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ABSTRACT 

DEVELOPMENT OF MACHINE LEARNING MODEL ON ESTIMATING FUEL 

CONSUMPTION FOR KMP. KIRANA VII 

 

Name / NRP   : James Janto Junior / 5019201101 

Departement   : Marine Engineering FTK-ITS 

Supervisors   : Ir. Hari Prastowo, M.Sc 

    : Ir. Dwi Priyanta, MSE. 

 

Abstract 

Fuel consumption in shipping operations constitutes a substantial portion of operational 

costs and contributes to environmental pollution. Efficiently estimating fuel consumption is 

crucial for optimizing vessel operations, reducing operational expenses, and minimizing the 

environmental impact of ships. This study focuses on combining fuel optimization and machine 

learning, which is a subfield of artificial intelligence, offers powerful tools for analyzing 

complex data patterns and making accurate predictions. By training models on historical data, 

machine learning algorithms can learn the relationships between various factors and fuel 

consumption, enabling the development of accurate predictive models. This study is using 2 

algorithms, Ridge regressor and XGBoost. Models made from both algorithms respectively 

have a R² of 0,886 and 0,9306. XGBoost model is much more accurate than using ridge 

regressor. The model can be more developed overtime by inputing more datas. 

 

Keywords: Machine Learning, R², Ridge Regressor, XGBoost 
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ABSTRAK 

PENGEMBANGAN MODEL MACHINE LEARNING PADA ESTIMASI KONSUMSI 
BAHAN BAKAR UNTUK KMP. KIRANA VII 

Nama   : James Janto Junior 

NRP   : 5019201101 

Departemen  : Teknik Sistem Perkapalan FTK-ITS 

Pembimbing  : Ir. Hari Prastowo, M.Sc 

   : Ir. Dwi Priyanta, MSE. 

 

Abstrak 

Konsumsi bahan bakar dalam operasi pelayaran merupakan bagian substansial dari 
biaya operasional dan berkontribusi terhadap pencemaran lingkungan. Memperkirakan 
konsumsi bahan bakar secara efisien sangat penting untuk mengoptimalkan operasi kapal, 
mengurangi biaya operasional, dan meminimalkan dampak lingkungan dari kapal. Penelitian 
ini berfokus pada penggabungan optimasi bahan bakar dan pembelajaran mesin, yang 
merupakan subbidang dari kecerdasan buatan, yang menawarkan alat yang ampuh untuk 
menganalisis pola data yang kompleks dan membuat prediksi yang akurat. Dengan melatih 
model pada data historis, algoritma pembelajaran mesin dapat mempelajari hubungan antara 
berbagai faktor dan konsumsi bahan bakar, sehingga memungkinkan pengembangan model 
prediksi yang akurat. Penelitian ini menggunakan 2 algoritma, yaitu Ridge regressor dan 
XGBoost. Model yang dibuat dari kedua algoritma tersebut masing-masing memiliki R² sebesar 
0,886 dan 0,9306. Model XGBoost jauh lebih akurat dibandingkan dengan menggunakan ridge 
regressor. Model ini dapat dikembangkan lebih lanjut dengan memasukkan lebih banyak data. 

 

Kata kunci: Machine Learning, R², Ridge Regressor, XGBoost 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The maritime industry plays a vital role in global trade and transportation at around 80% 

of the total world trade (Dere and Deniz, 2019; UNCTAD, 2020), serving as the backbone of 

the global economy. However, the industry also faces significant challenges, including rising 

fuel costs, stringent environmental regulations, and the urgent need to reduce greenhouse gas 

emissions (Joung et al, 2020). Fuel consumption in shipping operations constitutes a substantial 

portion of operational costs and contributes to environmental pollution.  

 

Figure 1.1.1 Increasing Shipping CO2 Emissions (UNCTAD,2023) 

Efficiently estimating fuel consumption is crucial for optimizing vessel operations, 

reducing operational expenses, and minimizing the environmental impact of ships. 

Traditionally, fuel consumption estimation has relied on manual calculations and empirical 

formulas, which may lack accuracy and fail to consider the intricate interplay of multiple factors 

influencing fuel consumption. To address these limitations and enhance the accuracy of fuel 

consumption estimation (Xie et al., 2023). 
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Machine learning, a subfield of artificial intelligence, offers powerful tools for analyzing 

complex data patterns and making accurate predictions. By training models on historical data, 

machine learning algorithms can learn the relationships between various factors and fuel 

consumption, enabling the development of accurate predictive models. These models can then 

be used to estimate fuel consumption for different operational scenarios, providing valuable 

insights for optimizing vessel performance and fuel efficiency (Uyanık et al., 2020). The 

primary objective of this thesis is to develop and evaluate a machine learning model for 

estimating the fuel consumption of KMP. Kirana VII . By leveraging available data on vessel 

characteristics, operational parameters, weather conditions, and historical fuel consumption 

records, this research aims to create a predictive model that can accurately estimate fuel 

consumption in real-time. 

The implementation of machine learning techniques for fuel consumption estimation on 

KMP. Kirana VII  holds significant potential benefits. First, it can provide KMP. Kirana VII  

with a more accurate and reliable tool for estimating fuel consumption, enabling better decision-

making regarding operational planning, route optimization, and fuel management. Second, by 

identifying the most influential factors affecting fuel consumption, the model can help uncover 

opportunities for fuel efficiency improvements and emission reductions. 

Furthermore, this research contributes to the broader field of maritime operations by 

showcasing the applicability and effectiveness of machine learning in addressing fuel 

consumption estimation challenges. The findings and recommendations from this thesis can 

serve as a valuable resource for other shipping companies seeking to enhance their fuel 

efficiency, reduce operational costs, and meet environmental sustainability goals. By 

developing and evaluating a machine learning model for estimating the fuel consumption , this 

research seeks to provide an innovative and data-driven approach to optimize vessel operations, 

reduce fuel costs, and minimize the environmental impact of shipping operations (Kim et al., 

2021) 

1.2 Problem Statement 

The key problems that could be explored: 

 How does machine learning algorithm work for estimating fuel consumption of the 

KMP. Kirana VII ? 

 What is the variable to determine the fuel consumption at KMP. Kirana VII ? 
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 What’s the machine learning algorithm that has the highest R² for KMP. Kirana 

VII ? 

1.3 Research Objectives 

 Determine the process of machine learning algorithm for estimating fuel 

consumption of the KMP. Kirana VII . 

 Determining the variable of fuel consumption at KMP. Kirana VII . 

 Comparing the highest R² for every machine learning method of the ships. 

1.4 Scope of Study 

 Machine learning program used for estimating the fuel consumption is using 

python language. 

 Machine learning model used for estimating the fuel consumption is using Ridge, 

and XGBoost.  

 The object of the research is focused on KMP. Kirana VII  based on the ship data 

and log data. 

1.5 Research Benefit 

 Can be a reference which is aimed at ship operation efficiency and ship fuel 

estimation. 

 The model of machine learning could be used to provide real time data as it could 

be further improved. 
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CHAPTER 2 

LITTERATURE REVIEW 

2.1 Related Study 

The previous research is focusing on the aspects of machine learning methods such as 

using prediction model Artificial Neural Network (ANN) and using the multiple linear 

regression (MLR). Where the ANN records and produces the best score prediction for the 

precision accuracy. On which the research here can try to alternate the algorithm thus using 

another algorithm for other ship. Which is used on a 13,000 TEU class container ship. Models 

used such as artificial neural network (ANN) present the accuracy goodness ranged from 0.9709 

to 0.9936. the sensitivity analysis of the draught indicated in 14.79, which was very close to the 

design draught of the ship, thus resulting optimal fuel consumption efficiency (Kim et al., 

2021). 

Another study was using the Vector Machine algorithm, which results achieved a higher 

accuracy with R-Squared metric value of 0.97 than other related work using the same Support 

Vector Machine algorithm. The author concludes that using Support Vector Machine has a great 

effect when used for fuel consumption (Hamed et al., 2021). Other study used R2, XGBoost, 

and Random Forest (RF). The values are 0.9977 for the R2, for the XGBoost and RF are 0.9922 

(Xie et al., 2023).  From the research of the main purpose is to find the higher the R² which 

means the lower the error margin.  

Other studies used parameters such as main engine, cargo weight, ship draft, sea 

condition, weather condition, etc. The study uses models such as Multiple Linear Regression, 

Ridge and Lasso Regression, Support Vector Regression, Tree-Based Algorithms, Boosting 

Algorithms are used for prediction of fuel consumption in on container ship. The study 

concludes that nearest estimation of the actual fuel consumption data is made by multiple linear 

regression and ridge regression on which the root mean square error is 0,001, and 0,002 mean 

absolute error thus the determination score coefficient is 99.9% (Uyanık et al., 2020) 

2.2 Ship Fuel Consumption 

Ship Fuel Consumption is contributed to function such as the resistance of the ship, 

payload, ship displacement, ship speed, ship draft, main engine load, etc. Average of ship fuel 

consumption depends on the ship’s type & engine power on which the correlation between these 
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is not linear (Wijanarko., 2020). Ship speed and power is not linear, which the power of the 

ship is increased with speed squared. Therefore, optimal fuel consumption is crucial for 

realizing energy efficiency management, cost reduction, and efficiency improvement of 

operational ships (Fan et al., 2022). 

2.3 Machine Learning 

Machine learning is a field of study that focuses on the development of algorithms and 

statistical models that enable computer systems to learn and improve from experience without 

being explicitly programmed. A bibliometric analysis conducted by Jordan and Mitchell (2015) 

examined the growth and trends in machine learning research. The analysis revealed a 

significant increase in the number of publications related to machine learning over the years, 

indicating the growing interest and importance of this field. The study also highlighted the key 

areas of research within machine learning, such as supervised learning, unsupervised learning, 

and reinforcement learning. Additionally, the analysis identified the most influential 

researchers and institutions in the field, further highlighting the collaborative nature of machine 

learning research. 

2.4 Machine Learning Algorithms 

One commonly used algorithm is linear regression, which can establish a relationship 

between fuel consumption and various input variables such as ship speed, engine power, and 

cargo load. Decision trees are another powerful algorithm that can be applied in this context. 

They create a tree-like model of decisions and their possible consequences. Furthermore, 

ensemble methods like random forests (RF) and gradient boosting (GBoost) can be employed 

to improve the accuracy and robustness of fuel consumption predictions. Support vector 

machines (SVM) can also be utilized to classify and predict fuel consumption based on given 

variables.  

2.4.1 XGBoosting Model 

The gradient boosted trees has been around for a while, and there are a lot of 

materials on the topic. This tutorial will explain boosted trees in a self-contained and 

principled way using the elements of supervised learning. The XGBoost model concept is 

also using ensemble which is decision tree. (Cheng et al., 2020). 
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Figure 2.1 Gradient Boosting Model (Cheng et al., 2020) 

2.4.2 SVM (Support Vector Machine) 

Support vector machine (SVM) that can be used as classification and regression is 

one of the supervised learning models. The data which is entered in this algorithm are 

transformed into a feature area where the solution based on optimization techniques takes 

place. SVMs have effective results on proper generalization, accuracy, and precision 

(Alsarraf et al., 2019). 

 
Figure 2.2 Support Vector Machine model, (spiceworks.com) 

The Support Vector Regression (SVR) was proposed by (Smola and Schölkopf, 

2004) as a version of the SVM. SVR performs a solution by preserving all the main features 



 

8 
 

that characterize the algorithm, but it does this with a few differences from the SVM. The 

SVR is approximately set to a tolerance margin. The purpose of adjusting this margin is to 

minimize the error and individualize the hyperplane that maximizes the margin. 

 

Figure 2.3 Plot iris SVM (Scikit, 2011) 

2.4.3 Perceptron 

Perceptron provides the first methods to iteratively learn classification of data’s to 

discreate categories. To classify n-dimensional data, the Perceptron learns a weight vector 

with n parameters as well as a bias term.  

 
Figure 2.4 Perceptron works, source (towardsdatascience.com) 

Both the weight vector and bias consist of positive integers greater than or equal to 

zero which encode a linear hyperplane separating two or more categories in n-dimensional 

space. (Kelby, 2020) 
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2.4.4 Multiple Linear Regression  

Multiple Linear Regression (MLR) is a mathematical model that can estimate a 

dependent output with multiple variable inputs. The dependent variable y can be found by 

the following formula (Bocchetti et al., 2013): 

 
Figure 2.5 Multiple Linear Regression model (source: python.plainenglish.io) 

 

y = ω0 +  ω1x1 + ω2x2 + ω3x3 =  +  +  + ⋯ ⋯ ⋯ +  ωnxn 

2.4.5 K-Nearest Neighbors 

It is one of the nonparametric models, and the K-nearest neighbors (KNN) 

algorithm determines the k nearest neighbors to a given point (xq) as distance-wise (Russell 

and Norvig, 2003) and k parameter can be selected by the user (n_neighbors). The KNN 

algorithm is varied from others because an action is performed on the data while classifying 

instead of training by the past acquired dataset of the system.  
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Figure 2.6 K-Nearest Neighbors model (source: towardsdatascience.com) 

In Scikit-learn implementation, the calculation of the closest neighbors is 

determined automatically according to the input values. Algorithm hyperparameter is the 

leaf size (leaf_size) in which the algorithm speed and memory usage are affected when the 

nonbrute-force approach is used. Minkowski distance (LP) is used for the determination of 

the distance between a given point (xq) and the other any point (xj). 

2.4.6 Ridge Regression 

Ridge Ridge Regression (RR) is a powerful statistical technique that employs 

shrinkage to improve the estimation of coefficients in linear regression models, particularly 

when dealing with multicollinearity among predictor variables. Unlike traditional least 

squares methods, which can produce highly variable coefficient estimates when predictors 

are correlated, Ridge Regression adds a penalty term to the loss function. 
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Figure 2.7 Ridge Regression, source (pianalytix.com) 

 
 This penalty is proportional to the square of the magnitude of the coefficients, 

effectively shrinking them towards zero. This process not only stabilizes the estimates but 

also enhances the model's predictive performance by reducing overfitting, especially in 

situations where the number of predictors is large relative to the number of observations. 

α = λ1 + λ2 

λl𝑟𝑎𝑡𝑖𝑜 =
λ1

λ1 + λ2
 

2.4.7 Linear Regression 

Linear regression is a foundational statistical method in machine learning that 

models the relationship between a dependent variable and one or more independent 

variables, assuming a linear relationship between them. Linear regression can be 

categorized into simple linear regression, which involves a single independent variable, 

and multiple linear regression, which encompasses two or more independent variables. 

For the model to be valid, it must meet several key assumptions, including linearity, 

independence, homoscedasticity, and normality of residuals. Common evaluation 

metrics for linear regression models include Mean Squared Error (MSE) and R-squared 

(R^2 ), which help assess the model's predictive performance. 

The applications of linear regression are vast and span multiple fields, from 

economics to education. For instance, it can be utilized to predict economic indicators 

like GDP based on historical data or to forecast academic performance based on various 
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factors such as study habits and prior achievements (Predicting Students' Academic 

Performance Using Linear Regression, 2021). In educational research, linear regression 

models have been employed to identify the factors influencing students' academic 

success, enabling targeted interventions for at-risk students. Despite its limitations, such 

as sensitivity to outliers and the assumption of linearity, linear regression remains a 

robust and interpretable framework for understanding and predicting outcomes across 

diverse applications (Overview of Machine Learning Concepts, 2021).  

 
Figure 2.8 Linear Regression, Source: (kdnuggets.com) 

2.4.8 Lasso Regression 

Lasso regression, or Least Absolute Shrinkage and Selection Operator, is a 

regularization technique used in linear regression to prevent overfitting and enhance model 

interpretability by imposing a penalty on the absolute size of the regression coefficients 

(Tibshirani, 1996). This method adds an L1 penalty to the loss function, which encourages 

sparsity in the model by shrinking some coefficients to zero, effectively performing variable 

selection (Hastie, Tibshirani, & Friedman, 2009). The regularization parameter, lambda (λ), 

controls the strength of this penalty; larger values of λ increase the amount of shrinkage, leading 
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to simpler models with fewer predictors retained. Lasso regression is particularly useful in high-

dimensional datasets where multicollinearity is a concern, as it helps to mitigate the effects of 

correlated predictors and improves the model's generalization to new data (Zou & Hastie, 2005). 

