

TUGAS AKHIR - EE184801

DESAIN KONTROLER BERBASIS ALGORITME PSO PADA STASIUN PENGISIAN DAYA UNTUK ELECTRIC VEHICLE DENGAN BATERAI NIMH

NUH ENOLA NRP 07111840000140

Dosen Pembimbing **Eka Iskandar, S.T., M.T.** NIP 198005282008121001 **Ir. Rusdhianto Effendi, AK., M.T.** NIP 195704241985021001

Program Studi Sarjana Teknik Elektro Departemen Teknik Elektro Fakultas Teknologi Elektro dan Informatika Cerdas Institut Teknologi Sepuluh Nopember Surabaya 2022

TUGAS AKHIR - EE184801

DESAIN KONTROLER BERBASIS ALGORITME PSO PADA STASIUN PENGISIAN DAYA UNTUK ELECTRIC VEHICLE DENGAN BATERAI NIMH

NUH ENOLA NRP 07111840000140

Dosen Pembimbing **Eka Iskandar, S.T., M.T.** NIP 198005282008121001 **Ir. Rusdhianto Effendi, AK., M.T.** NIP 195704241985021001

Program Studi Sarjana Teknik Elektro Departemen Teknik Elektro Fakultas Teknologi Elektro dan Informatika Cerdas Institut Teknologi Sepuluh Nopember Surabaya 2022

FINAL PROJECT - EE184801

CHARGING STATION CONTROLLER DESIGN USING PSO ALGORITHM FOR ELECTRIC VEHICLE WITH NIMH BATTERY

NUH ENOLA NRP 07111840000140

Advisor Eka Iskandar, S.T., M.T. NIP 198005282008121001 Ir. Rusdhianto Effendi AK., M.T. NIP 195704241985021001

Electrical Engineering Undergraduate Program Department of Electrical Engineering Faculty of Intelligent Electrical and Informatics Technology Institut Teknologi Sepuluh Nopember Surabaya 2022

LEMBAR PENGESAHAN

DESAIN KONTROLER BERBASIS ALGORITME PSO PADA STASIUN PENGISIAN DAYA UNTUK ELECTRIC VEHICLE DENGAN BATERAI NIMH

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi S-1 Teknik Elektro Departemen Teknik Elektro Fakultas Teknologi Elektro dan Informatika Cerdas Institut Teknologi Sepuluh Nopember

> Oleh : NUH ENOLA NRP. 07111840000140

Disetujui oleh Tim Penguji Tugas Akhir :

1. Eka Iskandar, S.T., M.T.

2. Ir. Rusdhianto Effendi AK., M.T.

3. Prof. Dr. Ir. Achmad Jazidie, M.Eng.

4. Dr. Trihastuti Agustinah, S.T., M.T.

5. Dr. Ir. Ari Santoso, DEA.

Pembimbing Ko-pembimbing Penguji Penguji

Penguji

SURABAYA

Juni, 2022

APPROVAL SHEET

CHARGING STATION CONTROLLER DESIGN USING PSO ALGORITHM FOR ELECTRIC VEHICLE WITH NIMH BATTERY

FINAL PROJECT

Submitted to full fil one of the requirements For obtaining a bachelor's degree at Undergraduate Study Program of Electrical Engineering Department of Electrical Engineering Faculty of Intelligent Electrical and Informatics Technology Institut Teknologi Sepuluh Nopember

> By : NUH ENOLA NRP. 07111840000140

Approved by Final Project Examiner Team :

- 1. Eka Iskandar, S.T., M.T.
- 2. Ir. Rusdhianto Effendi AK., M.T.
- 3. Prof. Dr. Ir. Achmad Jazidie, M.Eng.
- 4. Dr. Trihastuti Agustinah, S.T., M.T.
- 5. Dr. Ir. Ari Santoso, DEA.

SURABAYA

June, 2022

iii

Advisor e. Co-Advisor Examine Examiner

Examiner

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa / NRP	:	Nuh Enola / 07111840000140
Departemen	:	Teknik Elektro
Dosen Pembimbing / NIP	:	Eka Iskandar, S.T., M.T. / 198005282008121001

dengan ini menyatakan bahwa Tugas Akhir dengan judul "Desain Kontroler Berbasis Algoritme PSO pada Stasiun Pengisian Daya Untuk Electric Vehicle Dengan Baterai NiMH" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Mengetahui Dosen Pembimbing

Eka Iskandar, S.T., M.T. NIP. 198005282008121001

Surabaya, 10 Juni 2022

Mahasiswa

Nuh Enola NRP. 07111840000140

STATEMENT OF ORIGINALITY

The undersigned below:

Name of student / NRP	:	Nuh Enola / 07111840000140
Department	:	Electrical Engineering
Advisor / NIP	:	Eka Iskandar, S.T., M.T. / 198005282008121001

hereby declare that the Final Project with the title of "Charging Station Controller Design using PSO Algorithm for Electric Vehicle with NiMH Battery" is the result of my own work, is original, and is written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with the provisions that apply at Institut Teknologi Sepuluh Nopember.

Surabaya, 10 June 2022

Acknowledged Advisor

Eka Iskandar, S.T., M.T. NIP. 198005282008121001 Student

Nuh Enola NRP. 07111840000140

ABSTRAK

DESAIN KONTROLER BERBASIS ALGORITME PSO PADA STASIUN PENGISIAN DAYA UNTUK ELECTRIC VEHICLE DENGAN BATERAI NIMH

Nama Mahasiswa / NRP	:	Nuh Enola / 07111840000140
Departemen	:	Teknik Elektro FTEIC - ITS
Dosen Pembimbing	:	Eka Iskandar, S.T., M.T.

Abstrak

Kendaraan listrik merupakan suatu penemuan yang tengah berkembang pesat saat ini. Berbagai penelitian mengenai kendaraan listrik tidak berhenti dilakukan, termasuk mengenai sistem pengecasan. Banyak jenis baterai yang digunakan untuk kendaraan listrik, salah satunya adalah baterai NiMH. Penelitian mengenai bagaimana mengoptimalkan pengecasan baterai juga telah banyak dilakukan, salah satunya dengan memanfaatkan *intelligent algorithm*. Namun, cara ini jarang diimplementasikan secara *real-time* dan hanya melalui bantuan *software* komputer. Pada tugas akhir ini, dibahas mengenai implementasi *intelligent algorithm* PSO (*Particle Swarm Optimization*) sebagai metode pengoptimalan secara *real time* pada *charger controller* dengan harapan mampu memberikan solusi terkait pengoptimalan pengecasan sesuai kebutuhan pengguna. Untuk 3 kondisi pengecasan pengoptimalan pada *prototype* menghasilkan perhitungan dengan error *cost* masing-masing 0.33%, 7.22%, dan 5.55% dibandingkan dengan hasil pada simulasi. Dengan nilai ini, implementasi PSO pada sistem *real-time* telah mencapai tingkat keberhasilan sebesar 95%.

Kata kunci: NiMH, PSO, Kendaraan Listrik, Charger Controller.

ABSTRACT

CHARGING STATION CONTROLLER DESIGN USING PSO ALGORITHM FOR ELECTRIC VEHICLE WITH NIMH BATTERY

Student Name / NRP	: Nuh Enola / 07111840000140
Department	: Electrical Engineering ELECTICS - ITS
Advisor	: Eka Iskandar, S.T., M.T.

Abstract

Electric vehicles are an invention that is currently developing rapidly. Various studies on electric vehicles do not stop, including the charging system. Many types of batteries are used for electric vehicles, including NiMH Battery. There is also a lot of research on how to optimize battery charging, one of which is by using intelligent algorithms. However, this method is rarely implemented in real-time and only through the help of the computer software. In this final project, we discuss the implementation of the intelligent algorithm PSO (Particle Swarm Optimization) as a real time optimization method on the charger controller with the hope of providing solutions according to the user needs . For the 3 optimization charging conditions the *Prototype* results in calculations with error costs of 0.33%, 7.22%, and 5.55%, respectively, compared to the results in the simulation. With this value, the implementation of PSO in real-time systems has achieved a 95% success rate.

Keywords: NiMH, PSO, Electric Vehicle, Charger Controller.

KATA PENGANTAR

Segala puji syukur penulis panjatkan kepada Allah S.W.T yang telah memberikan rahmat dan karunia-Nya sehingga penulis dapat membuat dan menyelesaikan tugas akhir ini dengan baik dan tepat waktu. Kegiatan tugas akhir ini merupakan bagian dari penyelesaian studi S-1 Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember, dan laporan tugas akhir ini disusun untuk melengkapi hasil capaian dari tugas akhir yang telah dilaksanakan. Dalam pembuatan tugas akhir ini, penulis telah dibantu dan didukung oleh banyak pihak. Oleh karena itu, penulis menyampaikan terima kasih kepada:

- 1. Orang tua serta keluarga yang telah memberikan dukungan dan doa kepada penulis.
- 2. Bapak Eka Iskandar, S.T., M.T. selaku dosen pembimbing yang telah memberi arahan, bimbingan, dan saran yang membangun pada penulis selama proses pengerjaan tugas akhir ini.
- 3. Bapak Almarhum Ir. Rusdhianto Effendi AK., M.T. yang telah membantu pengerjaan tugas akhir ini di awal hingga akhir hidup beliau.
- 4. Bapak Dr. Ir. Ari Santoso, DEA selaku dosen yang telah membantu memberi arahan, bimbingan, serta saran yang membangun selama pengerjaan tugas akhir ini.
- 5. Dosen dan tenaga pendidik Departemen Teknik Elektro ITS, khususnya bidang studi Teknik Sistem Pengaturan.
- 6. Alya, Mattrix, Dheo, Angga, dan seluruh teman bidang studi Teknik Sistem Pengaturan yang terus memberikan motivasi serta dukungan selama proses pengerjaan tugas akhir ini.
- 7. Teman-teman penulis lain dan seluruh pihak yang berkontribusi yang namanya tidak bisa disebutkan satu persatu, yang telah memberikan dukungan teknis maupun non teknis selama proses pengerjaan tugas akhir ini.

Penulis menyadari, bahwa masih terdapat kekurangan dari laporan tugas akhir ini dikarenakan keterbatasan dan kurangnya pengetahuan serta pengalaman penulis. Penulis berharap tugas akhir ini dapat bermanfaat bagi pembaca. Saran dan kritik juga penulis harapkan untuk pengembangan tugas akhir ini.

Surabaya, 10 Juni 2022

Nuh Enola

DAFTAR ISI

LEMBAR PENGESAHAN			
APPROVAL SHEET			
PERNY	ATAAN ORISINALITAS	v	
STATE	MENT OF ORIGINALITY	vii	
ABSTR	AK	ix	
ABSTR	ACT	xi	
KATA I	PENGANTAR	xiii	
DAFTA	R ISI	XV	
DAFTA	R GAMBAR	xvii	
DAFTA	R TABEL	xviii	
DAFTA	R SIMBOL	xix	
BAB 1	PENDAHULUAN	1	
1.1	Latar Belakang	1	
1.2	Rumusan Masalah	1	
1.3	Batasan Masalah	2	
1.4	Tujuan	2	
1.5	Manfaat	2	
BAB 2	BAB 2 TINJAUAN PUSTAKA		
2.1 Hasil Penelitian Terdahulu			
2.2 Dasar Teori		3	
2.2	1 Baterai Nickel Metal Hydride	3	
2.2	2 Particle Swarm Optimization	5	
2.2	3 Charger Controller	7	
2.2	4 PID Controller	8	
2.2	5 Transistor	9	
BAB 3	METODOLOGI	11	
3.1	Metode yang digunakan	11	
3.2	Bahan dan peralatan yang digunakan	11	
3.3	Urutan pelaksanaan penelitian	12	
3.3	1 Penentuan Model Matematika Baterai NiMH	12	
3.3	2 Perancangan Sistem <i>Charger Controller</i>	15	
3.3	3 Perancangan PI <i>Controller</i> pada Sistem	15	
3.3	4 Perancangan Metode PSO untuk Baterai NiMH	15	

XV

3.3	5 Perancangan Simulasi dengan MATLAB	17
3.3	6 Perancangan Prototype Charger Controller	19
3.3	7 Pengambilan Data Percobaan	20
BAB 4	HASIL DAN PEMBAHASAN	23
4.1	Estimasi parameter baterai	23
4.2	Pengujian algoritme PSO	24
4.3	Hasil Desain PI Controller	26
4.4	Hasil pengujian Simulasi MATLAB	26
4.5	Hasil pengujian Prototype	29
4.6	Perbandingan Simulasi dan Prototype	31
BAB 5	KESIMPULAN DAN SARAN	39
5.1	Kesimpulan	39
5.2	Saran	39
DAFTAR PUSTAKA		
LAMPIRAN		43
1. F	rogram Simulasi	43
2. P	rogram Prototype dengan Mikrokontroler AVR	48
3. E	Datasheet baterai	62
4. E	Datasheet Komponen	63
4.1	Datasheet ATmega32A	63
4.2	Datasheet TIP142	64
BIODATA PENULIS		67

DAFTAR GAMBAR

Gambar 2.1 Rangkaian ekuivalen untuk baterai	4
Gambar 2.2 Contoh charging rules untuk baterai NiMH	5
Gambar 2.3 Rangkaian DAC R-2R	8
Gambar 3.1 Rangkaian Simulink pulse discharging	13
Gambar 3.2 Rangkaian Simulink Hubungan Voc-SOC	14
Gambar 3.3 Diagram Blok Sistem Charger Controller	15
Gambar 3.4 Diagram Alir Algoritme PSO	17
Gambar 3.5 Rancangan Simulasi dengan Simulink MATLAB	18
Gambar 3.6 Skema Rangkaian Prototype Charger Controller	19
Gambar 3.7 Diagram Alir Cara Kerja Sistem	20
Gambar 3.8 Fitur Recorder pada Osiloskop Digital	22
Gambar 3.9 Skema (kiri) dan Rangkaian (kanan) Tambahan	22
Gambar 4.1 Grafik Pengecasan Kondisi 1 pada Simulasi MATLAB	27
Gambar 4.2 Grafik Pengecasan Kondisi 2 pada Simulasi MATLAB	27
Gambar 4.3 Grafik Pengecasan Kondisi 3 pada Simulasi MATLAB	28
Gambar 4.4 Grafik Pengecasan Kondisi 1 pada Prototype	29
Gambar 4.5 Grafik Pengecasan Kondisi 2 pada Prototype	30
Gambar 4.6 Grafik Pengecasan Kondisi 3 pada Prototype	30
Gambar 4.7 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 1	33
Gambar 4.8 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 2	33
Gambar 4.9 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 3	34
Gambar 4.10 Perbandingan Grafik SOC Simulasi dan Prototype Kondisi 1	34
Gambar 4.11 Perbandingan Grafik SOC Simulasi dan Prototype Kondisi 2	35
Gambar 4.12 Perbandingan Grafik SOC Simulasi dan Prototype Kondisi 3	35
Gambar 4.13 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 1	36
Gambar 4.14 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 2	36
Gambar 4.15 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 3	37

