphene Quantum Dots*. Hasil uji FTIR yang dilakukan pada grafit ditemukan *peak* pada *wavenumber* 3462 cm⁻¹ yang merupakan O-H *stretching* dan *wavenumber* 1654⁻¹ yang merupakan C=C *stretching*. Hasil uji FTIR grafit yang didapatkan mengacu pada referensi (Kanta et al., 2017). Kemudian hasil uji FTIR dilakukan pada sampel *graphene oxide* yang sudah disintesis. Pada hasil pengujian yang dilakukan, didapatkan *peak* pada *wavenumber* 3479

cm⁻¹ yang merupakan O-H *stretching, wavenumber* 1637 cm⁻¹ merupakan C=C peregangan (*stretching*), dari pengujian ini menunjukkan bahwa grafit telah dioksidasi secara efisien selama proses oksidasi dengan adanya KMnO₄ yang diberikan (Bharath et al., 2017). Pada *wavenumber* 1398 cm⁻¹ dan 1112 cm⁻¹ terdapat gugus fungsi C-O *stretching* (Wazir & Kundi, 2016). Selanjutnya pada pengujian FTIR yang dilakukan pada *Graphene Quantum Dots* (GQDs), pada *wavenumber* 3454 cm⁻¹ terdapat gugus fungsi O-H *stretching*, pada *wavenumber* 1633 terdapat gugus fungsi C=C *stretching*, pada *wavenumber* 1382 cm⁻¹ terbentuk vibrasi COO yang ditunjukkan dengan adanya absorpsi dari gugus karboksil dan gugus hidroksil (Yuan et al., 2014), *wavenumber* 1112 cm⁻¹ terdapat gugus fungsi C-O *stretching*, dan pada *peak wavenumber* 667 cm⁻¹ terdapat vibrasi C-O-C (Fan et al., 2015).

Setelah dilakukan pengujian FTIR pada sampel TiO₂ variasi pH basa dan pada sampel Grafit, GO, dan GQDs, selanjutnya dilakukan pengujian FTIR pada nanokomposit TiO₂/GQDs pada masing-masing variasi pH. Hasil pengujian FTIR pada nanokomposit dapat dilihat pada gambar berikut.

Gambar 4. 6 Hasil pengujian FTIR nanokomposit TiO₂/GQDs

No.				Referensi	Guous Funosi
	TiO ₂ /GQDs - 9	TiO ₂ /GQDs - 10	TiO ₂ /GQDs - 11	(chi)	Cuguo I ungor
1	3439	3437	3429	3432	O-H stretching
2	1589	1622	1606	1416-1593	o-c-o stretching vibrations
3	1381	1381	1373	1350-1400	C-O stretching

Tabel 4. 4 Gugus fungsi dan nilai wavenumber nanokomposit TiO¬2/GQDs

Wayanumber (om⁻¹)

Institut Teknologi Sepuluh Nopember	LAPORAN TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI				
4	611	665	643	480-700	Ti-O-Ti Stretching vibrations
5	536	476	503	480-700	Ti-O-C vibrations

Pada **Tabel 4.4** merupakan hasil pengujian FTIR dari nanokomposit TiO₂/GQDs pH 9, pH 10, dan pH 11. Hasil uji FTIR pada nanokomposit pH 9, pH 10, dan pH 11 berturut-turut pada *peak* 3439, 3437, dan 3429 terdapat ikatan O-H *stretching* yang terikat hidrogen, lalu pada *peak* 11589, 1622, dan 1606 terdapat ikatan O-C-O *stretching vibrations*. Kemudian pada *peak* 1381, 1381, dan 1373 terbentuk gugus fungsi C-O *stretching*, pada *peak* 611, 665, dan 643 terbentuk gugus fungsi Ti-O-Ti *stretching vibrations*. Kemudian pada *peak* 536, 476, dan 503 terbentuk Ti-O-C *vibrations*. Hasil pengujian FTIR ini mengacu pada referensi (Hao et al., 2016).

4.1.3 Hasil Pengujian Scanning Electron Microscrope (SEM) dan Energy Dispersive X-Ray Analysis (EDX)

Pengujian SEM yang dilakukan menggunakan alat INSPECT S50. Pengujian SEM ini dilakukan untuk mengetahui morfologi (bentuk partikel) dari sampel TiO_2 . Hasil SEM dari sintesis TiO_2 dapat dilihat pada **Gambar 4.7.**

Gambar 4. 7 Hasil pengujian SEM TiO₂ dengan variasi (a) pH 9 perbesaran 5000x, (b) pH 9 perbesaran 10000x, (c) pH 10 perbesaran 5000x, (d) pH 10 perbesaran 10000x, (e) pH 11 perbesaran 5000x, (f) pH 11 perbesaran 10000x

Dari **Gambar 4.7** terlihat morfologi dari material TiO₂ pH 10. Morfologi yang terbentuk adalah *spherical* (bulat) dan cenderung beraglomerat. Hal ini sesuai dengan hasil penelitian sebelumnya yang dilakukan oleh Praven et al (2018). Jika dilihat pada **Gambar 4.7** tidak terdapat perbedaan *significant* yang terjadi antara masing-masing TiO₂ pada pH 9, pH 10, dan pH 11.

Selanjutnya dilakukan pengujian SEM untuk mengetahui morfologi dari grafit, *graphene oxide*, dan *graphene quantum dots* sebelum dilakukan pengompositan dengan TiO₂. Hasil pengujan SEM pada grafit, GO, dan GQDs dapat dilihat pada **Gambar 4.8**

Gambar 4. 8 Hasil pengujian SEM pada (a) Grafit perbesaran 10000x, (b) Grafit perbesaran 15000x, (c) Graphene Oxide perbesaran 10000x, (d) Graphene Oxide perbesaran 15000x, (e) Graphene Quantum Dots perbesaran 15000x, (f) Graphene Quantum Dots perbesaran 15000x

Dari hasil pengujian SEM yang dilakukan pada grafit, graphene oxide, dan graphene quantum dots menunjukkan gambar grafit berbentuk serpihan pelat tipis. Kemudian, pada graphene oxide memiliki bentuk yang hampir sama dengan grafit, namun dapat dilihat garisgaris lekukan atau lipatan pada permukaan GO, serta dapat dilihat permukaan GO yang sangat tipis. Selanjutnya hasil pengujian pada graphine quantum dots (GQDs) menunjukkan masih terdapat serpihan atau lekukan seperti pada grafit dan GO, namun terdapat bentuk spherical juga yang terbentuk pada GQDs disela-sela lapisan-lapisan yang menumpuk.

Kemudian pengujian SEM juga dilakukan untuk nanokomposit TiO₂/GQDs untuk mengetahui perubahan bentuk yang terjadi dengan pengompositan GQDs dengan TiO₂. Hasil pengujian SEM nanokomposit TiO₂/GQDs dapat dilihat pada **Gambar 4.9**.

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Gambar 4. 9 Hasil pengujian SEM pada nanokomposit TiO₂/GQDs (a) pH 9 perbesaran 5000x, (b) pH 9 perbesaran 10000x, (c) pH 10 perbesaran 5000x, (d) pH 10 perbesaran 10000x, (e) pH 11 perbesaran 5000x, (f) pH 11 perbesaran 10000x

Jika dilihat dari hasil pengujian SEM pada nanokomposit TiO₂/GQDs pH 9, pH 10, dan pH 11, TiO₂ dan GQDs dibedakan dengan TiO₂ berbentuk *spherical* dan beraglomerat, sedangkan GQDs berbentuk lapisan tipis.

Kemudian dilakukan pengujian *Energy Dispersive X-ray Spectroscopy* (EDX) pada nanokomposit TiO₂/GQDs untuk mengetahui kadar dari unsur-unsur pada sampel. Hasil uji EDX pada nanokomposit dapat dilihat pada **Gambar 4.10** dan **Tabel 4.5**.

Gambar 4. 10 Hasil kurva EDX nanokomposit TiO₂/GQDs pH 9

Tabel 4. 5 Komposisi unsur pada nanokompost TiO ₂ /GQDs	pH 9
--	------

Elemen	Wt%	At%
СК	15,25	27,99
OK	35,96	49,55
TiK	48,79	22,46

Dari **gambar 4.10** dan **tabel 4.5** di atas menunjukkan bahwa komposisi nanokomposit $TiO_2/GQDs$ pada pH 9 tersusun atas unsur karbon (C), oksigen (O), dan titanium (Ti) dengan persentase masing-masing sebesar 15,25% pada karbon, 35,96% pada oksigen, dan 48,79% pada titanium. Hal ini menunjukkan persentase titanium yang lebih besar dibanding dengan karbonn dan oksigen karena perbandingannya titanium yang lebih besar dari pada GQDs, yakni 5 : 1.

Gambar 4. 11 Hasil kurva EDX nanokomposit TiO₂/GQDs pH 10

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Tabel 4. 6 Komposisi unsur pada nanokompost TiO ₂ /GQDs pH 10					
Elemen	Wt%	At%			
СК	8,04	16,79			
OK	33,53	52,59			
TiK	58,43	30,61			

Dari Gambar 4.11 dan Tabel 4.6 di atas menunjukkan bahwa komposisi nanokomposit TiO₂/GQDs pada pH 10 tersusun atas unsur karbon (C), oksigen (O), dan titanium (Ti) dengan persentase masing-masing sebesar 8,04% pada karbon, 33,53% pada oksigen, dan 58,43% pada titanium.

Gambar 4. 12 Hasil kurva EDX nanokomposit TiO₂/GQDs pH 11

Tabel 4. 7 Komposisi unsur pada nanokomposi 110 ₂ /GQDs pH 11					
Elemen	Wt%	At%			
СК	11,92	23,14			
ОК	35	51,01			
TiK	53,09	25,85			

Tabel 4.7 Kompasisi unsur rada non alcompast TiO (CODs rU 11

Dari Gambar 4.12 dan Tabel 4.7 di atas menunjukkan bahwa komposisi nanokomposit TiO₂/GQDs pada pH 11 tersusun atas unsur karbon (C), oksigen (O), dan titanium (Ti) dengan persentase masing-masing sebesar 11,92% pada karbon, 35% pada oksigen, dan 53,09% pada titanium.

4.1.4 Hasil Pengujian Brunauer, Emmett, and Teller (BET)

Pengujian Brunauer, Emmett, and Teller (BET) dilakukan menggunakan mesin Quantachrome Quadrasorb-EVO. Pengujian BET dilakukan untuk mengetahui luas permukaan dari area, ukuran pori-pori sampel, volume pori, dan kemampuan adsorpsi dan desorpsi dari sampel nanokomposit. Adapun nanokomposit dilakukan uji BET karena memiliki morfologi yang mempunyai banyak pori pada permukaan nanokomposit. Pada Tabel 4.8 menunjukkan hasil pengujian BET pada sampel nanokomposit TiO2/GQDs pada variasi pH basa.