 
Figure 2.9 Lasso Regression, source: (medium.com) 

2.4.9 Random Forest  

The Random Forest algorithm has gained significant traction in recent years as a robust 

ensemble learning technique, particularly noted for its ability to handle high-dimensional data 

and complex interactions among features. Recent studies have demonstrated its effectiveness 

in various applications, such as predicting graduation outcomes and detecting misinformation 

in social media during elections (Indra et al., 2024; Su et al., 2023). The algorithm operates by 

constructing multiple decision trees using bootstrapped subsets of the training data, which 

enhances its predictive performance through the averaging of individual tree outputs (Liaw & 

Wiener, 2002).  
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Figure 2.10 Random Forest algorithm (source: anasbrital98.github.io) 

Furthermore, advancements like the Rotation Double Random Forest have been 

proposed to improve model diversity and accuracy by transforming input data, thereby 

addressing challenges such as class imbalance (Purnomo et al., 2024). Overall, Random Forest 

remains a preferred choice in machine learning due to its simplicity, interpretability, and strong 

performance across diverse datasets (Zhou, 2022). 

2.5 Pyton Language 

Python is a widely-used programming language known for its simplicity, readability, and 

versatility. In recent years, there has been a surge of interest in Python, as evidenced by the 

growing number of scholarly publications related to the language (Milmann and Avaizis, 2011). 

Python is a widely-used programming language that has gained significant popularity in 

recent years. Its simplicity, readability, and versatility have made it an attractive choice for 

developers across various domains. The language's ability to seamlessly integrate with other 

tools and libraries, making it a powerful tool for scientific computing, data analysis, and 

visualization. Furthermore, the study found that Python's popularity is not limited to academia, 

as evidenced by its adoption in industry for web development, automation, and artificial 

intelligence applications. 
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2.6 Supervised Machine Learning 

Supervised learning is a fundamental approach in machine learning that involves training a 

model to make predictions or decisions based on labeled data. In this paradigm, the model learns 

from a dataset consisting of input-output pairs, where each input is associated with a 

corresponding desired output. Most commonly, supervised learning leaves the probability for 

input undefined, such as an input where the expected output is known. This process provides 

dataset consisting of features and labels (Nasteski, 2017). This acquired knowledge enables the 

model to make predictions on new, unlabeled data by applying the learned rules or patterns. 

Supervised learning encompasses a wide range of algorithms, including decision trees, support 

vector machines, and neural networks, each with its own strengths and weaknesses. By 

leveraging the labeled data, supervised learning enables machines to perform tasks such as 

classification, regression, and even complex tasks like natural language processing and image 

recognition. 

2.7 Unsupervised Machine Learning 

Unsupervised learning is a branch of machine learning that focuses on extracting patterns 

and structures from unlabeled data. Unlike supervised learning, unsupervised learning 

algorithms do not rely on predefined labels or target outputs. Instead, they aim to uncover 

inherent relationships and discover hidden patterns within the data itself. By exploring the 

characteristics and similarities among the data points, unsupervised learning algorithms can 

identify clusters, anomalies, or latent variables that may exist in the dataset. These algorithms 

utilize various techniques such as clustering, dimensionality reduction, and generative 

modeling to uncover meaningful insights. Unsupervised learning plays a crucial role in 

exploratory data analysis, data pre-processing, and feature engineering. It enables machines to 

autonomously learn from vast amounts of unstructured data and discover underlying structures 

or patterns that may not be apparent to human observers. This can lead to valuable discoveries, 

insights, and improved decision-making in fields such as anomaly detection, customer 

segmentation, and recommendation systems.  

2.8 Decicion Tree 

Decision trees are powerful and widely used tools in machine learning and data analysis. 

These models employ a tree-like structure to make predictions or decisions based on a series of 

hierarchical, binary splits on input features thus as classifiers Charbuty, B., & Abdulazeez, A. 
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(2021). Decision trees are particularly useful for classification and regression tasks, as they can 

handle both categorical and numerical data. They offer several advantages, such as 

interpretability, scalability, and ease of implementation. The interpretability of decision trees 

allows users to understand and explain the decision-making process, making them valuable in 

domains where transparency is crucial. Decision trees are also scalable, capable of handling 

large datasets efficiently. Furthermore, their simplicity and intuitive nature enable users to build 

decision tree models with relative ease, even without extensive programming or mathematical 

knowledge.  

 

 

Figure 2.11 Decision Tree Regression Model (Scikit, 2011) 

2.9 R-Squared 

R², the coefficient of determination, is a statistical measure that indicates how well a 

model fits the observed data. It is calculated as the proportion of the variance in the dependent 

variable that is predictable from the independent variables. R² values range from 0 to 1, where 

0 indicates no relationship and 1 indicates a perfect fit. In machine learning, a high R² value 

suggests that the model can accurately predict the dependent variable based on the independent 
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variables, making it a crucial metric for evaluating model performance and selecting the best 

model for a given dataset. 

R², the coefficient of determination, is a statistical measure that indicates how well a 

model fits the observed data (Kohavi & Provost, 1998). It is calculated as the proportion of the 

variance in the dependent variable that is predictable from the independent variables (Hastie, 

Tibshirani, & Friedman, 2009). R² values range from 0 to 1, where 0 indicates no relationship 

(Kohavi & Provost, 1998) and 1 indicates a perfect fit (Hastie et al., 2009). In machine learning, 

a high R² value suggests that the model can accurately predict the dependent variable based on 

the independent variables (Kohavi & Provost, 1998), making it a crucial metric for evaluating 

model performance and selecting the best model for a given dataset (Hastie et al., 2009). 

2.10 Scikit-Learn  

Scikit-learn, also known as sklearn, is a popular open-source machine learning library for 

Python. It provides a wide range of tools and algorithms for various tasks in machine learning, 

including classification, regression, clustering, dimensionality reduction, and model selection. 

It ranges from Data preprocessing, Feature extraction and selection, Model training and 

evaluation, Ensemble methods, Dimensionality reduction, and Model interpretation. scikit-

learn is a versatile library that can support various aspects, from data preprocessing to model 

training, evaluation, and interpretation (Pedregosa et al,2011). 

2.11 Google Collab 

Google Colab, short for Colaboratory, is an innovative online platform provided by 

Google that enables users to write, run, and share Python code within a Jupyter Notebook 

environment. This cloud-based service offers free access to a variety of computing resources, 

including CPUs, GPUs, and TPUs, making it particularly advantageous for tasks related to 

machine learning and data analysis. One of the key features of Google Colab is its collaborative 

nature, allowing multiple users to work on the same notebook simultaneously, which enhances 

teamwork and facilitates group projects. 

2.12 Visual Studio 

Microsoft Visual Studio is a powerful Integrated Development Environment (IDE) 

developed by Microsoft, designed to facilitate software development across various platforms 

and programming languages, including C#, C++, Visual Basic, and Python. Launched in 1997 
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and continually evolving, Visual Studio offers a rich set of features that enhance productivity, 

such as IntelliSense for code suggestions, advanced debugging tools, and a user-friendly 

Solution Explorer for project organization. It supports collaborative development through 

integration with version control systems like Git, allowing multiple developers to work on the 

same project simultaneously. Available in three editions—Community, Professional, and 

Enterprise—Visual Studio caters to individual developers, small teams, and large organizations, 

making it a versatile choice for creating high-quality applications efficiently. Its extensive 

capabilities and customizable environment make it a preferred tool for developers aiming to 

streamline their coding processes and enhance overall workflow. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

3.1 Research Flowchart 

 

Figure 3.1 Flow Chart 
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3.2 Data Collecting and Database 

Issue recognizable proof is the primary step to start this composing strategy. In this process 

a list of indicated issues is made additionally make the appropriate premise for identifying the 

solution of the issue both from presently and within the future. Collecting data and how do the 

author input it to make the database. Thus, the more the data then the more accurate the data 

will. Such data gathered are ship logbook, ship operation data, noon report. The data was then 

made into a database manually.  

3.3 Choosing 1 Algorithm for Model Development 

When selecting the most suitable algorithm for a given predictive modeling task, options 

such as XGBoost and Ridge regression often come into consideration. XGBoost, or Extreme 

Gradient Boosting, is an ensemble learning technique that excels in handling large datasets and 

complex relationships by combining the predictions of multiple weak learners to produce a 

robust model. In contrast, Ridge regression is a linear regression technique that incorporates L2 

regularization to prevent overfitting, making it particularly effective for datasets with 

multicollinearity or when the number of features exceeds the number of observations.  

This approach allows for a focused evaluation of each algorithm's performance, enabling a 

clear comparison of their respective R² values and other metrics. By systematically testing 

XGBoost and Ridge regression individually, researchers can identify which algorithm yields 

better predictive accuracy and aligns more closely with the goals of the analysis. Ultimately, 

this careful selection process is vital for optimizing model performance and ensuring reliable 

outcomes in real-world applications. 

3.4 Data Processing and Making of the Coding 

After the database has been established, it is essential to carefully examine the data before 

it is inputted into the model. This examination ensures that the data is clean, accurate, and 

suitable for analysis, which is critical for the model's performance.  
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Once the data has been validated, it can be inputted into the model, which is built upon 

a specific algorithm. At this stage, it is important to define the dependent variable (y) and the 

independent variables (x), as these will form the basis of the model's predictions. On which the 

code will be made on Visual Studio and processed there.   

3.5 Feature Preprocessing preventing errors to the model. 

To ensure the robustness and accuracy of predictive models, it is crucial to thoroughly 

examine the data to prevent issues such as overfitting, which can lead to erroneous results. 

Overfitting occurs when a model learns the noise in the training data rather than the underlying 

patterns, making it less effective when applied to new data. To mitigate this risk, the data should 

be normalized, which involves adjusting the values to a common scale without distorting 

differences in the ranges of values.  

One effective method for normalization is standardization, which transforms the data to 

have a mean of zero and a standard deviation of one. This can be easily accomplished using the 

standardization command from the popular Scikit-learn (sklearn) library in Python. By applying 

this command, practitioners can ensure that their data is appropriately scaled, facilitating better 

model performance and enhancing the generalizability of the results. This careful preprocessing 

step is essential for developing reliable models that can accurately predict outcomes in real-

world scenarios.  

3.6 Model Testing 

Model testing is a critical phase in the development of predictive algorithms, as it allows to 

evaluate the performance of the model and determine its R² value. The R², or coefficient of 

determination, provides insight into how well the model explains the variability of the data, 

serving as a key metric for assessing its effectiveness. After conducting the initial tests, further 

research is conducted to identify the optimal model that best fits the data and meets the specific 
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objectives of the analysis. This process may involve comparing multiple algorithms, fine-tuning 

parameters, and employing techniques such as cross-validation to ensure that the selected model 

is not only accurate but also robust against overfitting. By systematically analyzing the results 

and iterating on model selection, researchers can arrive at a solution that maximizes predictive 

accuracy and reliability, ultimately leading to more informed decision-making in practical 

applications. This thorough approach to model testing and optimization is essential for 

achieving high-quality outcomes. 

3.7 Choosing The Best Algorithm 

Once the data has been thoroughly processed, the resulting outcomes can be applied and 

simulated in real-life conditions. This application allows for a practical assessment of the 

model's effectiveness in predicting fuel consumption under various scenarios. Following this 

implementation, the results obtained from real-world testing can be compared against the 

predictions made by the model. This comparison is essential for evaluating the model's 

performance and reliability. The next step involves selecting the algorithm that demonstrates 

the highest R² value, which indicates the best fit for the data.  

Typically, a common approach in this process is to partition the dataset, using 75% for 

training the model and the remaining 25% for testing its accuracy. This division ensures that 

the model is trained on a substantial amount of data while still retaining a portion for validation. 

By following this structured methodology, practitioners can confidently identify the most 

effective algorithm for estimating fuel consumption, paving the way for improved decision-

making and enhanced operational efficiency in real-world applications.  

3.8 Make predictions for the ship’s fuel consumption. 

Once the model has been thoroughly trained and the algorithm with the highest R² value 

has been identified, it can be effectively implemented in real-world applications to estimate fuel 

consumption. This process involves leveraging the selected model's predictive capabilities, 

which are rooted in the relationships established between the input variables and fuel 

consumption outcomes during the training phase. 

 The choice of variables is crucial, as they must accurately reflect the factors influencing 

fuel efficiency, such as vehicle type, driving conditions, engine performance, and even external 

factors like weather and terrain. By integrating this model into operational systems, businesses 
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and individuals can make informed decisions regarding fuel usage, optimize routes, and 

ultimately reduce costs and environmental impact. Furthermore, continuous monitoring and 

refinement of the model may be necessary to ensure its accuracy and relevance as new data 

becomes available or as driving patterns evolve. This dynamic approach not only enhances the 

model's reliability but also supports sustainable practices in fuel consumption management. 
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CHAPTER 4 

RESULT AND DISCUSSION 

4.1 Data Acqusition 

Data obtained for the paper is manually inserted to Excel to be proceed. Data is obtained 

from KMP. Kirana VII from PT. Dharma Lautan Utama. The ship is a roro-Passenger ship, 

with LOA 68,94 m, breadth 17 m, height 4,5 m, draught 3,1 mm, with the service speed 12 

knots, max speed 12,7 knots. The data is collected through engine log book and ship deck log 

book. Data range is 1 year through out 21 February 2023 to 21 February 2024.  

 
Figure 4.1 KM. Kirana VII Ship 

Source: (author) 

The ship engine uses 2 MITSUBHISI SI2R-T2MPTK with 1400 hp and 1650 RPM. The 

reading of this data is done by ship crew then these data written manually in ship logbook in a 

6 hours interval. The data then manually convert to Microsoft excel file so the phyton library 

can read the dataset. The ship have is between Surabaya – Lembar. Data is accuired from the 

ship deck logbook and ship engine logbook. The data used is Sailing Speed (Knots), Beaufort 

number, Displacement (tons), Sea Condition, Draft (m), and Fuel consumption (L).  
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As to make the varibale “sea condition” be viable to the model so the data is changed to 

string (numbers). As in 0 is for “docking”, 1 is for “fine waters”, 2 is for “Calm waters”, 3 is 

for “rippled waters”, 4 is for “smooth waters”, 5 is for “Slight waters”, and 6 is for “Moderate 

sea”.  

4.2 Choosing Algorithm  

Choosing the algorithm is an entirely different part, so author makes 2 different model/file. 

One is Ridge as can be seen like in figure 4.2 

 
Figure 4.2 Ridge Regression algorithm code 

The data that is accomodate with “X” is the overall data of the algorithm which is speed, 

beaufort scale, displacement, sea condition, and draft. The data is accomodate with “Y” is the 

ship fuel consumption. The data is scaled as to process the data then Ridge regression used is 

the alpha state, the machine learning model will test every alpha and will choose the best alpha 

with resulting high R-square score. The random states are random seeds that the data takes from 

the sample dataset. On this the random seed is in the range of 250 – 500. The grid search is also 

used for the systematic method used in machine learning and statistics to find the optimal 

parameters for a given model or function. Using 5 repeater then the data is converted to 25% 

tested, 75% trained.  
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 XGBoost algorithm code is different than the ridge regression, it can be seen in 

figure 4.2 below; 

 
Figure 4.3 XGBoost Regression code 

 The code from the x, y until the scalling is the same as ridge regressor, the 

difference is the parameter that makes the XGBoost regressor and the algorithm differ than 

ridge regressor. The max_depth paramater can be choosen from 3, 5, and 7 as the model work 

itself to resulting the highest R-square score. Learning rate is the process of the model to 

understand how well the complicated relationship of each variable to the output. N_estimators 

is the how much trees is made to estimate the best result for the model.  

4.3 Preprocessing 

The process of model training depending on the quality of the data that is inserted. Hence, 

if the model is trained on the wrong data, it will try to reduce the error in that dataset and the 

model. There are no data for draft from 26/02/23 to 13/03/23, so that time period is filtered out 

and was replaced to NaN (not a number), and not to be counted into the data set. the data that 

will included in the model consist of: beufourt number, speed, displacement, draft ,and sea 

condition as the input and fuel consumption as the output.  
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Figure 4.4 List of data gathered 

Then the data is scaled to different parts which, can easily be identified the range of 

values. The variables such as Sailing Speed, Beaufort number, Displacement, Sea condition, 

and Draft. The data were described as Figure 4.4. 