DAFTAR TABEL

Tabel 3.1 Daftar Bahan yang Digunakan	11
Tabel 3.2 Daftar Peralatan yang Digunakan	12
Tabel 3.3 Parameter awal estimasi	13
Tabel 3.4 Range Arus setiap Stage	16
Tabel 4.1 Nilai parameter sistem	23
Tabel 4.2 Rata-Rata Cost untuk Kombinasi Parameter	24
Tabel 4.3 Parameter PI Controller untuk setiap Stage Pengecasan	26
Tabel 4.4 Parameter Kondisi Pengecasan	26
Tabel 4.5 Data Pengujian Simulasi	27
Tabel 4.6 Data Pengujian Prototype	29
Tabel 4.7 Perbandingan Optimasi Simulasi dan Prototype	32

DAFTAR SIMBOL

V_T	: Tegangan terminal baterai
V_{cp}	: Tegangan cabang RC
V _{ceq}	: Tegangan equivalent open circuit baterai
I _{ch}	: Arus pengecasan
Ι	: Arus tersimpan di baterai
R_0	: Hambatan dalam baterai
R_p	: Hambatan cabang RC
C_p	: Kapasitansi cabang RC
Δt	: Waktu sampling pengecasan
Α	: Amplitudo area eksponensial
В	: Invers konstanta area eksponensial
K	: Resistansi polaritas
E ₀	: Tegangan konstan baterai
Q	: Kapasitas baterai sebenarnya
Q_{max}	: Kapasitas baterai maksimum
<i>i</i> *	: Arus terfilter
V_{exp}	: Tegangan eksponensial
SOC	: State of charge baterai
SOCOCV	: Polinomial hubungan SOC-OCV
η_b	: Efisiensi baterai
x_b	: State model baterai
p_n	: Konstanta polinomial SOCOCV ke-n
J _b	: Cost keseluruhan pengecasan
J_1	: Cost waktu pengecasan
J_2	: Cost loss pengecasan
J_3	: Cost tegangan terminal akhir pengecasan
α_b	: Faktor bobot kepentingan relatif baterai (waktu)
β_b	: Faktor bobot kepentingan relatif baterai (loss)

T_{min}	: Waktu pengecasan minimum
T_{max}	: Waktu pengecasan maksimum
L_{min}	: Loss pengecasan minimum
L _{max}	: Loss pengecasan maksimum
V _{Tmin}	: Tegangan terminal baterai minimum
V _{Tmax}	: Tegangan terminal baterai maksimum
Т	: Waktu pengecasan
L	: Loss pengecasan
V_{TL}	: Tegangan terminal akhir pengecasan
u(t)	: Sinyal kontrol
e(t)	: Error
r(t)	: Setpoint
y(t)	: Output
K_p	: Parameter proporsional
K _i	: Parameter integral
K_D	: Parameter diferensial
G_{pid}	: Fungsi transfer PID
t _{sim}	: Waktu simulasi sistem
h	: Waktu sampling PID
J	: Cost PID
α	: Faktor bobot kepentingan relatif PID (IAE)
β	: Faktor bobot kepentingan relatif PID (TV)
v	: Kecepatan partikel
W	: Momen inersia partikel
<i>C</i> _{1,2}	: Faktor <i>learning</i>
<i>r</i> _{1,2}	: Faktor random
p_{best}	: Solusi optimal suatu partikel
$g_{\it best}$: Solusi optimal keseluruhan partikel
x	: Posisi partikel

t	: Variabel aljabar dari evolusi (iterasi)
t _{max}	: Iterasi maksimum
<i>f_{avg}</i>	: Fitness partikel saat itu
f	: Fitness partikel
п	: Jumlah partikel swarm
σ^2	: Variasi fitness sekumpulan partikel
С	: Nilai acak terdistribusi Cauchy
η	: Konstanta <i>step size</i> variasi

BAB 1 PENDAHULUAN

1.1 Latar Belakang

Dalam beberapa dekade terakhir, penggunaan *Electric Vehicle* atau EV sangat berkembang pesat, apalagi dengan adanya kenaikan emisi dari kendaraan bermotor dengan bahan bakar minyak. *Electric Vehicle* memiliki banyak macam, baik itu berbentuk mobil, sepeda, hingga kendaraan besar seperti truck dan beberapa kendaraan industri seperti *forklift*. Penggunaan EV tentu tidak akan terlepas dari proses *charging* sebagai sumber energinya. Proses tentu memerlukan waktu yang cukup lama dikarenakan butuh kapasitas baterai yang cukup besar untuk mampu mengerakkan suatu kendaraan listrik. Hal inilah yang seringkali masih menjadi permasalahan dalam penggunaan kendaraan listrik. Proses *charging* tidak boleh dilakukan sembarangan agar dapat menjaga keawetan baterai. Terlebih lagi, proses *charging* EV yang tidak dikontrol dapat memberikan dampak negatif pada jaringan distribusi energi listrik (Shafiee et al., 2012). EV sendiri memiliki banyak jenis baterai yang digunakan, salah satunya adalah jenis baterai NiMH atau *Nickel Metal Hydride*.

Baterai NiMH merupakan jenis baterai yang menggunakan nikel sebagai bahan utamanya. Indonesia sendiri merupakan salah satu negara penghasil nikel terbesar di dunia sehingga jenis baterai dengan bahan dasar NiMH dapat menjadi pendapatan besar bagi negara Indonesia(U.S. Geological Survey, 2021). Sekalipun jenis baterai NiMH lebih jarang digunakan daripada baterai Li-Ion, jenis baterai ini diperkirakan masih akan terus digunakan dalam berbagai aplikasi termasuk pada EV. *Range* dari temperatur kerja dari baterai NiMH telah diperluas hingga 100°C (lebih tinggi dari jenis baterai ini juga memiliki *life cycle* yang lebih panjang dibandingkan dengan baterai *Li* cell. Proses kontrol pengisian daya pada jenis baterai ini dapat meningkatkan *life span* dan memaksimalkan *life cycle* dari baterai ini. Namun, NiMH dikenal memiliki cara yang cukup kompleks untuk pengisian sehingga penelitian mengenai proses kontrol pada jenis baterai ini masih terus dilakukan, baik dengan metode analitis maupun cerdas (*intelligent algorithm*)(Arya & Verma, n.d.).

Pada umumnya, pengecasan hanya dilakukan secara langsung dengan menggunakan charger yang memiliki tegangan lebih tinggi untuk mengisi daya baterai dengan tegangan yang lebih rendah. Biasanya, metode yang digunakan dalam proses ini adalah switching biasa. Beberapa penelitian juga menerapkan proses pengecasan dengan menggunakan prinsip kontrol PID. Namun, metode ini belum tentu dapat mengoptimalkan proses pengecasan. Banyak penelitian juga telah menggunakan intelligent algorithm untuk melakukan pengecasan namun kebanyakan dari penelitian ini masih berbasis simulasi dengan jenis baterai Li-Ion. Hal ini dikarenakan battery management system memerlukan estimasi SOC yang akurat agar proses pengisian dapat dilakukan secara maksimal dalam kondisi real-time. Dari berbagai penelitian yang telah ada, proses pengoptimalan charging seringkali dilakukan dengan media komputer sebelum di proses oleh charger controller itu sendiri.

1.2 Rumusan Masalah

Bagaimana cara mengimplementasikan pengoptimalan dengan memanfaatkan *intelligent algorithm* pada suatu sistem terpisah dengan komputer, serta dapat dilakukan dengan mempertimbangkan kebutuhan pengguna dari segi waktu pengecasan.

1.3 Batasan Masalah

Dalam penelitian tugas akhir ini diterapkan beberapa batasan masalah antara lain sebagai berikut:

- 1. Sistem dirancang dengan bahasa pemrograman C untuk microcontroller AVR
- 2. Sistem dirancang hanya untuk jenis baterai NiMH
- 3. Prototype dirancang untuk jenis baterai dengan kapasitas kecil (12V 10Ah)
- 4. Kapasitas baterai dianggap kosong 0% pada 10 Volt dan penuh 100% pada 14.5 Volt
- 5. Model sistem dirancang dengan mengabaikan loss dari komponen selain baterai.
- 6. Perhitungan *loss* hanya sebagai objektivitas dan tidak diukur dalam simulasi maupun *prototype*.
- 7. *Prototype* dirancang dengan sumber tegangan 240Watt 10A dengan kemampuan supply arus sebesar 7A.
- 8. Waktu input minimal dari pengguna adalah 1800 detik dengan kondisi awal baterai lebih dari 50%.

1.4 Tujuan

Tujuan dari penelitian ini adalah untuk merancang suatu charge controller yang mampu mengidentifikasi pengoptimalan sesuai dengan kebutuhan pengguna dengan memanfaatkan *intelligent algorithm* yang kemudian akan diimplementasikan pada microcontroller agar dapat diuji secara real-time dan real-system.

1.5 Manfaat

Manfaat dari penelitian tugas akhir ini adalah untuk memberikan solusi baru terkait implementasi desain smart *charging* serta membuka peluang penelitian baru yang masih saling berkaitan. Selain itu, penelitian tugas akhir ini juga memiliki manfaat sebagai media pembelajaran serta pengimplementasian ilmu yang diperoleh penulis selama masa perkuliahan.

BAB 2 TINJAUAN PUSTAKA

2.1 Hasil Penelitian Terdahulu

Pengecasan atau pengisian daya baterai merupakan salah satu proses yang penting dalam *Battery Management System* (BMS). Salah satu metode umum yang digunakan dalam pengecasan baterai adalah metode *constant current-constant voltage* (CC-CV) dimana pada awal pengecasan baterai akan diisi dengan arus konstan hingga tegangan naik dan mencapai batas atas tegangan lalu metode akan diubah menjadi tegangan konstan. Namun fase tegangan konstan ini membutuhkan waktu lama sehingga secara keseluruhan waktu pengecasan akan meningkat dan menyebabkan *life cycle* baterai yang lebih singkat. Oleh karena itu, banyak penelitian yang telah dilakukan untuk mencari cara meningkatkan efisiensi pengecasan termasuk dari segi meminimalkan waktu pengecasan.

Salah satu penelitian mengenai pengoptimalan pengecasan yang telah dilakukan adalah dengan menentukan *current pattern* berdasarkan algoritme *grey wolf optimizer* pada baterai jenis Li-Ion. Metode ini memanfaatkan cara pengecasan *Multi-Stage Constant Current* (MSCC) yang memiliki beberapa keuntungan yaitu mudah diimplementasikan, kenaikan temperatur rendah, dan efisiensi pengecasan tinggi. Dari penelitian yang telah dilakukan, terbukti metode ini mampu meningkatkan sistem sebanyak 5.33% pada waktu pengecasan, 25.99% pada kenaikan suhu maksimum, 19.59% pada rata-rata kenaikan suhu, dan 0.48% pada efisiensi pengecasan. (Chen et al., 2021).

Cara lain dalam pengoptimalan pengecasan adalah dengan meminimalkan waktu respons serta *cost* dari kontroler. Baterai memiliki bentuk sistem yang tidak linear dan juga memiliki histeresis antara proses *charging* dan *discharging* sehingga mendapatkan parameter ideal untuk proses pengecasan sulit tercapai. Salah satu cara mengoptimalkan parameter pengecasan ini adalah dengan memanfaatkan *intelligent algorithm*. Salah satu penelitian telah menerapkan *Particle Swarm Optimization* yang telah dikembangkan dalam menentukan nilai parameter Kp, Ki, dan Kd pada kontroler PID untuk pengecasan baterai. Pada penelitian ini, diperoleh hasil berupa peningkatan efisiensi baterai dari 86.44% menjadi 91.47% dan penurunan kenaikan suhu pengecasan sebanyak 1°C. (Wu et al., 2020)

2.2 Dasar Teori

2.2.1 Baterai Nickel Metal Hydride

Baterai NiMH atau *Nickel Metal Hydride* merupakan salah satu jenis baterai yang menggunakan nikel sebagai bahan utamanya. Jenis baterai ini merupakan perkembangan dari baterai NiCad atau *Nickel Cadmium*. Baterai NiMH merupakan salah satu baterai yang populer digunakan karena memiliki beberapa kelebihan seperti kepadatan energi yang tinggi, harga murah, tidak beracun dan aman, serta siklus hidup panjang (Baterijom, 2021), (Windarko & Choi, 2010). Secara umum, baterai sendiri dapat digambarkan dalam rangkaian ekuivalen seperti pada Gambar 2.1. (Chen et al., 2021)

Gambar 2.1 Rangkaian ekuivalen untuk baterai

Dari rangkaian equivalent diatas, output tegangan terminal baterai V_T dan tegangan cabang paralel RC V_{cp} dapat diperoleh dan dituliskan dalam bentuk persamaan dinamis sebagaimana tertera pada persamaan (2.1) dan (2.2). (Khanum et al., 2021)

$$V_T(k) = V_{ceq}(k) - V_{cp}(k) - I_{ch}(k)R_0$$
(2.1)

$$V_{cp}(k+1) = e^{\frac{-\Delta t}{R_p C_p}} V_{cp}(k) + R_p \left(1 - e^{\frac{-\Delta t}{R_p C_p}}\right) I_{ch}(k)$$
(2.2)

Dengan V_{ceq} , I_{ch} , R_0 , R_p , C_p dan Δt secara berurutan merupakan tegangan ekuivalen open circuit, arus pengecasan, hambatan dalam, resistansi cabang paralel RC, kapasitansi cabang paralel RC, dan waktu sampling data. Perbedaan utama jenis baterai lain dengan baterai NiMH adalah adanya fenomena histeresis antara tahap *charging* dan *discharging*. Baterai NiMH memiliki persamaan tegangan eksponensial yang dapat dituliskan dalam persamaan (2.3). Persamaan tegangan terminal spesifik pada baterai NiMH sendiri ditunjukkan oleh persamaan (2.4) untuk proses dis*charging* dan (2.5) untuk proses *charging*(Mars et al., 2017).

$$\dot{V}_{exp}(t) = B|I(t)| \left(-V_{exp}(t) + Au(t)\right)$$
 (2.3)

$$V_T(t) = E_0 - K \frac{Q_{max}}{Q_{max} - Q(t)} (Q(t) + i^*(t)) + V_{exp}(t) - R_0. I(t)$$
(2.4)

$$V_T(t) = E_0 - K \frac{Q_{max}}{|Q(t)| - 0.1Q_{max}} i^*(t) - K \frac{Q_{max}}{Q_{max} - Q(t)} + V_{exp}(t) - R_0 I(t)$$
(2.5)

Dimana E_0 merupakan tegangan konstan baterai, V_{exp} merupakan tegangan eksponensial baterai, *B* merupakan invers konstanta area eksponensial waktu, *A* merupakan amplitudo area eksponensial, K merupakan resistansi polarisasi, Q_{max} merupakan kapasitas maksimum baterai, *Q* merupakan kapasitas baterai yang sebenarnya, *i*^{*} merupakan arus terfilter, *u*(*t*)merupakan sinyal kontrol (1 untuk *charging* dan 0 untuk *discharging*) dan *I* merupakan arus pada baterai. Baterai NiMH juga memiliki sifat dimana ketika berada telah terisi penuh atau mencapai SOC atau *State of Charge* 100%, tegangan akan mengalami drop. SOC atau persentase kapasitas baterai saat ini dibandingkan kapasitas baterai maksimum dapat dituliskan dalam persamaan dinamis (2.6).

$$SOC(k+1) = SOC(k) + \frac{I(k)\Delta t}{Q_{max} * 3600}$$
 (2.6)

Untuk mendapatkan proses pengecasan yang optimal, baterai memiliki beberapa *charging* rules dimana arus yang digunakan untuk mengisi baterai tidak akan sama dari SOC 0% hingga 100%. Proses pengisian ini biasanya dipisah menjadi 3 tahap yaitu *bulk, absorption,* dan *float.* Terkadang ada tahap tambahan yaitu *qualification* atau *equalization*. Selain itu, ada pula pengecasan yang hanya melibatkan 2 tahap yaitu *bulk* dan *float* (Bogno et al., 2017). Setiap baterai memiliki karakteristik yang berbeda-beda untuk penerapan ketiga *stage* ini, begitu pula untuk jenis baterai NiMH. Contoh *charging rules* untuk baterai NiMH antara lain ditunjukkan oleh Gambar 2.2 (Panasonic Corporation, 2014).