Tabel 4. 8 Hasil pengujian BET							
Sampel	<i>Surface Area</i> (m ² /g)	Ukuran pori (nm)	Volume pori (cm ³ /g)				
TiO ₂ /GQDs - 9	6,162	4,53	3,987				
TiO ₂ /GQDs - 11	6,417	8,33	0,027				

Berdasarkan **Tabel 4.8** menunjukkan hasil dari pengujian BET berupa surface area, ukuran pori, dan volume dari pori. Pada nanokomposit TiO₂/GQDs pH 9 didapatkan surface *area* sebesar 6,162 m²/g, ukuran pori sebesar 4,53 nm, dan volume pori sebesar 3,987 cm³/g. Kemudian pada nanokomposit TiO₂/GQDs pH 11 didapatkan *surface area* sebesar 6,417 m²/g, ukuran pori sebesar 8,33 nm, dan volume pori sebesar 0,027 cm³/g. Menurut penelitian yang dilakukan oleh Bokare et al, 2021 ukuran pori dari TiO₂/GQDs didapatkan sebesar 2,5 - 7 nm, dimana ukuran pori pada TiO₂/GQDs pH 9 sesuai dengan ukuran pori tersebut, sedangkan pada ukuran pori TiO₂/GQDs terdapat sedikit perbedaan ukuran pori yang berada pada 8,33 nm atau melebihi 7 nm. GQDs memiliki pengaruh dengan menambahkan luas permukaan pada nanokomposit TiO₂/GQDs yang memungkinkan menaikkan penyerapan yang terjadi pada polutan (Bokare et al., 2021). Berdasarkan standar International Union of Pure and Applied Chemistry (IUPAC) 2015, bahwa ukuran pori terbagi atas tiga jenis, yakni mikropori (di bawah 2 nm), mesopori (2-50 nm), dan makropori (di atas 50 nm). Maka sampel nanokomposit TiO₂/GQDs pada pH 9 dan pH 10 dapat dikategorikan sebagai mesopori karena ukurannya yang ada pada rentang 2-50 nm. Hal ini sesuai dengan referensi, bahwa TiO₂/GQDs termasuk jenis mesopori.

Gambar 4. 13 Kurva adsorpsi isothermal nanokomposit TiO₂/GQDs pH 9

Pada **Gambar 4.13** di atas menunjukkan adsorpsi-desorpsi isothermal dari sampel nanokomposit TiO₂/GQDs pH 9. Pada hasil pengujian ini grafik adsorpsi-desorpsi dari TiO₂/GQDs pH 9 masuk ke dalam kurva isotherm gabungan. Dapat dikatakan hal ini terjadi karena adanya percabngan pada kurva adsorpsi-desorpsi. Percabangan yang terjadi ini desebut dengan *hysteresis*. Pada kasus ini kurva yang terbentuk merupakan gabungan dari kurva tipe III dan VI. Pada sampel ini menunjukkan histeresis H5 yang mempunyai karakteristik mikro atau mesopori dimana interaksi *adsorption* dan *desorption* relatif lemah. Loop histeresis pada p/po >0,0 tersebut menunjukkan jumlah absorbat (N₂) yang tertinggal dalam pori saat desorpsi paling

banyak, ini mengindisikan bahwa jumlah mesopori pada sampel ini tinggi (Djoko Hartanto et al, 2011).

Gambar 4. 14 Hubungan ukuran pori dengan volume pori Nanokomposit TiO₂/GQDs pada pH

Adapun pada **Gambar 4.14** menjelaskan mengenai hubungan ukuran pori dengan volume pori dari nanokomposit TiO₂/GQDs. Dari kurva tersebut dapat disimpulkan bahwa ukuran pori dari nanokomposit memiliki rentang pori dari 1 - 15 nm dengan nilai maksimal volume pori sebesar 0,00000050922 cm³/nm/g berada pada ukuran pori 2 nm, sehingga masuk ke jenis mesopori.

Gambar 4. 15 Kurva adsorpsi isothermal nanokomposit TiO₂/GQDs pH 11

Pada **Gambar 4.15** di atas menunjukkan adsorpsi-desorpsi isothermal dari sampel nanokomposit TiO₂/GQDs pH 11. Berdasarkan IUPAC, kurva isotherm nanokomposit ini sesuai dengan tipe IV yaitu jenis adsorpsi dari padatan berpori meso, yang memiliki ukuran

pori 2 -50 nm. Interaksi adsorpsi dan desorpsi menunjukkan pola kenaikan secara cepat pada tekanan relatif (P/Po) rendah, kemudian naik perlahan pada tekanan relatif (P/Po) kisaran 0,8 hingga mendekati 1.

Adanya pori yang terdapat pada permukaan akan menyebabkan terjadinya fenomena kondensasi kapiler. Kondensasi kapiler inilah yang menyebabkan terjadinya histeresis. Histeresis yang terjadi pada kurva BET ini ialah histeresis H3. Kemudian pada loop histeresis pada P/Po 0,0 - 0,22 dan >0,7 dan terlihat kecil, hal ini menunjukkan bahwa jumlah adsorbat (N₂) yang tertinggal dalam pori saat desorpsi sedikit, sehingga dapat mengindikasikan mesopori yang terbentuk sedikit.

Gambar 4.16 Hubungan ukuran pori dengan volume pori Nanokomposit TiO₂/GQDs pada pH 11

Adapun pada **Gambar 4.16** menjelaskan mengenai hubungan ukuran pori dengan volume pori dari nanokomposit TiO₂/GQDs. Dari kurva tersebut dapat disimpulkan bahwa ukuran pori dari nanokomposit memiliki rentang pori dari 1 – 15 nm dengan nilai maksimal volume pori sebesar 0,0000020283 cm³/nm/g berada pada ukuran pori 9 nm, sehingga masuk ke jenis mesopori.

4.1.5 Hasil Pengujian UV-Vis

Pengujian UV-Vis yang dilakukan menggunakan alat spektrofotometer GENESYS 150 UV-Vis. Pengujian UV-Vis terlebih dahulu dilakukan pada larutan *methylene blue*, untuk menentukan kurva standar dan rumus acuan untuk memperoleh nilai konsentrasi (ppm) dan persen degradasi. Range panjang gelombang yang digunakan pada pengujian ini adalah 200 - 700nm. Hasil pengujian UV-Vis pada larutan *methylene blue* ditunjukkan pada **gambar 4.17**.

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Gambar 4. 17 Hasil pengujian UV-Vis methylene blue

Pada **Gambar 4.17** menunjukkan bahwa *methylene blue* pada konsentrasi 10 ppm memiliki nilai absorbansi yang maksimal, yaitu 0,55815 pada panjang gelombang maksimum sebesa 664 nm. Nilai panjang gelombang maksimum dari *methylene blue* digunakan sebagai acuan dalam pembuatan kurva kalibrasi dengan memasukkan nilai absorbansi yang didapatkan pada deret larutan konsentrasi 2, 4, 6, 8, dan 10 ppm. Nilai absorbansi dari setiap konsentrasi dapat dilihat pada **Tabel 4.9**.

Taber 4. 9 Nital absorbansi <i>metnylene blue</i>						
No Konsentrasi (ppm) Nilai Absorbansi						
1	2	0,14462				
2	4	0,21246				
3	6	0,32157				
4	8	0,44901				
5	10	0,55815				

Berdasarkan **Tabel 4.9** menunjukkan data nilai absorbansi pada masing-masing konsentrasi (ppm) larutan perwarna *methylene blue*. Jika dilihat pada tabel tersebut seiring dengan pertambahan konsentrasi (ppm) maka nilai dari absorbansi juga semakin meningkat. Selanjutnya dari data yang sudah didapatkan, ditentukan kurva standar dan persamaan regresi linear pada **gambar 4.18**.

Berdasarkan pada kurva tersebut diperoleh persamaan regresi linear yakni y = 18,625x - 0,2797 dimana y merupakan besaran konsentrasi, kemudian x merupakan nilai absorbansi. Adapun koefesien korelasi R² = 0,990 yang di mana hampir mendekati angka satu. Nilai R² yang mendekati satu menunjukkan bahwa adanya korelasi yang kuat serta hubungan yang linier antara konsentrasi dan absorbansi. Hal ini selaras dengan hukum *Lambert-Beer* bahwa konsentrasi berbanding lurus dengan absorbansi, semakin tinggi konsentrasi maka semakin besar nilai absorbansi (Ahriani, 2021).

Kemudian melalui pengujian UV-Vis dilakukan pengujian pada sampel TiO₂ pH basa untuk mengetahui *band gap* dari masing-masing sampel. *Band gap* dilakukan untuk mengetahui sifat dari sampel ini bersifat konduktor, semikonduktor, atau insulator.

Pengujian UV-Vis pada sampel ini dilakukan dengan melarutkan sampel menggunakan larutan etanol pada konsentrasi rendah.Melalui pengujian UV-Vis ini dapat diperoleh nilai *band gap* (celah pita) dari material TiO₂ variasi pH basa. Nilai *band gap i*ini dapat mengklasifikasikan material TiO₂ ini memiliki sifat material yang konduktor, semikonduktor, atau insulator. *Band gap energy* memiliki hubungan dengan banyaknya energi minimum yang dibutuhkan untuk elektron dapat tereksitasi dari pita valensi ke pita konduksi. Jika nilai dari *band gap energy* kecil, maka material ini membutuhkan energi yang tinggi untuk dapat bereksitasi dan begitu juga sebaliknya jika *band gap energy* tinggi.

Band gap energy didapatkan dengan mengonversi data UV-Vis menggunakan *Tauc plot* kedalam plot kurva hu vs $(\alpha h u)^2$. Nilai *band gap energy* didapatkan melalui penarikan garis lurus mengikuti gradien dari kurva yang terbentuk. Sehingga dapat diperoleh nilai *band gap energy* dari material TiO₂ yang disintesis menggunakan TiCl₃ pada pH 9, pH 10, dan pH 11 yang ditunjukkan pada **Gambar 4.19** dan **Tabel 4.10**.

Gambar 4. 19 Energi band gap pada material TiO2 pada pH 9, pH 10, dan pH 11

Tabel 4. 10 Hasil perhitungan energi band gap			
Sampel Band gap (eV)			
TiO ₂ pH 9	3.444		
TiO ₂ pH 10	3.489		
TiO ₂ pH 11	3.510		

Berdasarkan **Gambar 4.19** dan **Tabel 4.10** yang didapatkan nilai *band gap energy* pada TiO₂ pH 9, pH 10, dan pH 11 berturut-turut adalah 3.444 eV, 3.489 eV, dan 3.510 eV. Adapun nilai *band gap energy* dari material semikonduktor TiO₂ sesuai dengan penelitian sebelumnya yang dilakukan dengan memperoleh *band gap* sebesar 3.2 - 3.8 eV(Bekti et al., 2014).

Selanjutnya dilakukan pengujian UV-Vis pada nanokomposit TiO₂/GQDs dengan variasi pH basa 9, 10, dan 11. Pengujian ini dilakukan untuk mengetahui besaran *band gap* dari nanokomposit. Berikut nilai *band gap energy* yang diperoleh pada nanokomposit TiO₂/GQDs pH 9, pH 10, dan pH 11.

Gambar 4. 20 Energi band gap nanokomposit TiO2/GQDs pH 9, pH 10, dan pH 11

Table 4. 11 Hash perintungan energi bana gap				
Sampel Band gap (eV)				
TiO ₂ /GQDs pH 9	3.667			
TiO ₂ /GQDs pH 10	3.641			
TiO ₂ /GQDS pH 11	3.628			

Tabel 4. 11 Hasil perhitungan energi band gap

Berdasarkan **Gambar 4.20** dan **Tabel 4.11** yang didapatkan nilai *band gap energy* pada TiO₂ pH 9, pH 10, dan pH 11 berturut-turut adalah 3.667 eV, 3.641 eV, dan 3.628 eV. Adapun

nilai *band gap energy* dari material nanokomposit TiO₂/GQDs dari semua variasi pH tidak terjadi perubahan besar pada energi *band gap* yang didapatkan. Jika dilihat dari energi *band gap* yang didapatkan, dengan adanya penambahan GQDs pada TiO₂ mengakibatkan kenaikan pada energi *band gap*. Hal ini dapat disebabkan karena adanya pengotor CaCO₃ pada nanokomposit. Berdasarkan penelitian sebelumnya pernah dilakukan adanya CaCO₃ pada TiO₂ dapat menaikkan *band gap*. Pada kasus penelitian tersebut TiO₂ memiliki *band gap* 3.2 eV, ketika ditambahkan CaCO₃ terjadi perubahan *band gap* pada nanokomposit TiO₂/GQDs. Kemudian, jika dilihat dari *band gap* yang didapatkan, semakin naik pH pada nanokomposit, maka *band gap* semakin menurun walau tidak terjadi penurunan yang signifikan.