 
Figure 4.5 X variables scales 

The information is composed to the log book by the team who physically recorded the 

estimation each 4 hours, this suggests a expansive vulnerability of each hours of utilization. As 
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this prepare in not robotized, the comes about of the perusing it can contrast very noteworthy 

in correct time of the day. Since of this on the off chance that the dispatch halt some time 

recently the fourth hour, at that point the estimation esteem still composed within the fourth 

hour. Which is the data is filtered due to human mistakes, etc.  

 
Figure 4.6 Pre-processed Sailing Speed 

The data here is the chart of sailing speed which is in knots. With the highest is 12,7 

knots and the lowest is 0 knots. The data here is not processed yet, this is due to there are 0/null 

value. The data here have variative values so the algorithm can estimate and correlate the 

variable with the output. 
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Figure 4.7 Pre-processed Beaufort scale 

The data here is the chart of sailing speed which is in knots. With the highest is 2 

beaufort scale and the lowest is 0 beaufort scale. The data here is not processed yet, this is due 

to there are 0/null value. The data here have variative values so the algorithm can estimate and 

correlate the variable with the output. 
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Figure 4.8 Pre-processed Displacement 

 
The data here is the chart of sailing speed which is in knots. With the highest around 

2200 tons and the lowest is 0 tons. The data here is not processed yet, this is due to there are 

0/null value. The data here have variative values so the algorithm can estimate and correlate the 

variable with the output. 
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Figure 4.9 Pre-processed Sea Condition 

The data here is the chart of sailing speed which is in knots. With the highest is scale 6 

which is (moderate sea) and the lowest is scale 0 (docking). The data here is not processed yet, 

this is due to there are 0/null value. The data here have variative values so the algorithm can 

estimate and correlate the variable with the output. 
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Figure 4.10 Pre-processed Draft 

The data here is the chart of sailing speed which is in knots. With the highest is 3,7 m  

and the lowest is 0 m. The data here is not processed yet, this is due to there are 0/null value. 

The data here have variative values so the algorithm can estimate and correlate the variable 

with the output. 
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Figure 4.11 Pre-processed Graph Fuel Consumption 

The data is then putted to the graph and then it can be seen that there are NaN or 

“null” values that could mess up the model, so by then the data need to be 

processed/cleaned to prevent this kind of error. By adding “ignore null” then the data 

can be processed best. 
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Figure 4.12 Eliminating 0 values 

 The reason to drop the null or “0” datas is to ensure the model prediction, so for 

the algoritm know relationship on every part of the X variable. There are also the Y variable 

dropped to ensure the model to be fitted for testing.  

4.4 Processed Dataset 

In this context, the dataset is processed to eliminate null values, resulting in much more 

reliable and accurate values for prediction, as part of the data cleaning process. The 

significance of processed data lies in its ability to support decision-making processes, 

validate hypotheses, and provide actionable insights for stakeholders. The benefits of 

processed data include enhanced decision-making by providing clear insights, improved 

data management through structured formats, increased efficiency by streamlining analysis, 

and greater accessibility of insights, which fosters collaboration and informed decision-

making across an organization.  

Data that already cleaned then could be use for the model of the machine learning 

training as on the figure 4.13  
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Figure 4.13 Cleaned Sailing speed data 

 The data line here is the sailing speed data which the null values will be outlined using 

drop ‘null’ value, this is to ensure the dataset used to be much more clean and help the model 

to interpreat the correlation between each variable with the output. The line its much more better 

due to the elimination and the data is variative which allows the model to better perform than 

if the data is constant.  
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Figure 4.14 Cleaned Beaufort scale data 

The data line here is the Beaufort scale data, and the null values will be delineated using 

the drop 'null' value, ensuring that the dataset utilized is much cleaner and allowing the model 

to interpret the association between each variable and the result. The line is significantly better 

as a result of the removal, and the data is variable, allowing the model to perform better than if 

the data was constant.  
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Figure 4.15 Cleaned displacement data 

The ship displacement data is crucial for understanding the performance and stability of 

maritime vessels. To ensure the integrity of our analysis, we will eliminate any null values from 

the dataset. This step is vital, as it not only cleans the data but also enhances the model's ability 

to accurately interpret the relationships between each variable and the outcome of interest. By 

removing these null entries, we create a more robust dataset that reflects the true variability of 

the data, which is essential for effective modeling. Cleaner dataset allows the model to focus 

on meaningful patterns and associations, thereby improving predictive accuracy. The variability 

in the remaining data points contributes to a more nuanced understanding of how different 

factors interact, leading to better insights and more reliable predictions.  
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Figure 4.16 Cleaned sea condition data 

The sea condition data is crucial for understanding the performance and stability of 

maritime vessels. To ensure the integrity of our analysis, we will eliminate any null values from 

the dataset. This step is vital, as it not only cleans the data but also enhances the model's ability 

to accurately interpret the relationships between each variable and the outcome of interest. By 

removing these null entries, we create a more robust dataset that reflects the true variability of 

the data, which is essential for effective modeling. A cleaner dataset allows the model to focus 

on meaningful patterns and associations, thereby improving predictive accuracy. The variability 

in the remaining data points contributes to a more nuanced understanding of how different 

factors interact, leading to better insights and more reliable predictions.  
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Figure 4.17 Cleaned draft data 

The ship draft data is critical for understanding the performance and stability of marine 

ships. To protect the integrity of our study, we shall remove any null values from the dataset. 

This step is critical because it not only cleans the data but also improves the model's capacity 

to correctly comprehend the links between each variable and the result of interest. By deleting 

these blank entries, we build a more robust dataset that accurately reflects the data's variability, 

which is required for effective modeling. A cleaner dataset enables the model to focus on 

significant patterns and correlations, resulting in higher predicted accuracy. The remaining data 

points' unpredictability adds to a more detailed understanding of how multiple aspects interact, 

resulting in superior insights. 
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Figure 4.18 Cleaned Fuel consumption data 

Analyzing fuel consumption data is essential for evaluating the efficiency and 

operational performance of maritime vessels. To maintain the integrity of our analysis, we will 

remove any null values from the dataset. This crucial step not only cleans the data but also 

enhances the model's capability to accurately discern the relationships between various 

variables and the target outcomes. By eliminating these null entries, we create a more 

comprehensive dataset that captures the true variability of the data, which is vital for effective 

modeling. Furthermore, a refined dataset allows the model to concentrate on significant patterns 

and correlations, leading to improved predictive accuracy. The diversity in the remaining data 

points fosters a deeper understanding of how different factors interact, resulting in more 

insightful analyses and dependable predictions.  

4.5 Data Input 

Data from the gathering will be processed and then compiled into a dataset. Example of 

the dataset can be seen at Tabel 4.1 

Table 4.1 Data Sample 

Current 

Time Date 

Sailing 

speed 
Beaufort Displacement Sea Condition Draft 

Fuel 

consumption 

rate 
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20 02 2023 11,0000  1 1873,5360  2,0000  3,2 7665,0000  

21 02 2023 11,6000  1 1873,5360  2,0000  3,2 7700,0000  

22 02 2023 10,7000  1 1990,6320  3,0000  3,4 7784,0000  

23 02 2023 11,7000  1 2078,4540  3,0000  3,55 7456,0000  

From the table there are parameters that will be used for the machine learning algorithm. 

The datas is complied into 1 day, so the data is evey 1 day. Every data is inputed manually 

so it require precision in inputing the datas.  

 
Figure 4.19 Values of the datas inputed 

The data look like the figure 4.8 the data of ‘fuel consumption’ is already deleted then 

the data that has null values need to be deleted more as the rows is removed. After that the data 

will be processed to the model to be trained. 

4.6 Model Training 

The Model training for the algorithm is evaluated by R-squared value and RMSE value, 

to check the accuracy of the regression model fits on the datasets. R-squared value if 

closer to 1 then the model would fit perfectly, the RMSE value if differ the predicted 

value the closer to the actual value then the model turns out to be perfect.  

Data used to construct the regresion model which comes from the training and testing 

datasets. Usualy the data train is 75% and the testing data is 25%. The dataset is chosen 

randomly based on the random seed taken. After the model is trained then the testing used 

to evaluate the model created by the train dataset. 
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Figure 4.20 Train data and testing data splitting 

The dataset then inputed to the coding by using Python Language, Microsoft visual 

studio to make the model. After the model is done and ready to launch. The model output 

is the and R2 value which is used to show the accuracy of the regression model. The mean 

squared error tells the standard value of the model made.  

 Which the inputted data consist of ship speed, ship displacement, ship draft, beufort 

scale, and sea condition. The output for the model is the fuel consumption. The model 

operate the data and training, some of the data were used for testing. After the testing is 

done then the model will estimate the and R2 score.  

The data set will be used for 2 regressors, using the Ridge Regression and XGBoost 

Regressor. After both regressor were used then it will resulting a score, then the score 

will be used to determine the model accuracy. If preferable then the highest model will 

be chosen as the ‘best’ for the KMP. Kirana VII. 

4.7 Ridge Regression 

This model using the 5 inputs (variables) and 1 output the Ridge regression results were 

around 88,87% accuracy for the R2, with the random seed of 288.  

 
Figure 4.21 Ridge Regression Value 

The results is quite good for the model to determine the actual value. The ridge 

regression model could be used to determine the actual values used for the ship. 
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Figure 4.22 Scatter plot of the Actual vs Predicted values for ridge regression 

The model graph used can be seen the actual vs predicted is quite close, but some 

predicted numbers from the quartal of the index is not quite accurate, but after that the 

model could more or less predict near the actual value. Due to this the model does quite 

need more calibration by adding more datas, more variables, and adding parameters for 

the model, so that the model could get more connection between each data and interpret 

the prediction data better and closer to the actual value.  
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Figure 4.23 Ridge tested vs prediction 

It aslo can be seen that the prediction lowest having around 6800 and the highest up to 

8000 litters for the prediction. The speed relation with fuel consumption is exponential 

its shown from the figure 4.18  

 

Figure 4.24 Ship Speed vs Fuel Consumption Prediction 

The formula relation between Speed Fuel Consumption and Ship Speed were 

determined as; 
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𝐵𝐻𝑃 = 𝐾1 ∗ 𝐾2 ∗ 𝑉𝑠ଷ 

 

The connection between the formula and the graph is that the BHP correlated to fuel 

consumption, thus the ship fuel consumption relation between ship speed is the ship speed with 

the power of 3. As seen from the graph the result were correlated to the formula.  

 
Figure 4.25 Draft vs Fuel Consumption Prediction 

The relation of figure 4.13 is ship middle draft and ship fuel consumption prediction. 

The graph is linear, original formula between draft and fuel consumption are; 

 

𝐵𝐻𝑃 = 𝑘1 ∗ 𝐶𝑡 ∗ 𝜌 ∗ 𝑤𝑠𝑎 ∗ 𝑉𝑠ଶ 

 

𝑤𝑠𝑎 = 𝑇 ∗ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 

 

Formula of fuel consumption estimation and draft can be seen that T variable is used 

for calculating wetted surface area (wsa). Thus the relation of the graph is linear. The graph 

correlation is align with the formula used.  
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From this the ridge method can be used for the prediction, 88,82% for the R2 value, with 

5 variables; ship speed, displacement, ship draft, beaufort number, and sea condition. Relation 

between the variable is displayed on the figure 4.7 and 4.8 were related to the original formula. 

Using regression then the equation of the model is determinded as 

Fuel Consumption = 7046,73 + 1592.483(Ship Speed in Knots) + 2,87 (Beaufort 

Number) + 54,53 (Displacement) + 154,39 (Sea Condition) + 54,53 (Draft) 

The output of the regression model reflects the relationship between the dependent 

variable (y) and the independent variables (x) that influence it. In this case, ship speed has a 

significant impact on the dependent variable, more so than the other variables in the model. 

Essentially, the model quantifies the influence of each independent variable on the regression 

outcome, deriving a formula that encapsulates these relationships. 

It's important to note that the regression model's calculations are complex and cannot be 

easily replicated through manual calculations. This complexity arises from the various fitting 

techniques and algorithms employed by the model to establish correlations between the 

independent variables and the output. These techniques allow the model to capture intricate 

patterns and interactions within the data, leading to more accurate predictions. Regression 

model provides valuable insights into how different factors, particularly ship speed, affect the 

outcome variable. However, the sophisticated nature of the model means that its outputs are 

best interpreted within the context of the model itself, rather than through straightforward 

manual calculations..
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Table 4.2 Ridge Regression Sample 

Target Prediction Residual Difference (%) 

7665 7493,47 171,53 2,24 

7700 7766,35 -66,35 -0,86 

7784 7519,43 264,57 3,40 

7456 7987,61 -531,61 -7,13 

7774 7506,04 267,96 3,45 

7680 7584,43 95,57 1,24 
 

The analysis of the model's performance using Ridge Regression reveals a nuanced 

picture when comparing predicted values to target values. In this study, the dataset was divided 

into two segments: 75% was utilized for training the model, while the remaining 25% served 

as a testing set to evaluate its predictive capabilities. The Ridge Regression model demonstrated 

its effectiveness by achieving its closest approximation for a target value of 7700 liters, 

predicting 7776.35 liters. This resulted in a remarkably small difference of just 0.86%, 

indicating that the model can perform well under certain conditions. However, the results also 

showcased considerable discrepancies in other predictions. For instance, when the target was 

set at 7456 liters, the model predicted 7987.61 liters, leading to a significant difference of 

7,13%. Such variability in performance suggests that while the model has the potential for 

accuracy, it also faces challenges in consistently aligning its predictions with the targets across 

the dataset.  

In light of these findings, the model was subsequently tested on the complete dataset to 

further evaluate its overall effectiveness and reliability. This comprehensive evaluation 

underscores the importance of not only assessing the model's performance on a subset of data 

but also understanding how it behaves with the full range of inputs. The significant differences 

observed between some predicted and target values highlight the necessity for further 

refinement of the model. This could involve exploring additional features that may enhance the 

model's predictive power, optimizing the underlying algorithms to improve performance, or 

employing more sophisticated techniques, such as feature engineering or hyperparameter 

tuning, to enhance predictive accuracy. Continuous evaluation and iterative enhancements are 

essential to ensure that the model can consistently meet desired performance standards across 
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various scenarios. Ultimately, a comprehensive approach to model development will be crucial 

in harnessing its full potential and delivering reliable predictions. 

In the context of predicting fuel consumption, the evaluation of model performance is 

essential to understand how accurately a model can estimate values compared to actual targets. 

Each prediction generated by the Ridge Regression model is based on its underlying estimation 

algorithms, which analyze various input features to forecast fuel consumption. To assess the 

effectiveness of these predictions, we compare the predicted values against the targeted values 

of fuel consumption. This comparison yields residual values, which represent the differences 

between the predicted and actual values. These residuals are crucial for understanding the 

model's accuracy, as they highlight areas where the model may underperform or excel.  

To quantify the model's predictive capability, we can express these residuals as 

percentages. This percentage calculation provides a clear metric to evaluate the model's 

performance across different scenarios, allowing us to identify how closely the predictions align 

with the actual fuel consumption values. By analyzing these percentages, we can gain insights 

into the model's strengths and weaknesses, enabling us to make informed adjustments to 

improve accuracy. The use of Ridge Regression, with its ability to handle multicollinearity and 

regularize coefficients, has emerged as a powerful tool for predicting fuel consumption. Its 

effectiveness in managing complex datasets and capturing intricate relationships between 

features makes it particularly suitable for this domain. By leveraging advanced algorithms and 

optimization techniques, Ridge Regression consistently delivers reliable predictions, making it 

a preferred choice for practitioners in the field. 
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4.8 XGBoost 

This model using 5 inputs and 1 output, but XGBoost use grid parameter and every grid 

is consist of different variables such as learning_rate, max_depth, and n_estimators. So XGB 

model search for the grid and estimates the best parameters for the best model. After the best 

model is decided then the model is trained to estimate the value of  R2. The results of the model 

were around 93,06%. The value of the R2 is realistic, so the model can be used for estimating 

the fuel consumption estimation. The model could be optimized by adding more data to the 

model to optimize it further. 