Gambar 2.2 Contoh charging rules untuk baterai NiMH

2.2.2 Particle Swarm Optimization

Particle Swarm Optimization atau yang biasa disingkat PSO merupakan metode optimasi yang dikenalkan oleh Kennedy dan Eberhart pada tahun 1995. Metode ini di dasarkan pada populasi partikel yang memiliki 2 parameter yaitu kecepatan dan lokasi. Lokasi akan merepresentasikan solusi sementara kecepatan akan menentukan arah dan jarak partikel dalam menemukan solusi dari permasalahan optimasi. Posisi dan kecepatan partikel ini dapat dimodifikasi dan dimanipulasi berdasarkan persamaan (2.6) dan (2.7).

$$v(t+1) = wv(t) + c_1 r_1 (p_{best} - x(t)) + c_2 r_2 (g_{best} - x(t))$$
(2.7)

$$x_{ij}(t+1) = x_{ij}(t) + v_{ij}(t+1)$$
(2.8)

Dimana t merupakan variabel aljabar dari evolusi (iterasi) saat ini, c_1 dan c_2 merupakan faktor *learning*, r_1 dan r_2 merupakan faktor *random* yang terdistribusi pada *range* [0,1], p_{best} merupakan solusi optimal suatu partikel, dan g_{best} merupakan solusi optimal seluruh populasi. Sementara itu, x merupakan lokasi partikel dan v merupakan kecepatan partikel.

Kecepatan partikel pada metode PSO dipengaruhi oleh dua parameter penting lainnya yaitu berat inersia dan percepatan partikel. Kedua parameter ini juga dapat di sesuaikan berdasarkan persamaan (2.9), (2.10), dan (2.11).

$$w = (w_{start} - w_{end}) \arctan \frac{t_{max} - t}{t_{max}}$$
(2.9)

$$c_1 = 1.3 + 1.2\cos\pi \frac{t}{t_{max}} \tag{2.10}$$

$$c_2 = 2 - 1.2 \cos \pi \frac{t}{t_{max}} \tag{2.11}$$

Dimana *w* merupakan koefisien inersia dan *t* merupakan jumlah iterasi. Jarak partikel pada metode PSO sebagai solusi dari permasalahan optimasi dapat diperoleh dengan cara mengobservasi perubahan keseluruhan dalam hal *fitness* atau kesesuaian antar partikel dalam populasi. Variasi *fitness* ini dapat dituliskan dalam persamaan (2.12), (2.13), (2.14), dan (2.15).

$$f_{avg} = \frac{1}{n} \sum_{i=1}^{n} f_i$$
 (2.12)

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{f_{i} - f_{avg}}{f} \right)^{2}$$
(2.13)

$$f = \max\{\max|f_i - f_{avg}|, 1\} (i \in [1, n])$$
(2.14)

$$\lim_{t \to +\infty} X(t) = P \tag{2.15}$$

Dimana *n* merupakan jumlah partikel swarm, f_i merupakan *fitness* untuk partikel ke-*i*, f_{avg} merupakan *fitness* dari partikel saat itu, σ^2 merupakan variasi *fitness* dari sekumpulan partikel yang ada dan *P* merupakan posisi tetap dari partikel. Parameter kecepatan dan jarak yang didapatkan dari persamaan berikutnya menuntun algoritme PSO mendapatkan nilai variasi yang semakin kecil dan menyebabkan populasi semakin konvergen hingga akhirnya menemukan konvergensi global atau lokal. Solusi ini dinotasikan dengan g_{best} yang dapat berupa solusi optimal local atau global dengan cara membandingkan dengan f_{best} . Namun tidak hanya itu, g_{best} juga dipengaruhi oleh Cauchy mutation yang memiliki *operating formula* sebagaimana tertera pada persamaan (2.16).

$$x_{ij} = x_{ij} + \eta * C(0,1) \tag{2.16}$$

Dimana $j = 1, 2, 3, ..., \eta$ adalah konstanta yang mengatur *step size* dari variasi, dan C(0,1) adalah nomor acak yang dihasilkan oleh fungsi distribusi Cauchy dengan T = 1. Mutasi Cauchy ini membawa beberapa permasalahan. Untuk mengatasi ini, diusulkanlah suatu metode adaptif untuk mutasi Cauchy yang menggunakan kecepatan rata-rata dari kelompok partikel sebagai parameternya. Kecepatan rata-rata sendiri dideskripsikan oleh persamaan (2.17).

$$\overline{v_j} = \frac{1}{n} \sum_{i=1}^n v_{ij} \tag{2.17}$$

Dimana *n* merupakan jumlah partikel dan v_{ij} merupakan kecepatan dari partikel ke-*i* pada dimensi ke-*j*. Dari serangkaian perhitungan yang ada, dapat diperoleh persamaan untuk solusi dari algoritme PSO sebagaimana tertera pada persamaan (2.18) (Wu et al., 2020).

$$g_{best} = g_{best} + \overline{v}_{l} * \mathcal{C}(x_{min}, x_{max})$$
(2.18)

2.2.3 Charger Controller

Proses pengecasan memerlukan controlling agar tidak terjadi over*charging*. Pada dasarnya, suatu charger control bekerja dengan prinsip mengalirkan arus dari tegangan sumber yang lebih tinggi menuju baterai. Dalam pengecasan baterai, terdapat beberapa metode yang dapat digunakan antara lain dengan menggunakan tegangan konstan, arus konstan, campuran tegangan dan arus konstan, metode pengecasan dengan *pulse*, serta pengecasan dengan metode *float*. Metode tegangan konstan merupakan metode standar dimana tegangan pengecasan sepanjang proses akan tetap sama. Sementara itu, pada metode arus konstan baterai dihubungkan membentuk kelompok kecil dan setiap kelompok di charge dari sumber DC melalui hambatan beban. Arus pengecasan akan dijaga konstan dengan mengurangi resistansi rangkaian seiring naiknya tegangan baterai. Kedua metode ini memiliki kelebihan dan kekurangan masing-masing sehingga untuk meningkatkan proses pengecasan dilakukan suatu metode gabungan tegangan dan arus konstan. Pada metode ini, arus konstan digunakan di awal pengecasan sementara tegangan konstan akan digunakan ketika tercapai tegangan baterai tertentu.

Selain mengatur tegangan dan arus, terdapat pula metode pengecasan dengan *pulse*. Pada metode ini, terdapat saat dimana proses pengecasan berhenti sehingga dapat membuat elektrolit baterai menjadi lebih uniform dan meningkatkan efisiensi pengecasan. Metode selanjutnya yaitu metode *float* yaitu metode yang biasa digunakan sebagai *backup* energi apabila baterai tidak digunakan. Pada metode ini, *charger* akan beroperasi pada tegangan rendah yang biasanya berada dibawah 2.4V per cell. Hal ini bertujuan untuk menjaga arus pengecasan tetap rendah dan meminimalkan kerusakan baterai akibat *overcharging*.

Terdapat beberapa jenis metode yang dapat digunakan di charger controller antara lain simple on off, PWM, dan MPPT. Simple on off charger controller memanfaatkan penggunaan relay dan menyambungkan dengan sumber tenaga apabila telah tercapai tegangan tertentu. Kelebihan dari metode charger ini adalah kualitas yang tidak tergoyahkan. Sementara itu, metode PWM menggunakan transistor untuk mengatur frekuensi sinyal sedemikian rupa untuk dikirimkan menuju baterai agar dapat menjaga suatu kondisi tegangan tertentu. Metode ini memiliki beberapa kerugian seperti menyebabkan noise dari frekuensi PWM dan juga menghasilkan residu berupa panas. Di sisi lain, metode MPPT merupakan metode yang seringkali digunakan untuk charger controller dengan sumber panel surya.

Metode MPPT merupakan metode yang bertujuan untuk mencari titik dimana dapat diperoleh daya keluaran maksimum. Metode ini berdasar dari daya rata-rata yang dapat dihasilkan dengan mengalikan nilai tegangan yang cukup konstan dengan arus rata-rata pengisian baterai. Dengan begitu, metode MPPT dapat dilakukan dengan memaksimalkan arus rata-rata pengisian baterai (Parthasarathy & Vijayaraj, 2020).

Selain PWM dan MPPT, terdapat pula cara lain untuk mengontrol proses pengecasan yaitu dengan menggunakan DAC atau Digital to Analog Converter. DAC merupakan salah satu

metode yang dapat mengubah sinyal digital menjadi sinyal analog. Berbeda dengan PWM yang mendapatkan besaran analog dengan melakukan *on off* dalam frekuensi tertentu, DAC mendapatkan besaran analog dengan cara mengombinasikan output 0-1 dari rangkaian sehingga mendapatkan kombinasi biner yang mewakili nilai analog tertentu. Cara ini memiliki keunggulan yaitu memberikan noise yang jauh lebih kecil daripada sistem dengan PWM. Namun, DAC membutuhkan banyak pin output untuk dapat menghasilkan besaran analog yang lebih presisi. Rangkaian DAC yang paling umum yaitu rangkaian R-2R sebagaimana tertera pada Gambar 2.3.

Gambar 2.3 Rangkaian DAC R-2R

2.2.4 PID Controller

PID (Proportional, Integral, Derivative) Controller merupakan salah satu jenis teknik kontroler yang terus digunakan sekalipun telah banyak perkembangan teknik kontrol lainnya. Secara umum, suatu PID controller dapat dituliskan dalam persamaan (2.19) dan (2.20).

$$u(t) = K_p e(t) + K_i \int_0^t e(t) dt + K_D \frac{de(t)}{dt}$$
(2.19)

$$e(t) = r(t) - y(t)$$
 (2.20)

dimana e(t) adalah error, r(t) adalah nilai referensi, u(t) adalah output dari kontroler, dan K_p, K_i, K_d secara berurutan adalah nilai gain proporsional, integral, dan derivatif. Sementara itu, pada PID controller dalam suatu sistem tertutup (dengan feedback), dapat dituliskan transfer function sebagaimana tertera pada persamaan (2.21).

$$G_{pid} = K_p + \frac{K_i}{s} + sK_d \tag{2.21}$$

Pada PID, sebagaimana kontroler lainnya, terdapat banyak cara untuk mengevaluasi kinerjanya sehingga diperoleh performa maksimal yang dapat mengurangi beban kerja kontroler. Pada umumnya, dalam domain waktu ada beberapa jenis pendekatan tidak langsung, seperti Integral of Square Error (ISE), Integral of Absolute Error (IAE), Integral of Time Weighted Absolute Error (ITAE), and Integral Weighted Square Error (ITSE) yang mana masing-masing secara berurutan dituliskan dalam persamaan (2.22), (2.23), (2.24), dan (2.25).

$$ISE = \int_{0}^{t_{sim}} e^{2}(t) dt$$
 (2.22)
$$IAE = \int_{0}^{t_{sim}} |e(t)| dt$$
 (2.23)

$$ITAE = \int_{0}^{t_{sim}} t|e(t)| dt$$
 (2.24)

$$ITSE = \int_{0}^{t_{sim}} te^{2}(t) dt$$
 (2.25)

dimana t_{sim} merepresentasikan waktu berjalannya sistem. Selain itu, terdapat pula suatu cara untuk mengevaluasi kehalusan sinyal yang bernama Total Variation (TV) index pada persamaan (2.26).

+

$$TV_{u} = \int_{0}^{t_{sim}} \left| \frac{du}{dt} \right| dt$$
 (2.26)

dan dapat di lakukan pendekatan dengan persamaan (2.27).

$$TV_{u} = \sum_{k=0}^{\frac{t_{sim}}{h}} |u(k+1) - u(k)|$$
(2.27)

dimana h merupakan waktu sampling. Kedua kriteria ini kemudian dapat dituliskan menjadi suatu fungsi cost function dengan pendekatan yang lebih sederhana sebagaimana tertulis dalam persamaan (2.28).

$$J = \alpha IAE + \beta TV \tag{2.28}$$

Dengan α dan β merepresentasikan faktor bobot yang menentukan kepentingan relatif dari masing-masing kriteria (de Moura Oliveira et al., 2020).

2.2.5 Transistor

Transistor merupakan salah satu jenis perangkat elektronik semikonduktor yang biasa digunakan sebagai penguat atau saklar dari sinyal listrik. Terdapat beberapa jenis transistor, antara lain *Bipolar transistor (BJT)*, *Field effect transistors (FET)*, *metal–oxide–semiconductor field-effect transistor (MOSFET)*. Selain itu, terdapat pula satu jenis transistor yang merupakan kombinasi dari 2 BJT, yang dinamakan dengan *Darlington Transistor*. Pada *Darlington Transistor*, bagian emitter salah satu BJT terhubung ke base dari BJT lainnya sementara bagian collector keduanya disambungkan. Darlington transistor digunakan untuk menguatkan aliran arus dari BJT satu ke BJT lainnya. Peran dari *Darlington Transistor* sendiri cukup banyak, salah satunya juga digunakan sebagai pengontrol arus pada *charging system*.

(Halaman ini sengaja dikosongkan)

BAB 3 METODOLOGI

3.1 Metode yang digunakan

Pada tugas akhir ini, secara umum digunakan 2 metode yaitu simulasi dan eksperimen. Pada simulasi, akan dilakukan beberapa metode khusus yaitu identifikasi sistem, pemodelan sistem, perancangan *controller*, dan diakhiri dengan pengambilan data simulasi. Sementara itu, pada eksperimen, akan dilakukan metode antara lain perancangan alat, perancangan *controller*, dan pengambilan data percobaan. Metode identifikasi sistem pada simulasi akan dilakukan dengan cara menerapkan *pulse discharging estimation* untuk mendapatkan parameter dari baterai yang digunakan. Perancangan *controller* akan dilakukan dengan menerapkan algoritme PSO untuk optimasi set point dan parameter PI.

3.2 Bahan dan peralatan yang digunakan

Bahan yang digunakan pada tugas akhir sebagian besar merupakan komponen yang terdapat pada *prototype* sistem sebagaimana ditunjukkan oleh Tabel 3.1.