4.1.6 Hasil Pengujian Micro Photoluminescence (PL)

Pengujian *Micro Photoluminescence* (PL) dilakukan pada semua sampel nanokomposit TiO₂/GQDs variasi pH basa. Pengujian dilakukan dengan menggunakan mesin *Micro Photoluminescence* tipe iHR320 dengan *range wavelength* yang digunakan 300-1200 nm. Pengujian PL dilakukan untuk mengetahui sifat fotofisika dan fotokimia dari sampel semikonduktor. Sifat yang diketahui dapat berupa sifat yang berhubungan dengan aktivitas fotokatalitik. Hasil pengujian PL dapat dilihat pada **gambar 4.21**.

Jika dilihat pada **Gambar 4.21** pada *wavelength* 508nm nanokomposit TiO₂/GQDs pH 9 memiliki *intensity peak* yang paling tinggi dibandingkan dengan nanokomposit TiO₂/GQDs pH 10 dan pH 11. Menurut jurnal Hao et al, 2016 menunjukkan spektrum PL nanokomposit TiO₂/GQDs berada pada *wavelength* 514nm. *Peak wavelength* yang terbentuk sesuai dengan referensi tersebut.

Kemudian berdasarkan hasil pengujian PL, menunjukkan semakin tinggi pH TiO₂ yang digunakan untuk nanokomposit maka semakin kecil intensitas PL yang didapatkan. Intensitas dari pengujian PL menandakkan semakin tingginya intensitas maka semakin meningkatnya jumlah emisi foton yang dihasilkan dari rekombinasi elektron-hole yang berarti efisiensi pemisahan akan lebih rendah dan aktivitas fotokatalitiknya juga rendah (Wellia, 2014). Oleh karena itu, nanokomposit TiO₂/GQDs pH 11 memiliki aktivitas fotokatalitik yang lebih baik dibandingkan dengan nanokomposit TiO₂/GQDs pH 9 dan pH 10, karena intensitas PL yang rendah.

4.1.7 Hasil Pengujian Fotokatalitik

Pengujian fotokatalitik dilakukan untuk mengetahui hasil kinerja katalis TiO₂ yang telah dikompositkan dengan *Graphene Quantum Dots* dalam pendegradasian polutan *methylene blue*. Pengujian fotokatalis dilakukan dengan penambahan GQDs dan memvariasikan pH dalam sintesis TiO₂. Variasi pH yang digunakan ialah pH 9, pH 10, dan pH 11. Pengujian fotokatalis dilakukan terhadap polutan *methylene blue* dengan besaran konsentrasi 10 ppm. Adapun waktu iradiasi yang dilakukan selama 6 jam dengan pengambilan sampel dilakukan berulang-ulang per 2 jam dengan bantuan sinar UV 20 watt.

Gambar 4.22 Pengamatan vsual larutan methylene blue setelah uji fotokatalisis berdasarkan pH dengan (a) TiO₂ pH 9, (b) TiO₂ pH 10, (c) TiO₂ pH 11, (d) TiO₂/GQDs pH 9, (e) TiO₂/GQDs pH 10, (f) TiO₂/GQDs pH 11

Band gap TiO₂ yang didapatkan pada sintesis ini pada pH 9, pH 10, dan pH 11 secara berturut-turut adalah 3.444 eV, 3.489 eV, dan 3.510 eV. Kemudian *band gap* nanokomposit TiO₂/GQDs pada pH 9, pH 10, dan pH 11 secara berturut-turut adalah 3,667 eV, 3,641 eV, dan 3,638 eV. Sehingga penggunaan lampu UV pada uji fotokalisis sangat sesuai karena lampu UV memiiki rentang panjang gelombang di 100 - 40 nm. Adapun data nilai absorbansi larutan dari semual sampel yang sudah dilakukan pada pengujian UV-Vis ditunjukkan pada **Tabel 4.12**.

I abel -	Table 4. 12 Innai absorbansi farutan <i>metnytene blue</i> setiap katans samper katans							
Lama Penyinaran (Jam)	TiO ₂ TiO ₂ /GQDs							
	pH 9	pH 10	pH 11	pH 9	pH 10	pH 11		
2	0,089	0,114	0,224	0,056	0,066	0,059		
4	0,079	0,099	0,124	0,049	0,041	0,035		
6	0,072	0,075	0,091	0,019	0,028	0,018		

Berdasarkan **Tabel 4.12** menunjukkan data hasil UV-Vis yaitu berupa nilai absorbansi pada masing-masing sampel dengan penyinaran selama 6 jam di bawah lampu UV. Adapun nilai absorbansi yang diperoleh pada masing-masing sampel memiliki nilai yang berbeda-beda.

Selanjunya data tersebut digunakan untuk membuat kurva absorbansi *methylene blue* yang ditunjukkan pada **Gambar 4.23** dan **Gambar 4.24**.

Gambar 4. 23 Kurva nilai absorbansi TiO₂ dan nanokomposit TiO₂/GQDs pada variasi pH basa terhadap *methylene blue*

Gambar 4. 24 Diagram batang nilai absorbansi TiO₂ dan nanokomposit TiO₂/GQDs pada variasi pH basa terhadap *methylene blue*

Berdasarkan **Gambar 4.23** dan **Gambar 4.24** menunjukkan bahwa rata-rata semakin lama waktu penyinaran pada proses fotokatalis, maka semakin menurun juga nilai absorbansi yang diperoleh pada masing-masing sampel. Dengan menurunnya nilai absorbansi dari sampel ini, dapat mengindikasikan terjadinya degradasi pada larutan pewarna *methylene-blue*. Pada sampel TiO₂ pH 9, pH 10, dan pH 11 mampu mendegradasi larutan *methylene blue* selama 2 jam dengan perolehan absorbansi setiap interval 2 jam sebesar secara berturut-turut pada pH 9

ialah 0,089, 0,079, dan 0,072. Pada pH 10 sebesar 0,114, 0,099, dan 0,75. Kemudian pada pH 11 sebesar 0,224, 0,124, dan 0,091.

Selanjutnya nilai absorbansi pada nanokomposit TiO₂/GQDS dengan variasi pH basa TiO₂ pH 9 yakni sebesar 0,019, 0,056, dan 0,049. Pada nanokomposit TiO₂/GQDs variasi pH 10 sebesar 0,066, 0,041, dan 0,028. Kemudian pada nanokomposit TiO₂/GQDs variasi pH 11 sebesar 0,059, 0,035, dan 0,018. Hal ini menunjukkan bahwa nilai absorbansi pada sampel TiO₂ murni memiliki performa degradasi lebih kecil dibandingkan nanokomposit TiO₂/GQDs pada pH 9, pH 10, dan pH 11 pada lama penyinaran waktu 2 jam sebesar 0,056, 0,066, dan 0,059. Pada lama penyinaran 4 jam sebesar 0,049, 0,041, dan 0,035. Kemudian pada rentang waktu 6 jam sebesar 0,019, 0,028, dan 0,018.

Nilai absorbansi (y) dari masing-masing katalis selanjutnya disubstitusikan kedalam persamaan regresi linear y = 18,625x - 0,2797, maka akan didapatkan nilai konsentrasi (x) dari larutan *methylene blue* daring masing-masing penambahan katalis yang ditunjukkan pada **Tabel 4.13**.

Lama Penyinaran (Jam)		TiO ₂			TiO ₂ /GQDs	
	9	10	11	9	10	11
2	1,3781	1,8437	3,8925	0,7635	0,9497	0,8193
4	1,1918	1,5643	2,03	0,6331	0,4841	0,3723
6	1,0615	1,1173	1,4151	0,0743	0,2420	0,0557

 Tabel 4. 13 Nilai konsentrasi (ppm) larutan methylene-blue di setiap sampel

Berdasarkan **Tabel 4.13** menunjukkan data hasil pengujian UV-Vis dalam nilai ppm/t dari masing-masing sampel yang sudah ditambahkan katalis dan dilakukan penyinaran selama 6 jam menggunakan lampu UV. Adanya relasi antara lama penyinaran dengan interval 2 jam hingga mencapai 6 jam dengan konsentrasi (ppm) larutan *methylene blue*, yaitu semakin lama penyinaran menggunakan sinar UV, maka nilai konsentrasi (ppm) larutan *methylene blue* akan semakin kecil. Dengan semakin kecilnya nilai konsentrai (ppm) larutan *methylene blue* ini menujukkan terjadinya degradasi dan semakin besar persentase degradasi pada larutan *methylene blue*. Sehingga dapat disimpulkan bahwa terjadinya penurunan konsentrasi (ppm) dari larutan *methylene blue* seiring dengan lama waktu penyinaran menggunakan lampu UV.

Selama proses uji fotokalitik selama 6 jam pada TiO₂ murni pada variasi pH mampu mendegradasi konsentrasi (ppm) berturut-turut mengikuti interval waktu sebesar, pada pH 9 yakni 1,3781, 1,1918, dan 1,0615. Pada pH 10 sebesar 1,8437, 1,5643, dan 1,1173. Kemudian pada pH 11 sebesar 3,8925, 2,03, dan 1,415. Sedangkan pada nanokomposit TiO₂/GQDs pada pH 9 sebesar 0,7635, 0,6331, dan 0,0743. Pada nanokomposit TiO₂/GQDs pada pH 10 sebesar 0,9497, 0,4841, dan 0,2420. Kemudian pada nanokomposit TiO₂/GQDs pada pH 11 sebesar 0,8193, 0,3723, dan 0,0557.

Selanjutnya setelah didapatkan konsentrasi (ppm) dari larutan *methylene blue* setelah uji fotokatalitik, dilakukan perhitungan untuk mengetahui persentase degradasi dari larutan *methylene blue*. Nilai persentasi degradasi larutan *methylene blue* dapat dilihat pada **Tabel 4.14.**

Tabel 4. 14 Nilai persentase degradasi larutan methylene blue di setiap sampel								
Lama Penyinaran (Jam)		TiO ₂			TiO ₂ /GQDs			
	9	10	11	9	10	11		
2	86,218%	81,562%	61,075%	92,256%	90,502%	91,806%		
4	88,081%	84,356%	79,7%	93,668%	95,158%	96,276%		
6	89,385%	88,826%	85,846%	99,256%	97,58%	99,425%		

Selanjutnya data dari **Tabel 4.14**, didapatkan kurva persentase degradasi *methylene blue* yang ditunjukkan pada **Gambar 4.25** dan **Gambar 4.26**.