 
Figure 4.26 Result XGBoost 

The resulting R-squared value of 93.06% indicates a strong fit of the regression model 

to the dataset utilized for the analysis. This high level of R-squared suggests that the model 

explains a significant portion of the variance in the data, demonstrating its effectiveness in 

capturing the underlying relationships. In Figure 4.27, we can observe the graphical 

representation of the XGBoost model, which compares the actual values against the predicted 

values. This visual comparison provides valuable insights into the model's performance, 

highlighting areas where predictions align closely with actual observations as well as instances 

of deviation. The close proximity of the predicted values to the actual values in the graph 

reinforces the reliability of the XGBoost model in forecasting outcomes based on the given 

dataset. Overall, the combination of a high R-squared value and the graphical analysis 

underscores the robustness of the model. 
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Figure 4.27 Scatter plot of fuel oil consumption original vs predicted XGBoost regression 

Scatter line of the graph as can be seen that index per index the data is plotted, the model 

able to predict the consumption using 5 variables; ship speed, displacement, beaufort number, 

draft, and sea condition.The XGBoost graph results in a more accurate plot betwen the actual 

value and predicted value. The plotting is not fully aligned, some were align, then the model 

could not be perfectly used for the prediction.  

 
Figure 4.28 XGBoost Regressor Predictions vs target 
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To make the model much more accurate then it need to be more data used for the 

prediction. The scaling also need to be used for the gradient boosting so the data can be more 

accurate for continuous model learning.  

The relation between the predicted fuel consumption values and ship speed can be seen 

on figure 4.29 

 
Figure 4.29 Relation between Ship speed vs Fuel consumption prediction 

The formula relation between Speed Fuel Consumption and Ship Speed was determined 

as; 

 

𝐵𝐻𝑃 = 𝐾1 ∗ 𝐾2 ∗ 𝑉𝑠ଷ 

 

The relationship between the formula and the graph illustrates a clear correlation 

between Brake Horsepower (BHP) and fuel consumption, demonstrating how ship fuel 

consumption is related to ship speed raised to the power of three. This cubic relationship 

indicates that as ship speed increases, fuel consumption rises significantly, highlighting the non-

linear nature of this dependency. The graph effectively supports this finding, as the plotted 

results align closely with the predictions made by the formula. This correlation underscores the 

importance of understanding these dynamics for optimizing fuel efficiency in maritime 

operations.  
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Figure 4.30 Draft vs Fuel Consumption Prediction 

The relation of figure 4.17 is ship middle draft and ship fuel consumption prediction. 

The graph is linear, original formula between draft and fuel consumption are; 

 

𝐵𝐻𝑃 = 𝑘1 ∗ 𝐶𝑡 ∗ 𝜌 ∗ 𝑤𝑠𝑎 ∗ 𝑉𝑠ଶ 

 

𝑤𝑠𝑎 = 𝑇 ∗ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 

 

Formula of fuel consumption estimation and draft can be seen that T variable is used 

for calculating wetted surface area (wsa). Thus the relation of the graph is linear. The graph 

correlation is align with the formula used.  

From this the ridge method can be used for the prediction, 93,06% for the R2 value, with 

5 variables; ship speed, displacement, ship draft, beaufort number, and sea condition. Relation 

between the variable is displayed on the figure 4.10 and 4.11 were related to the original 

formula. 
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XGBoost method provides feature importance, the values from 5 inputs are respectively 

0.010 , 0.005 , 0.005 , 0.98 ,and 0.005. Which means the input sea condition holds the more 

importance to the model learning and the ship service speed also provides a good number for 

the model.  

 
Figure 4.31 XGBoost original and predicted values sample 

The provided data consists of the model's predicted outputs, which include residuals and 

percentage differentials, with additional comprehensive details available in the appendix. This 

analysis highlights the discrepancies between the predicted values and the actual observations, 

offering insights into the model's performance and accuracy. By examining the residuals and 

their corresponding percentage differentials, we can assess the extent of prediction errors and 

identify areas for potential improvement in the model's forecasting capabilities. For a deeper 

understanding of the data and its implications, please refer to the appendix for the complete 

dataset and further context..  
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Table 4.3 XGBoost Regression sample value 

Target Prediction Residual Differential (%) 

7665 7457,05 207,95 2,71 
7700 7660,07 39,93 0,52 
7784 7631,31 152,69 1,96 
7456 7998,19 -542,19 -7,27 
7774 7602,81 171,19 2,20 
7680 7524,72 155,28 2,02 
7360 8272,17 -912,17 -12,39 

 

The analysis of the model's performance reveals a nuanced picture when comparing the 

predicted values to the target values. In this study, the dataset was divided into two segments: 

75% was utilized for training the model, while the remaining 25% served as a testing set to 

evaluate its predictive capabilities. Among the predictions made, the model achieved its closest 

approximation for a target value of 7700 liters, with a prediction of 7660.07 liters. This resulted 

in a remarkably small difference of just 0.52%, indicating that the model can perform well 

under certain conditions. However, the results also showcased considerable discrepancies in 

other predictions. For instance, when the target was set at 7360 liters, the model predicted 

8272.17 liters, leading to a significant difference of 12.39%. Such variability in performance 

suggests that while the model has the potential for accuracy, it also faces challenges in 

consistently aligning its predictions with the targets across the dataset. 

In light of these findings, the model was subsequently tested on the complete dataset to 

further evaluate its overall effectiveness and reliability. The mixed results highlight the 

importance of not only assessing the model's performance on a subset of data but also 

understanding how it behaves with the full range of inputs. The significant differences observed 

between some predicted and target values underscore the necessity for further refinement of the 

model. This could involve exploring additional features, optimizing algorithms, or employing 

more sophisticated techniques to improve predictive accuracy. Continuous evaluation and 

iterative enhancements are essential to ensure that the model can consistently meet desired 

performance standards. Ultimately, a comprehensive approach to model development will be 

crucial in harnessing its full potential and delivering reliable predictions across various 

scenarios..  
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In the context of predicting fuel consumption, the evaluation of model performance is 

essential to understand how accurately a model can estimate values compared to actual targets. 

Each prediction generated by the model is based on its underlying estimation algorithms, which 

analyze various input features to forecast fuel consumption.  

To assess the effectiveness of these predictions, we compare the predicted values against 

the targeted values of fuel consumption. This comparison yields residual values, which 

represent the differences between the predicted and actual values. These residuals are crucial 

for understanding the model's accuracy, as they highlight areas where the model may 

underperform or excel. 

To quantify the model's predictive capability, we can express these residuals as 

percentages. This percentage calculation provides a clear metric to evaluate the model's 

performance across different scenarios, allowing us to identify how closely the predictions align 

with the actual fuel consumption values. By analyzing these percentages, we can gain insights 

into the model's strengths and weaknesses, enabling us to make informed adjustments to 

improve accuracy. 

Among various predictive modeling techniques, the XGBoost model has emerged as a 

powerful tool for predicting fuel consumption. Its ability to handle complex datasets and capture 

intricate relationships between features makes it particularly effective in this domain. By 

leveraging advanced algorithms and optimization techniques, XGBoost consistently delivers 

reliable predictions, making it a preferred choice for practitioners in the field. 

In conclusion, the systematic comparison of predicted and targeted values, along with 

the calculation of residuals and their percentage differentials, provides a comprehensive 

framework for evaluating model performance. The use of XGBoost in this context not only 

enhances predictive accuracy but also contributes to more efficient fuel consumption 

management strategies.
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4.9 Discussion 

The normal value is 75% of the data is trained and 25% of the data is used for testing, 

the data is chosen randomly throughout the model. Every model is different then the testing is 

different between the 2 algorithms Ridge and XGBoost. Between the 2 algorithms Ridge and 

XGBoost it can be seen that XGBoost having the most accurate value than the Ridge regressor 

value this XGBoost having the highest R2 score of 0,9306 and the Ridge has R2 around 0,8882. 

Which means for the KMP. Kirana VII Passenger Roro ship using the XGBoost algorithm is 

better than Ridge regressor for continuous data prediction. XGBoost having the advantage due 

to more complexity of the model in correlating all the variables given which the machine 

learning try to work on.  

Both model is validated through testing in making graph between the fuel consumption 

and the variables taken to make the model. For example the draft correlation to the fuel 

consumption is linear,  while the ship speed correlation to the fuel consumption is ship speed 

to the power of 3. For the displacement and others that could be seen on the formula, ship fuel 

consumption mainly depends on the resistance and ship speed. If the variable could be more 

described and check on every aspect, then the model could capture more connection to the 

output. 

The value could change if the data is much more than intended. For example if the data 

is 5 times larger in sample the value could change. The current data is a much more accurate 

XGBoost than Ridge regressor. Xgboost algorithm is specified into some grids which the 

difference resulting “best model”.  

XGBoost, a gradient boosting algorithm, is capable of modeling non-linear relationships 

between features, which is crucial for our dataset. Ridge, a linear regression technique, is 

limited to modeling linear relationships and may not capture the intricate patterns present in the 

data. XGBoost's iterative learning process, where each iteration builds upon the previous one 

(grid), allows it to adapt to the nuances of the dataset more effectively. This iterative process 

enables XGBoost to identify and correct errors more efficiently, leading to better predictions. 

Ridge, does not have this iterative learning capability and relies solely on the initial parameters. 

Furthermore, XGBoost's use of gradient boosting, which combines multiple weak 

models into a strong one, provides a robust and stable solution. This approach helps to reduce 

overfitting and improve generalization, which is essential for real-world applications. Ridge, as 
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a linear model, is more prone to overfitting and may not generalize well to unseen data. The 

superior performance of XGBoost over Ridge in the datasets can be attributed to its ability to 

handle complex interactions, iterative learning, and robustness against overfitting. These 

advantages make XGBoost a more suitable choice for the dataset and demonstrate its potential 

for better predictive performance in similar applications. 

In overal the model accuracy could be higher than this because if the data taken is in the 

lower interval resulting the number of samples increase, thus resulting in the increased accuracy 

for the model. Furthermore the increase in correlating variables of the output (fuel consumption) 

also help the model to learn more and resulting in the better value of accuracy. Future research 

could focus on exploring other algorithms that can handle complex interactions and iterative 

learning, such as neural networks and decision trees. These algorithms could be used in 

combination with XGBoost to further improve the model's performance. Additionally, more 

data could be collected from different sources to increase the sample size and improve the 

model's generalizability. This would allow the model to better capture the nuances of the data 

and make more accurate predictions. 
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CHAPTER 5 

Conclusion 

5.1 Conclusion 

In this study the regression method that compared between Ridge and XGBoost using 

the Visual Studio Code. The conclusion between the 2 algorithm is that XGBoost is much 

more accurate for KMP. Kirana VII having the R2 score of 0,9306. XGBoost is usable if 

the numbers data taken is much more. The model could be used for estimating the fuel 

consumption for KMP. Kirana VII. The graph can be seen that the Ridge is much more 

accurate than XGBoost method. 

The comparison between Ridge and XGBoost regression algorithms for estimating fuel 

consumption in ships using the Visual Studio Code revealed that XGBoost is significantly 

more accurate than Ridge. The R² score for XGBoost was 0.9306, while Ridge achieved 

an R² score of 0.887. The results demonstrate that XGBoost outperformed Ridge in terms 

of accuracy. This superiority can be attributed to XGBoost's ability to handle complex 

interactions between features and its robustness against overfitting. 

Study highlights the effectiveness of XGBoost in estimating fuel consumption for the 

KMP. Kirana VII. The high R² score achieved by XGBoost indicates its potential for 

better predictive performance in similar applications. Future research could explore other 

algorithms that can handle complex interactions and iterative learning, such as neural 

networks and decision trees, to further improve the model's accuracy and generalizability. 

5.2 Suggestion 

Based on the research some suggestion could be made: 

1. Increasing the accuracy of the machine learning is by adding more numbers of data 

so the accuracy would be increased.  

2. Parameters could be added more to increase the accuracy 

3. Data collecting could be digitalized due to the precision of manual data collection to 

minimize human error. 

In summary, the centralization of displacement data and the assumption of a constant 

Coefficient Block are integral to the efficient calculation of ship displacement. While 



 

60 
 

these practices enhance the speed and consistency of assessments, it is crucial for 

professionals in the field to be aware of their limitations and to incorporate empirical 

validation into their processes. By doing so, they can ensure that their calculations remain 

robust and reflective of the actual performance of the vessel in various conditions. 
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ATTACHMENT A  

Data Example 
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Example of data 

 

Current 

Time Date 

Sailing 

speed 

(Knots) 

Beaufort 
Displacement 

(Tons) 

Sea 

Condition 

Draft 

 (M) 

Fuel 

consumption 

(l/day) 

1 07 2023 12,5000  2 1990,6320  4,0000  3,4 7997,0000  

2 07 2023 0,0000  1 0,0000  3,0000  0 7593,0000  

3 07 2023 12,5000  1 1990,6320  3,0000  3,4 7536,0000  

4 07 2023 12,0000  1 1873,5360  2,0000  3,2 7887,0000  

5 07 2023 12,0000  1 1814,9880  2,0000  3,1 7566,0000  

6 07 2023 11,5000  1 1932,0840  3,0000  3,3 7891,0000  

7 07 2023 11,2000  1 2049,1800  3,0000  3,5 7924,0000  

8 07 2023 11,6000  1 1873,5360  2,0000  3,2 7513,0000  

9 07 2023 11,0000  1 1814,9880  2,0000  3,1 7541,0000  

10 07 2023 11,3000  1 1932,0840  2,0000  3,3 7895,0000  

11 07 2023 11,2000  1 1932,0840  3,0000  3,3 7696,0000  

12 07 2023 11,2000  1 1873,5360  3,0000  3,2 7451,0000  

13 07 2023 11,5000  1 1932,0840  2,0000  3,3 7545,0000  

14 07 2023 11,7000  1 1932,0840  3,0000  3,3 7615,0000  

15 07 2023 12,0000  1 1932,0840  3,0000  3,3 7559,0000  
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ATTACHMENT B 

Ship Particular 
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Ship Particular 
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ATTACHMENT C 

Full Ship Fuel Consumption Data 
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Ship Fuel Consumption Data 

Current Time 

Date 
Sailing speed Beaufort Displacement Sea Condition Draft 

Fuel 

consumption 

rate 

20 02 2023 11,0000  1 1873,5360  2,0000  3,20 7665,0000  

21 02 2023 11,6000  1 1873,5360  2,0000  3,20 7700,0000  

22 02 2023 10,7000  1 1990,6320  3,0000  3,40 7784,0000  

23 02 2023 11,7000  1 2049,1800  3,0000  3,50 7456,0000  

24 02 2023 10,7000  1 1932,0840  3,0000  3,30 7774,0000  

25 02 2023 11,2000  1 1873,5360  2,0000  3,20 7680,0000  

26 02 2023 10,7000  1  3,0000  NaN 350,0000  

27 02 2023 NaN 0 1756,4400  1,0000  3,00 133,0000  

28 02 2023 NaN 0  NaN NaN NaN 

1 03 2023 NaN 0  NaN NaN NaN 

2 03 2023 NaN 0  NaN NaN NaN 

3 03 2023 NaN 0  NaN NaN NaN 

4 03 2023 NaN 0  NaN NaN NaN 

5 03 2023 NaN 0  NaN NaN NaN 

6 03 2023 NaN 0  NaN NaN NaN 

7 03 2023 NaN 0  NaN NaN NaN 

8 03 2023 NaN 0  NaN NaN NaN 

9 03 2023 NaN 0  NaN NaN NaN 

10 03 2023 NaN 0  NaN NaN NaN 

11 03 2023 NaN 0  NaN NaN NaN 

12 03 2023 NaN 0  NaN NaN NaN 
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13 03 2023 NaN 0  NaN NaN NaN 

14 03 2023 NaN 0  NaN NaN NaN 

15 03 2023 12,5000  0 1932,0840  5,0000  3,30 7360,0000  

16 03 2023 9,7000  1 2107,7280  2,0000  3,60 7800,0000  

17 03 2023 12,3000  1 1990,6320  5,0000  3,40 7888,0000  

18 03 2023 10,2000  1 2049,1800  2,0000  3,50 7899,0000  

19 03 2023 12,7000  1 1990,6320  2,0000  3,40 7889,0000  

20 03 2023 9,7000  1 1814,9880  2,0000  3,10 7619,0000  

21 03 2023 12,7000  1 1697,8920  2,0000  2,90 7700,0000  

22 03 2023 10,2000  1 1756,4400  2,0000  3,00 7784,0000  

23 03 2023 10,2000  1 1814,9880  2,0000  3,10 7456,0000  

24 03 2023 10,7000  1 1814,9880  2,0000  3,10 7874,0000  

25 03 2023 12,7000  1 1990,6320  2,0000  3,40 7680,0000  

26 03 2023 10,0000  1 1932,0840  2,0000  3,30 7680,0000  

27 03 2023 12,0000  1 2107,7280  5,0000  3,60 7680,0000  

28 03 2023 10,2000  1 1990,6320  2,0000  3,40 7680,0000  

29 03 2023 12,2000  1 1990,6320  2,0000  3,40 7680,0000  

30 03 2023 10,6000  1 2166,2760  2,0000  3,70 7680,0000  

31 03 2023 NaN 1  NaN NaN NaN 

1 04 2023 NaN 1  NaN NaN NaN 

2 04 2023 12,1000  1 1990,6320  2,0000  3,40 7693,0000  

3 04 2023 11,0000  1 1756,4400  2,0000  3,00 7680,0000  

4 04 2023 12,7000  1 2107,7280  2,0000  3,60 7580,0000  

5 04 2023 11,0000  1 1932,0840  2,0000  3,30 7780,0000  

6 04 2023 11,8000  1 1932,0840  2,0000  3,30 7680,0000  

7 04 2023 11,0000  1 1873,5360  2,0000  3,20 7780,0000  
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8 04 2023 11,2000  1 2049,1800  3,0000  3,50 7680,0000  