No.	Nama Bahan	Nilai/Tipe	Keterangan						
1.	Power Supply	24 Volt 10A	Sumber tegangan pengecasan						
2.	Relay	12V	Switch sistem						
3.	Dioda bridge	-	Penyearah tegangan dari trafo						
4.	Darlington transistor	TIP142	Aktuator untuk mengontrol arus ke baterai						
		TIP122	Aktuator untuk mengontrol drain baterai						
5.	Shunt resistor	0.13443Ω	Sense resistor untuk pembacaan arus ke <i>microcontroller</i>						
6.	Kapasitor Elco	100V 1000uF	Filter tegangan						
		16V 470uF	Filter tegangan						
		10V 100uF	Filter ADC						
7.	LCD 16x2	-	Display						
8.	Voltage regulator	L7805	Penurun tegangan 24DC-5DC						
9.	Kapasitor keramik	100nF	Filter tegangan						
10.	Resistor	47Ω	-						
		100Ω	-						
		220Ω	-						
		1kΩ	-						
		1k2Ω	-						
		2k2Ω	-						
		4k7Ω	-						
		15kΩ	-						
		20kΩ	-						
11.	Op-Amp	LM358	Penguatan tegangan bacaan dari sense resistor						
12.	Dioda	IN4007	Pelindung dari polaritas terbalik baterai						
13.	Zener	5v2	Pelindung microcontroller dari tegangan tinggi						
14.	ULN2003A	-	-						
15.	Optocoupler	-	-						
16.	Microcontroller	ATmega32	Spesifikasi 32Mb Flash, 8Kb EEPROM, 16MhZ speed.						

Tabel 3.1 Daftar Bahan yang Digunakan

Tabel 3.1 Daftar Bahan yang Digunakan (Lanjutan)No.Nama BahanNilai/TipeKeterangan17.Baterai NiMH12V 10AhPlant sistem18.Kabel--

Sementara itu, peralatan yang digunakan pada tugas akhir ini meliputi alat serta *software* untuk perancangan sistem, simulasi, pembuatan *prototype*, serta pengambilan data sebagaimana ditunjukkan pada Tabel 3.2.

No.	Nama Alat	Keterangan						
1.	Laptop	-						
2.	MATLAB 2021b	Aedia untuk melakukan estimasi dan modelling						
3.	Simulink	Media untuk melakukan simulasi						
4.	Arduino IDE 1.8.19	Media untuk melakukan <i>coding</i> program <i>prototype</i>						
5.	Osiloskop	Media untuk pengambilan data arus						
7.	Solder	Alat untuk pembuatan prototype						
8.	AVR ISP MKVII	Alat untuk memasukkan program dari Arduino IDE ke dalam						
	Programmer	microprocessor						
9.	Multimeter	Alat ukur untuk kalibrasi						

Tabel 3.2 Daftar Peralatan yang Digunakan

3.3 Urutan pelaksanaan penelitian

Pada tugas akhir ini, pelaksanaan penelitian dimulai dari penentuan model matematika baterai NiMH, perancangan sistem *charger controller*, perancangan metode PSO untuk pengecasan baterai NiMH, perancangan simulasi dengan MATLAB, dan perancangan *prototype charger controller*.

3.3.1 Penentuan Model Matematika Baterai NiMH

Dalam tugas akhir ini, untuk menerapkan algoritme optimasi, diperlukan model matematika dari baterai NiMH dalam bentuk transfer function yang dapat diperoleh melalui persamaan model dari baterai sebagaimana tertera pada dasar teori. Namun, persamaan sistem yang kompleks menyebabkan transfer function sulit diperoleh sehingga digunakan pendekatan lain untuk memperoleh transfer function yaitu menggunakan estimasi parameter sistem dengan menggunakan data *pulse discharging*. Data ini dapat diperoleh melalui simulasi dimana baterai yang digunakan memiliki persamaan serupa dengan yang telah tertera di dasar teori. Adapun rangkaian simulasi untuk memperoleh data ini ditunjukkan oleh Gambar 3.1.

Gambar 3.1 Rangkaian Simulink pulse discharging

Hasil data ini kemudian akan diolah dengan menggunakan Discharge Pulse Estimation MATLAB dengan beberapa parameter awal sebagaimana tertera pada Tabel 3.1. Parameter awal ini diperoleh dari datasheet baterai NiMH. Dari hasil estimasi, diperoleh data nilai resistansi dan kapasitansi estimasi dari baterai yang kemudian nilai tersebut akan digunakan untuk persamaan (2.1), (2.2), dan (2.6). Model baterai pada tugas akhir ini menggunakan V_T sebagai output dan I_{ch} sebagai input. Namun, pada persamaan (2.6), I(k) yang merupakan arus tersimpan pada baterai memiliki nilai yang berbeda dengan $I_{ch}(k)$ bergantung pada efisiensi η_b atau kemampuan dari baterai dalam menangkap daya yang diberikan. Semakin baik kondisi baterai, nilai efisiensi baterai akan semakin tinggi. Hubungan dari I(k) dan $I_{ch}(k)$ ditunjukkan oleh persamaan (3.1) sehingga persamaan (2.6) berubah menjadi persamaan (3.2).

No	Parameter	Nilai
1.	Jumlah pasangan RC	1
2.	Estimasi awal E0	13.032
3.	Batas E0	9.8 - 14.5
4.	Estimasi awal R0	0.012
5.	Batas R0	0.0001 - 0.1
6.	Estimasi awal Rx	0.01
7.	Batas Rx	0.0001 - 0.5
8.	Estimasi awal Tx	100
9.	Batas Tx	75 - 360

Tabel 3.3 Parameter awal estimasi

$$I(k) = \eta I_{ch}(k) \tag{3.1}$$

$$SOC(k+1) = SOC(k) + \frac{\eta_b I_{ch}(k)\Delta t}{3600Q_m}$$
 (3.2)

Pada baterai terdapat suatu hubungan pasti antara nilai SOC dengan V_{OC} yang dapat dituliskan dalam bentuk polinomial. Untuk itu, diperlukan tabel data berisi hubungan SOC-OCV. Pada tugas akhir ini, data tersebut diperoleh melalui simulasi dengan jenis baterai yang sama seperti simulasi untuk memperoleh parameter baterai. Adapun rangkaian simulasi ditunjukkan oleh Gambar 3.2 yang dijalankan sesuai dengan *pseudocode* pada Algoritme 1.

ALGORITME 1. Algoritme Nilai SOC-OCV

Input: SOC

Output : SOC-OCV

Data : SOC (1:1:100)

- 2. *Set* : posisi awal partikel, kecepatan partikel, i = 0, j = 0.
- 3. For SOC=1:100
- 4. *Set* : SOC Baterai simulasi sama dengan SOC
- 5. Workspace Simulink menjadi workspace utama
- 6. Jalankan simulasi dengan perintah sim untuk mendapatkan output simulasi pengecasan
- 7. *OCV(SOC)* sama dengan output OCV
- 8. *end*

1.

Gambar 3.2 Rangkaian Simulink Hubungan Voc-SOC

Data dari tabel hubungan SOC-OCV kemudian akan diolah memanfaatkan fungsi *polyfit* pada MATLAB sehingga diperoleh polinomial SOCOCV pada persamaan (3.3) dan (3.4) sehingga persamaan (2.1) dapat diubah menjadi persamaan (3.5).

$$SOCOCV(SOC(k)) = p_1 + p_2SOC(k) + p_3SOC^2(k) + \dots + p_nSOC^{n-1}(k)$$
(3.3)

$$SOCOCV(SOC(k)) = E_0 + V_{ceq}$$
(3.4)

$$V_T(k) = (SOCOCV(SOC(k)) - V_{cp}(k) - I_{ch}(k)R_0$$
(3.5)

Dengan p_n merupakan konstanta polinomial, dan n = 1, 2, ... merupakan orde polinomial ditambah 1. Persamaan (3.2) dan (3.5) kemudian dapat dibentuk menjadi suatu persamaan state space dinamis (3.6) dan (3.7) dengan $x_b(k) = [SOC(k) \ V_{cp}(k)]; \ y(k) = V_T(k);$ serta $u(k) = I_{ch}(k)$

$$\begin{bmatrix} x_{b_1}(k+1) \\ x_{b_2}(k+1) \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & e^{\frac{-\Delta t}{R_p C_p}} \end{bmatrix} \begin{bmatrix} x_{b_1}(k) \\ x_{b_2}(k) \end{bmatrix} + \begin{bmatrix} \frac{\eta_b \Delta t}{3600Q_m} \\ R_p \left(1 - e^{\frac{-\Delta t}{R_p C_p}} \right) \end{bmatrix} u(k)$$
(3.6)

$$y(k) = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} x_{b_1}(k) \\ x_{b_2}(k) \end{bmatrix} - R_0 u(k) + (SOCOCV(x_{b_1}(k)))$$
(3.7)

3.3.2 Perancangan Sistem Charger Controller

Pada dasarnya, charger bekerja dengan cara mengalirkan arus dari tegangan yang lebih tinggi ke baterai dengan tegangan yang lebih rendah. Baterai NiMH memiliki karakteristik yang cukup berbeda dengan baterai lainnya dimana baterai ini sangat sensitif terhadap *overcharging* dan juga tegangan puncaknya akan turun ketika penuh. Oleh karena itu untuk jenis rapid *charging*, baterai NiMH memerlukan suatu charger controller dengan arus konstan. Pada tugas akhir ini, arus dijaga konstan dengan menggunakan DAC dari kontroler yang akan mengatur basis dari transistor (*switching*). DAC yang dikeluarkan sendiri akan diatur menggunakan PI Controller yang mendapatkan input berupa error dari set point arus yang ditetapkan dengan bacaan sensor yang ada. Secara garis besar, sistem dapat digambarkan dalam diagram blok yang tertera pada Gambar 3.3.

Gambar 3.3 Diagram Blok Sistem Charger Controller

Pada tugas akhir ini, charger controller yang digunakan akan menerapkan 3 set point arus sesuai dengan arahan pada datasheet baterai yang digunakan. Setiap set point arus sendiri akan ditentukan berdasarkan hasil algoritme optimasi. Waktu perubahan set point atau perubahan *stage charging* sendiri ditentukan berdasarkan SOC baterai sehingga sistem juga akan mendeteksi tegangan atau SOC dari baterai.

3.3.3 Perancangan PI Controller pada Sistem

Pada tugas akhir ini, *controller* yang dipilih adalah *controller* PI atau *Proportional Integral*. Kontroler tidak menerapkan diferensial dikarenakan sistem menjadi tidak stabil apabila jenis ini diterapkan. Penetapan parameter Kp dan Ki pada kontroler adalah dengan menggunakan Algoritme PSO dengan kriteria nilai sebagai berikut:

- 1. Kp maksimum untuk 3 stage bernilai 10
- 2. Kp minimum untuk 3 stage bernilai 1
- 3. Ki maksimum untuk 3 stage bernilai 100
- 4. Ki minimum untuk 3 stage bernilai 10

Kriteria kontroler PI optimal adalah menggunakan IAE dengan faktor bobot $\alpha = 0.5$ dan $\beta = 0.5$. Sistem dijalankan dengan rancangan simulasi sebagaimana tertera pada Gambar 3.5.

3.3.4 Perancangan Metode PSO untuk Baterai NiMH

Sesuai dengan dasar teori yang ada, performa sistem pengecasan dapat dilihat dari beberapa objektivitas seperti durasi pengecasan, *loss, battery aging*, temperatur, dan lain sebagainya.

Dalam tugas akhir ini, dirancang optimasi pengecasan dengan 3 objektivitas yaitu meminimalkan waktu (T), meminimalkan *loss* (L), dan memaksimalkan tegangan terminal akhir (V_{TL}) sesuai dengan persamaan (3.8), (3.9), (3.10), (3.11), dan (3.12). (Chen et al., 2021)

$$J_b = \sqrt{\alpha_b J_1^2 + \beta_b J_2^2 + (1 - \alpha_b - \beta_b) J_3^2}$$
(3.8)

dengan:

$$J_1 = \frac{T - T_{min}}{T_{max} - T_{min}} \tag{3.9}$$

$$J_2 = \frac{L - L_{min}}{L_{max} - L_{min}} \tag{3.10}$$

$$J_{3} = \frac{V_{TL} - V_{Tmax}}{V_{Tmax} - V_{Tmin}}$$
(3.11)

$$L(k) = I_{ch}^{2}(k) (R_{0} + R_{p}) \Delta t$$
(3.12)

Dengan T_{max} , T_{min} , L_{max} , L_{min} , V_{Tmax} , dan V_{Tmin} masing-masing adalah waktu pengecasan maksimum, waktu pengecasan minimum, *loss* maksimum, *loss* minimum, tegangan terminal maksimum, dan tegangan terminal minimum. Nilai tegangan terminal maksimum dan minimum diperoleh dari nilai OCV untuk SOC 100% dan 0%. Sementara itu waktu pengecasan minimum dan loss maksimum diperoleh dari *running* model untuk arus maksimum sesuai datasheet, dan sebaliknya waktu pengecasan maksimum dan loss minimum diperoleh dari *running* model untuk arus minimum diperoleh dari nunning model untuk arus minimum sesuai datasheet. Adapun arus minimum dan maksimum untuk setiap *stage* pengecasan tertera pada Tabel 3.4.

	Taber 5.4 Range Arus Seriap Siage											
Stage	Arus Minimum (A)	Arus Maksimum (A)										
1	2	3										
2	5	10										
3	0.33	0.5										

Tabel 3.4 *Range* Arus setiap *Stage*

Sesuai dengan tujuan tugas akhir dimana hasil akhir rancangan *Prototype* diharapkan mampu mengoptimalkan *charging* untuk waktu tertentu yang diinginkan pengguna tanpa mengurangi *lifespan* baterai, pada tugas akhir ini digunakan 3 kondisi untuk memperoleh cost function yaitu:

- 1. User tidak memasukkan input waktu Pada kondisi ini, maka diberlakukan 3 objektivitas. Namun, karena tidak terdapat batasan waktu, maka V_{TL} yang diperoleh akan selalu maksimal sehingga J_3 selalu bernilai 0 dan seakan-akan hanya terdapat 2 objektivitas.
- 2. User memasukkan input waktu dengan $T_{in} > T_{max}$ Pada kondisi ini, karena waktu yang dimiliki user lebih besar dari waktu yang diperlukan maka akan tercapai kondisi seakan-akan user tidak memasukkan batasan waktu (sama seperti kondisi 1)

3. User memasukkan input waktu dengan $T_{min} < T_{in} < T_{max}$ atau $T_{in} < T_{min}$ Pada kondisi ini, karena waktu yang dimiliki user terbatas, maka $T_{max} = T_{in}$. Dengan begini, nilai objektivitas meminimalkan waktu akan selalu bernilai 1 dan menjadi tidak berfungsi lagi. Untuk itu, pada kondisi ini, nilai α diatur menjadi 0 sehingga hanya terdapat 2 objektivitas yaitu meminimalkan loss dan memaksimalkan V_{TL} dalam kurun waktu yang ditentukan user.