Gambar 4. 25 Grafik nilai persentase degradasi TiO₂ dan nanokomposit TiO₂/GQDs pada variasi pH basa terhadap *methylene blue*

Gambar 4. 26 Kurva nilai persentase degradasi TiO₂ dan nanokomposit TiO₂/GQDs pada variasi pH basa terhadap *methylene blue*

Berdasarkan **Gambar 4.25** dan **Gambar 4.26** menunjukkan kurva persentase degradasi *methylene blue* dengan sampel katalis TiO₂ dan nanokomposit TiO₂/GQDs pada variasi pH basa. Kurva di atas membandingkan nilai persentase degradasi terhadap lama penyinaran selama 6 jam menggunakan sinar UV. Adapun nilai absorbansi, konsentrasi (ppm), dan persentase degradasi saling berkaitan satu sam lain. Ketiganya menunjukkan besar degradasi *methylene blue*. Semakin kecil nilai absorbansi, maka semakin kecil juga nilai konsentrasi (ppm) *methylene blue*, sehingga akan meningkatkan nilai persentase degradasi. Semua sampel menunjukkan adanya kenaikan tren pada nilai persentase degradasi setiap interval 2 jam. Adapun pada sampel TiO₂ murni pada variasi pH basa merupakan variabel dengan nilai persentase degradasi terkecil, yaitu pH 11. Pada nanokomposit TiO₂/GQDs dengan variasi pH basa sebesar pH 10. Pada nanokomposit terjadi peningkatan yang signifikan pada persentase degradasi. Perubahan persentase degradasi yang terjadi antara TiO₂ murni dengan nanokomposit TiO₂/GQDs juga dipengaruhi karena penambahan GQDs pada TiO₂ yang menyebabkan terjadi perubahan *band gap*.

Gambar 4.27, Gambar 4.28, dan **Gambar 4.29** menampilkan plot reaksi linear yang mengikuti orde nol, orde pertama, dan orde kedua dari setiap sampel untuk mengetahui kinetika degradasi polutan. Dalam orde nol, laju reaksi tidak dipengaruhi oleh perubahan konsentrasi sehingga persamaannya ditunjukkan melalui **Persamaan 4.1.** Dari **Persamaan 4.1** kemudian diintegralkan menjadi **Persamaan 4.2** dengan nilai awal $C = C_o$ pada t = 0 dan nilai akhir C = C pada t = t.

$$\frac{dC}{dt} = -k \tag{4.1}$$

$$c = -kt + Co \tag{4.2}$$

Dimana, C₀: Konsentrasi *Methylene Blue* (ppm)

t : Waktu (jam)

k : Konstanta laju reaksi (ppm jam⁻¹)

Gambar 4. 27 Grafik konsentrasi methylene blue terhadap waktu sesui kinetika zero order

Untuk orde pertama, laju reaksinya ditunjukkan melalui **Persamaan 4.3** sedangkan **Persamaan 4.4** merupakan integrasi dari **Persamaan 4.3**

$$\frac{dC}{dt} = -kC \tag{4.3}$$

$$lnC = -kt + lnC_0 \tag{4.4}$$

Orde pertama memiliki defisini bahwa kecepatan reaksi hanya bergantung pada salah satu zat yang bereaksi atau sebanding dengan salah satu pangkat reaktannya. Sedangkan orde kedua adalah laju reaksi berbanding lurus dengan hasil kali konsentrasi dua reaktannya atau dengan kuadrat konsentrasi salah satu reaktannya (Sanjaya & Agustine, 2015). Untuk orde kedua, persamaan laju reaksi dan hasil integrasinya ditunjukkan melalui **Persamaan 4.5** dan **Persamaan 4.6**.

$$\frac{dc}{dt} = kC^2 \tag{4.5}$$

$$\frac{1}{c} = -kt + \frac{1}{co} \tag{4.6}$$

Gambar 4. 28 Grafik In C terhadap waktu sesuai kinetika first order

Gambar 4. 29 Grafik 1/C terhadap waktu sesuai kinetika second order

 Tabel 4. 15 Perbandingan kinetika degradi methylene blue sesuai zero order, first order, dan

 second order

	second order								
Sampel	Zero Order		First Order		Second Order				
	k (ppm.h ⁻¹)	R ²	k (h ⁻¹)	R ²	k (ppm.h) ⁻¹	R ²			
TiO ₂ -	1,674007	0,92314	0,37574	0,9264	0,140535	0,92732			
9									

Institut Teknologi Sepuluh Nopember	L TEKNIK	APORAN T MATERIA	UGAS AK L DAN ME	HIR ETALURGI		
$TiO_2 - 10$	1,673507	0,9228	0,367201	0,89636	0,132694	0,77027
TiO ₂ – 11	1,670841	0,92452	0,32782	0,99992	0,101302	0,84458
TiO ₂ /GQDs – 9	1,677841	0,92215	0,461868	0,81859	0,246769	0,75653
TiO ₂ /GQDs – 10	1,681341	0,9233	0,622157	0,92059	0,67233	0,80596
TiO ₂ /GQDs –	1,683007	0,92323	0,866833	0,67127	0,78344	0,77666
Rata- rata	-	0,92319	-	0,872188	-	0,813553

Pada **Tabel 4.15** menunjukkan bahwa konstanta laju reaksi (k) dan korelasi koefisien (\mathbb{R}^2) dari masing-masing orde reaksi pada setiap sampel. Dari data yang didapatkan kinetika reaksi pada orde nol korelasi koefisiennya mencapai 92,31%, pada orde pertama mencapai 87,21%, dan orde kedua mencapai 81,35%. Ini menunjukkan bahwa kinetika degradasi dari *methylene blue* mengikuti model dari reaksi orde nol.

Gambar 4. 30 *Wavelength* TiO₂ dan TiO₂/GQDs pada variasi pH Basa Pada **Gambar 4.30** menunjukkan hubungan nilai absobransi dengan panjang gelombang pada TiO₂ pH 9, pH 10, dan pH 11 serta variasi nanokomposit TiO₂/GQDs. Diperoleh bahwa larutan pewarna *methylene blue* 10 ppm dengan *wavelength* 664 nm. Nilai absorban tertinggi dimiliki oleh TiO₂/GQDs pH 11 dan paling rendah pada TiO₂ pH 9.

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Tabel 4. 16 Tabulasi hasil pengujian							
Sampel	SEM	EDX	XRD	BET	PL	Persen degradasi selama 6 jam	
TiO_2-9		-	$2\theta = 25,5$ $2\theta = 38,10$ $2\theta = 48,34$ $2\theta = 54,18$	-	-	89,385%	
TiO ₂ -10		-	$2\theta = 25,29$ $2\theta = 37,99$ $2\theta = 48,26$ $2\theta = 54,03$	-	-	88,826%	
$TiO_2 - 11$		-	$2\theta = 25,49$ $2\theta = 37,92$ $2\theta = 48,19$ $2\theta = 54,03$	-	-	85,846%	
TiO ₂ /GQDs - 9		CK = 15,25% OK = 35,96% TiK = 48,79%	$2\theta = 25,41$ $2\theta = 29,47$ $2\theta = 37,88$ $2\theta = 48,10$	Surface area = 6,162 m^2/g Ukuran pori = 4,53 nm Volume pori = 3,987 cm^3/g	Intensity = 19,979	99,256%	
TiO ₂ /GQDs - 10		CK = 8,04% OK = 33,53% TiK = 58,43%	$2\theta = 25,33$ $2\theta = 29,46$ $2\theta = 37,86$ $2\theta = 48,10$	-	Intensity = 14.115	97,58%	
TiO ₂ /GQDs – 11		CK = 11,92% OK = 35% TiK = 53,09%	$2\theta = 25,36$ $2\theta = 29,45$ $2\theta = 37,88$ $2\theta = 48,09$	Surface area = 6,417 m ² /g Ukuran pori = 8,33 nm Volume pori = 0,027 cm ³ /g	Intensity = 9.623	99,425%	

(Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Adapun kesimpulan yang dapat diambil pada penelitian ini, antara lain:

- 1. Sintesis TiO₂ dari TiCl₃ dengan pH basa 9, 10, dan 11 membentuk material dengan bentuk spherical dan aglomerasi. Analisis XRD menunjukkan fase anatase dengan ukuran kristal pada pH 9, pH 10, dan pH 11 secara berturut-turut adalah 34,790 nm, 20,282 nm, dan 54,087 nm. FTIR mengindikasikan adanya gugus O-H dan Ti-O. Band gap TiO2 meningkat seiring dengan naiknya pH, yakni 3,444 eV pada pH 9, 3,489 eV pada pH 10, dan 3,510 eV pada pH 11. Dalam uji fotokatalitik, TiO2 pada pH 9 menunjukkan persentase degradasi tertinggi sebesar 89,385% setelah 6 jam, diikuti oleh pH 10 sebesar 88,826% dan pH 11 sebesar 85,846%. Secara keseluruhan, TiO₂ pada pH 9 memiliki performa terbaik dalam degradasi fotokatalitik.
- 2. Sintesis nanokomposit TiO₂/GQDs berhasil dilakukan dengan dibuktikan melalui beberapa hasil dari pengujian karakterisik. Pada hasil uji SEM menunjukkan bahwa TiO₂ sebagai matriks melekat pada GQDs yang berperan sebagai filler. Pada hasil EDX menunjukkan adanya atom-atom seperti Ti, O, dan C yang mengindikasikan nanokomposit TiO2/GQDs. Morfologi yang terbentuk pada nanokomposit TiO2/GQDs berupa lapisan tipis yang menumpuk sebagai GQDs dan spherical dan cenderung beraglomerat disela-sela lapisan tersebut sebagai TiO₂ anatase. Pada hasil uji XRD nanokomposit, menunjukkan terbentuknya nanokomposit TiO2/GQDs dengan adanya pengotor CaCO₃. Pada hasil uji FTIR menunjukkan adanya gugus fungsi O-H stretching, O-C-O stretching vibrations, C-O stretching, Ti-O-Ti stretching, dan Ti-O-C stretching yang mengindikasikan adanya material TiO₂ dan GQDs pada nanokomposit. Pada hasil uji BET didapatkan surface area sebesar 6,162 m²/g untuk TiO₂/GQDs pH 9 dan 6,417 m^2/g untuk ukuran pori dari TiO₂/GQDs yang tergolong dalam ukuran mesopori. Selanjutnya pada hasil uji UV-Vis dilakukan untuk mengetahui band gap pada nanokomposit TiO₂/GQDs pH 9, pH 10, dan pH 11, yang didapatkan sebesar 3,667 eV, 3,641 eV, dan 3,628 eV. Semakin naik pH pada nanokomposit, maka band gap yang didapatkan semakin kecil. Selanjutnya pada hasil uji PL didapatkan data intensitas nanokomposit TiO₂/GQDs pada pH 9, pH 10, dan pH 11 sebesar 19.979, 14.115, dan 9.623 yang mana seiring dengan kenaikan pH, maka terjadi penurunan intensitas.
- 3. Dilakukan uji fotokatalitik pada nanokomposit TiO₂/GQDs pH 9, pH 10, dan pH 11 terhadap polutan *methylene blue* untuk mengetahui degradasi yang terjadi. Nanokomposit TiO₂/GQDs mampu mendegradasi larutan pewarna *methylene blue* dengan lama waktu penyinaran selama 6 jam dengan menggunakan lampu UV. Hasil persentase degradasi yang diperoleh berturut-turut pada variasi pH dengan rentang waktu 6 jam yaitu 99,256%, 97,58%, dan 99,425%. Material nanokomposit TiO₂/GQDs pada pH 11 memiliki hasil degradasi yang paling optimum dibandingkan variasi lainnya di mana pada waktu 6 jam mencapai 99,4%.