9 04 2023 10,2000  1 1990,6320  2,0000  3,40 7580,0000  

10 04 2023 11,5000  1 2107,7280  2,0000  3,60 7580,0000  

11 04 2023 11,4000  1 2049,1800  2,0000  3,50 7780,0000  

12 04 2023 11,3000  1 2107,7280  3,0000  3,60 7580,0000  

13 04 2023 11,0000  1 1873,5360  2,0000  3,20 7773,0000  

14 04 2023 12,0000  1 1990,6320  2,0000  3,40 7680,0000  

15 04 2023 11,1000  1 1990,6320  2,0000  3,40 7687,0000  

16 04 2023 11,6000  1 1932,0840  2,0000  3,30 7709,0000  

17 04 2023 11,0000  1 2049,1800  2,0000  3,50 7600,0000  

18 04 2023 11,2000  1 1756,4400  2,0000  3,00 7887,0000  

19 04 2023 11,2000  1 1639,3440  2,0000  2,80 7604,0000  

20 04 2023 11,8000  1 1814,9880  6,0000  3,10 7700,0000  

21 04 2023 11,5000  1 1756,4400  2,0000  3,00 7660,0000  

22 04 2023 NaN 1  NaN NaN NaN 

23 04 2023 NaN 1  NaN NaN NaN 

24 04 2023 NaN 1  NaN NaN NaN 

25 04 2023 NaN 1 1639,3440  NaN 2,80 300,0000  

26 04 2023 11,5000  1 1873,5360  6,0000  3,20 7639,0000  

27 04 2023 10,7000  1 1814,9880  2,0000  3,10 7630,0000  

28 04 2023 12,2000  1 2049,1800  2,0000  3,50 7600,0000  

29 04 2023 11,1000  1 1697,8920  2,0000  2,90 7680,0000  

30 04 2023 NaN 1  NaN NaN NaN 

1 05 2023 11,3000  1 2049,1800  2,0000  3,50 7680,0000  

2 05 2023 12,0000  1 1990,6320  2,0000  3,40 7780,0000  

3 05 2023 11,2000  1 1873,5360  2,0000  3,20 7621,0000  
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4 05 2023 11,1000  1 1932,0840  3,0000  3,30 7533,0000  

5 05 2023 10,7000  1 1990,6320  5,0000  3,40 7794,0000  

6 05 2023 11,2000  1 1873,5360  6,0000  3,20 7675,0000  

7 05 2023 10,8000  1 1990,6320  5,0000  3,40 7755,0000  

8 05 2023 11,5000  1 1932,0840  3,0000  3,30 7620,0000  

9 05 2023 11,0000  1 1756,4400  2,0000  3,00 7534,0000  

10 05 2023 11,4000  1 1873,5360  3,0000  3,20 7765,0000  

11 05 2023 11,0000  1  2,0000  NaN 7677,0000  

12 05 2023 11,5000  1  3,0000  NaN 7799,0000  

13 05 2023 11,2000  1 1932,0840  2,0000  3,30 7799,0000  

14 05 2023 11,0000  1  3,0000  NaN 7684,0000  

15 05 2023 11,0000  1  2,0000  NaN 7667,0000  

16 05 2023 11,5000  1  2,0000  NaN 7729,0000  

17 05 2023 10,6000  1  2,0000  NaN 7621,0000  

18 05 2023 11,2000  1  2,0000  NaN 7855,0000  

19 05 2023 10,8000  1  2,0000  NaN 7630,0000  

20 05 2023 10,5000  1  2,0000  NaN 7743,0000  

21 05 2023 11,0000  1 1756,4400  5,0000  3,00 7757,0000  

22 05 2023 10,7000  1 1990,6320  3,0000  3,40 7619 

23 05 2023 10,7000  1 2049,1800  6,0000  3,50 7956,0000  

24 05 2023 10,5000  1 1990,6320  2,0000  3,40 7778,0000  

25 05 2023 11,0000  1 1814,9880  2,0000  3,10 7697,0000  

26 05 2023 11,0000  1 2049,1800  2,0000  3,50 7659,0000  

27 05 2023 11,3000  1 2049,1800  2,0000  3,50 7621,0000  

28 05 2023 11,3000  1 1932,0840  3,0000  3,30 7684,0000  

29 05 2023 11,2000  1 1756,4400  5,0000  3,00 7582,0000  
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30 05 2023 11,0000  1 1990,6320  2,0000  3,40 7781,0000  

31 05 2023 11,0000  1 2049,1800  2,0000  3,50 7967,0000  

1 06 2023 11,2000  1  2,0000  NaN 7967,0000  

2 06 2023 10,7000  1  2,0000  NaN 7622,0000  

3 06 2023 11,3000  1 2049,1800  3,0000  3,50 7500,0000  

4 06 2023 10,7000  1 1756,4400  3,0000  3,00 7898,0000  

5 06 2023 11,5000  1 1990,6320  2,0000  3,40 7587,0000  

6 06 2023 10,3000  1 1814,9880  2,0000  3,10 7890,0000  

7 06 2023 10,8000  1 1990,6320  2,0000  3,40 7901,0000  

8 06 2023 11,3000  1 1932,0840  2,0000  3,30 7513,0000  

9 06 2023 10,8000  1 2078,4540  3,0000  3,55 7540,0000  

10 06 2023 10,9000  1 1990,6320  2,0000  3,40 7899,0000  

11 06 2023 10,8000  1 2049,1800  3,0000  3,50 7690,0000  

12 06 2023 11,1000  1 1873,5360  2,0000  3,20 7455,0000  

13 06 2023 11,1000  1 2166,2760  3,0000  3,70 7534,0000  

14 06 2023 11,0000  1 2224,8240  2,0000  3,80 7611,0000  

15 06 2023 10,8000  1 1932,0840  2,0000  3,30 7563,0000  

16 06 2023 11,1000  1 1639,3440  2,0000  2,80 7605,0000  

17 06 2023 11,0000  1 1990,6320  2,0000  3,40 7687,0000  

18 06 2023 11,1000  1 1814,9880  2,0000  3,10 7504,0000  

19 06 2023 11,0000  1 2049,1800  2,0000  3,50 7621,0000  

20 06 2023 11,1000  1 1990,6320  2,0000  3,40 7661,0000  

21 06 2023 11,3000  1 1697,8920  2,0000  2,90 7775,0000  

22 06 2023 11,2000  1 1990,6320  2,0000  3,40 7569,0000  

23 06 2023 NaN 0  1,0000  NaN 368,0000  

24 06 2023 NaN 0  1,0000  NaN NaN 
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25 06 2023 NaN 0  1,0000  NaN NaN 

26 06 2023 NaN 0 1697,8920  1,0000  2,90 343,0000  

27 06 2023 12,4000  1 1990,6320  3,0000  3,40 7621,0000  

28 06 2023 11,9000  1 2049,1800  2,0000  3,50 7684,0000  

29 06 2023 11,6000  1  2,0000  NaN 7582,0000  

30 06 2023 12,0000  1 2049,1800  2,0000  3,50 7783,0000  

1 07 2023 12,5000  2 1990,6320  4,0000  3,40 7997,0000  

2 07 2023 NaN 1  3,0000  NaN 7593,0000  

3 07 2023 12,5000  1 1990,6320  3,0000  3,40 7536,0000  

4 07 2023 12,0000  1 1873,5360  2,0000  3,20 7887,0000  

5 07 2023 12,0000  1 1814,9880  2,0000  3,10 7566,0000  

6 07 2023 11,5000  1 1932,0840  3,0000  3,30 7891,0000  

7 07 2023 11,2000  1 2049,1800  3,0000  3,50 7924,0000  

8 07 2023 11,6000  1 1873,5360  2,0000  3,20 7513,0000  

9 07 2023 11,0000  1 1814,9880  2,0000  3,10 7541,0000  

10 07 2023 11,3000  1 1932,0840  2,0000  3,30 7895,0000  

11 07 2023 11,2000  1 1932,0840  3,0000  3,30 7696,0000  

12 07 2023 11,2000  1 1873,5360  3,0000  3,20 7451,0000  

13 07 2023 11,5000  1 1932,0840  2,0000  3,30 7545,0000  

14 07 2023 11,7000  1 1932,0840  3,0000  3,30 7615,0000  

15 07 2023 12,0000  1 1932,0840  3,0000  3,30 7559,0000  

16 07 2023 11,0000  1 2049,1800  2,0000  3,50 7662,0000  

17 07 2023 11,4000  1 2049,1800  3,0000  3,50 7669,0000  

18 07 2023 10,8000  1 1990,6320  2,0000  3,40 7566,0000  

19 07 2023 11,0000  1 1990,6320  3,0000  3,40 7621,0000  

20 07 2023 11,2000  1 1932,0840  2,0000  3,30 7661,0000  
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21 07 2023 12,0000  1 2107,7280  3,0000  3,60 7775,0000  

22 07 2023 11,5000  1 1990,6320  2,0000  3,40 7569,0000  

23 07 2023 11,0000  1 1932,0840  3,0000  3,30 7422,0000  

24 07 2023 11,8000  1 1990,6320  2,0000  3,40 7880,0000  

25 07 2023 11,5000  1 1873,5360  2,0000  3,20 7680,0000  

26 07 2023 12,2000  1 1932,0840  2,0000  3,30 7637,0000  

27 07 2023 11,0000  1 1990,6320  3,0000  3,40 7594,0000  

28 07 2023 11,5000  1 1932,0840  2,0000  3,30 7684,0000  

29 07 2023 11,7000  1 1990,6320  3,0000  3,40 7582,0000  

30 07 2023 11,7000  1 1990,6320  2,0000  3,40 7783,0000  

31 07 2023 11,7000  1 2049,1800  3,0000  3,50 7783,0000  

1 08 2023 11,7000  1 2049,1800  2,0000  3,50 7997,0000  

2 08 2023 11,3000  1 1932,0840  3,0000  3,30 7593,0000  

3 08 2023 11,7000  1 1990,6320  2,0000  3,40 7890,0000  

4 08 2023 11,2000  1 2049,1800  3,0000  3,50 7887,0000  

5 08 2023 11,5000  1 1932,0840  3,0000  3,30 7566,0000  

6 08 2023 11,0000  1 1932,0840  3,0000  3,30 7894,0000  

7 08 2023 11,5000  1 1932,0840  3,0000  3,30 7934,0000  

8 08 2023 10,8000  1 1990,6320  2,0000  3,40 7683,0000  

9 08 2023 11,8000  1 1873,5360  3,0000  3,20 7569,0000  

10 08 2023 11,2000  1 1990,6320  2,0000  3,40 7888,0000  

11 08 2023 12,0000  1 1990,6320  2,0000  3,40 7709,0000  

12 08 2023 11,2000  1 1932,0840  2,0000  3,30 7697,0000  

13 08 2023 11,3000  1 1932,0840  2,0000  3,30 7612,0000  

14 08 2023 11,0000  1 1873,5360  2,0000  3,20 7579,0000  

15 08 2023 11,1000  1 1873,5360  2,0000  3,20 7596,0000  
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16 08 2023 11,1000  1 1990,6320  2,0000  3,40 7766,0000  

17 08 2023 11,2000  1 1932,0840  3,0000  3,30 7711,0000  

18 08 2023 11,5000  1 1990,6320  2,0000  3,40 7623,0000  

19 08 2023 11,7000  1 1873,5360  2,0000  3,20 7701,0000  

20 08 2023 11,2000  1 1990,6320  3,0000  3,40 7698,0000  

21 08 2023 11,2000  1 1873,5360  3,0000  3,20 7775,0000  

22 08 2023 11,1000  1 1932,0840  3,0000  3,30 7767,0000  

23 08 2023 11,5000  1 1814,9880  3,0000  3,10 7540,0000  

24 08 2023 11,1000  1 1814,9880  3,0000  3,10 7899,0000  

25 08 2023 11,5000  1 1932,0840  3,0000  3,30 7680,0000  

26 08 2023 11,5000  1 1873,5360  3,0000  3,20 7649,0000  

27 08 2023 11,0000  1 1873,5360  5,0000  3,20 7654,0000  

28 08 2023 11,2000  1 1873,5360  2,0000  3,20 7684,0000  

29 08 2023 11,3000  1 1873,5360  2,0000  3,20 7665,0000  

30 08 2023 11,2000  1 1932,0840  3,0000  3,30 7758,0000  

31 08 2023 10,7000  1 1990,6320  2,0000  3,40 7895,0000  

1 09 2023 10,7000  1 1932,0840  3,0000  3,30 7985,0000  

2 09 2023 11,6000  1 1990,6320  2,0000  3,40 7793,0000  

3 09 2023 10,6000  1 1932,0840  3,0000  3,30 7766,0000  

4 09 2023 10,8000  1 2049,1800  2,0000  3,50 7800,0000  

5 09 2023 NaN 0  1,0000  NaN NaN 

6 09 2023 NaN 0 2049,1800  NaN 3,50 175,0000  

7 09 2023 11,5000  1 1873,5360  3,0000  3,20 7959,0000  

8 09 2023 11,7000  1 1990,6320  2,0000  3,40 7783,0000  

9 09 2023 11,3000  1 1932,0840  2,0000  3,30 7769,0000  

10 09 2023 11,0000  1 1932,0840  2,0000  3,30 7888,0000  
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11 09 2023 11,4000  1 2049,1800  3,0000  3,50 7889,0000  

12 09 2023 11,2000  1 1932,0840  3,0000  3,30 7597,0000  

13 09 2023 11,7000  1 1814,9880  3,0000  3,10 7800,0000  

14 09 2023 11,8000  1 2049,1800  2,0000  3,50 7679,0000  

15 09 2023 11,4000  1 1932,0840  3,0000  3,30 7886,0000  

16 09 2023 11,2000  1 1990,6320  3,0000  3,40 7644,0000  

17 09 2023 11,5000  1 1932,0840  3,0000  3,30 7587,0000  

18 09 2023 11,0000  1 1932,0840  3,0000  3,30 7644,0000  

19 09 2023 11,2000  1 1873,5360  3,0000  3,20 7587,0000  

20 09 2023 11,7000  1 1932,0840  3,0000  3,30 7612,0000  

21 09 2023 11,5000  1 1990,6320  2,0000  3,40 7765,0000  

22 09 2023 11,2000  2 1873,5360  4,0000  3,20 7462,0000  

23 09 2023 11,2000  1 1932,0840  2,0000  3,30 7691,0000  

24 09 2023 11,7000  1 2049,1800  2,0000  3,50 7767,0000  

25 09 2023 12,0000  1 1990,6320  2,0000  3,40 7692,0000  

26 09 2023 11,2000  1 1932,0840  3,0000  3,30 7683,0000  

27 09 2023 11,5000  1 1932,0840  2,0000  3,30 7559,0000  

28 09 2023 11,5000  1 1932,0840  2,0000  3,30 7754,0000  

29 09 2023 11,5000  1 1990,6320  3,0000  3,40 7784,0000  

30 09 2023 11,0000  1 1932,0840  3,0000  3,30 7765,0000  

1 10 2023 11,0000  0 1873,5360  5,0000  3,20 7785,0000  

2 10 2023 11,2000  1 1990,6320  3,0000  3,40 7889,0000  

3 10 2023 11,5000  1 2049,1800  2,0000  3,50 7980,0000  

4 10 2023 11,2000  1 1932,0840  2,0000  3,30 7770,0000  

5 10 2023 11,5000  1 1932,0840  2,0000  3,30 7770,0000  

6 10 2023 11,5000  1 1990,6320  3,0000  3,40 7770,0000  
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7 10 2023 11,5000  1 1873,5360  2,0000  3,20 7350,0000  