Secara umum algoritme PSO yang digunakan dapat digambarkan oleh Gambar 3.4.

Gambar 3.4 Diagram Alir Algoritme PSO

3.3.5 Perancangan Simulasi dengan MATLAB

Pada proses pembuatan rancang bangun *charger controller* dengan Algoritme PSO ini diperlukan suatu simulasi untuk apakah sistem sudah bekerja sesuai yang diinginkan. Dalam proses simulasi, dipilih MATLAB sebagai media dikarenakan aplikasi ini dapat digunakan untuk merancang baik secara elektronika yaitu dengan memanfaatkan SimScape pada Simulink dan juga secara matematis dengan memanfaatkan model-model matematika yang ada. Agar menyerupai rangkaian sebenarnya yang akan digunakan, maka dalam perancangan simulasi digunakan SimScape yang terdiri dari beberapa komponen yaitu:

- 1. IGBT
- 2. Resistor
- 3. Sumber tegangan DC
- 4. Baterai

Pada simulasi, digunakan sumber berupa tegangan DC 30V untuk melakukan pengecasan pada baterai. Untuk memudahkan pendeteksian arus yang melewati baterai selaku *feedback* untuk kontroler, maka bagian positif baterai langsung disambungkan dengan sumber tegangan sementara bagian negatif dari baterai dihubungkan ke *ground* oleh transistor yang dikendalikan oleh kontroler. Dengan begitu, apabila gate transistor diberikan sinyal penuh atau terbuka, maka arus yang mengalir akan maksimal dan sebaliknya, apabila *gate* transistor tidak diberi sinyal atau tertutup maka arus tidak akan mengalir ke baterai. Namun, pada simulasi dikarenakan ada beberapa keterbatasan dalam segi komponen dimana tidak terdapat *BJT* maupun *Darlington Transistor* sehingga digunakan IGBT sebagai pengganti sesuai dengan instruksi MATLAB.

Selain itu, pada perancangan simulasi ini juga digunakan komponen Simulink lain sebagai kontroler yang akan mengontrol transistor yang terdiri dari komponen yaitu:

- 1. PI controller diskrit
- 2. PWM generator

PI *controller* diskrit digunakan untuk mengontrol arus sesuai dengan set point yang diberikan. Sesuai dengan penjelasan sebelumnya, set point dari sistem akan ditentukan melalui algoritme PSO. Namun, seperti yang telah dijelaskan sebelumnya terkait keterbatasan komponen MATLAB, IGBT hanya bisa di atur dengan sinyal PWM sehingga pada simulasi tidak digunakan DAC melainkan menggunakan PWM yang kemudian akan dilewatkan melalui *low pass filter* untuk mendapatkan hasil hitungan analog (Microchip Technology Inc., 1997). Secara keseluruhan bentuk rancangan dari simulasi ini ditunjukkan oleh Gambar 3.5.

Gambar 3.5 Rancangan Simulasi dengan Simulink MATLAB

Sementara itu, program PSO yang digunakan sendiri dipisah menjadi 3 program yaitu 1 main program dengan 2 sub-program. Adapun sub-program pertama yaitu program algoritme PSO itu sendiri sementara sub-program kedua berisikan *cost function* sistem. Main program digunakan untuk mendefinisikan permasalahan, parameter, dan solusi yang ingin dicari.

3.3.6 Perancangan Prototype Charger Controller

Prototype charger controller pada tugas akhir ini dirancang sedemikian rupa mengikuti perancangan simulasi yang telah dilakukan. Namun, untuk memungkinkan sistem bekerja sesuai yang diharapkan dilakukan pula penyesuaian-penyesuaian pada komponen yang digunakan. Berbeda dengan simulasi, pada *Prototype* sumber yang digunakan dirancang menggunakan sumber tegangan AC yang kemudian diolah menjadi tegangan DC dengan memanfaatkan *power supply switching* 24V 10A. Adapun skema rangkaian untuk *prototype* dapat dilihat pada Gambar 3.6.

Gambar 3.6 Skema Rangkaian Prototype Charger Controller

Pada tugas akhir ini, charger controller dirancang agar dapat melakukan perhitungan optimasi sesuai algoritme PSO yang telah dijelaskan pada bagian sebelumnya. Secara umum, cara kerja dari alat ini ditunjukkan pada Gambar 3.7

Gambar 3.7 Diagram Alir Cara Kerja Sistem

3.3.7 Pengambilan Data Percobaan

Pada tugas akhir ini, pemerolehan data percobaan akan dipisah menjadi 2 yaitu secara simulasi dan secara eksperimen. Pada eksperimen, parameter PSO yang digunakan akan didasarkan pada parameter PSO terbaik menurut simulasi pada MATLAB untuk baterai dengan anggapan kondisi awal SOC 0% dan tanpa waktu input dari pengguna. Adapun parameter terbaik ini akan didapatkan dari menjalankan program optimasi sebanyak 5 kali untuk 80 kombinasi parameter yang terdiri dari 5 iterasi (3, 5, 10, 50, 100), 3 populasi (3, 5, 10), 2 c_1 (0.5, 1), 2 c_2 (0.5, 1), dan 2 w (0.8, 0.9). Data *cost* dari hasil setiap kombinasi parameter dalam 1 kali *running* program akan di rata-rata dan parameter dengan rata-rata nilai *cost* paling kecil akan dipilih sebagai parameter PSO dalam seluruh rangkaian percobaan. Algoritme PSO dengan parameter yang telah di tentukan sebelumnya akan digunakan untuk memperoleh data percobaan baik secara simulasi maupun eksperimen. Pada simulasi, rancangan *Simulink* yang telah dijelaskan sebelumnya akan diganakan dengan Algoritme 2.

AL	GORITME 2. Algoritme Pengambilan Data Simulasi
	Input: Parameter PSO, SOC awal, Kapasitas baterai, Waktu input
	Output : Set point arus, Cost, Loss, Waktu pengecasan, Tegangan akhir
1.	Inisialisasi parameter PSO dan kondisi awal baterai

2. Set : posisi awal partikel, kecepatan partikel, i = 0, j = 0.

- 3. g_{best} sama dengan posisi awal
- 4. If iterasi ke-i kurang dari iterasi maksimal
- 5. *If* populasi ke-j kurang dari jumlah populasi
- 6. Update kecepatan partikel
- 7. Aplikasikan limit kecepatan
- 8. Update posisi partikel
- 9. Aplikasikan limit posisi
- 10. Evaluasi *cost*
- 11. If cost lebih kecil dari cost populasi sebelumnya
- 12. p_{best} sama dengan posisi saat ini (x(k))
- 13. *end*
- 14. *end*
- 15. If cost untuk p_{best} lebih kecil dari cost iterasi sebelumnya
- 16. g_{best} sama dengan posisi p_{best}
- 17. *end*
- 18. end
- 19. Setpoint arus sama dengan g_{best}
- 20. Hitung loss, waktu pengecasan, dan tegangan terminal akhir untuk setpoint arus
- 21. Set : SOC Baterai simulasi sama dengan SOC inisial
- 22. Workspace Simulink menjadi workspace utama
- 23. Jalankan simulasi dengan perintah sim untuk mendapatkan output simulasi pengecasan

Sementara itu, pada eksperimen, pengambilan data akan dilakukan dengan memanfaatkan media serial komunikasi dan fitur *recorder* pada osiloskop digital sebagaimana tertera pada Gambar 3.8. Media serial komunikasi yang digunakan adalah Arduino dengan menambahkan rangkaian proteksi dan *voltage divider* sebagai pengukur tegangan baterai selama pengecasan sebagaimana ditunjukkan oleh Gambar 3.9. Data serial yang dikirimkan Arduino kemudian akan diterima dan disimpan oleh MATLAB menggunakan Algoritme 4.2.

ALGO	ALGORITME 3. Algoritme Pengambilan Data Serial Prototype								
I	Input: Nomor Port Serial, Baud Rate Serial, Waktu Sampling								
0	Output : Tegangan baterai Prototype								
1. Iı	Inisialisasi parameter serial								
2. B	Buka port serial								
3. <i>S</i>	<i>et</i> : nilai i=1								
4. w	while true								
5.	Simpan data serial dalam array tegangan ke-i								
6.	Update nilai i dengan i=i+1								
7									

- 7. Pause selama waktu sampling
- 8. *end*
- 9. Tutup port serial

🔊 Data Reco	rder - l	Data R	ecord	ler																			5. A	to the st	ir Arabura	w/3 13 7	0			٥	\times
EFile(E) Vie	ew(⊻)	Displ	ay T	ools(0 0	ption	0	Skin(S) He	lp(H)															P						
	?	*	$\left \right $			- A		\Leftrightarrow		щ													/m	\mathbf{I}^{N}	~ @v	, ч	L 🐠	"h	Л		
Data Record	ler 🗙																								Propert	y Set					φ×
																									USB D	evice(no	t connect	ted)			~
																					Adj	ust set			O St	art Rec	ord				
CH1																							CH2								
15.000	2																						35.000								
10.000)-																						- 30.000	I							
5.000																							-25.000	I							
0.000	,																						-20.000	I							
-5.000	,-																						- 15.000	I							
-10.000)-																						- 10.000	I							
-15.000	,-																						-5.000	I							
-20.000	5																						-0.000								
-25.000	,-																						5.000	I							
-30.000	,-																						-10.000								
-35.000	,	* '														-				- * '		- *	-15.000								
5V Adjust Rese	et O											400 s											S Adjust Res	et	Desper	AL Cal	Data Da				
Ready																					h	Not Con	nected		Proper	ty set	Data Re	coru			

Gambar 3.8 Fitur Recorder pada Osiloskop Digital

Gambar 3.9 Skema (kiri) dan Rangkaian (kanan) Tambahan

Sementara itu, osiloskop digital akan digunakan sebagai media untuk mendapatkan arus yang masuk ke baterai. Osiloskop hanya mampu mendeteksi tegangan sehingga hasil akhir data percobaan nantinya akan diolah kembali secara matematis untuk mendapatkan nilai arus sebenarnya.

BAB 4 HASIL DAN PEMBAHASAN

4.1 Estimasi parameter baterai

Dari proses estimasi menggunakan *pulse discharging* dengan nilai inisialisasi parameter awal sebagaimana tertera pada Tabel 3.2, diperoleh nilai parameter sesuai yang telah tertera pada Tabel 4.1.

No	Parameter	Nilai	Satuan
1.	R ₀	0.0846	Ohm
2.	R_p	0. 009	Ohm
3.	C_p	2.5508e+04	Farad
4.	E ₀	13.0232	Volt
5.	η	0.9	-
6.	Δt	1	Detik
7.	Q_{max}	10	Ampere Hour (Ah)
8.	p_1	-4526.3365	-
9.	p_2	25264.6955	-
10.	p_3	-60569.6609	-
11.	p_4	81886.4051	-
12.	p_5	-68849.1071	-
13.	p_6	37452.6285	-
14.	p_7	-13313.2871	-
15.	p_8	3067.3029	-
16.	p_9	-451.0154	-
17.	p_{10}	42.5251	-
18.	p_{11}	10.3660	-

Tabel 4.1 Nilai parameter sistem

Parameter R_0 , R_p , dan C_1 merupakan nilai estimasi resistansi dan kapasitansi ekuivalen pada baterai. Ketiga nilai ini sangat berpengaruh pada proses pengoptimalan sistem yang mempertimbangkan *loss* sebagai objektivitas. Hal ini disebabkan oleh perhitungan *loss* yang melibatkan penjumlahan nilai resistansi internal R_0 dan resistansi cabang RC R_p , seperti yang telah dijelaskan oleh persamaan (3.12).

Parameter pada tugas akhir ini lainnya adalah η yaitu nilai efisiensi coulomb, dimana η berada diantara nilai 0 dan 1 serta bernilai semakin besar apabila kondisi baterai semakin baik. Baterai NiMH sesungguhnya kemudian di *charge* dengan arus 5A selama satu jam. Secara teori untuk jenis baterai 10Ah maka baterai akan terisi sebanyak 50%. Namun, baterai hanya terisi sebanyak 45% sehingga dipilih nilai η yaitu 0.9. Sementara itu, nilai p_1 hingga p_{11} merupakan konstanta polinomial orde 10 yang diperoleh dari *polyfit* antara SOC dan OCV baterai NiMH.

4.2 Pengujian algoritme PSO

Pada algoritme PSO, dipilih beberapa parameter PSO yang kemudian diterapkan untuk memperoleh nilai set point arus setiap *stage*. Pada pengujian algoritme PSO, optimasi dilakukan untuk kondisi dimana tidak terdapat masukan berupa waktu maksimal pengecasan yang ada serta kondisi awal SOC baterai dianggap 0%. Program PSO dijalankan sebanyak 5 kali untuk memastikan keakuratan setiap kombinasi parameter PSO yang kemudian hasilnya akan diratarata untuk diperoleh 1 kombinasi parameter PSO yang dianggap terbaik. Nilai *cost* rata-rata untuk 80 kombinasi tersebut tertera pada Tabel 4.2.