5.2 Saran

Adapun saran yang dapat diberikan pada penelitian ini, antara lain:

- 1. Pencucian GQDs perlu dilakukan lebih lama dengan memastikan pH pada air pencucian sudah menyentuh pH netral untuk menghilangkan berbagai kontaminan yang terdapat pada GQDs.
- 2. Dalam uji UV-Vis perlu dipastikan tidak mengandung padatan pada larutan sampel yang mau di uji sehingga tidak mengganggu hasil uji pada sampel.

3. Dapat dilakukan penelitian lain dengan variasi dan parameter lain.

DAFTAR PUSTAKA

- Abbas, A., Tabish, T. A., Bull, S. J., Lim, T. M., & Phan, A. N. (2020). High yield synthesis of graphene quantum dots from biomass waste as a highly selective probe for Fe3+ sensing. *Scientific Reports*, *10*(1), 1–16. https://doi.org/10.1038/s41598-020-78070-2
- Ahmed, B., Kumar, S., Ojha, A. K., Hirsch, F., Riese, S., & Fischer, I. (2018). Facile synthesis and photophysics of graphene quantum dota.
- Ahriani. (2021). Analisis Nilai Absorbansi Pada Penentuan Kadar Flavonoid Daun Jarak Merah (Jatropha Gossypifolia L.). *Skripsi*, 1–92.
- Ali, H. H., & Al-bahrani, M. R. (2020). Synthesis of TiO 2 / Graphene Quantum Dots as Photoanode to Enhance Power Conversion Efficiency for Dye-Sensitized Solar Cells. 29(3), 11071–11081.
- Alma, C. M. (2021). Pengaruh Suhu Kalsinasi TiO2 dengan TiCl3 sebagai Prekursor Terhadap Unjuk Kerja Sel Surya Perovskite.
- Azizah, Y. D. N. (2018). Biodekolorisasi Pewarna Metilen Biru oleh bakteri Ralstonia Picketti. 1, 430–439.
- Bekti, S., Prambasto, U., & Sugiyo, W. (2014). Info Artikel. 3(2252).
- Bharath, G., Latha, B. S., Alsharaeh, E. H., Prakash, P., & Ponpandian, N. (2017). Enhanced hydroxyapatite nanorods formation on graphene oxide nanocomposite as a potential candidate for protein adsorption, pH controlled release and an effective drug delivery platform for cancer therapy. *Analytical Methods*, 9(2), 240–252. https://doi.org/10.1039/c6ay02348g
- Bokare, A., Chinnusamy, S., & Erogbogbo, F. (2021). Tio2–graphene quantum dots nanocomposites for photocatalysis in energy and biomedical applications. *Catalysts*, *11*(3), 1–51. https://doi.org/10.3390/catal11030319
- Bungan, G. K., Aritonang, H. F., & Wuntu, A. D. (2021). PEMBUATAN NANOKOMPOSIT KITOSAN/TiO2/Ag DAN ANALISIS AKTIVITASNYA SEBAGAI ANTIBAKTERI. Chemistry Progress, 14(1), 32–39. https://doi.org/10.35799/cp.14.1.2021.34128
- Djarwanti, C. S., & Yuniati, A. (2009). Degradasi Fotokatalitik Polutan Organik dalam Air Limbah Menggunakan TiO2 Nano Partikel Sistem Lapisan Tipis-Air.
- Fan, T., Zeng, W., Tang, W., Yuan, C., Tong, S., Cai, K., Liu, Y., Huang, W., Min, Y., & Epstein, A. J. (2015). Controllable size-selective method to prepare graphene quantum dots from graphene oxide. *Nanoscale Research Letters*, 10(1). https://doi.org/10.1186/s11671-015-0783-9
- Fauzi, A. (2022). Modifikasi nanostruktur titanium dioksida hasil pengolahan mineral ilmenit lokal indonesia untuk aplikasi fotokatalisis.
- Geldasa, F. T., Kebede, M. A., Shura, M. W., & Hone, F. G. (2023). Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: a review. *RSC Advances*, 13(27), 18404–18442. https://doi.org/10.1039/d3ra01505j
- Hao, X., Jin, Z., Xu, J., Min, S., & Lu, G. (2016). Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. *Superlattices and Microstructures*, 94, 237–244. https://doi.org/10.1016/j.spmi.2016.04.024
- Ibrahim, S. A., Tun, U., Onn, H., & Sreekantan, S. (2022). Effect of pH on TiO2 Nanoparticles via Sol-Gel Method Effect of pH on TiO 2 Nanoparticles via Sol-Gel Method. December 2010. https://doi.org/10.4028/www.scientific.net/AMR.173.184
- Ichzan, N. A. (2015). Pengaruh pH pada Pembentukan Nano-powder TiO2 Fase Anatase dan Sifat Fotokatalisnya. *Jurnal Fisika Dan Aplikasinya*, *11*(2), 60. https://doi.org/10.12962/j24604682.v11i2.1056

- Kadyan, P., Thillai Arasu, P., & Kataria, S. K. (2024). Graphene Quantum Dots: Green Synthesis, Characterization, and Antioxidant and Antimicrobial Potential. *International Journal of Biomaterials*, 2024. https://doi.org/10.1155/2024/2626006
- Kanta, U. A., Thongpool, V., Sangkhun, W., Wongyao, N., & Wootthikanokkhan, J. (2017). Preparations, characterizations, and a comparative study on photovoltaic performance of two different types of graphene/TiO2 nanocomposites photoelectrodes. *Journal of Nanomaterials*, 2017(March). https://doi.org/10.1155/2017/2758294
- Kaur, M., & Verma, N. K. (2014). CaCO3/TiO2 nanoparticles based dye sensitized solar cell. *Journal of Materials Science and Technology*, 30(4), 328–334. https://doi.org/10.1016/j.jmst.2013.10.016
- Krishnamoorthy, K., Veerapandian, M., Yun, K., & Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. *Carbon*, 53, 38–49. https://doi.org/10.1016/j.carbon.2012.10.013
- Listanti, A., Taufiq, A., Hidayat, A., & Sunaryono, S. (2018). Investigasi Struktur dan Energi Band Gap Partikel Nano Tio2 Hasil Sintesis Menggunakan Metode Sol-Gel. *JPSE* (*Journal of Physical Science and Engineering*), 3(1), 8–15. https://doi.org/10.17977/um024v3i12018p008
- Maulana, F. A. (2022). Sintesis Nanotubes Titanium Dioksida dengan Metode Hidrothermal Menggunakan Prekursor Ilmenite Lokal Indonesia Termodifikasi untuk Aplikasi Fotokatlais Degradasi Limbah Polutan Organik.
- Nagamine, M., Osial, M., Jackowska, K., Krysinski, P., & Widera-Kalinowska, J. (2020). Tetracycline Photocatalytic Degradation under CdS Treatment. *Journal of Marine Science and Engineering*, 8(7), 483. https://doi.org/10.3390/jmse8070483
- Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., & Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. *Results in Engineering*, 16(September), 100678. https://doi.org/10.1016/j.rineng.2022.100678
- Özönder, Ş., Ünlü, C., Güleryüz, C., & Trabzon, L. (2022). Doped Graphene Quantum Dots UV-vis Absorption Spectrum: A High-Throughput TDDFT Study. *ACS Omega*. https://doi.org/10.1021/acsomega.2c06091
- Prabowo, H. E. (2019). Karakterisasi TiO2 Sebagai Nano Material Semikonduktor pada DSSC dengan Metode Sol-Gel. 1(1).
- Prastiwi, W. D., Maulana, K. D., Wibowo, E. A. P., Aji, N. R., & Setyani, A. (2017). SINTESIS DAN KARAKTERISTIK TiO2 DAN SiO2 SERTA APLIKASINYA TERHADAP KADAR FE DALAM AIR SUMUR. *Jurnal Ilmiah Sains*, *17*(1), 30. https://doi.org/10.35799/jis.17.1.2017.15220
- Qu, D., Zheng, M., Zhang, L., Zhao, H., Xie, Z., Jing, X., Haddad, R. E., Fan, H., & Sun, Z. (2014). Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. *Scientific Reports*, 4, 1–11. https://doi.org/10.1038/srep05294
- Safardoust-hojaghan, H., & Salavati-niasari, M. (2017). Degradasi Methylene Blue sebagai Polutan dengan N-Doped Graphene Quantum Nanokomposit Titik / Titanium Dioksida Machine Translated by Google. 1–23.
- Saud, H. R., & Al-Taweel, S. S. (2016). New route for synthesis of pure anatase TiO 2 nanoparticles via utrasound-assisted sol-gel method. *Journal of Chemical and Pharmaceutical Research*, 8(2), 620–626. www.jocpr.com
- Selvakumar, T., Rajaram, M., Natarajan, A., Harikrishnan, L., Alwar, K., & Rajaram, A. (2022). Highly Efficient Sulfur and Nitrogen Codoped Graphene Quantum Dots as a Metal-Free Green Photocatalyst for Photocatalysis and Fluorescent Ink Applications. ACS Omega, 7(15), 12825–12834. https://doi.org/10.1021/acsomega.2c00092
- Sutanto, H., & Wibowo, S. (2015). Semikonduktor Fotokatalis Seng Oksida dan Titania:

Sintesis, Deposisi dan Aplikasi. In Eprints. Undip. Ac. Id.

- Taufantri, Y., Irdhawati, I., & Asih, I. A. R. A. (2016). Sintesis dan Karakterisasi Grafena dengan Metode Reduksi Grafit Oksida Menggunakan Pereduksi Zn. Jurnal Kimia VALENSI, 2(1), 17–23. https://doi.org/10.15408/jkv.v2i1.2233
- Theivasanthi, T., & Alagar, M. (2013). *Titanium dioxide (TiO2) Nanoparticles XRD* Analyses: An Insight. http://arxiv.org/abs/1307.1091
- Todica, M., Stefan, T., Simon, S., Balasz, I., & Daraban, L. (2014). UV-Vis and XRD investigation of graphite-doped poly(acrylic) acid membranes. *Turkish Journal of Physics*, *38*(2), 261–267. https://doi.org/10.3906/fiz-1305-16
- Uyun, M. (2015). Synthesis Of TiO2 Nanoparticles Rutile Using TiCl3 Precursors (Hydrolysis And mineralization Process) And TiCl4 Precursors. *Institut Teknologi Sepuluh Nopember*, *3*, 1–108.
- Wazir, A. H., & Kundi, I. W. (2016). Synthesis of Graphene Nano Sheets by the Rapid Reduction of Electrochemically Exfoliated Graphene Oxide Induced by Microwaves. *J.Chem.Soc.Pak*, 38(1), 11–16. https://doi.org/10.1039/c4cy01074d
- Wellia, D. V. (2014). STUDI HASIL PHOTOLUMINESCENCE PADA LAPISAN TIPIS TIO2 YANG DIDOPING Sn DAN HUBUNGANNYA DENGAN AKTIFITAS FOTOKATALITIK DALAM MENDEGRADASI SENYAWA ASAM STEARAT SEBAGAI MODEL POLUTAN. Jurnal Ilmu Fisika / Universitas Andalas, 6(2), 40– 44. https://doi.org/10.25077/jif.6.2.40-44.2014
- Widianti, I. S., & Industri, F. T. (2015). Pengaruh Variasi pH dan Temperatur Sintering terhadap Nilai Sensitivitas Material TiO 2 Sebagai Sensor Gas CO. 4(1), 2–6.
- Yuan, X., Liu, Z., Guo, Z., Ji, Y., Jin, M., & Wang, X. (2014). Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. *Nanoscale Research Letters*, 9(1), 1–9. https://doi.org/10.1186/1556-276X-9-108
- Yudo, S., & Said, N. I. (2001). Masalah Pencemaran Air Di Jakarta, Sumber Dan Alternatif Penanggulangannya. Jurnal Teknologi Lingkungan, 2(2), 199–206. http://ejurnal.bppt.go.id/index.php/JTL/article/view/233
- Zhao, C., Song, X., Liu, Y., Fu, Y., Ye, L., Wang, N., Wang, F., Li, L., Mohammadniaei, M., Zhang, M., Zhang, Q., & Liu, J. (2020). Synthesis of graphene quantum dots and their applications in drug delivery. In *Journal of Nanobiotechnology* (Vol. 18, Issue 1). https://doi.org/10.1186/s12951-020-00698-z