8 10 2023 10,8000  1 1990,6320  2,0000  3,40 7700,0000  

9 10 2023 NaN 0  NaN NaN 7888,0000  

10 10 2023 NaN 0  NaN NaN 7889,0000  

11 10 2023 11,0000  0 1932,0840  2,0000  3,30 7597,0000  

12 10 2023 NaN 0  NaN NaN 7800,0000  

13 10 2023 NaN 0 1990,6320  2,0000  3,40 7679,0000  

14 10 2023 NaN 0  1,0000  NaN 7800,0000  

15 10 2023 NaN 0  NaN NaN 7890,0000  

16 10 2023 NaN 0  3,0000  NaN 7886,0000  

17 10 2023 NaN 0  NaN NaN 7644,0000  

18 10 2023 11,2000  1 1932,0840  2,0000  3,30 7587,0000  

19 10 2023 10,9000  1 1990,6320  2,0000  3,40 7800,0000  

20 10 2023 11,4000  1 1990,6320  2,0000  3,40 7765,0000  

21 10 2023 11,0000  1 1932,0840  2,0000  3,30 7462,0000  

22 10 2023 10,8000  1 1990,6320  2,0000  3,40 7691,0000  

23 10 2023 10,7000  0 2049,1800  5,0000  3,50 7767,0000  

24 10 2023 11,0000  1 1990,6320  2,0000  3,40 7640,0000  

25 10 2023 10,3000  1 1990,6320  2,0000  3,40 7692,0000  

26 10 2023 11,0000  1 1990,6320  2,0000  3,40 7683,0000  

27 10 2023 10,1000  0 1932,0840  5,0000  3,30 7559,0000  

28 10 2023 11,2000  1 1990,6320  3,0000  3,40 7759,0000  

29 10 2023 10,2000  1 1990,6320  2,0000  3,40 7784,0000  

30 10 2023 11,6000  1 1990,6320  2,0000  3,40 7765,0000  

31 10 2023 10,7000  1 1990,6320  2,0000  3,40 7558,0000  

1 11 2023 11,3000  1 2049,1800  2,0000  3,50 7784,0000  
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2 11 2023 10,5000  1 2049,1800  2,0000  3,50 7985,0000  

3 11 2023 11,2000  1 1990,6320  2,0000  3,40 7793,0000  

4 11 2023 11,0000  0 1990,6320  5,0000  3,40 7766,0000  

5 11 2023 11,0000  1 2049,1800  2,0000  3,50 7899,0000  

6 11 2023 10,9000  1 1932,0840  2,0000  3,30 7527,0000  

9 11 2023 10,8000  1 1873,5360  2,0000  3,20 7769,0000  

10 11 2023 11,0000  1 1873,5360  2,0000  3,20 7768,0000  

11 11 2023 11,1000  1 1814,9880  2,0000  3,10 7629,0000  

12 11 2023 11,0000  1 1814,9880  2,0000  3,10 7699,0000  

13 11 2023 11,6000  1 1873,5360  2,0000  3,20 7788,0000  

14 11 2023 11,0000  1 1932,0840  2,0000  3,30 7688,0000  

15 11 2023 11,1000  1 1873,5360  2,0000  3,20 7886,0000  

16 11 2023 10,5000  1 1932,0840  2,0000  3,30 7644,0000  

17 11 2023 11,2000  1 1932,0840  2,0000  3,30 7587,0000  

18 11 2023 10,2000  0 1814,9880  5,0000  3,10 7755,0000  

19 11 2023 11,0000  1 1873,5360  3,0000  3,20 7765,0000  

20 11 2023 10,5000  1 1932,0840  2,0000  3,30 7462,0000  

21 11 2023 10,5000  1 1756,4400  2,0000  3,00 7691,0000  

22 11 2023 10,5000  1 1932,0840  5,0000  3,30 7767,0000  

23 11 2023 10,4000  1 1873,5360  2,0000  3,20 7640,0000  

24 11 2023 10,5000  1 1990,6320  2,0000  3,40 7692,0000  

25 11 2023 10,8000  1 1873,5360  2,0000  3,20 7683,0000  

26 11 2023 10,8000  1 1814,9880  2,0000  3,10 7559,0000  

27 11 2023 11,8000  1 1873,5360  2,0000  3,20 7754,0000  

28 11 2023 11,0000  1 1814,9880  2,0000  3,10 7784,0000  

29 11 2023 10,6000  1 1990,6320  2,0000  3,40 7765,0000  
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30 11 2023 10,8000  1 1990,6320  2,0000  3,40 7558,0000  

1 12 2023 11,2000  1 1785,7140  2,0000  3,05 7784,0000  

2 12 2023 11,0000  1 1990,6320  2,0000  3,40 7664,0000  

3 12 2023 11,2000  1 1873,5360  2,0000  3,20 7675,0000  

4 12 2023 11,0000  1 1990,6320  2,0000  3,40 7725,0000  

5 12 2023 11,0000  1 1814,9880  2,0000  3,10 7654,0000  

6 12 2023 11,0000  1 1990,6320  2,0000  3,40 7568,0000  

7 12 2023 10,7000  0 1873,5360  5,0000  3,20 7756,0000  

8 12 2023 10,5000  1 2049,1800  2,0000  3,50 7677,0000  

9 12 2023 10,5000  1 1873,5360  2,0000  3,20 7800,0000  

10 12 2023 10,6000  1 1756,4400  6,0000  3,00 7645,0000  

11 12 2023 11,2000  1 1873,5360  2,0000  3,20 7758,0000  

12 12 2023 11,0000  1 1814,9880  2,0000  3,10 7668,0000  

13 12 2023 11,2000  1 1814,9880  2,0000  3,10 7532,0000  

14 12 2023 11,1000  1 2049,1800  2,0000  3,50 7798,0000  

15 12 2023 11,2000  0 1785,7140  5,0000  3,05 7746,0000  

16 12 2023 11,2000  1 2049,1800  2,0000  3,50 7652,0000  

17 12 2023 10,8000  1 1873,5360  2,0000  3,20 7776,0000  

18 12 2023 11,5000  1 1990,6320  3,0000  3,40 7578,0000  

19 12 2023 10,7000  1 1873,5360  3,0000  3,20 7795,0000  

20 12 2023 10,8000  2 1990,6320  4,0000  3,40 7769,0000  

21 12 2023 10,7000  1 1932,0840  2,0000  3,30 7768,0000  

22 12 2023 11,2000  1 1932,0840  2,0000  3,30 7642,0000  

23 12 2023 10,7000  1 1639,3440  6,0000  2,80 7689,0000  

24 12 2023 11,0000  0 1756,4400  5,0000  3,00 7550,0000  

25 12 2023 11,6000  1 1873,5360  2,0000  3,20 7763,0000  
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26 12 2023 12,0000  1 1814,9880  2,0000  3,10 7550,0000  

27 12 2023 12,2000  1 1756,4400  2,0000  3,00 7621,0000  

28 12 2023 12,2000  1 1756,4400  2,0000  3,00 7569,0000  

29 12 2023 11,2000  1 1814,9880  2,0000  3,10 7720,0000  

30 12 2023 11,7000  1 1932,0840  2,0000  3,30 7653,0000  

31 12 2023 11,5000  1 1756,4400  2,0000  3,00 7725,0000  

1 01 2024 11,5000  1 1932,0840  2,0000  3,30 7653,0000  

2 01 2024 11,2000  1 1932,0840  2,0000  3,30 7325,0000  

3 01 2024 12,0000  0 1990,6320  5,0000  3,40 7710,0000  

4 01 2024 11,0000  1 1873,5360  2,0000  3,20 7767,0000  

5 01 2024 11,7000  1 1814,9880  2,0000  3,10 7722,0000  

6 01 2024 11,5000  1 1873,5360  2,0000  3,20 7741,0000  

7 01 2024 11,8000  1 1990,6320  2,0000  3,40 7665,0000  

8 01 2024 11,5000  1 1814,9880  2,0000  3,10 7631,0000  

9 01 2024 11,8000  1 1990,6320  2,0000  3,40 7641,0000  

10 01 2024 11,8000  1 1873,5360  3,0000  3,20 7677,0000  

11 01 2024 11,0000  1 1990,6320  2,0000  3,40 7724,0000  

12 01 2024 12,0000  1 1814,9880  3,0000  3,10 7794,0000  

13 01 2024 11,7000  1 1932,0840  3,0000  3,30 7631,0000  

14 01 2024 11,7000  1 1814,9880  2,0000  3,10 7634,0000  

15 01 2024 11,3000  1 1873,5360  2,0000  3,20 7689,0000  

16 01 2024 11,5000  1 1814,9880  3,0000  3,10 7613,0000  

17 01 2024 11,2000  1 1873,5360  2,0000  3,20 7712,0000  

18 01 2024 11,5000  0 1873,5360  5,0000  3,20 7729,0000  

19 01 2024 11,0000  1 2049,1800  2,0000  3,50 7751,0000  

20 01 2024 11,2000  1 1756,4400  2,0000  3,00 7648,0000  
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21 01 2024 11,7000  1 2049,1800  2,0000  3,50 7658,0000  

22 01 2024 11,7000  1 1873,5360  2,0000  3,20 7725,0000  

23 01 2024 11,2000  1 2049,1800  3,0000  3,50 7678,0000  

24 01 2024 11,2000  1 1932,0840  2,0000  3,30 7656,0000  

25 01 2024 10,8000  1 1932,0840  2,0000  3,30 7721,0000  

26 01 2024 11,8000  1 2049,1800  2,0000  3,50 7652,0000  

27 01 2024 10,8000  1 2049,1800  3,0000  3,50 7623,0000  

28 01 2024 11,4000  1 1932,0840  2,0000  3,30 7751,0000  

29 01 2024 11,5000  1 1990,6320  2,0000  3,40 7689,0000  

30 01 2024 11,5000  1 1990,6320  2,0000  3,40 7569,0000  

31 01 2024 11,0000  1 2049,1800  2,0000  3,50 7611,0000  

1 02 2024 11,0000  1 1756,4400  2,0000  3,00 7658,0000  

2 02 2024 11,5000  1 1990,6320  2,0000  3,40 7620,0000  

3 02 2024 11,1000  1 1873,5360  2,0000  3,20 7689,0000  

4 02 2024 10,9000  1 1932,0840  2,0000  3,30 7620,0000  

5 02 2024 11,1000  1 1873,5360  2,0000  3,20 7620,0000  

6 02 2024 10,6000  1 1990,6320  3,0000  3,40 7800,0000  

7 02 2024 11,5000  1 1990,6320  6,0000  3,40 7980,0000  

8 02 2024 11,2000  0 1990,6320  5,0000  3,40 7880,0000  

9 02 2024 11,5000  1 1873,5360  2,0000  3,20 7660,0000  

10 02 2024 11,2000  1 1932,0840  2,0000  3,30 7620,0000  

11 02 2024 11,0000  1 1814,9880  2,0000  3,10 7620,0000  

12 02 2024 10,9000  1 1814,9880  2,0000  3,10 7580,0000  

13 02 2024 11,0000  1 1932,0840  2,0000  3,30 7550,0000  

14 02 2024 11,2000  1 1990,6320  2,0000  3,40 7659,0000  

15 02 2024 11,2000  1 1697,8920  2,0000  2,90 7674,0000  
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16 02 2024 11,5000  1 2049,1800  2,0000  3,50 7564,0000  

17 02 2024 11,0000  1 1873,5360  2,0000  3,20 7621,0000  

18 02 2024 11,0000  1 1990,6320  2,0000  3,40 7543,0000  

19 02 2024 11,2000  1 1814,9880  2,0000  3,10 7691,0000  

20 02 2024 10,5000  1 1990,6320  2,0000  3,40 7613,0000  

21 02 2024 12,0000  0 1639,3440  5,0000  2,80 7695,0000  
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ATTACHMENT D 

Example Code 
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Example of Code 

import numpy as np 

import os 
import pandas as pd 

from sklearn.metrics import mean_squared_error 
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score 

from sklearn.datasets import make_regression 
from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import train_test_split, GridSearchCV 
import joblib 

from sklearn.model_selection import train_test_split 
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score 

 

 

from xgboost import XGBRegressor 

 

# Assuming train_file contains the path to the Excel file 
data = pd.read_excel(train_file) 

 
# Assuming column names in Excel are the same 
X = data[['Sailing speed', 'Beaufort', 'Displacement', 'Sea Condition', 'Draft']] 

y = data['Fuel consumption rate'] 
 

print (data) 
 

import matplotlib.pyplot as plt 
# Create a figure and axis object 

fig, axs = plt.subplots(nrows=3, ncols=4, figsize=(15, 10)) 

 
# Iterate over the features and create a box plot for each 

features = X.columns 
for i, feature in enumerate(features): 

    row = i // 4 
    col = i % 4 

    axs[row, col].boxplot(X[feature].values) 
    axs[row, col].set_title(feature) 

 
# Show the plot 

plt.tight_layout() 
plt.show() 
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data2 = new_data.copy() 

 
data2 = data2[data2['Fuel consumption rate']>7200].copy() 

 
data2.describe(include='all') 

 

 

# Create a new dataframe with the average values and other relevant columns 
avg_data = pd.DataFrame({ 

    'Speed': data['Sailing speed'], 
    'Wind': data['Beaufort'], 

    'Displ': data['Displacement'], 
    'Sea': data['Sea Condition'], 

    'Draftm': data['Draft'], 
    'FO': data['Fuel consumption rate'] 

}) 
 

# Concatenate the original dataframe with the new dataframe 
data = pd.concat([avg_data], axis=1) 

 

# Extract features and target variable 

X = avg_data[['Speed', 'Wind', 'Displ', 'Sea','Draftm']] 
y = data['FO'] 

 
# Scale the data 

scaler = StandardScaler() 
X_train_scaled = scaler.fit_transform(X) 

X_test_scaled = scaler.transform(X) 
 

# Define the hyperparameters grid for XGBoost 
xgb_params = { 

    'max_depth': [3, 5, 7], 
    'learning_rate': [0.1, 0.5, 1.0], 

    'n_estimators': [50, 100, 200] 
} 

 
# Initialize variables to track the best random state 

best_random_state = None 
best_r2 = -np.inf 
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# Try different random states 

for random_state in range(50,200): 
    # Split the data into training and testing sets 

    X_train, X_test, y_train, y_test = train_test_split(X_train_scaled, y, test_size=0.25, 
random_state=random_state) 

 
    # Perform grid search for XGBoost 
    xgb = XGBRegressor() 

    grid_search = GridSearchCV(xgb, xgb_params, cv=3) 
    grid_search.fit(X_train, y_train) 
 

    # Predict and evaluate the model 
    y_pred = grid_search.best_estimator_.predict(X_test) 

    r2 = r2_score(y_test, y_pred) 
    mse = mean_squared_error(y_test, y_pred) 

    mae = mean_absolute_error(y_test, y_pred) 
    rmse = np.sqrt(mse)  # Calculate RMSE 

 

    # Update the best random state if the current one is better 
    if r2 > best_r2: 

        best_r2 = r2 
        best_random_state = random_state 

        best_model = grid_search 
 

print(f'Best random state: {best_random_state}') 
print(f'Best R-squared: {best_r2}') 

print(f'Best hyperparameters for XGBoost: {best_model.best_params_}') 
print("Mean Squared Error (MSE):", mse) 

print("Mean Absolute Error (MAE):", mae) 
print("Root Mean Squared Error (RMSE):", rmse) 

 

from xgboost import XGBRegressor 
from sklearn.preprocessing import StandardScaler 

from sklearn.model_selection import GridSearchCV 
 

# Create an XGBoost model 

xgb_model = XGBRegressor() 
 

# Define the hyperparameters to tune 
param_grid = { 
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    'max_depth': [3, 5, 7], 
    'learning_rate': [0.1, 0.5, 1.0], 

    'n_estimators': [50, 100, 200] 
} 

 
# Create an XGBoost model with grid search 

grid_search = GridSearchCV(xgb_model, param_grid, cv=5, scoring='neg_mean_squared_error') 
 
# Fit the XGBoost model to the data 

grid_search.fit(X_train_scaled, y) 
 