Kombinasi	Itor	Don	C1	C2	***	wd	Cost	Running	Objektivitas
ke-	Iter	гор	CI	C2	w	wu	Cost	Time	
1			1	1			0.41573503	1.10420958	0.788569
2			1	0.5	0.8		0.39942949	1.07440558	0.59886
3			0.5	1	0.8		0.41219421	1.0754233	0.747373
4		5	0.5	0.5		0.00	0.38336718	1.0943394	0.411982
5		5	1	1		0.99	0.40316872	1.14873353	0.642365
6			1	0.5	0.0		0.39352271	1.13334243	0.530138
7			0.5	1	0.9		0.42949698	1.17729478	0.948683
8	3		0.5	0.5			0.40658343	1.18137855	0.682094
9	5		1	1			0.3756702	2.31987168	0.322433
10			1	0.5	0.8		0.36859857	2.16761395	0.240157
11			0.5	1	0.8		0.39606427	2.2198507	0.559708
12		10	0.5	0.5		0.00	0.39242834	2.22331655	0.517406
13		10	1	1		0.99	0.37760328	2.21970423	0.344923
14			1	0.5	0.0		0.3795406	2.39126383	0.367463
15			0.5	1	0.9		0.38073488	2.7642023	0.381359
16			0.5	0.5			0.38524789	2.55574955	0.433865
17			1	1			0.38657365	1.77796605	0.449288
18			1	0.5	0.8		0.39810265	1.77182248	0.583424
19			0.5	1	0.8		0.38603685	1.88523525	0.443043
20		5	0.5	0.5		0.00	0.40168786	1.75361638	0.625136
21		5	1	1		0.77	0.3797163	1.7904063	0.369506
22			1	0.5	0.0		0.38104073	1.80168153	0.384915
23			0.5	1	0.9		0.37602764	1.90521893	0.32659
24	5		0.5	0.5			0.39282617	1.71441743	0.522034
25	5		1	1			0.38078021	3.67802928	0.381889
26			1	0.5	0.8		0.35764326	3.34417823	0.112709
27			0.5	1	0.8		0.38063993	3.2938488	0.380256
28		10	0.5	0.5		0.00	0.36485983	3.274709	0.196664
29		10	1	1		0.99	0.35743193	3.4005888	0.110251
30			1	0.5	0.0		0.35390211	3.47166005	0.069194
31			0.5	1	0.9		0.36593676	3.39662365	0.209194
32			0.5	0.5			0.36021116	3.3753212	0.142583
33			1	1			0.37325774	2.97210823	0.294367
34			1	0.5	0.8		0.37977892	3.14205843	0.370238
35			0.5	1	0.8		0.36351508	3.1825394	0.181019
36		5	0.5	0.5		0.00	0.3657245	3.5779549	0.206726
37		5	1	1		0.99	0.36523387	3.285401	0.201016
38	10		1	0.5	00		0.37706331	3.16752273	0.338643
39			0.5	1	0.9		0.3631606	3.16243773	0.176895
40			0.5	0.5			0.35108982	3.11741668	0.036484
41			1	1			0.36237878	7.76512948	0.167866
42		10	1	0.5	0.8	0.99	0.35492899	8.2073625	0.081291
43			0.5	1			0.35483062	6.15628185	0.080063

Tabel 4.2 Rata-Rata Cost untuk Kombinasi Parameter

Kombinasi ke-	Iter	Рор	C1	C2	w	wd	Cost	Running Time	Objektivitas
44				0.5			0.34864106	5.8669883	0.008745
45			1	1			0.34931553	5.87552905	0.016217
46			1	0.5	0.0		0.35445068	6.24662043	0.075651
47			0.5	1	0.9		0.35525108	5.77717543	0.084937
48			0.5	0.5			0.34841148	6.30769745	0.028967
49			1	1			0.37466011	12.9692461	0.310804
50			1	0.5	0.0		0.34796257	13.388357	0.009115
51			0.5	1	0.8		0.34796832	13.1875919	0.00897
52		5	0.5	0.5		0.00	0.35653051	13.7397715	0.100188
53		3	1	1		0.99	0.34862339	13.2598739	0.011895
54			1	0.5	0.0		0.34796209	13.0118662	0.008841
55			0.5	1	0.9		0.35166113	12.8586492	0.04397
56	50		0.5	0.5			0.34797027	13.2030941	0.008981
57	30		1	1			0.35021416	25.8556081	0.031958
58			1	0.5	0.0		0.34795793	25.9323208	0.01827
59			0.5	1	0.8		0.35036765	26.9576504	0.033886
60		10	0.5	0.5		0.00	0.34795749	31.1356834	0.022067
61		10	1	1		0.99	0.34796003	30.2718042	0.021437
62			1	0.5	0.0		0.34795875	28.414995	0.020081
63			0.5	1	0.9		0.34795898	28.7890421	0.020354
64			0.5	0.5			0.3479608	29.7565143	0.02106
65			1	1			0.35420061	28.3076304	0.075345
66			1	0.5	0.0		0.34798037	28.807782	0.02037
67			0.5	1	0.8		0.3539048	27.1423936	0.071801
68		5	0.5	0.5		0.00	0.34798836	29.1111159	0.020593
69		5	1	1		0.99	0.34895584	26.5308642	0.022022
70			1	0.5	0.0		0.34796121	26.98908	0.019041
71			0.5	1	0.9		0.3479581	30.2665841	0.021433
72	100		0.5	0.5			0.34795757	31.1190547	0.022055
73	100		1	1			0.34795748	59.1815494	0.042534
74			1	0.5	0.0		0.34795878	52.7814433	0.037864
75			0.5	1	0.8		0.35262291	48.9527991	0.064628
76		10	0.5	0.5		0.00	0.34795738	49.1840326	0.035238
77		10	1	1		0.99	0.34795735	52.2646237	0.037486
78			1	0.5	0.0		0.34795703	51.0110242	0.036572
79			0.5	1	0.9		0.34795744	47.0249385	0.033663
80			0.5	0.5			0.34795697	47.9973003	0.034372

Tabel 4.2 Rata-Rata Cost untuk Kombinasi Parameter (Lanjutan)

Algoritme PSO atau Particle Swarm Optimization merupakan algoritme cerdas (*intelligent algorithm*) yang sangat bergantung pada parameter yang digunakan meliputi jumlah iterasi dan populasi, nilai momen inersia, serta nilai faktor acak. Pemilihan parameter ini cukup mempengaruhi performa dari algoritme PSO. Nilai parameter PSO pada Tabel 4.2 menunjukkan bahwa nilai c_1 , c_2 , dan w yang semakin besar memberikan hasil optimasi yang semakin baik dan berlaku sebaliknya. Hal ini disebabkan karena dengan semakin besarnya parameter c_1 , c_2 dan w maka partikel akan semakin cepat bergerak mencari titik optimal. Sementara itu, dari tabel terlihat bahwa semakin banyak iterasi maka nilai *cost* akan semakin banyak iterasi menyebabkan waktu eksekusi optimasi semakin lama. Waktu ini tidak akan terlalu berpengaruh apabila sistem tidak mempertimbangkan waktu. Namun, untuk sistem pengecasan dengan input waktu, *running time* dari PSO ini juga dipertimbangkan. Dikarenakan fokus pada

tugas akhir ini hanya mempersingkat waktu pengecasan, maka dipilih faktor bobot untuk objektivitas *running time* hanya 0.1 sementara *cost* 0.9 yang menandakan bahwa nilai *cost* lebih penting daripada *running time*. Dari Tabel 4.2 terlihat bahwa dengan objektivitas ini, diperoleh parameter paling optimal pada kombinasi ke 44 yaitu 10 iterasi, 10 populasi, momen inersia w 0.8, konstanta c_1 1, konstanta c_2 1, dan damping inersia 0.99 dengan nilai *cost* 0.3486 dan *running time* 5.87s.

4.3 Hasil Desain PI Controller

Dari proses *tuning* untuk perolehan parameter PI *Controller* dengan menggunakan Algoritme PSO, diperoleh nilai parameter untuk 3 *stage* sebagai berikut:

Stage	Кр	Ki
1	8.2582	61.1057
2	9.0094	67.4419
3	5.4203	48.9966

Tabel 4.3 Parameter PI Controller untuk setiap Stage Pengecasan

Tabel 4.3 menunjukkan bahwa nilai Kp dan Ki memiliki besaran yang berbanding lurus dengan batas *setpoint* setiap *stage* dimana *stage* ketiga memiliki rentang *setpoint* yang paling kecil yaitu 0.33A-0.5A, diikuti oleh *stage* pertama dengan rentang *setpoint* 2A-3A, dan terakhir dengan *stage* ketiga dengan rentang *setpoint* arus paling besar yaitu 5A-10A. Nilai Kp dan Ki ini berbanding lurus dikarenakan untuk *setpoint* yang lebih besar diperlukan respons sistem yang lebih cepat. Dengan begitu, nilai Kp akan semakin besar. Namun, dengan semakin besarnya nilai Kp maka *error steady state* dari sistem juga akan semakin besar yang dapat dikompensasi dengan nilai parameter Ki. Oleh karena itu, seiring dengan naiknya nilai Kp, Ki juga akan meningkat.

4.4 Hasil pengujian Simulasi MATLAB

Pengujian simulasi MATLAB dilakukan dengan menentukan kondisi pengecasan baterai sebagaimana tertera pada Tabel 4.4.

	Tuo er mit Turumeter m	ionaisi i engeeasan
Kondisi	SOC Awal	Waktu Input
1.	14%	4200 s (1 jam 10 menit)
2.	6%	6000 s (1 jam 40 menit)
3.	9%	-

Tabel 4.4 Parameter Kondisi Pengecasan

Pada pengujian simulasi MATLAB, diperoleh data hasil optimasi dan data pengecasan pada Tabel 4.3. Sementara itu, data grafik pengecasan untuk kondisi 1, 2, dan 3, secara berurutan ditunjukkan oleh Gambar 4.1, 4.2, dan 4.3. Analisa dilakukan dengan membandingkan perhitungan optimasi dengan keadaan sebenarnya pada simulasi.

Kondisi	I1 (A)	I2 (A)	I3 (A)	Waktu (s)	SOC Final (%)			
Hasil Optimasi								
1.	2.32	6.685	0.38	4200	84			
2.	2.917	6.449	0.5	6000	97.9			
3.	3	6.926	0.5	7205	100			
Data Pengecasan								
1.	-	6.58	-	4200	86			
2.	2.738	6.381	1.869	6000	98.2			
3.	2.81	6.85	0.647	7205	100			

Tabel 4.5 Data Pengujian Simulasi

Gambar 4.1 Grafik Pengecasan Kondisi 1 pada Simulasi MATLAB

Gambar 4.2 Grafik Pengecasan Kondisi 2 pada Simulasi MATLAB

Gambar 4.3 Grafik Pengecasan Kondisi 3 pada Simulasi MATLAB

Berdasarkan Tabel 4.4, pada kondisi pertama SOC dari simulasi MATLAB menunjukkan nilai yang lebih tinggi sebanyak 2%, dibandingkan dengan SOC yang terhitung dari proses optimasi. Sementara itu, arus dari simulasi memiliki error sebesar 0.105 Ampere lebih rendah. Pada kondisi pengecasan kedua, terlihat bahwa kembali terdapat error sebesar 0.179 Ampere, 0.068 Ampere, dan 1.369 Ampere untuk secara berurutan stage 1, 2 dan 3. Dari grafik pengecasan kondisi kedua, terlihat bahwa error ini disebabkan oleh adanya delay dari respons sistem saat terjadi perubahan stage. Ketika pengecasan beralih dari stage pertama ke stage kedua, set point arus berubah dari 2 menjadi 5. Selain itu, waktu pengecasan stage kedua adalah yang paling lama sehingga delay sistem sebanyak 1 menit tidak terlalu berdampak. Namun, ketika perubahan stage kedua menuju stage ketiga, selisih perbedaan set point arus keduanya sangat tinggi. Waktu pengecasan stage 3 juga yang paling cepat dilalui sehingga delay 30 detik sangat berpengaruh pada hasil bacaan data pengecasan. Pada grafik juga terlihat bahwa terdapat overshoot yang cukup besar untuk stage pertama yaitu sebesar 70%, namun tidak untuk stage kedua dan ketiga. Pada pengecasan baterai, sesuai dengan dasar teori, PI Controller harus dirancang memiliki step response berupa respons underdamp. Hal ini dikarenakan overshoot arus yang terlalu tinggi dapat menyebabkan penurunan usia baterai. Fakta bahwa masih terdapat overshoot menandakan masih terdapatnya ketidak sesuaian dalam perancangan dan penentuan nilai parameter PI pada proses designing controller untuk proses pengecasan stage pertama. Selain error arus, pada kondisi kedua juga terdapat error SOC dimana pada perhitungan optimasi, diprediksi tegangan baterai akan mencapai 0.979 sementara hasil simulasi menunjukkan error sebesar 0.003 atau 0.3%.

Terakhir, pada kondisi ketiga, terlihat bahwa error arus menunjukkan angka 0.107 Ampere, 0.076 Ampere, dan 0.147 Ampere untuk masing-masing *stage* 1, 2 dan 3. Sama seperti kondisi kedua, error ini disebabkan oleh adanya delay saat terjadi perpindahan *stage*. Namun, pada kondisi ini terlihat bahwa SOC akhir dari perhitungan optimasi dan simulasi sudah sesuai yaitu mencapai angka 1 dengan batas waktu yang sama yaitu 7205 detik atau 1 jam 5 detik. Dari

ketiga kondisi pengecasan, terlihat bahwa error SOC yang semakin kecil saat input waktu dinaikkan.

4.5 Hasil pengujian *Prototype*

Pada pengujian *prototype*, sistem dijalankan pada 3 kondisi yang sama seperti yang telah tertera pada Tabel 4.3. Dari pengujian tersebut, diperoleh data hasil optimasi dan data pengecasan pada Tabel 4.4. Sementara itu, data grafik pengecasan untuk kondisi 1, 2, dan 3, secara berurutan ditunjukkan oleh Gambar 4.1, 4.2, dan 4.3. Analisa kembali dilakukan dengan membandingkan perhitungan optimasi dan pengecasan *Prototype*.

Kondisi	I1 (A)	I2 (A)	I3 (A)	Waktu (s)	SOC Final (%)			
Hasil Optimasi								
1.	2.63	5.99	0.46	4200	76			
2.	2.8	5.36	0.33	6000	98			
3.	2.4	6.6	0.33	8148	100			
Data Pengecasan								
1.	-	6.05	-	4200	80			
2.	2.7	5.37	4.5	6000	98			
3.	2.35	6.43	0.33	7202	100			

Gambar 4.4 Grafik Pengecasan Kondisi 1 pada Prototype

Gambar 4.5 Grafik Pengecasan Kondisi 2 pada Prototype

Gambar 4.6 Grafik Pengecasan Kondisi 3 pada Prototype

Berdasarkan Tabel 4.5, pada kondisi pertama SOC pada pengujian *prototype* menunjukkan angka 4% lebih tinggi dibandingkan dengan perhitungan optimasi yang telah dilakukan. Sementara itu, dalam 1 siklus pengecasan pertama, terlihat bahwa arus sistem masih tidak stabil dan bernilai lebih tinggi sebesar 0.5 ampere. Namun, mulai dari siklus kedua, arus stabil dan hanya memiliki error steady state sebesar 0.01 ampere. Pada grafik terlihat bahwa pada waktu ke 1 jam, tegangan bacaan dari baterai menjadi tidak stabil. Pada detik yang sama arus bernilai -0.3 ampere yang berarti sistem tengah melalui proses pembacaan SOC, yang artinya tegangan

seharusnya tetap stabil tanpa naik ataupun turun. Hal ini dapat disebabkan oleh error bacaan ataupun *noise* dari luar.

Pada kondisi pengecasan kedua, SOC hasil perhitungan optimasi dan SOC akhir *real system* telah menunjukkan angka yang sama yaitu 0.98 atau 98%. Dari grafik, terlihat bahwa untuk *stage* pertama sistem masih terlihat mengalami overshoot. Dari grafik juga terlihat bahwa tegangan mengalami kenaikan yang stabil seiring dengan pertambahan waktu dan kenaikan SOC. Dari sisi arus, error yang terbentuk juga sangat kecil yaitu bernilai 0.01 ampere. Pada kondisi ini, terlihat ada kesalahan bacaan arus pada *stage* ketiga dimana tegangan telah menunjukkan masuknya sistem ke *stage* 3 atau *trickle* sementara bacaan arus menunjukkan nilai turun dibandingkan arus *stage* kedua, namun sangat tinggi dibandingkan *stage* ketiga. Bacaan grafik arus ini juga tidak sesuai dengan bacaan yang tertera pada LCD dan amperemeter analog di *prototype* sehingga kesalahan bacaan ini kemungkinan besar diakibatkan kesalahan bacaan dari alat ukur osiloskop.