(Halaman ini sengaja dikosongkan)

Lampiran 1 : Hasil Pengujian XRD

a. Sampel TiO₂ pH 9

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
25,5831	544,74	0,0612	3,47915	94,18
25,6683	578,39	0,0836	3,47066	100,00
37,2337	47,68	0,1673	2,41493	8,24
38,1064	184,17	0,1004	2,36161	31,84
38,9266	54,39	0,2007	2,31371	9,40
48,3432	261,96	0,2342	1,88276	45,29
54,1872	185,87	0,2342	1,69271	32,14
55,3117	177,15	0,1673	1,66093	30,63
62,3883	31,68	0,2007	1,48847	5,48
62,9735	139,42	0,1338	1,47604	24,10
69,0086	63,38	0,1004	1,36095	10,96
70,5307	81,94	0,1338	1,33527	14,17
75,2843	116,34	0,1338	1,26233	20,11
76,2294	24,22	0,3346	1,24901	4,19
82,8572	57,03	0,1338	1,16511	9,86

b. TiO2 pH 10

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
25.2948	237.80	0.2342	3.52105	100.00
37.9960	64.14	0.2676	2.36822	26.97
48.2680	62.91	0.2676	1.88552	26.45
54.0359	47.83	0.5353	1.69709	20.11
55.1221	45.41	0.5353	1.66619	19.09
62.6830	30.16	0.8029	1.48218	12.68
68.7636	12.13	0.6691	1.36520	5.10
70.2099	15.88	0.6691	1.34058	6.68
75.1954	18.54	0.5353	1.26360	7.80
83.0127	16.58	0.5353	1.16332	6.97

c. TiO₂ pH 11

LAMPIRAN

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
25,4970	1067,59	0,1506	3,49359	100,00
37,1485	67,36	0,2007	2,42027	6,31
37,9299	242,88	0,0836	2,37219	22,75
38,7401	89,55	0,1004	2,32442	8,39
48,1961	397,68	0,1338	1,88817	37,25
54,0310	256,56	0,1004	1,69723	24,03
55,1845	230,20	0,1004	1,66446	21,56
62,2326	51,68	0,1338	1,49182	4,84
62,8287	192,75	0,1338	1,47909	18,05
68,9026	76,51	0,1338	1,36279	7,17
70,4224	78,56	0,1004	1,33706	7,36
75,1367	120,52	0,1171	1,26444	11,29
76,1665	37,89	0,1224	1,24885	3,55
82,8006	70,00	0,1338	1,16576	6,56

d. TiO₂/GQDs pH 9

•	Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
	5,1587	47,88	0,4015	17,13070	2,42
	25,4198	1975,52	0,1673	3,50403	100,00
	29,4796	307,45	0,1171	3,03006	15,56
	31,9728	40,58	0,1004	2,79924	2,05
	35,5751	17,18	0,2342	2,52362	0,87
	37,0696	128,83	0,1171	2,42524	6,52
	37,8878	403,44	0,1673	2,37473	20,42
	38,6742	131,43	0,1673	2,32823	6,65
	39,0625	69,32	0,1338	2,30598	3,51
	40,0969	7,70	0,2007	2,24885	0,39
	42,6512	23,05	0,2007	2,11990	1,17
	46,7950	16,98	0,2007	1,94138	0,86
-	47,0911	23,88	0,0612	1,92826	1,21

48,1055	558,33	0,1338	1,89151	28,26
52,0235	13,32	0,2007	1,75790	0,67
53,9850	380,03	0,1836	1,69716	19,24
54,1389	206,94	0,0816	1,69691	10,48
55,1701	363,58	0,1224	1,66348	18,40
55,3203	193,19	0,1020	1,66344	9,78
56,5540	18,12	0,3264	1,62601	0,92
57,1965	6,54	0,2040	1,60926	0,33
58,4416	8,47	0,4896	1,57791	0,43
62,2447	51,72	0,2448	1,49032	2,62
62,7754	265,36	0,1224	1,47899	13,43
68,8439	125,74	0,1224	1,36268	6,37
70,3706	125,51	0,1224	1,33681	6,35
70,5813	66,44	0,1224	1,33665	3,36

e. TiO₂/GQDs pH 10

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
25,3935	1593,67	0,1506	3,50759	100,00
27,3597	22,99	0,3346	3,25983	1,44
29,4629	221,86	0,0836	3,03173	13,92
32,0454	27,55	0,2007	2,79306	1,73
35,4620	19,87	0,2007	2,53141	1,25
37,0438	101,96	0,1673	2,42687	6,40
37,8698	335,64	0,1004	2,37582	21,06
38,6704	118,35	0,1004	2,32845	7,43
39,0584	59,08	0,1673	2,30621	3,71
42,6207	15,34	0,2342	2,12134	0,96
48,1074	511,79	0,1171	1,89144	32,11
53,9821	315,71	0,1224	1,69725	19,81
54,1575	190,85	0,1224	1,69637	11,98
55,1407	323,76	0,1224	1,66430	20,32
56,6027	10,67	0,4896	1,62473	0,67

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

62,2086	57,89	0,2040	1,49110	3,63
62,7756	266,53	0,1020	1,47899	16,72
62,9550	150,55	0,1224	1,47887	9,45
68,8410	137,91	0,0612	1,36273	8,65
70,3485	119,99	0,1428	1,33717	7,53
75,1426	174,93	0,1428	1,26331	10,98
75,3689	88,12	0,1224	1,26321	5,53
76,1161	43,80	0,1632	1,24955	2,75
82,7481	82,62	0,1632	1,16540	5,18

f. TiO₂/GQDs pH 11

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
25,3698	1442,92	0,1171	3,51082	100,00
27,3205	27,62	0,2007	3,26442	1,91
29,4564	181,38	0,1004	3,03239	12,57
31,9737	28,63	0,2007	2,79916	1,98
35,5529	11,46	0,4015	2,52514	0,79
37,0278	97,37	0,0836	2,42788	6,75
37,8864	296,31	0,1506	2,37481	20,54
38,6528	106,72	0,1171	2,32947	7,40
39,0694	42,87	0,1673	2,30559	2,97
42,6097	17,58	0,2007	2,12186	1,22
48,0930	411,82	0,1004	1,89197	28,54
53,9442	244,77	0,1004	1,69976	16,96
55,0742	206,46	0,1020	1,66615	14,31
55,1594	264,37	0,0612	1,66378	18,32
55,3004	163,11	0,0612	1,66399	11,30
56,7059	7,22	0,4896	1,62202	0,50
62,1553	49,78	0,1224	1,49225	3,45
62,7870	194,48	0,1428	1,47875	13,48
68,8501	75,86	0,1632	1,36257	5,26
70,3777	84,85	0,1224	1,33669	5,88
75,0858	137,49	0,1224	1,26412	9,53

75,3710	62,81	0,1224	1,26318	4,35
76,0899	39,49	0,1224	1,24992	2,74
82,7341	70,03	0,1632	1,16557	4,85

g. Grafit

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
6.2955	99.44	0.5353	14.03967	0.30
12.6675	100.53	0.2007	6.98821	0.30
18.0803	32.62	0.8029	4.90648	0.10
20.0680	73.68	0.4015	4.42476	0.22
21.1340	101.16	0.2676	4.20392	0.30
24.1450	74.30	0.4015	3.68606	0.22
26.7980	33313.70	0.1506	3.32686	100.00
27.0198	16614.63	0.1004	3.30005	49.87
28.8790	290.05	0.2007	3.09169	0.87
35.1861	57.95	0.6691	2.55063	0.17
36.8829	52.83	0.4015	2.43709	0.16
42.7399	161.23	0.2007	2.11570	0.48
43.6930	103.81	0.4015	2.07174	0.31
44.8398	478.60	0.1673	2.02138	1.44
46.5108	84.41	0.4015	1.95258	0.25
51.0351	82.07	0.4015	1.78960	0.25
54.9138	2454.49	0.1632	1.67064	7.37
55.0559	1800.72	0.0816	1.67080	5.41
56.8301	38.65	0.9792	1.61877	0.12
60.1615	228.08	0.4080	1.53685	0.68
68.2662	26.32	0.9792	1.37279	0.08
71.7557	21.83	0.9792	1.31437	0.07
77.8037	160.62	0.4896	1.22661	0.48
83.8420	251.94	0.5712	1.15296	0.76
85.6760	74.25	0.4896	1.13291	0.22
87.2815	319.23	0.2040	1.11616	0.96

h. Graphene Oxide

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
12.6196	609.89	0.1004	7.01460	98.50
25.1302	619.16	0.1338	3.54374	100.00
26.9177	83.41	0.2676	3.31234	13.47
37.9512	63.28	0.1004	2.37091	10.22
45.5084	8.14	0.8029	1.99322	1.31
51.2461	29.30	0.1673	1.78273	4.73

i. Graphene Quantum Dots

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
18.0993	41.39	0.4015	4.90137	3.94
22.8775	39.54	0.2007	3.88734	3.76
29.4352	1050.78	0.1338	3.03453	100.00
31.9184	132.71	0.2007	2.80389	12.63
35.4170	81.56	0.2007	2.53452	7.76
38.9777	242.17	0.2342	2.31080	23.05
42.5647	105.23	0.1673	2.12400	10.01
48.0058	177.59	0.2007	1.89520	16.90
48.4631	81.15	0.2007	1.87839	7.72
55.6684	62.84	0.2007	1.65113	5.98
56.5924	46.18	0.2676	1.62635	4.40

Lampiran 2 : Hasil Pengujian FTIR

a. TiO₂ pH 9

c. TiO₂ pH 11

i. Graphene Quantum Dots

Lampiran 3 : Hasil Pengujian BET

a. TiO₂/GQDs pH 9

Report id: (559371184:20240710 093122160) Page 1 of 1

b. TiO₂/GQDs pH 11

DIREKTORAT RISET & Laboratorium ILRC Universitas Indonesia Quantachrome Quadra/Win (22000-16, Quantachrome Instruments. All rights reserved, v7.1					Quantachrome
Analysis Operator: Sample ID: Sample Desc: Sample weight: Analysis Time: Void Vol.:	ILRC UI Dat Station 4 Full Isotherm a.n Awud Edo 0.0996 g 220.0 min Cell Call ID: 70	e:79/2024 Filename: Comment: Sample Volume: End of run: Run mode:	Report URC UI Operator: LRC UI GQDS-TrO2 PH 11_240709_0* 0.0000 cc 7/8/2024 1:56:23 Standard	Def 1.QPS Instrument: Instrument version:	x:2024/07/09 QuadraSorb Station 4 7.01
Outgas Time: Analysis gas: Press. Tolerance:	2.0 hrs Nitrogen variable/0.010 (ads/des)	OutgasTemp: Bath Temp: Equil time:	300.0 C 77.3 K variable/120 sec (ads/des)	Equil timeout:	variable/240 sec (adsides)
		Isother	rm : Linear	•	
		Data Redu	uction Parameters		
Adsorbate model	Nitrogen Molec. Wt.: 28.013	Temperature Cross Section:	77.350K : 16.200 Ar	Liquid Density:	0.808 g/cc
Ads	Des				
19.10					ĥ
16.00					
12.00 (6)co) at ts @ aurreo/					
8.00					ø
4.00		8880	BOBOBOB	onot o	
0.00					
0.00		0.40		0.80	1.05
			Relative Pressure DIDo		
			readine messure, P/PO	_	
Contactionse Constalling - Data Regulation and P	inizian la Castalint B (2001 %, Castalines Interests Al sp	the second vester 71		Report id: (207848646	20240709 144113340) Page 1 of 1