# Get the best model and its parameters 

best_model = grid_search.best_estimator_ 
best_params = grid_search.best_params_ 

 
# Print the best model and its parameters 

print(f"Best Model: {best_model}") 
print(f"Best Parameters: {best_params}") 

 

# Predict using the best model 
y_pred = best_model.predict(X_test_scaled) 

 
# Ensure y and y_pred are 1-dimensional arrays 

y = y.values.flatten() 
y_pred = y_pred.flatten() 

 
# Create a new DataFrame with the original and predicted 'FO ME' values 

results = pd.DataFrame({ 
    'FO ME Original': y, 

    'FO ME Predicted': y_pred 
}) 

 
results.to_excel('prediction_results_XGBOOST.xlsx', index=False) 

# Print the DataFrame 
print(results) 

 

import matplotlib.pyplot as plt 

import pandas as pd 
 

# Assuming y and y_pred are your actual and predicted values 
 

results = pd.DataFrame({ 
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    'FO ME Original': y, 
    'FO ME Predicted': y_pred 

}) 
 

plt.figure(figsize=(14, 7)) 
plt.scatter(results.index, results['FO ME Original'], label='FO ME Original') 

plt.scatter(results.index, results['FO ME Predicted'], label='FO ME Predicted') 
plt.xlabel('Index') 
plt.ylabel('FO ME Value') 

plt.title('Scatter Plot of FO ME Original vs. FO ME Predicted') 
plt.legend() 
plt.grid(True) 

plt.ylim(3000, 9000)  # Set y-axis limits 
plt.show() 

 

import matplotlib.patches as mpatches 

import matplotlib.pyplot as plt 
import numpy as np 

import pandas as pd 
 

# Ensure y and y_test have the same dimensions 
if len(y) != len(y_test): 

    if len(y) > len(y_test): 
        y = y[:len(y_test)] 

    else: 
        y_test = y_test[:len(y)] 

 
# Create a DataFrame for plotting 

results = pd.DataFrame({ 
    'FO ME Original': y, 

    'FO ME Predicted': y_test 
}) 

 
# Create the scatter plot 

plt.scatter(y, y_test) 
 

# Add labels and title 

plt.xlabel('Targets', size=18) 
plt.ylabel('Predictions', size=18) 

 
# Add the diagonal line 

plt.plot([7200, 8000], [7200, 8000], color='red', label='diagonal line') 
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# Add the legend 

red_patch = mpatches.Patch(color='red', label='diagonal line') 
plt.legend(handles=[red_patch]) 

 
# Set the y-axis limits 

plt.ylim(7200, 8000) 
plt.xlim(7200, 8000) 
 

# Calculate the distance from the fit line 
distance = np.abs(y_test - y) 
 

# Color the points based on their distance from the fit line 
plt.scatter(y, y_test, c=distance, cmap='viridis') 

 
# Display the plot 

plt.show() 
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ATTACHMENT E 

XGBoost Regression Values 



 

92 
 

Table 5.1 XGBoost Prediction values 

Target Prediction Residual Differential (%) 

7665 7457,05 207,95 2,71 
7700 7660,07 39,93 0,52 
7784 7631,31 152,69 1,96 
7456 7998,19 -542,19 -7,27 
7774 7602,81 171,19 2,20 
7680 7524,72 155,28 2,02 
7360 8272,17 -912,17 -12,39 
7800 7131,17 668,83 8,57 
7888 8610,26 -722,26 -9,16 
7899 7271,85 627,15 7,94 
7889 8089,30 -200,30 -2,54 
7619 6988,65 630,35 8,27 
7700 7946,78 -246,78 -3,20 
7784 7129,33 654,67 8,41 
7456 7157,84 298,16 4,00 
7874 7327,03 546,97 6,95 
7680 8089,30 -409,30 -5,33 
7680 7147,17 532,83 6,94 
7680 8565,75 -885,75 -11,53 
7680 7243,35 436,65 5,69 
7680 7920,11 -240,11 -3,13 
7680 7464,21 215,79 2,81 
7693 7886,27 -193,27 -2,51 
7680 7400,04 279,96 3,65 
7580 8146,31 -566,31 -7,47 
7780 7485,55 294,45 3,78 
7680 7756,25 -76,25 -0,99 
7780 7457,05 322,95 4,15 
7680 7829,00 -149,00 -1,94 
7580 7243,35 336,65 4,44 
7580 7740,25 -160,25 -2,11 
7780 7677,91 102,09 1,31 
7580 7891,35 -311,35 -4,11 
7773 7457,05 315,95 4,06 
7687 7547,89 139,11 1,81 
7709 7688,58 20,42 0,26 
7600 7542,56 57,44 0,76 
7887 7467,71 419,29 5,32 
7604 7410,71 193,29 2,54 
7700 8574,33 -874,33 -11,35 
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Target Prediction Residual Differential 

7660 7569,23 90,77 1,18 
7639 8501,32 -862,32 -11,29 
7630 7327,03 302,97 3,97 
7600 7948,61 -348,61 -4,59 
7680 7405,37 274,63 3,58 
7680 7644,07 35,93 0,47 
7780 7852,43 -72,43 -0,93 
7621 7524,72 96,28 1,26 
7533 7738,16 -205,16 -2,72 
7794 8068,85 -274,85 -3,53 
7675 8399,80 -724,80 -9,44 
7755 8102,69 -347,69 -4,48 
7620 7873,51 -253,51 -3,33 
7534 7400,04 133,96 1,78 
7765 7811,17 -46,17 -0,59 
7677 6544,93 1132,07 14,75 
7799 6932,89 866,11 11,11 
7799 7553,23 245,77 3,15 
7684 6763,70 920,30 11,98 
7667 6544,93 1122,07 14,64 
7729 6714,12 1014,88 13,13 
7621 6409,58 1211,42 15,90 
7855 6612,60 1242,40 15,82 
7630 6477,25 1152,75 15,11 
7743 6375,74 1367,26 17,66 
7757 8056,35 -299,35 -3,86 
7619 7631,31 -12,31 -0,16 
7956 8316,12 -360,12 -4,53 
7778 7344,86 433,14 5,57 
7697 7428,54 268,46 3,49 
7659 7542,56 116,44 1,52 
7621 7644,07 -23,07 -0,30 
7684 7805,83 -121,83 -1,59 
7582 8124,03 -542,03 -7,15 
7781 7514,05 266,95 3,43 
7967 7542,56 424,44 5,33 
7967 6612,60 1354,40 17,00 
7622 6443,41 1178,59 15,46 
7500 7862,84 -362,84 -4,84 
7898 7517,29 380,71 4,82 
7587 7683,24 -96,24 -1,27 
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Target Prediction Residual Differential 

7890 7191,68 698,32 8,85 
7901 7446,38 454,62 5,75 
7513 7587,06 -74,06 -0,99 
7540 7707,90 -167,90 -2,23 
7899 7480,21 418,79 5,30 
7690 7693,65 -3,65 -0,05 
7455 7490,88 -35,88 -0,48 
7534 7852,17 -318,17 -4,22 
7611 7628,07 -17,07 -0,22 
7563 7417,87 145,13 1,92 
7605 7376,87 228,13 3,00 
7687 7514,05 172,95 2,25 
7504 7462,38 41,62 0,55 
7621 7542,56 78,44 1,03 
7661 7547,89 113,11 1,48 
7775 7473,05 301,95 3,88 
7569 7581,73 -12,73 -0,17 
7621 8206,56 -585,56 -7,68 
7684 7847,10 -163,10 -2,12 
7582 6747,96 834,04 11,00 
7783 7880,94 -97,94 -1,26 
7997 8836,43 -839,43 -10,50 
7593 3041,51 4551,49 59,94 
7536 8240,39 -704,39 -9,35 
7887 7795,43 91,57 1,16 
7566 7766,92 -200,92 -2,66 
7891 7873,51 17,49 0,22 
7924 7829,00 95,00 1,20 
7513 7660,07 -147,07 -1,96 
7541 7428,54 112,46 1,49 
7895 7587,06 307,94 3,90 
7696 7772,00 -76,00 -0,99 
7451 7743,49 -292,49 -3,93 
7545 7654,74 -109,74 -1,45 
7615 7941,19 -326,19 -4,28 
7559 8042,70 -483,70 -6,40 
7662 7542,56 119,44 1,56 
7669 7896,68 -227,68 -2,97 
7566 7446,38 119,62 1,58 
7621 7732,82 -111,82 -1,47 
7661 7553,23 107,77 1,41 



 
 

95 
 

Target Prediction Residual Differential 

7775 8128,21 -353,21 -4,54 
7569 7683,24 -114,24 -1,51 
7422 7704,32 -282,32 -3,80 
7880 7784,76 95,24 1,21 
7680 7626,24 53,76 0,70 
7637 7891,61 -254,61 -3,33 
7594 7732,82 -138,82 -1,83 
7684 7654,74 29,26 0,38 
7582 7969,69 -387,69 -5,11 
7783 7750,92 32,08 0,41 
7783 7998,19 -215,19 -2,76 
7997 7779,42 217,58 2,72 
7593 7805,83 -212,83 -2,80 
7890 7750,92 139,08 1,76 
7887 7829,00 58,00 0,74 
7566 7873,51 -307,51 -4,06 
7894 7704,32 189,68 2,40 
7934 7873,51 60,49 0,76 
7683 7446,38 236,62 3,08 
7569 7946,52 -377,52 -4,99 
7888 7581,73 306,27 3,88 
7709 7852,43 -143,43 -1,86 
7697 7553,23 143,77 1,87 
7612 7587,06 24,94 0,33 
7579 7457,05 121,95 1,61 
7596 7490,88 105,12 1,38 
7766 7547,89 218,11 2,81 
7711 7772,00 -61,00 -0,79 
7623 7683,24 -60,24 -0,79 
7701 7693,91 7,09 0,09 
7698 7800,50 -102,50 -1,33 
7775 7743,49 31,51 0,41 
7767 7738,16 28,84 0,37 
7540 7816,50 -276,50 -3,67 
7899 7681,15 217,85 2,76 
7680 7873,51 -193,51 -2,52 
7649 7845,01 -196,01 -2,56 
7654 8113,36 -459,36 -6,00 
7684 7524,72 159,28 2,07 
7665 7558,56 106,44 1,39 
7758 7772,00 -14,00 -0,18 
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Target Prediction Residual Differential 

7895 7412,54 482,46 6,11 
7985 7602,81 382,19 4,79 
7793 7717,08 75,92 0,97 
7766 7568,97 197,03 2,54 
7800 7474,88 325,12 4,17 
7959 7845,01 113,99 1,43 
7783 7750,92 32,08 0,41 
7769 7587,06 181,94 2,34 
7888 7485,55 402,45 5,10 
7889 7896,68 -7,68 -0,10 
7597 7772,00 -175,00 -2,30 
7800 7884,18 -84,18 -1,08 
7679 7813,26 -134,26 -1,75 
7886 7839,67 46,33 0,59 
7644 7800,50 -156,50 -2,05 
7587 7873,51 -286,51 -3,78 
7644 7704,32 -60,32 -0,79 
7587 7743,49 -156,49 -2,06 
7612 7941,19 -329,19 -4,32 
7765 7683,24 81,76 1,05 
7462 8339,53 -877,53 -11,76 
7691 7553,23 137,77 1,79 
7767 7779,42 -12,42 -0,16 
7692 7852,43 -160,43 -2,09 
7683 7772,00 -89,00 -1,16 
7559 7654,74 -95,74 -1,27 
7754 7654,74 99,26 1,28 
7784 7902,01 -118,01 -1,52 
7765 7704,32 60,68 0,78 
7785 7736,09 48,91 0,63 
7889 7800,50 88,50 1,12 
7980 7711,75 268,25 3,36 
7770 7553,23 216,77 2,79 
7770 7654,74 115,26 1,48 
7770 7902,01 -132,01 -1,70 
7350 7626,24 -276,24 -3,76 
7700 7446,38 253,62 3,29 
7888 2007,93 5880,07 74,54 
7889 2007,93 5881,07 74,55 
7597 7108,28 488,72 6,43 
7800 2007,93 5792,07 74,26 
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Target Prediction Residual Differential 

7679 3414,60 4264,40 55,53 
7800 2226,70 5573,30 71,45 
7890 2007,93 5882,07 74,55 
7886 2664,24 5221,76 66,22 
7644 2007,93 5636,07 73,73 
7587 7553,23 33,77 0,45 
7800 7480,21 319,79 4,10 
7765 7649,41 115,59 1,49 
7462 7485,55 -23,55 -0,32 
7691 7446,38 244,62 3,18 
7767 7720,09 46,91 0,60 
7640 7514,05 125,95 1,65 
7692 7277,19 414,81 5,39 
7683 7514,05 168,95 2,20 
7559 7460,05 98,95 1,31 
7759 7800,50 -41,50 -0,53 
7784 7243,35 540,65 6,95 
7765 7717,08 47,92 0,62 
7558 7412,54 145,46 1,92 
7784 7644,07 139,93 1,80 
7985 7373,37 611,63 7,66 
7793 7581,73 211,27 2,71 
7766 7793,10 -27,10 -0,35 
7899 7542,56 356,44 4,51 
7527 7451,71 75,29 1,00 
7769 7389,37 379,63 4,89 
7768 7457,05 310,95 4,00 
7629 7462,38 166,62 2,18 
7699 7428,54 270,46 3,51 
7788 7660,07 127,93 1,64 
7688 7485,55 202,45 2,63 
7886 7490,88 395,12 5,01 
7644 7316,36 327,64 4,29 
7587 7553,23 33,77 0,45 
7755 7436,88 318,12 4,10 
7765 7675,82 89,18 1,15 
7462 7316,36 145,64 1,95 
7691 7230,85 460,15 5,98 
7767 7972,67 -205,67 -2,65 
7640 7254,02 385,98 5,05 
7692 7344,86 347,14 4,51 
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Target Prediction Residual Differential 

7683 7389,37 293,63 3,82 
7559 7360,87 198,13 2,62 
7754 7727,75 26,25 0,34 
7784 7428,54 355,46 4,57 
7765 7378,70 386,30 4,97 
7558 7446,38 111,62 1,48 
7784 7481,97 302,03 3,88 
7664 7514,05 149,95 1,96 
7675 7524,72 150,28 1,96 
7725 7514,05 210,95 2,73 
7654 7428,54 225,46 2,95 
7568 7514,05 53,95 0,71 
7756 7634,58 121,42 1,57 
7677 7373,37 303,63 3,96 
7800 7287,86 512,14 6,57 
7645 8139,77 -494,77 -6,47 
7758 7524,72 233,28 3,01 
7668 7428,54 239,46 3,12 
7532 7496,22 35,78 0,48 
7798 7576,40 221,60 2,84 
7746 7761,01 -15,01 -0,19 
7652 7610,23 41,77 0,55 
7776 7389,37 386,63 4,97 
7578 7902,01 -324,01 -4,28 
7795 7574,30 220,70 2,83 
7769 8261,18 -492,18 -6,34 
7768 7384,04 383,96 4,94 
7642 7553,23 88,77 1,16 
7689 8116,60 -427,60 -5,56 
7550 7679,08 -129,08 -1,71 
7763 7660,07 102,93 1,33 
7550 7766,92 -216,92 -2,87 
7621 7806,10 -185,10 -2,43 
7569 7806,10 -237,10 -3,13 
7720 7496,22 223,78 2,90 
7653 7722,42 -69,42 -0,91 
7725 7569,23 155,77 2,02 
7653 7654,74 -1,74 -0,02 
7325 7553,23 -228,23 -3,12 
7710 8131,48 -421,48 -5,47 
7767 7457,05 309,95 3,99 
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Target Prediction Residual Differential 