Terakhir, pada kondisi ketiga, terlihat bahwa sistem memiliki respons yang hampir serupa dengan kondisi kedua dimana pada *stage* pertama, masih terdapat overshoot dari arus sebesar 2%, namun sistem telah stabil tanpa overshoot untuk *stage* kedua dan ketiga, dengan error masing-masing untuk setiap *stage* adalah 0.01 ampere. Pada kondisi ketiga ini, dari data pada Tabel 4.5 terlihat bahwa terdapat perbedaan yang cukup besar terkait dengan waktu pengecasan. Menurut perhitungan optimasi, baterai akan penuh dalam waktu 8148 detik atau 2 jam 15 menit 48 detik sementara pada keadaan sesungguhnya baterai telah penuh dalam kurun waktu 2 jam 2 detik. Error waktu yang terjadi adalah 13 menit 20 detik, atau senilai 10.05%. Nilai error ini cukup besar untuk error perhitungan waktu.

Dari beberapa data yang ada, tampak bahwa model sistem dalam perhitungan SOC, dan desain controller PI sudah sangat mendekati dengan keadaan sesungguhnya dari sistem untuk kondisi kedua dan ketiga pada *stage* kedua. Sementara itu, desain *controller* PI pada *stage* pertama tampak masih terdapat kekurangan yang menyebabkan timbulnya overshoot pada arus. Di sisi lain, pada *stage* ketiga yang mana hanya terdapat di pengecasan kondisi ketiga, terlihat bahwa sebenarnya *modelling* masih kurang sesuai, melihat waktu pemenuhan baterai hanya sampai detik ke 7205 sementara dari perhitungan memerlukan waktu hingga 8148.

4.6 Perbandingan Simulasi dan Prototype

Berdasarkan hasil simulasi dan pengujian *prototype*, dapat dilakukan analisis mengenai kesesuaian antara keduanya, dari sisi hasil optimasi, grafik tegangan, grafik arus, dan grafik SOC. Untuk hasil optimasi, nilai yang difokuskan adalah perbandingan cost, lalu berlanjut ke perbandingan waktu, SOC Final, Loss, dan arus. Perbandingan hasil optimasi antara simulasi dan *prototype* dapat dilihat pada Tabel 4.6 sementara grafik perbandingan arus dapat dilihat pada Gambar 4.7, 4.8, 4.9, grafik perbandingan tegangan dapat dilihat pada Gambar 4.10, 4.11, 4.12, dan grafik perbandingan SOC dapat dilihat pada Gambar 4.13, 4.14, 4.15.

	I1 (A)	I2 (A)	I3 (A)	Waktu (s)	Loss (W)	SOC Final (%)	Cost
Simulasi Kondisi 1	2.32	6.685	0.38	4200	17576.28	0.84	0.3612
Prototype Kondisi 1	2.63	5.99	0.46	4200	13802.90	0.76	0.36
Error	0.31	-0.695	0.08	0	-3773.38	-0.08	-0.0012
Simulasi Kondisi 2	2.917	6.449	0.5	6000	21663.50	0.979	0.194
Prototype Kondisi 2	2.8	5.36	0.33	6000	22702.60	0.98	0.18
Error	-0.117	-1.089	-0.17	0	1039.1	0.001	-0.014
Simulasi Kondisi 3	3	6.926	0.5	7205	23308.35	1	0.36
Prototype Kondisi 3	2.4	6.6	0.35	8148	20122.80	1	0.38
Error	-0.6	-0.326	-0.15	943	-3185.55	0	0.02

Tabel 4.7 Perbandingan Optimasi Simulasi dan Prototype

Pada Tabel 4.6, tampak untuk beberapa kondisi hasil perhitungan optimasi cost sudah saling menyerupai dimana untuk masing-masing kondisi pengecasan, terdapat error secara berurutan yaitu 0.0012, 0.014, dan 0.02 atau dalam bentuk persentase terhadap optimasi pada simulasi yaitu 0.33%, 7.2%, dan 5.5%. Dari sisi arus, error paling besar terdapat pada kondisi pengecasan kedua. Pada kondisi ini, error yang besar terlihat dari penentuan setpoint arus kedua yang memiliki perbedaan lebih dari 1 ampere, yaitu 1.089 ampere. Perbedaan nilai hasil optimasi antara MATLAB dan *prototype* ini kemungkinan besar disebabkan oleh r_1 dan r_2 , yaitu nilai faktor random dalam persamaan algoritme PSO yang telah dijelaskan pada persamaan 2.1. Pada MATLAB, keacakan nilai yang diberikan cukup reliable sementara microcontroller AVR yang digunakan tidak dapat memberikan nilai acak yang benar-benar acak. Nilai acak pada microcontroller AVR akan berulang setiap 1 loop terlewati dan akan memberikan nilai acak yang sama apabila dilakukan reset pada microcontroller. Kejadian ini dapat diatasi dengan menggantungkan nilai acak pada bacaan analog dari kaki microcontroller yang tidak disambungkan, sehingga tercipta faktor acak baru setiap kali microcontroller mengalami perubahan loop atau reset, bergantung pada keacakan sinyal analog yang tertangkap. Di sisi lain, perbedaan nilai hasil optimasi juga dapat disebabkan oleh perbedaan perhitungan pada MATLAB dan microcontroller. Pada MATLAB, hubungan SOC dan tegangan terminal dituliskan dalam sebuah polinomial orde 11 sementara pada microcontroller nilai ini dipetakan menjadi suatu tabel data berukuran 101x2 yang mana berisikan data SOC dengan interval 1% serta tegangan terminal untuk SOC tersebut. Kedua perbedaan tersebut menyebabkan MATLAB memiliki perhitungan hubungan SOC dan tegangan yang lebih akurat dibandingkan dengan microcontroller. Sebagai perbandingan mudah, dimisalkan dalam perhitungan dicapai nilai SOC 0.125 yang berarti telah tercapai SOC 12.5%. Pada MATLAB, nilai tegangan akan dihitung dengan polinomial dengan input 0.125 yang berarti lebih besar daripada tegangan saat 12% dan lebih kecil dari tegangan saat 13%. Sementara itu, pada microcontroller akan didapatkan tegangan yang sama dengan tegangan pada SOC 12% dikarenakan tabel data SOC yang dituliskan dalam interval 1% SOC. Perbedaan ini tidak akan terlalu berdampak dan tampak untuk waktu pengecasan yang kecil dimana SOC akhir juga tidak berbeda jauh dengan SOC awal. Namun, seiring meningkatnya waktu pengecasan pada optimasi, perbedaan ini akan semakin tampak. Kemungkinan terakhir penyebab perbedaan hasil optimasi adalah tingkat kepresisian yang berbeda antara MATLAB dan microcontroller AVR yang digunakan, dimana MATLAB memiliki 16 digit kepresisian sementara AVR hanya memiliki 7 digit kepresisian.

Perhitungan algoritme PSO melibatkan nilai-nilai desimal sehingga semakin tinggi kepresisian variabel yang disimpan maka hasil optimasi juga akan semakin baik.

Gambar 4.5 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 1

Gambar 4.6 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 2

Gambar 4.7 Perbandingan Grafik Arus Simulasi dan Prototype Kondisi 3

Gambar 4.8 Perbandingan Grafik SOC Simulasi dan Prototype Kondisi 1

Gambar 4.10 Perbandingan Grafik SOC Simulasi dan Prototype Kondisi 3

Gambar 4.11 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 1

Gambar 4.12 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 2

Gambar 4.13 Perbandingan Grafik Tegangan Simulasi dan Prototype Kondisi 3

Melihat perbandingan grafik pada Gambar 4.7 terlihat bahwa arus pada simulasi dan prototype tidak ada yang mengalami perubahan stage. Hal ini sesuai dengan kondisi pada subbab 4.3 dan 4.4 dimana baik pada simulasi maupun *Prototype* sistem hanya mengalami stage pengecasan kedua dengan SOC awal 14% dan SOC akhir sekitar 80%. Dari grafik SOC pada Gambar 4.13, SOC pada prototype tidak linear seperti pada simulasi, namun keduanya masih saling menyerupai. Perbedaan ini dapat disebabkan oleh perbedaan cara pembacaan SOC sebagaimana telah dijelaskan sebelumnya. Sementara itu, pada Gambar 4.8, terlihat bahwa pada waktu 1 jam 18 menit arus pada prototype telah mengalami penurunan atau pergantian stage sementara pada simulasi perpindahan stage ini baru terjadi pada waktu ke 1 jam 36 menit . Hal ini berarti pemenuhan SOC pada prototype terjadi lebih cepat daripada simulasi untuk kondisi kedua ini. Hal tersebut didukung oleh grafik SOC pada Gambar 4.14 dimana SOC pada prototype selalu lebih rendah hingga pada waktu ke 1 jam 4 menit SOC naik drastis. Namun, kenaikan SOC ini diiringi dengan landainya perubahan SOC pada detik ke 1 jam 12 menit hingga akhir yang menyebabkan hasil akhir SOC pada Prototype maupun simulasi menjadi saling mendekati. Terakhir, berkebalikan dengan kondisi kedua dimana perubahan stage terjadi lebih dulu pada prototype, pada kondisi ketiga perubahan stage ini terjadi lebih dulu pada simulasi. Seperti yang dapat dilihat pada Gambar 4.9, pada waktu ke 10 menit arus dari simulasi telah berubah menjadi stage 2 sementara pada prototype hal ini baru terjadi di menit ke 20. Begitu pula proses perubahan stage dari 2 ke 3 dimana pada simulasi terjadi di waktu ke 1 jam 30 menit sementara prototype terjadi di waktu ke 1 jam 36 menit. Waktu perpindahan stage ini terhitung tidak konstan, dimana selisih waktu dari perpindahan stage 1 ke 2 lebih lama daripada stage 2 ke 3. Berdasarkan grafik SOC pada Gambar 4.15, hal ini disebabkan oleh bacaan SOC yang lebih landai untuk stage pertama dibandingkan dengan stage kedua.

Analisa berikutnya adalah mengenai grafik tegangan baterai, dimana pada grafik pengecasan *prototype* terlihat bahwa tegangan pengecasan jauh lebih tinggi dibandingkan dengan pengecasan pada simulasi. Dapat dilihat bahwa pada Gambar 4.10, error antara

tegangan pengecasan simulasi dan Prototype mencapai nilai terbesar yaitu 12%. Pada bagian awal pengecasan, terlihat bahwa tegangan baterai sesungguhnya lebih tinggi daripada tegangan baterai simulasi. Namun, di akhir grafik, terlihat bahwa tegangan simulasi lebih tinggi daripada tegangan baterai sesungguhnya. Hal ini menunjukkan masih terdapat ketidak sesuaian antara baterai yang digunakan di prototype dengan baterai yang digunakan pada simulasi. Namun, dapat dilihat baik pada Gambar 4.10, 4.11, maupun 4.12 bahwa bacaan tegangan prototype lebih landai daripada simulasi. Dari perbedaan bentuk grafik ini, kemungkinan besar penyebab adanya perbedaan adalah pemilihan titik eksponensial baterai yang juga dapat menjadi alasan ketidaksesuaian yang telah dijelaskan di bagian-bagian sebelumnya. Kendati demikian, proses pengoptimalan dan pengecasan yang dilakukan pada tugas akhir ini telah bernilai saling mendekati. Penyebab lain ketidaksesuaian yang ada dikarenakan pada proses penentuan parameter, nilai parameter hanya diestimasi berdasarkan baterai pada simulasi yang nilainilainya telah disesuaikan dengan baterai yang Panasonic, mengikuti datasheet yang ada. Di sisi lain, baterai yang digunakan pada tugas akhir ini adalah jenis baterai yang memiliki karakteristik menyerupai jenis baterai Panasonic dan bukan menggunakan merk yang sama. Dari hal ini, terlihat bahwa parameter baterai sangat berpengaruh pada charger controller ini, baik dalam proses pengoptimalannya maupun proses pengisiannya.

BAB 5 KESIMPULAN DAN SARAN

5.1 Kesimpulan

Pada tugas akhir ini, dapat diperoleh beberapa kesimpulan antara lain:

- 1. Parameter PSO cukup berdampak pada hasil optimasi. Parameter PSO yang optimal pada tugas akhir ini adalah iterasi 10, populasi 10, c_1 1, c_2 1, w 0.8, dan w_d 0.99.
- Algoritme PSO dapat diimplementasikan pada *prototype* sebagai media pengoptimalan arus pengecasan dengan input waktu dari pengguna dan mencapai tingkat keberhasilan 95% dengan error cost untuk 3 kondisi pengecasan masing-masing sebesar 0.33%, 7.22%, dan 5.55%.
- 3. Error arus antara optimasi simulasi dan *Prototype* disebabkan perbedaan kepresisian perhitungan.
- 4. Nilai parameter baterai sangat berpengaruh pada perhitungan pengecasan. Error tegangan pengecasan senilai 12% dapat disebabkan penentuan parameter yang kurang tepat.

5.2 Saran

Pada tugas akhir ini, terdapat beberapa saran untuk penelitian mendatang antara lain:

- 1. Pemilihan parameter algoritme PSO dapat kembali dikaji dengan menaikkan iterasi dan mengatasi *running time* dengan menggunakan *microprocessor* yang memiliki kecepatan lebih tinggi.
- 2. Parameter baterai dapat ditentukan berdasarkan *discharging pulse* pada baterai sesungguhnya untuk mendapatkan hasil yang lebih akurat.
- 3. Bacaan SOC dapat dilakukan dengan mengimplementasikan estimasi SOC dengan berbagai metode yang ada seperti Kalman filter pada *microcontroller*.
- 4. Perhitungan *loss* dapat diterapkan pada *prototype* dengan menambahkan sensor suhu serta mempertimbangkan suhu pengecasan sebagai objektivitas optimasi.
- 5. Dapat dilakukan implementasi serupa dengan melihat dampaknya pada efisiensi sumber tegangan.
- 6. Dapat dilakukan implementasi serupa dan menambahkan database parameter dari berbagai jenis baterai yang ada sehingga dapat menyesuaikan kebutuhan pengguna dari segi jenis kendaraan atau baterai.

(Halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

Arya, S., & Verma, S. (n.d.). Nickel-Metal Hydride (Ni-MH) Batteries. 131–175.

