Marshiela, Jessie Reyna (2024) Analisis Faktor Demografi Dan Ekonomi Terhadap Paritas Pada Pasangan Usia Subur (PUS) Menggunakan Regresi Logistik Ordinal. Other thesis, Institut Teknologi Sepuluh Nopember.
Text
5003201106_Undergraduate_Thesis.pdf Download (3MB) |
|
Text
5003201106_Undergraduate_Thesis.pdf Download (3MB) |
Abstract
Perubahan demografis yang terjadi di Bali, dipicu oleh implementasi kebijakan Keluarga Berencana (KB) "Dua Anak Cukup", menjadi pemicu utama perubahan dalam pola penamaan tradisional, khususnya terkait penurunan penggunaan nama tradisional "Ketut". Hal ini menimbulkan kekhawatiran akan punahnya warisan budaya Bali, Tradisi penamaan di Bali sangat dipengaruhi oleh paritas, yang tercermin dalam pemberian nama seperti Wayan, Made, Nyoman/Komang, dan Ketut. Namun, perubahan demografis yang terjadi membawa dampak signifikan pada pola penamaan nama tradisional Bali. Pasangan Usia Subur (PUS) menjadi fokus penelitian ini, dengan PUS diartikan sebagai pasangan suami istri yang berumur 15-49 tahun. Analisis pelestarian nama tradisional di Bali dilihat dari data Paritas seorang perempuan. Paritas sendiri dipengaruhi oleh faktor-faktor sosial ekonomi, seperti status ekonomi dan pekerjaan, serta aspek sosial, seperti pendidikan dan tempat tinggal, menjadi kunci dalam pengaruh pola kelahiran pada PUS. Berdasarkan skala pengukuran, paritas termasuk ke dalam skala ordinal. Oleh karna itu dilakukan pemodelan menggunakan logistik ordinal, untuk memodelkan faktor-faktor yang mempengaruhi paritas pada PUS, dengan menggunakan data mikro susenas di Bali Tahun 2023 diharapkan dapat memberikan wawasan dalam pelestarian nama tradisional di Bali. Hasil penelitian ini menunjukan bahwa variabel Tingkat Pendidikan Suami, Usia Kawin Pertama Istri, Usia Kawin Pertama Suami, Status Pekerjaan Suami, Domisili, Jaminan Kesehatan, Usia Suami, Usia Anak Terakhir berpengaruh secara signifikan pada Klasifikasi Paritas pada PUS dengan ketepatan klasifikasi sebesar 56%.
===============================================================================================================
The demographic changes that occurred in Bali, triggered by the
implementation of the "Two Children is Enough" Family Planning (KB) policy,
were the main trigger for changes in traditional naming patterns, especially
regarding the decline in the use of the traditional name "Ketut". This raises concerns
about the extinction of Bali's cultural heritage. Naming traditions in Bali are
strongly influenced by parity, which is reflected in names such as Wayan, Made,
Nyoman or Komang, and Ketut. However, the demographic changes that have
occurred have had a significant impact on traditional Balinese naming patterns.
Couples of childbearing age (PUS) are the focus of this research, with PUS defined
as married couples aged 15-49 years. Analysis of the preservation of traditional
names in Bali seen from data on a woman's parity. Parity itself is influenced by
socio-economic factors, such as economic status and employment, as well as social
aspects, such as education and place of residence, which are key in the influence of
birth patterns on PUS. Based on the measurement scale, parity is included in the
ordinal scale. Therefore, modeling was carried out using ordinal logistics, to model
the factors that influence parity in PUS, using micro Susenas data in Bali in 2023.
It is hoped that it can provide insight into the preservation of traditional names in
Bali. The results of this research show that the variables Husband's Education Level,
Wife's First Marriage Age, Husband's First Marriage Age, Husband's Employment
Status, Domicile, Health Insurance, Husband's Age, Age of Last Child have a
significant effect on Parity Classification PUS with a classification accuracy of
56%.
Item Type: | Thesis (Other) |
---|---|
Uncontrolled Keywords: | Couples of Childbearing Age (PUS), Family Planning (KB),Ordinal Logistic Regression, Tradition. Keluarga Berencana (KB), Pasangan Usia Subur (PUS), Regresi Logistik Ordinal, Tradisi. |
Subjects: | Q Science > QA Mathematics > QA278.2 Regression Analysis. Logistic regression |
Divisions: | Faculty of Science and Data Analytics (SCIENTICS) > Statistics > 49201-(S1) Undergraduate Thesis |
Depositing User: | JESSIE REYNA MARSHIELA |
Date Deposited: | 08 Aug 2024 01:50 |
Last Modified: | 08 Aug 2024 01:50 |
URI: | http://repository.its.ac.id/id/eprint/114119 |
Actions (login required)
View Item |