7722 7665,41 56,59 0,73 
7741 7626,24 114,76 1,48 
7665 7784,76 -119,76 -1,56 
7631 7597,73 33,27 0,44 
7641 7784,76 -143,76 -1,88 
7677 7946,52 -269,52 -3,51 
7724 7514,05 209,95 2,72 
7794 7985,69 -191,69 -2,46 
7631 7941,19 -310,19 -4,06 
7634 7665,41 -31,41 -0,41 
7689 7558,56 130,44 1,70 
7613 7816,50 -203,50 -2,67 
7712 7524,72 187,28 2,43 
7729 7905,28 -176,28 -2,28 
7751 7542,56 208,44 2,69 
7648 7467,71 180,29 2,36 
7658 7779,42 -121,42 -1,59 
7725 7693,91 31,09 0,40 
7678 7829,00 -151,00 -1,97 
7656 7553,23 102,77 1,34 
7721 7417,87 303,13 3,93 
7652 7813,26 -161,26 -2,11 
7623 7693,65 -70,65 -0,93 
7751 7620,90 130,10 1,68 
7689 7683,24 5,76 0,07 
7569 7683,24 -114,24 -1,51 
7611 7542,56 68,44 0,90 
7658 7400,04 257,96 3,37 
7620 7683,24 -63,24 -0,83 
7689 7490,88 198,12 2,58 
7620 7451,71 168,29 2,21 
7620 7490,88 129,12 1,69 
7800 7597,47 202,53 2,60 
7980 8558,33 -578,33 -7,25 
7880 7860,78 19,22 0,24 
7660 7626,24 33,76 0,44 
7620 7553,23 66,77 0,88 
7620 7428,54 191,46 2,51 
7580 7394,70 185,30 2,44 
7550 7485,55 64,45 0,85 
7659 7581,73 77,27 1,01 
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Target Prediction Residual Differential 

7674 7439,21 234,79 3,06 
7564 7711,75 -147,75 -1,95 
7621 7457,05 163,95 2,15 
7543 7514,05 28,95 0,38 
7691 7496,22 194,78 2,53 
7613 7344,86 268,14 3,52 
7695 7960,46 -265,46 -3,45 
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ATTACHMENT F 

Ridge Regression Values 
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Table 5.2 Ridge regression values difference 

Target Prediction Residual Difference (%) 

7665 7493,47 171,53 2,24 
7700 7766,35 -66,35 -0,86 
7784 7519,43 264,57 3,40 
7456 7987,61 -531,61 -7,13 
7774 7506,04 267,96 3,45 
7680 7584,43 95,57 1,24 
7360 8674,16 -1314,16 -17,86 
7800 6955,77 844,23 10,82 
7888 8518,36 -630,36 -7,99 
7899 7169,79 729,21 9,23 
7889 8293,39 -404,39 -5,13 
7619 6888,85 730,15 9,58 
7700 8226,47 -526,47 -6,84 
7784 7102,86 681,14 8,75 
7456 7116,24 339,76 4,56 
7874 7343,64 530,36 6,74 
7680 8293,39 -613,39 -7,99 
7680 7052,06 627,94 8,18 
7680 8408,69 -728,69 -9,49 
7680 7156,40 523,60 6,82 
7680 8065,99 -385,99 -5,03 
7680 7378,48 301,52 3,93 
7693 8020,51 -327,51 -4,26 
7680 7466,70 213,30 2,78 
7580 8320,16 -740,16 -9,76 
7780 7506,85 273,15 3,51 
7680 7870,69 -190,69 -2,48 
7780 7493,47 286,53 3,68 
7680 7760,21 -80,21 -1,04 
7580 7156,40 423,60 5,59 
7580 7774,41 -194,41 -2,56 
7780 7715,54 64,46 0,83 
7580 7819,08 -239,08 -3,15 
7773 7493,47 279,53 3,60 
7680 7975,04 -295,04 -3,84 
7687 7565,72 121,28 1,58 
7709 7779,73 -70,73 -0,92 
7600 7533,62 66,38 0,87 
7887 7557,66 329,34 4,18 
7604 7530,89 73,11 0,96 
7700 8386,43 -686,43 -8,91 
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Target Prediction Residual Difference (%) 

7660 7694,10 -34,10 -0,45 
7639 8263,38 -624,38 -8,17 
7630 7343,64 286,36 3,75 
7600 8079,38 -479,38 -6,31 
7680 7498,79 181,21 2,36 
7680 7670,06 9,94 0,13 
7780 7975,04 -195,04 -2,51 
7621 7584,43 36,57 0,48 
7533 7687,96 -154,96 -2,06 
7794 7790,68 3,32 0,04 
7675 8126,94 -451,94 -5,89 
7755 7836,16 -81,16 -1,05 
7620 7869,88 -249,88 -3,28 
7534 7466,70 67,30 0,89 
7765 7811,01 -46,01 -0,59 
7677 7065,14 611,86 7,97 
7799 7428,16 370,84 4,75 
7799 7597,81 201,19 2,58 
7684 7200,76 483,24 6,29 
7667 7065,14 601,86 7,85 
7729 7292,53 436,47 5,65 
7621 6883,22 737,78 9,68 
7855 7156,10 698,90 8,90 
7630 6974,18 655,82 8,60 
7743 6837,74 905,26 11,69 
7757 7873,58 -116,58 -1,50 
7619 7519,43 99,57 1,31 
7956 7939,69 16,31 0,20 
7778 7292,84 485,16 6,24 
7697 7480,08 216,92 2,82 
7659 7533,62 125,38 1,64 
7621 7670,06 -49,06 -0,64 
7684 7778,92 -94,92 -1,24 
7582 7964,54 -382,54 -5,05 
7781 7520,24 260,76 3,35 
7967 7533,62 433,38 5,44 
7967 7156,10 810,90 10,18 
7622 6928,70 693,30 9,10 
7500 7805,69 -305,69 -4,08 
7898 7465,89 432,11 5,47 
7587 7747,64 -160,64 -2,12 
7890 7161,72 728,28 9,23 
7901 7429,28 471,72 5,97 
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Target Prediction Residual Difference (%) 

7513 7643,29 -130,29 -1,73 
7540 7584,98 -44,98 -0,60 
7899 7474,76 424,24 5,37 
7690 7578,29 111,71 1,45 
7455 7538,95 -83,95 -1,13 
7534 7741,50 -207,50 -2,75 
7611 7573,78 37,22 0,49 
7563 7415,89 147,11 1,95 
7605 7485,41 119,59 1,57 
7687 7520,24 166,76 2,17 
7504 7525,56 -21,56 -0,29 
7621 7533,62 87,38 1,15 
7661 7565,72 95,28 1,24 
7775 7589,75 185,25 2,38 
7569 7611,20 -42,20 -0,56 
7621 8292,58 -671,58 -8,81 
7684 7942,94 -258,94 -3,37 
7582 7338,01 243,99 3,22 
7783 7988,42 -205,42 -2,64 
7997 8395,46 -398,46 -4,98 
7593 2198,00 5395,00 71,05 
7536 8338,06 -802,06 -10,64 
7887 7948,26 -61,26 -0,78 
7566 7934,88 -368,88 -4,88 
7891 7869,88 21,12 0,27 
7924 7760,21 163,79 2,07 
7513 7766,35 -253,35 -3,37 
7541 7480,08 60,92 0,81 
7895 7643,29 251,71 3,19 
7696 7733,44 -37,44 -0,49 
7451 7720,05 -269,05 -3,61 
7545 7734,25 -189,25 -2,51 
7615 7960,84 -345,84 -4,54 
7559 8097,28 -538,28 -7,12 
7662 7533,62 128,38 1,68 
7669 7851,17 -182,17 -2,38 
7566 7429,28 136,72 1,81 
7621 7655,87 -34,87 -0,46 
7661 7597,81 63,19 0,82 
7775 8137,43 -362,43 -4,66 
7569 7747,64 -178,64 -2,36 
7422 7642,48 -220,48 -2,97 
7880 7884,08 -4,08 -0,05 



 
 

105 
 

Target Prediction Residual Difference (%) 

7680 7720,87 -40,87 -0,53 
7637 8052,61 -415,61 -5,44 
7594 7655,87 -61,87 -0,81 
7684 7734,25 -50,25 -0,65 
7582 7974,22 -392,22 -5,17 
7783 7838,60 -55,60 -0,71 
7783 7987,61 -204,61 -2,63 
7997 7851,98 145,02 1,81 
7593 7778,92 -185,92 -2,45 
7890 7838,60 51,40 0,65 
7887 7760,21 126,79 1,61 
7566 7869,88 -303,88 -4,02 
7894 7642,48 251,52 3,19 
7934 7869,88 64,12 0,81 
7683 7429,28 253,72 3,30 
7569 7992,93 -423,93 -5,60 
7888 7611,20 276,80 3,51 
7709 7975,04 -266,04 -3,45 
7697 7597,81 99,19 1,29 
7612 7643,29 -31,29 -0,41 
7579 7493,47 85,53 1,13 
7596 7538,95 57,05 0,75 
7766 7565,72 200,28 2,58 
7711 7733,44 -22,44 -0,29 
7623 7747,64 -124,64 -1,64 
7701 7811,83 -110,83 -1,44 
7698 7746,83 -48,83 -0,63 
7775 7720,05 54,95 0,71 
7767 7687,96 79,04 1,02 
7540 7843,11 -303,11 -4,02 
7899 7661,19 237,81 3,01 
7680 7869,88 -189,88 -2,47 
7649 7856,49 -207,49 -2,71 
7654 7900,35 -246,35 -3,22 
7684 7584,43 99,57 1,30 
7665 7629,91 35,09 0,46 
7758 7733,44 24,56 0,32 
7895 7383,80 511,20 6,47 
7985 7506,04 478,96 6,00 
7793 7793,12 -0,12 0,00 
7766 7460,56 305,44 3,93 
7800 7442,66 357,34 4,58 
7959 7856,49 102,51 1,29 
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Target Prediction Residual Difference (%) 

7783 7838,60 -55,60 -0,71 
7769 7643,29 125,71 1,62 
7888 7506,85 381,15 4,83 
7889 7851,17 37,83 0,48 
7597 7733,44 -136,44 -1,80 
7800 7934,07 -134,07 -1,72 
7679 7897,46 -218,46 -2,84 
7886 7824,40 61,60 0,78 
7644 7746,83 -102,83 -1,35 
7587 7869,88 -282,88 -3,73 
7644 7642,48 1,52 0,02 
7587 7720,05 -133,05 -1,75 
7612 7960,84 -348,84 -4,58 
7765 7747,64 17,36 0,22 
7462 7777,45 -315,45 -4,23 
7691 7597,81 93,19 1,21 
7767 7851,98 -84,98 -1,09 
7692 7975,04 -283,04 -3,68 
7683 7733,44 -50,44 -0,66 
7559 7734,25 -175,25 -2,32 
7754 7734,25 19,75 0,25 
7784 7883,26 -99,26 -1,28 
7765 7642,48 122,52 1,58 
7785 7978,58 -193,58 -2,49 
7889 7746,83 142,17 1,80 
7980 7761,02 218,98 2,74 
7770 7597,81 172,19 2,22 
7770 7734,25 35,75 0,46 
7770 7883,26 -113,26 -1,46 
7350 7720,87 -370,87 -5,05 
7700 7429,28 270,72 3,52 
7888 1869,34 6018,66 76,30 
7889 1869,34 6019,66 76,30 
7597 7585,08 11,92 0,16 
7800 1869,34 5930,66 76,03 
7679 2595,70 5083,30 66,20 
7800 2004,97 5795,03 74,30 
7890 1869,34 6020,66 76,31 
7886 2276,23 5609,77 71,14 
7644 1869,34 5774,66 75,54 
7587 7597,81 -10,81 -0,14 
7800 7474,76 325,24 4,17 
7765 7702,16 62,84 0,81 
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Target Prediction Residual Difference (%) 

7462 7506,85 -44,85 -0,60 
7691 7429,28 261,72 3,40 
7767 7882,30 -115,30 -1,48 
7640 7520,24 119,76 1,57 
7692 7201,88 490,12 6,37 
7683 7520,24 162,76 2,12 
7559 7582,65 -23,65 -0,31 
7759 7746,83 12,17 0,16 
7784 7156,40 627,60 8,06 
7765 7793,12 -28,12 -0,36 
7558 7383,80 174,20 2,30 
7784 7670,06 113,94 1,46 
7985 7306,23 678,77 8,50 
7793 7611,20 181,80 2,33 
7766 8005,35 -239,35 -3,08 
7899 7533,62 365,38 4,63 
7527 7461,37 65,63 0,87 
7769 7402,51 366,49 4,72 
7768 7493,47 274,53 3,53 
7629 7525,56 103,44 1,36 
7699 7480,08 218,92 2,84 
7788 7766,35 21,65 0,28 
7688 7506,85 181,15 2,36 
7886 7538,95 347,05 4,40 
7644 7279,45 364,55 4,77 
7587 7597,81 -10,81 -0,14 
7755 7601,36 153,64 1,98 
7765 7629,10 135,90 1,75 
7462 7279,45 182,55 2,45 
7691 7239,30 451,70 5,87 
7767 7686,34 80,66 1,04 
7640 7220,59 419,41 5,49 
7692 7292,84 399,16 5,19 
7683 7402,51 280,49 3,65 
7559 7389,12 169,88 2,25 
7754 7857,31 -103,31 -1,33 
7784 7480,08 303,92 3,90 
7765 7338,32 426,68 5,49 
7558 7429,28 128,72 1,70 
7784 7564,35 219,65 2,82 
7664 7520,24 143,76 1,88 
7675 7584,43 90,57 1,18 
7725 7520,24 204,76 2,65 
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Target Prediction Residual Difference (%) 

7654 7480,08 173,92 2,27 
7568 7520,24 47,76 0,63 
7756 7842,14 -86,14 -1,11 
7677 7306,23 370,77 4,83 
7800 7266,07 533,93 6,85 
7645 7827,29 -182,29 -2,38 
7758 7584,43 173,57 2,24 
7668 7480,08 187,92 2,45 
7532 7571,04 -39,04 -0,52 
7798 7579,10 218,90 2,81 
7746 8049,46 -303,46 -3,92 
7652 7624,58 27,42 0,36 
7776 7402,51 373,49 4,80 
7578 7883,26 -305,26 -4,03 
7795 7492,66 302,34 3,88 
7769 7622,31 146,69 1,89 
7768 7370,41 397,59 5,12 
7642 7597,81 44,19 0,58 
7689 7846,00 -157,00 -2,04 
7550 7951,81 -401,81 -5,32 
7763 7766,35 -3,35 -0,04 
7550 7934,88 -384,88 -5,10 
7621 8012,45 -391,45 -5,14 
7569 8012,45 -443,45 -5,86 
7720 7571,04 148,96 1,93 
7653 7825,21 -172,21 -2,25 
7725 7694,10 30,90 0,40 
7653 7734,25 -81,25 -1,06 
7325 7597,81 -272,81 -3,72 
7710 8460,15 -750,15 -9,73 
7767 7493,47 273,53 3,52 
7722 7798,44 -76,44 -0,99 
7741 7720,87 20,13 0,26 
7665 7884,08 -219,08 -2,86 
7631 7707,48 -76,48 -1,00 
7641 7884,08 -243,08 -3,18 
7677 7992,93 -315,93 -4,12 
7724 7520,24 203,76 2,64 
7794 8070,51 -276,51 -3,55 
7631 7960,84 -329,84 -4,32 
7634 7798,44 -164,44 -2,15 
7689 7629,91 59,09 0,77 
7613 7843,11 -230,11 -3,02 
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Target Prediction Residual Difference (%) 

7712 7584,43 127,57 1,65 
7729 8205,98 -476,98 -6,17 
7751 7533,62 217,38 2,80 
7648 7557,66 90,34 1,18 
7658 7851,98 -193,98 -2,53 
7725 7811,83 -86,83 -1,12 
7678 7760,21 -82,21 -1,07 
7656 7597,81 58,19 0,76 
7721 7415,89 305,11 3,95 
7652 7897,46 -245,46 -3,21 
7623 7578,29 44,71 0,59 
7751 7688,77 62,23 0,80 
7689 7747,64 -58,64 -0,76 
7569 7747,64 -178,64 -2,36 
7611 7533,62 77,38 1,02 
7658 7466,70 191,30 2,50 
7620 7747,64 -127,64 -1,68 
7689 7538,95 150,05 1,95 
7620 7461,37 158,63 2,08 
7620 7538,95 81,05 1,06 
7800 7473,95 326,05 4,18 
7980 8290,15 -310,15 -3,89 
7880 8096,31 -216,31 -2,75 
7660 7720,87 -60,87 -0,79 
7620 7597,81 22,19 0,29 
7620 7480,08 139,92 1,84 
7580 7434,60 145,40 1,92 
7550 7506,85 43,15 0,57 
7659 7611,20 47,80 0,62 
7674 7544,27 129,73 1,69 
7564 7761,02 -197,02 -2,60 
7621 7493,47 127,53 1,67 
7543 7520,24 22,76 0,30 
7691 7571,04 119,96 1,56 
7613 7292,84 320,16 4,21 
7695 8379,83 -684,83 -8,90 
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