Report id:(698398129:20240709 144130164) Page 1 of 1

Lampiran 4 : Hasil pengujian PL

a. TiO₂/GQDs pH 9

12.07.2024 02:13

b. TiO₂/GQDs pH 10

12.07.2024 04:53

1/1

c. TiO₂/GQDs pH 11

12.07.2024 03:15

1/1

Lampiran 5 : Hasil pengujian UV-Vis a. TiO₂ pH 9

b. TiO₂ pH 10

c. TiO₂ pH 11

d. TiO₂/GQDs pH 9

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

e. TiO₂/GQDs pH 10

f. TiO₂/GQDs pH 11

Lampiran 6 : Perhitungan band gap

A(X1) B(Y1) C(X2) D(Y2) Long Name	a. 1102 pi					
Long Name Image Image Image Image Units Image Image Image Image Comments Image Image Image Image F(x)= Image Image Image Image Q20 262 -1,53543 4,73282 280,08426 Q21 260 -1,48006 4,76923 264,26716 Q222 258 -1,73141 4,8062 367,27526 Q223 256 -1,72251 4,84375 369,21116 Q224 254 -1,61568 4,88189 329,97004 Q225 252 -1,60832 4,92063 332,18123 Q226 250 -1,58393 4,96 327,35818 Q227 248 -1,4361 5,04065 278,66655 Q230 242 -1,42326 5,12397 282,07786 Q231 240 -1,59645 5,16667 360,84393 Q332 238 -1,4715 5,21397		A(X1)	B(Y1)	C(X2) 🗳	D(Y2) 🖳	
Units Image: space s	Long Name					
CommentsImage: constraint of the system $F(x)=$ 1240/A(2,303)Method1260-1,535434,73282280,08426220262-1,535434,73282280,08426221260-1,480064,76923264,26716222258-1,731414,8062367,27526223256-1,722514,84375369,21116224254-1,615684,88189329,97004225252-1,608324,92063332,18123226250-1,583934,96327,35818227248-1,365785247,33717228246-1,438015,04065278,66655229244-1,4365,08197282,46229230242-1,42365,12397282,07786231240-1,596455,16667360,84393232238-1,243695,25424226,48087233236-1,243695,2915169,58736234233236-0,769285,3448389,6652236230-0,466485,391332,123222372280,028025,4386746,434742382260,539285,4867346,434742392240,96415,53571151,07042402220,881975,58559128,716122412200,804045,63636108,928422442140,827985,79439122,07968	Units					
F(x)= 1240/A (2,303) Method -1,53543 4,73282 280,08426 220 262 -1,53543 4,76923 264,26716 221 260 -1,48006 4,76923 264,26716 222 258 -1,71141 4,8062 367,27526 223 256 -1,72251 4,84375 369,21116 224 254 -1,61688 4,8189 329,97004 225 252 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -0,76928 5,34483 89,66525 236 <t< td=""><td>Comments</td><td></td><td></td><td></td><td></td></t<>	Comments					
Method Image: Constraint of the system Image: Constraint of the system 220 262 -1,53543 4,73282 280,08426 221 260 -1,48006 4,76923 264,26716 222 258 -1,73141 4,8062 367,27526 223 256 -1,72251 4,84375 369,21116 224 254 -1,6168 4,8189 329,97004 225 255 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 0.02602 5,4843 <td< td=""><td>F(x)=</td><td></td><td></td><td>1240/A</td><td>(2,303*</td></td<>	F(x)=			1240/A	(2,303*	
220 262 -1,53543 4,73282 280,08426 221 260 -1,48006 4,76923 264,26716 222 258 -1,73141 4,8062 367,27526 223 256 -1,72251 4,84375 369,21116 224 254 -1,61568 4,88189 329,97004 225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,4326 5,12397 282,07786 230 242 -1,4236 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 <	Method					
221 260 -1,48006 4,76923 264,26716 222 258 -1,73141 4,8062 367,27526 223 256 -1,72251 4,84375 369,21116 224 254 -1,61568 4,88189 329,97004 225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,4326 5,12397 282,07786 230 242 -1,4236 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 <	220	262	-1,53543	4,73282	280,08426	
222 258 -1,73141 4,8062 367,27526 223 256 -1,72251 4,84375 369,21116 224 254 -1,61568 4,88189 329,97004 225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 <td< td=""><td>221</td><td>260</td><td>-1,48006</td><td>4,76923</td><td>264,26716</td></td<>	221	260	-1,48006	4,76923	264,26716	
223 256 -1,72251 4,84375 369,21116 224 254 -1,61568 4,88189 329,97004 225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,48673	222	258	-1,73141	4,8062	367,27526	
224 254 -1,61568 4,88189 329,97004 225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,24369 5,25424 226,48087 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,	223	256	-1,72251	4,84375	369,21116	
225 252 -1,60832 4,92063 332,18123 226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,24369 5,25424 226,48087 233 236 -1,24369 5,25915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63363 108,9	224	254	-1,61568	4,88189	329,97004	
226 250 -1,58393 4,96 327,35818 227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -106708 5,2915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 </td <td>225</td> <td>252</td> <td>-1,60832</td> <td>4,92063</td> <td>332,18123</td>	225	252	-1,60832	4,92063	332,18123	
227 248 -1,36578 5 247,33717 228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -10,6708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4	226	250	-1,58393	4,96	327,35818	
228 246 -1,43801 5,04065 278,66655 229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4	227	248	-1,36578	5	247,33717	
229 244 -1,436 5,08197 282,46229 230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,8197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,8	228	246	-1,43801	5,04065	278,66655	
230 242 -1,42326 5,12397 282,07786 231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,8197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,0001 5,74074 4369,83954 244 214 0,82798 5,79439 122,0	229	244	-1,436	5,08197	282,46229	
231 240 -1,59645 5,16667 360,84393 232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,	230	242	-1,42326	5,12397	282,07786	
232 238 -1,4715 5,21008 311,74383 233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,4	231	240	-1,59645	5,16667	360,84393	
233 236 -1,24369 5,25424 226,48087 234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,1	232	238	-1,4715	5,21008	311,74383	
234 234 -1,06708 5,29915 169,58736 235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76	233	236	-1,24369	5,25424	226,48087	
235 232 -0,76928 5,34483 89,66525 236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 2446 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,882	234	234	-1,06708	5,29915	169,58736	
236 230 -0,45648 5,3913 32,12322 237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913	235	232	-0,76928	5,34483	89,66525	
237 228 0,02802 5,4386 0,12317 238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937	236	230	-0,45648	5,3913	32,12322	
238 226 0,53928 5,48673 46,43474 239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937	237	228	0,02802	5,4386	0,12317	
239 224 0,9641 5,53571 151,0704 240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,0001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,13861 13,	238	226	0,53928	5,48673	46,43474	
240 222 0,88197 5,58559 128,71612 241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,0001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,13861 13,28913	239	224	0,9641	5,53571	151,0704	
241 220 0,80404 5,63636 108,92842 242 218 0,74185 5,68807 94,4388 243 216 5,00001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,37937	240	222	0,88197	5,58559	128,71612	
242 218 0,74185 5,68807 94,4388 243 216 5,0001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	241	220	0,80404	5,63636	108,92842	
243 216 5,0001 5,74074 4369,83954 244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	242	218	0,74185	5,68807	94,4388	
244 214 0,82798 5,79439 122,07968 245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,27937	243	216	5,00001	5,74074	4369,83954	
245 212 0,79082 5,84906 113,47882 246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,13861 13,28913	244	214	0,82798	5,79439	122,07968	
246 210 1,13316 5,90476 237,45162 247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	245	212	0,79082	5,84906	113,47882	
247 208 0,84984 5,96154 136,13786 248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252 6,37937	246	210	1,13316	5,90476	237,45162	
248 206 1,71125 6,01942 562,76066 249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	247	208	0,84984	5,96154	136,13786	
249 204 0,63446 6,07843 78,88227 250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	248	206	1,71125	6,01942	562,76066	
250 202 0,25786 6,13861 13,28913 251 200 0,17689 6,2 6,37937 252	249	204	0,63446	6,07843	78,88227	
251 200 0,17689 6,2 6,37937 252	250	202	0,25786	6,13861	13,28913	
252	251	200	0,17689	6,2	6,37937	
	252					

▼ + ∨ рн 9 дрн 10 дрн 11 дрн 11 (2) дрн 3 /

b. TiO₂/GQDs pH 10

	A(X1)	B(Y1)	C(X2) 🖻	D(Y2) 🖻
Long Name				
Units				
Comments				
F(x)=			1240/A	(2,303*
Method				
1	700	0,98008	1,77143	15,98668
2	698	0,9815	1,7765	16,12505
3	696	0,98674	1,78161	16,39148
4	694	0,99185	1,78674	16,65729
5	692	0,99085	1,79191	16,71995
6	690	0,9959	1,7971	16,98887
7	688	1,00013	1,80233	17,23325
8	686	0,99415	1,80758	17,12722
9	684	1,00922	1,81287	17,75378
10	682	1,02036	1,81818	18,25448
11	680	1,01505	1,82353	18,1714
12	678	1,01567	1,82891	18,3011
13	676	1,02078	1,83432	18,59526
14	674	1,02933	1,83976	19,02045
15	672	1,02709	1,84524	19,05065
16	670	1,02364	1,85075	19,03602
17	668	1,03848	1,85629	19,70945
18	666	1,03462	1,86186	19,68088
19	664	1,03895	1,86747	19,96569
20	662	1,04325	1,87311	20,25313
21	660	1,04679	1,87879	20,51457
22	658	1,04233	1,8845	20,46397
23	656	1,04841	1,89024	20,82984
24	654	1,0574	1,89602	21,31839
25	652	1,05984	1,90184	21,54848
26	650	1,05489	1,90769	21,47924
27	648	1,06327	1,91358	21,95677
28	646	1,06906	1,9195	22,3342
29	644	1,06195	1,92547	22,17521
30	642	1,07881	1,93146	23,02773
31	640	1,07606	1,9375	23,05389
32	638	1,08179	1,94357	23,44638
33	636	1,08979	1,94969	23,94433
34	634	1,0921	1,95584	24,19789

