Studi Eksperimental tentang Pengaruh Sudut Deflektor di Depan Sudu Advancing dan Returning terhadap Kinerja Turbin Angin Savonius “Studi Kasus untuk Deflektor dengan Sudut α = 50°; 60°; 70°; 80°; 90° dan Sudut β = 0° pada Kecepatan Angin 5 m/s dan 7 m/s”

Irfan, Ifa Shaafiyah Ulayya (2024) Studi Eksperimental tentang Pengaruh Sudut Deflektor di Depan Sudu Advancing dan Returning terhadap Kinerja Turbin Angin Savonius “Studi Kasus untuk Deflektor dengan Sudut α = 50°; 60°; 70°; 80°; 90° dan Sudut β = 0° pada Kecepatan Angin 5 m/s dan 7 m/s”. Other thesis, Institut Teknologi Sepuluh Nopember.

[thumbnail of 5007201076-Undergraduate_Thesis.pdf] Text
5007201076-Undergraduate_Thesis.pdf - Accepted Version
Restricted to Repository staff only

Download (6MB) | Request a copy

Abstract

Energi di Indonesia memiliki ketergantungan yang besar terhadap bahan bahar fosil, sebagian besar penggunaannya didedikasikan untuk pembangkit listrik. Cadangan bahan bakar fosil diperkirakan akan habis pada tahun 2037 pada tingkat konsumsi saat ini. Oleh karena itu diperlukan sumber energi baru dan terbarukan (EBT) untuk mengatasi masalah tersebut, salah satunya energi angin. Indonesia memiliki kecepatan angin yang cukup rendah sehingga turbin angin yang optimal digunakan adalah turbin angin Savonius. Penelitian eksperimental ini dilakukan dengan melakukan penambahan deflektor berbentuk plat datar yang diletakkan di depan advancing dan returning blade dengan kemiringan tertentu sehingga dapat mengetahui pengaruh sudut deflektor terhadap peningkatan kinerja dari turbin Savonius. Deflektor di depan advancing blade berfungsi untuk mengarahkan aliran ke advancing blade sehingga meningkatkan gaya drag pada sudu tersebut. Deflektor di depan returning blade berfungsi untuk menghalangi aliran menuju returning blade sekaligus mengarahkan aliran menuju advancing blade sehingga dapat meningkatkan perbedaan gaya drag antara kedua sudu, torsi serta daya yang dihasilkan pun meningkat.
Penelitian dilakukan dengan kemiringan deflektor di depan returning blade (β) bernilai konstan sebesar 0o dan di depan advancing blade (α) divariasikan sebesar 50o, 60o, 70o, 80o, dan 90o dengan kecepatan angin 5 dan 7 m/s. Deflektor yang digunakan berbahan kayu tinggi (H) sebesar 735 mm, lebar (M) sebesar 325 mm, dan tebal (t) sebesar 5 mm. Turbin angin Savonius yang digunakan memiliki tinggi (h) sebesar 295 mm, panjang karakteistik turbin (l) sebesar 305,4 mm, dan jarak antara deflektor tiap sudu terhadap sumbu netral sebesar 10 mm. Penelitian ini dilakukan dengan cara aliran angin oleh axial fan dijaga agar tetap uniform dengan penggunaan honeycomb di depannya. Pengaturan kecepatan angin axial fan menggunakan bantuan voltage regulator. Angin yang mengalir akan diukur menggunakan anemometer, pengukuran putaran dengan tachomater, pengukuran torsi statis dengan torquemeter, dan pengukuran torsi dinamis dengan brake dynamometer.
Hasil dari penelitian ini adalah instalasi deflektor di depan advancing dan returning blade meningkatkan kinerja turbin dibandingkan turbin angin Savonius tanpa deflektor. Sudut (α) 70° paling optimal meningkatkan nilai coefficient of power dengan kenaikan sebesar 68,8% dan nilai coefficient of moment kenaikan sebesar 66,5% sedangkan pada kecepatan angin 5 m/s nilai coefficient of power meningkat 62,9% dan nilai coefficient of moment meningkat 78,4% terhadap turbin angin Savonius konvensional. Instalasi deflektor ini juga mampu meningkatkan kemampuan self-starting turbin angin Savonius karena nilai coefficient of static torque yang didapat selalu bernilai positif pada seluruh konfigurasi.
========================================================================================================================
Energy in Indonesia has a significant dependency on fossil fuels, with the majority of their usage dedicated to power generation. Fossil fuel reserves are predicted to be depleted by 2037 at the current consumption rate. Therefore, new and renewable energy sources (NRE) are needed to address this issue, one of which is wind energy. Indonesia has relatively low wind speeds, making the Savonius wind turbine the optimal choice. This experimental study was conducted by adding a flat plate deflector placed in front of the advancing and returning blades at certain inclinations to determine the effect of the deflector angle on the performance improvement of the Savonius turbine. The deflector in front of the advancing blade serves to direct the flow towards the advancing blade, thereby increasing the drag force on the blade. The deflector in front of the returning blade serves to block the flow towards the returning blade while directing the flow towards the advancing blade, thereby increasing the difference in drag force between the two blades, as well as the torque and power generated.
The study was conducted with the deflector inclination in front of the returning blade (β) fixed at 0° and in front of the advancing blade (α) varied at 50°, 60°, 70°, 80°, and 90° with wind speeds of 5 and 7 m/s. The deflector used was made of wood with a height (H) of 735 mm, a width (M) of 325 mm, and a thickness (t) of 5 mm. The Savonius wind turbine used had a height (h) of 295 mm, a turbine characteristics length (l) of 305.4 mm, and a distance between the deflector of each blade to the neutral axis of 10 mm. The study was conducted by ensuring that the airflow from the axial fan remained uniform through the use of a honeycomb placed in front of it. The wind speed of the axial fan was controlled using a voltage regulator. The flowing wind was measured using an anemometer, rotations were measured with a tachometer, static torque was measured with a torquemeter, and dynamic torque was measured with a brake dynamometer.
The results of this study indicate that the installation of deflectors in front of the advancing and returning blades enhances the performance of the turbine compared to a Savonius wind turbine without deflectors. The angle (α) of 70° is the most optimal, increasing the coefficient of power by 68.8% and the coefficient of moment by 66.5%. At a wind speed of 5 m/s, the coefficient of power increased by 62.9%, and the coefficient of moment increased by 78.4% compared to a conventional Savonius wind turbine. This deflector installation also enhances the self-starting capability of the Savonius wind turbine, as the coefficient of static torque obtained is always positive across all configurations.

Item Type: Thesis (Other)
Uncontrolled Keywords: Coefficient of Power, Coefficient of Moment, Coefficient of Static Torque, Deflektor, Turbin Angin Savonius Coefficient of Power, Coefficient of Moment, Coefficient of Static Torque, Deflector, Savonius Wind Turbine
Subjects: Q Science > QC Physics
Q Science > QC Physics > QC151 Fluid dynamics
Divisions: Faculty of Industrial Technology and Systems Engineering (INDSYS) > Mechanical Engineering > 21201-(S1) Undergraduate Thesis
Depositing User: Ifa Shaafiyah Ulayya Irfan
Date Deposited: 08 Aug 2024 02:23
Last Modified: 08 Aug 2024 02:23
URI: http://repository.its.ac.id/id/eprint/112674

Actions (login required)

View Item View Item