^{▼ + ∨ \} pH 9 \ pH 10 \ pH 11 \ pH 11 (2) \ pH 3 \

LAPORAN SEMINAR PROPOSAL TUGAS AKHIR TEKNIK MATERIAL DAN METALURGI

c. TiO₂/GQDs pH 11

	A(X1)	B(Y1)	C(X2) 🖻	D(Y2) 🛍
Long Name				
Units				
Comments				
F(x)=			1240/A	(2,303*
Method				
1	700	0,82254	1,77143	11,26028
2	698	0,82736	1,7765	11,45802
3	696	0,82605	1,78161	11,4875
4	694	0,83114	1,78674	11,69663
5	692	0,81666	1,79191	11,35799
6	690	0,8309	1,7971	11,8258
7	688	0,82891	1,80233	11,83775
8	686	0,82884	1,80758	11,90486
9	684	0,82192	1,81287	11,77547
10	682	0,82276	1,81818	11,86886
11	680	0,81745	1,82353	11,78517
12	678	0,82384	1,82891	12,04086
13	676	0,82314	1,83432	12,09164
14	674	0,82163	1,83976	12,11892
15	672	0,82093	1,84524	12,1704
16	670	0,81943	1,85075	12,19847
17	668	0,82514	1,85629	12,44324
18	666	0,81537	1,86186	12,22341
19	664	0,81614	1,86747	12,32039
20	662	0,8115	1,87311	12,25441
21	660	0,81022	1,87879	12,28993
22	658	0,8131	1,8845	12,45281
23	656	0,81991	1,89024	12,7396
24	654	0,81231	1,89602	12,58112
25	652	0,81047	1,90184	12,60114
26	650	0,81247	1,90769	12,74146
27	648	0,81832	1,91358	13,00552
28	646	0,81159	1,9195	12,87181
29	644	0,81048	1,92547	12,91648
30	642	0,81005	1,93146	12,98329
31	640	0,80978	1,9375	13,05586
32	638	0,80891	1,94357	13,10963
33	636	0,80677	1,94969	13,1225
34	634	0,81062	1,95584	13,33176

▼ + V pH 9 kpH 10 kpH 11 kpH 11 (2) kpH 3 /

d. TiO₂/GQDs pH 9

	A(X1)	B(Y1)	C(X2) 🛍	D(Y2) 🛍
Long Name				
Units				
Comments				
F(x)=			1240/A	(2,303*
Method				
1	700	0.03965	1,77143	0.02617
2	698	0.03858	1,7765	0.02491
3	696	0,04262	1,78161	0,03058
4	694	0,02922	1,78674	0,01446
5	692	0,04393	1,79191	0,03287
6	690	0,0385	1,7971	0,02539
7	688	0,03785	1,80233	0,02468
8	686	0,04067	1,80758	0,02866
9	684	0,04289	1,81287	0,03206
10	682	0,04486	1,81818	0,03528
11	680	0,04008	1,82353	0,02833
12	678	0,04576	1,82891	0,03715
13	676	0,03961	1,83432	0,028
14	674	0,04174	1,83976	0,03128
15	672	0,04056	1,84524	0,02971
16	670	0,04621	1,85075	0,03879
17	668	0,0415	1,85629	0,03148
18	666	0,04098	1,86186	0,03088
19	664	0,04293	1,86747	0,03409
20	662	0,03903	1,87311	0,02835
21	660	0,04278	1,87879	0,03426
22	658	0,04301	1,8845	0,03484
23	656	0,04486	1,89024	0,03814
24	654	0,0428	1,89602	0,03493
25	652	0,04237	1,90184	0,03444
26	650	0,04344	1,90769	0,03642
27	648	0,04152	1,91358	0,03348
28	646	0,04576	1,9195	0,04092
29	644	0,04668	1,92547	0,04285
30	642	0,04601	1,93146	0,04189
31	640	0,03759	1,9375	0,02813
32	638	0,04576	1,94357	0,04195
33	636	0,04158	1,94969	0,03486
34	634	0,04487	1,95584	0,04085

▼ + V PH 9 (pH 10 (pH 11 / PH 10 (pH 10 (pH 11 / PH 11 / PH

e. TiO₂/GQDs pH 10

	A(X1)	B(Y1)	C(X2) 🛍	D(Y2) 🛍
Long Name				
Units				
Comments				
F(x)=			1240/A	(2,303*
Method				
1	700	-0.0869	1,77143	0.12568
2	698	-0,08911	1,7765	0,13291
3	696	-0,08986	1,78161	0,13594
4	694	-0,08693	1,78674	0,12795
5	692	-0,08741	1,79191	0,13012
6	690	-0,08739	1,7971	0,13081
7	688	-0,0887	1,80233	0,13555
8	686	-0,09018	1,80758	0,14093
9	684	-0,08667	1,81287	0,13094
10	682	-0,09021	1,81818	0,14268
11	680	-0,0888	1,82353	0,13907
12	678	-0,08499	1,82891	0,12815
13	676	-0,08228	1,83432	0,12082
14	674	-0,08766	1,83976	0,13795
15	672	-0,08224	1,84524	0,12214
16	670	-0,09284	1,85075	0,15659
17	668	-0,08741	1,85629	0,13964
18	666	-0,09304	1,86186	0,15916
19	664	-0,09151	1,86747	0,15489
20	662	-0,09077	1,87311	0,15332
21	660	-0,08884	1,87879	0,14776
22	658	-0,08497	1,8845	0,13599
23	656	-0,08576	1,89024	0,13938
24	654	-0,08655	1,89602	0,14283
25	652	-0,09088	1,90184	0,15844
26	650	-0,08935	1,90769	0,1541
27	648	-0,09039	1,91358	0,15868
28	646	-0,087	1,9195	0,14791
29	644	-0,0929	1,92547	0,1697
30	642	-0,08225	1,93146	0,13385
31	640	-0,09	1,9375	0,16127
32	638	-0,0861	1,94357	0,14852
33	636	-0,0883	1,94969	0,15719
34	634	-0,08497	1,95584	0,14648

▼ + V \ pH 9 \ pH 10 \ pH 11 /

f. TiO₂/GQDs pH 11

	A(X1)	B(Y1)	C(X2) 🖻	D(Y2)
Long Name				
Units				
Comments				
F(x)=			1240/A	(2,303*
Method				
1	700	0,04514	1,77143	0,03391
2	698	0,05142	1,7765	0,04426
3	696	0,04262	1,78161	0,03058
4	694	0,04654	1,78674	0,03667
5	692	0,04644	1,79191	0,03673
6	690	0,04764	1,7971	0,03888
7	688	0,04307	1,80233	0,03196
8	686	0,05419	1,80758	0,05089
9	684	0,04795	1,81287	0,04008
10	682	0,05366	1,81818	0,05049
11	680	0,04566	1,82353	0,03677
12	678	0,04595	1,82891	0,03746
13	676	0,0493	1,83432	0,04337
14	674	0,04802	1,83976	0,0414
15	672	0,05013	1,84524	0,04538
16	670	0,04386	1,85075	0,03495
17	668	0,04607	1,85629	0,03879
18	666	0,0534	1,86186	0,05243
19	664	0,04726	1,86747	0,04131
20	662	0,0469	1,87311	0,04093
21	660	0,05063	1,87879	0,04799
22	658	0,04826	1,8845	0,04387
23	656	0,04902	1,89024	0,04554
24	654	0,04904	1,89602	0,04585
25	652	0,04148	1,90184	0,03301
26	650	0,04383	1,90769	0,03708
27	648	0,04428	1,91358	0,03808
28	646	0,04306	1,9195	0,03623
29	644	0,05018	1,92547	0,04951
30	642	0,04916	1,93146	0,04782
31	640	0,04803	1,9375	0,04593
32	638	0,04616	1,94357	0,04269
33	636	0,04917	1,94969	0,04874
34	634	0.04457	1.95584	0.0403

34 034 0,044
↓ + ∨ \pH 9 \pH 10 \pH 11 /

UCAPAN TERIMA KASIH

Dalam mengerjakan laporan penelitian Tugas Akhir ini, penulis mendapatkan bantuan dan dukungan dari berbagai pihak. Oleh sebab itu, penulis ingin menyampaikan rasa terima kasih kepada pihak-pihak yang telah mendukung dan membantu, diantaranya:

- 1. Tuhan yang Maha Esa untuk semua kebaikan yang terjadi dalam kehidupan ini
- 2. Papa, Mama, Naomi, dan Mozes the one who always there since day one, the one who always make sure that everything going well, then one who always know all the condition that i've been through. For everything.
- 3. Keluarga besar who always support me with their prayers and their support, who always be happy with the good news i've got
- 4. Ibu Dr. Hariyati Purwaningsih S.Si., M.Si. dan Ibu Vania Mitha Prawiti, S.T. selaku dosen pembimbing tugas akhir yang telah bersedia meluangkan waktunya untuk membimbing penulis dengan penuh kesabaran dan memberikan petunjuk dalam penulisan tugas akhir.
- 5. Mba Is dan Mba Yenny yang mau saya repotkan dalam pengujian sehingga penelitian tugas akhir ini bisa berjalan dengan baik
- 6. Mas Indro, Pak Bas, Pak Nazir, Mas Bayu, dan bapak lainnya saya tidak ketahui namanya yang mau memberi saya semangat dengan guyonan dan kejailannya dikala saya *hectic*.
- 7. Awud Edo, my partner, my best friend, and also my brother who always got my back, who always understand about me and never leave me. Lowkey, you are the best.
- 8. Regina Valentina Manik, my one and only. No words can't describe how huge your service to my life. You are my everything, Gina.
- 9. Kak Gaby, Kak Best, Bang Nico, my rebel family who always convices me that I can do this things.
- 10. Dewa, Iwang, Bagas, Diaz dan Ajhar the funniest people in life to entertain me with their jokes. For all the moments and the story that we have been through together.
- 11. Alamanda, Ika, dan Tasya who be my savest place to tell all my story and my struggle behind my final project.
- 12. Rara, you are precious. You should know that you are loved by me. You are so pure.
- 13. Alvi, Reza, dan Yusuf Bayu untuk segala ilmu yang diajarkan dalam pengerjaan tugas akhir ini.
- 14. Intan Fla, my SC. I know since day one, that you are gonna be the best SC, and of course you doing it well mba.
- 15. Deandra Sarah, my chicago since childhood.
- 16. Awandhana Anggi, my best friend with her sweet words to cheering me up
- 17. Dolop, Rushdan, Pandi, Siti, dan Kinan
- 18. Piku, Jeki, dan Oles who always there to create a place to hang out without talking any things about final project

Akhir kata, semoga Tugas Akhir ini dapat bermanfaat untuk pengembangan lebih lanjut dan siapapun yang membutuhkan di masa yang akan datang.

Surabaya, 25 Juli 2024 Penulis

Jennifer Theresa Hutapea

(Halaman ini sengaja dikosongkan)

BIODATA PENULIS

Jennifer Theresa Hutapea lahir di Samarinda pada tanggal 27 April 2002. Bersekolah pada SD Kristen Ipeka Balikpapan pada tahun 2008 dan lulus enam tahun kemudian pada tahun 2014, dan melanjutkan jenjang pada sekolah SMP Kristen Ipeka Balikpapan dan lulus tiga tahun kemudian pada tahun 2017, setelah itu berlanjut ke pendidikan di SMAN 14 Bandung dan lulus tiga tahun kemudian pada tahun 2019, kemudian melanjutkan jenjang pendidikan pada Departemen Teknik Material dan Metalurgi FTIRS ITS. Selama perkuliahan, penulis aktif dalam kegiatan berorganisasi di HMMT FTIRS ITS 2021/2022 sebagai sekretaris departemen pengembangan mahasiswa

tingkat dasar. Penulis memiliki pengalaman kerja praktik di PT Pertamina Hulu Sanga Sanga pada tahun 2023 dan ditempatakan di divisi Supply Chain Management. Penulis Mengakhiri Studi S1 dengan mengambil penelitian di bidang Fisika Material. Penulis dapat dihubungi melalui alamat surel hutapeajennifer@gmail.com dan nomor telepon 085156941802.

(Halaman ini sengaja dikosongkan)