- Baterijom, V. S. A. N. (2021). A MECHANICAL PERFORMANCE STUDY AND SIMULATION OF A HYBRID ELECTRIC VEHICLE POWERED BY Ni-MH BATTERY VEHICLE POWERED BY Ni-MH BATTERY. November.
- Bogno, B., Sawicki, J. P., Salame, T., Aillerie, M., Saint-Eve, F., Hamandjoda, O., & Tibi, B. (2017). Improvement of safety, longevity and performance of lead acid battery in off-grid PV systems. *International Journal of Hydrogen Energy*, 42(5), 3466–3478. https://doi.org/10.1016/j.ijhydene.2016.12.011
- Chen, G. J., Liu, Y. H., Wang, S. C., Luo, Y. F., & Yang, Z. Z. (2021). Searching for the optimal current pattern based on grey wolf optimizer and equivalent circuit model of Li-ion batteries. *Journal of Energy Storage*, 33(April 2020), 101933. https://doi.org/10.1016/j.est.2020.101933
- de Moura Oliveira, P. B., Hedengren, J. D., & Solteiro Pires, E. J. (2020). Swarm-based design of proportional integral and derivative controllers using a compromise cost function: An arduino temperature laboratory case study. *Algorithms*, 13(12). https://doi.org/10.3390/a13120315
- Khanum, F., Louback, E., Duperly, F., Jenkins, C., Kollmeyer, P. J., & Emadi, A. (2021). A Kalman filter based battery state of charge estimation MATLAB function. 2021 IEEE Transportation Electrification Conference and Expo, ITEC 2021, 484–489. https://doi.org/10.1109/ITEC51675.2021.9490163
- Mars, N., Krouz, F., Louar, F., & Sbita, L. (2017). Comparison study of different dynamic battery model. *International Conference on Green Energy and Conversion Systems, GECS* 2017. https://doi.org/10.1109/GECS.2017.8066241
- Microchip Technology Inc. (1997). Using PWM to Generate Analog Output. *Technology*, 1, 1997–1999.
- Panasonic Corporation. (2014). NI-MH Handbook.
- Parthasarathy, K., & Vijayaraj, S. (2020). An Overview of Battery Charging Methods, Charge Controllers, and Design of MPPT Controller based on Adruino Nano for Solar Renewable Storage Energy System. 9(11), 430–439. https://www.ijert.org/an-overview-of-batterycharging-methods-charge-controllers-and-design-of-mppt-controller-based-on-adruinonano-for-solar-renewable-storage-energy-system
- Shafiee, S., Fotuhi-Firuzabad, M., & Rastegar, M. (2012). Impacts of controlled and uncontrolled PHEV *charging* on distribution systems. *IET Conference Publications*, 2012(616 CP). https://doi.org/10.1049/cp.2012.2160
- U.S. Geological Survey. (2021). Mineral Commodity Summaries 2021: Sand and Gravel (Industrial).
- Windarko, N. A., & Choi, J. (2010). SOC estimation based on OCV for NiMH batteries using an improved Takacs model. *Journal of Power Electronics*, *10*(2), 181–186. https://doi.org/10.6113/JPE.2010.10.2.181

Wu, T., Zhou, C., Yan, Z., Peng, H., & Wu, L. (2020). Application of PID optimization control strategy based on particle swarm optimization (PSO) for battery *charging* system. *International Journal of Low-Carbon Technologies*, 15(4), 528–535. https://doi.org/10.1093/ijlct/ctaa020

LAMPIRAN

1. Program Simulasi

a. Fungsi PSO

```
1
    function [I1,I2,I3,costf] = sppsoin(it,pop,w,wd,c1,c2,SOC,Qm,Tin)
2
        if nargin==8
3
4
             Tin=32000;
5
        end
6
        % INITIALIZE SOME PARAMETERS
7
8
        nv=3;
9
        nvmax1 = 0.2*Qm;
        nvmin1 = 0.3*Qm;
10
        nvmax2 = 0.5*Qm;
11
        nvmin2 = Qm;
12
        nvmax3 = 0.05*Qm;
13
        nvmin3 = 0.033*Qm;
14
15
        vmax = (nvmax3-nvmin3);
16
        vmin = -vmax;
17
18
19
        % INITIALIZE POSITIONS AND VELOCITIES
20
        % Generate random solution
21
        position_now(1,:) = nvmin1+((nvmax1-nvmin1)*rand(1,pop));
22
        position_now(2,:) = nvmin2+((nvmax2-nvmin2)*rand(1,pop));
23
        position_now(3,:) = nvmin3+((nvmax3-nvmin3)*rand(1,pop));
24
25
        % Generate initial velocity
26
        velocity = zeros(nv,pop);
27
28
        % Evaluate
29
        cost=zeros(1,pop);
30
        for p=1:pop
31
             I1 = position now(1,p);
32
             I2 = position_now(2,p);
33
             I3 = position_now(3,p);
34
             cost(p) = fcostin(I1,I2,I3,Qm,SOC,Tin);
35
        end
36
37
38
        % Find local best cost among population
        position_LB = position_now;
39
40
        cost_LB = cost;
41
        % Set best cost into global best
42
43
        [cost_GB,xnv] = min(cost_LB);
44
```

```
45
        % Set best global position
46
         position_GB = position_LB(:,xnv);
47
        % PSO Main Loop
48
49
         for iter=1:it
50
             % Update velocity
51
             velocity = w*velocity + c1*(rand(nv,pop).*(position_LB- ...
52
                 position_now)) + c2*(rand(nv,pop).*(position_GB-position_now));
53
54
             % Apply velocity limits
55
             velocity=min(velocity, vmax);
56
             velocity=max(velocity, vmin);
57
58
             % Update position
59
             position_now = position_now + velocity;
60
61
             % Apply solution limits
62
             position now(1,:) = min(position now(1,:), nvmax1);
63
             position_now(1,:) = max(position_now(1,:), nvmin1);
64
65
             position_now(2,:) = min(position_now(2,:), nvmax2);
             position_now(2,:) = max(position_now(2,:), nvmin2);
66
             position_now(3,:) = min(position_now(3,:), nvmax3);
67
             position_now(3,:) = max(position_now(3,:), nvmin3);
68
69
             % Evaluate
70
             for p=1:pop
71
                 I1 = position now(1,p);
72
                 I2 = position now(2,p);
73
74
                 I3 = position_now(3,p);
                 cost(p) = fcostin(I1,I2,I3,Qm,SOC,Tin);
75
             end
76
77
             % Update personal best
78
             for p=1:pop
79
80
                 if cost(p) < cost_LB(p)</pre>
                     cost_LB(p) = cost(p);
81
                     position_LB(:,p) = position_now(:,p);
82
                 end
83
             end
84
85
             [cost_GBn,xnv] = min(cost_LB);
86
87
             if cost_GBn < cost_GB</pre>
88
                 cost GB = cost GBn;
89
                 position_GB=position_LB(:,xnv);
90
             end
91
92
             % Update Coefficient
93
94
             w = w * wd;
```
```
95
         end
         I1 = position_GB(1);
96
         I2 = position_GB(2);
97
         I3 = position GB(3);
98
         costf=cost_GB;
99
100
    end
  b. Fungsi Cost
     function [J,T,L,Yf]=fcostin(I1,I2,I3,Qm,SOC_Init,Tin)
1
2
         load('vbvoc_exp12915.mat');
3
4
         % SOC-OCV RELATION
5
         SOCOCV = polyfit(0:0.01:1,Voc,10);
6
7
         % PARAMETER USED
8
         Rp = 0.009;
9
         Cp = 2.5508e+04;
10
11
         Ro = 0.0846;
         E0=13.0232;
12
         Ts=1;
13
         simTime=32000;
14
         Х
                      = [SOC_Init; 0;];
15
         DeltaT
                      = Ts; % sample time in seconds
16
                      = 3600*Qm; % Ah to Amp-seconds
         Qn_rated
17
18
         Tau_1
                      = Rp*Cp;
         a1
                      = exp(-DeltaT/Tau_1);
19
20
         b1
                      = Rp * (1 - exp(-DeltaT/Tau_1));
                      = 0.9;
21
         eta
         Umax
                      = [-0.3*Qm -Qm -0.05*Qm];
22
         Umin
                      = [-0.2*Qm -0.5*Qm -0.033*Qm];
23
         U
                      = [-I1 -I2 -I3];
24
25
         Lmax=0;
         Lmin=0;
26
         Tmax=0;
27
28
         Tmin=0;
         Ymax=14.5240;
29
30
         Ymin=10.3408;
         L=0;
31
         T=0;
32
                      = (simTime/Ts)+1;
33
         smp
34
35
         % MIN T MAX L
         Xtmin=X;
36
         for loop=1:smp
37
             if (0<=Xtmin(1))&&(Xtmin(1)<=0.1)
38
                  s=1;
39
40
             elseif (0.1<Xtmin(1))&&(Xtmin(1)<=0.98)</pre>
41
                  s=2;
             elseif (0.98<Xtmin(1))&&(Xtmin(1)<=1)</pre>
42
```

```
43
                 s=3;
             elseif Xtmin(1)>1
44
45
                 break
             end
46
47
                 = [1 0; 0 a1;];
             А
48
                 = [-(eta * DeltaT/Qn_rated); b1;];
             В
49
             C = [polyval(SOCOCV,Xtmin(1)) -1];
50
             D = -Ro;
51
52
             Ytmin=C(1)+C(2)*Xtmin(2)+D*Umax(s);
53
             Xtmin=A*Xtmin+B*Umax(s);
54
55
             Tmin=Tmin+Ts;
56
57
             Lmax=Lmax+(Ts*Umax(s)*Umax(s)*(Ro+Rp));
58
         end
59
        % MIN L MAX T
60
        Xlmin=X;
61
         for loop=1:smp
62
             if (0<=Xlmin(1))&&(Xlmin(1)<=0.1)
63
64
                 s=1;
             elseif (0.1<Xlmin(1))&&(Xlmin(1)<=0.98)</pre>
65
                 s=2;
66
             elseif (0.98<Xlmin(1))&&(Xlmin(1)<=1)</pre>
67
                 s=3;
68
             elseif Xlmin(1)>1
69
                 break
70
             end
71
72
                 = [1 0; 0 a1;];
73
             Α
                 = [-(eta * DeltaT/Qn rated); b1;];
74
             В
75
             C = [polyval(SOCOCV,Xlmin(1)) -1];
             D = -Ro;
76
77
             Ylmin=C(1)+C(2)*Xlmin(2)+D*Umin(s);
78
79
             Xlmin=A*Xlmin+B*Umin(s);
80
             Tmax=Tmax+Ts;
81
             Lmin=Lmin+(Ts*Umin(s)*Umin(s)*(Ro+Rp));
82
        end
83
84
        % INPUT SETTING
85
        finsimt=Tin;
86
         if Tin>=Tmax
87
             ST=1;
88
        elseif Tin<Tmin</pre>
89
90
             ST=0;
         elseif (Tin>=Tmin)&&(Tin<Tmax)</pre>
91
             ST=0;
92
```

```
93
         end
94
                      = (finsimt/Ts)+1;
95
         smps
96
97
         % OPTIMIZATION
         Y = zeros(1, smps);
98
         for loop=1:smps
99
              if (0<=X(1))&&(X(1)<=0.1)
100
101
                  s=1;
102
              elseif (0.1<X(1))&&(X(1)<=0.98)</pre>
103
                  s=2;
              elseif (0.98<X(1))&&(X(1)<=1)</pre>
104
105
                  s=3;
106
              elseif X(1)>1
107
                  break
              end
108
109
                  = [1 0; 0 a1;];
              А
110
              В
                  = [-(eta * DeltaT/Qn_rated); b1;];
111
              С
                  = [polyval(SOCOCV,X(1)) -1];
112
              D
                  = -Ro;
113
114
              Y(loop)=C(1)+C(2)*X(2)+D*U(s);
115
116
              X=A*X+B*U(s);
117
             T=T+Ts;
118
119
              L=L+(Ts*U(s)*U(s)*(Ro+Rp));
         end
120
121
         % COST
122
         if ST==1
123
              alpha=0.6;
124
              beta=0.4;
125
126
         else
              alpha=0;
127
              beta=0.4;
128
         end
129
130
         Y=Y(1:loop-1);
131
         Yf=Y(length(Y));
132
133
         J1=(T-Tmin)/(Tmax-Tmin);
         J2=(L-Lmin)/(Lmax-Lmin);
134
135
         J3=(Yf-Ymax)/(Ymin-Ymax);
         J=sqrt((alpha*J1*J1)+(beta*J2*J2)+((1-(alpha+beta))*J3*J3));
136
     end
137
```

c. Pengambilan Data Simulasi

1. clear;
2. clc;

```
3.
     % Load data parameter PSO
4.
     load('1_2_11.mat','iter', 'pop','c1','c2','w','wd');
5.
6.
     SOCIn = 0;
7.
     Cap = 10;
8.
     Tin=32000;
9.
10.
     tic
     [I1,I2,I3]=sppsoin(iter,pop,w,wd,c1,c2,SOCIn,Cap,Tin);
11.
12.
     runtime=toc;
13.
    [J,t,Loss,Yf]=fcostin(I1,I2,I3,Cap,SOCIn,Tin);
14.
15.
    I1=-I1;
16. | I2=-I2;
17. | I3=-I3;
18.
19. SOC_Batt=SOCIn;
20. options = simset('SrcWorkspace','current');
21. out=sim('TA05_Charging_Simulation.slx',[0 t],options);
```

2. Program Prototype dengan Mikrokontroler AVR

```
/* INCLUDE LIBRARY */
1
2
     #include <LiquidCrystal.h>
3
    #include <PID_v1.h>
4
5
     /* LCD ASSIGNMENT */
6
    LiquidCrystal lcd(23, 22, 21, 20, 19, 18);
7
8
9
     /* SETTING VARIABLES */
10
    float b_cap;
11
     int t max;
    byte stateButton, lastState, wrt;
12
13
    /* PSO PARAMETERS */
14
15
    byte nv=3;
16
    float min1;
17
    float max1;
18
    float min2;
19
    float max2;
20
    float min3;
21
    float max3;
22
    byte it=10;
23
    byte pop=10;
24
    float w=0.8;
25
    float wd=0.99;
26
    float c1=1;
27
    float c2=1;
28
    float vmin,vmax;
29
    float randc1,randc2;
30
31
    float position_now[3][10] = {
32
       \{0,0,0,0,0,0,0,0,0,0,0\},\
33
       \{0,0,0,0,0,0,0,0,0,0,0\},\
34
      \{0,0,0,0,0,0,0,0,0,0,0\},\
35
   | };
```

```
36
      float position_LB[3][10] = {
37
         \{0,0,0,0,0,0,0,0,0,0,0\},\
38
         \{0,0,0,0,0,0,0,0,0,0,0,0\},\
39
         \{0,0,0,0,0,0,0,0,0,0,0\},\
40
      };
41
      float velocity[3][10] = {
42
         \{0,0,0,0,0,0,0,0,0,0,0,0\},\
43
         \{0,0,0,0,0,0,0,0,0,0,0,0\},\
44
         \{0,0,0,0,0,0,0,0,0,0,0\},\
45
      };
46
47
      float position_GB[3];
48
      float cost[10];
49
      float cost_LB[10];
50
      float cost GB;
      float cost_GBn;
51
52
      float opt_soc;
      float opt loss;
53
54
      float opt time;
55
56
      byte p,q, iter;
57
      byte xnv;
58
59
      /* COST FUNCTION VARIABLES */
60
      float X1,X2,Xtmin1,Xtmin2,Xlmin1,Xlmin2,Ytmin,Ylmin;
61
      float a1,b1,eta,finsimt;
      float Rp=0.009;
62
63
      float Cp=2.5508e+04;
64
      float Ro=0.0846;
65
      float Ts=1;
66
      float simTime=32000;
67
      float Lmax,Lmin,Tmax,Tmin,Ymax,Ymin,L,T,Y;
68
      float alpha, beta, J, J1, J2, J3;
69
      int loops,s,ST;
70
71
      float Umin[3] = \{0, 0, 0\};
72
      float Umax[3] = \{0, 0, 0\};
73
      float U[3] = \{0, 0, 0\};
74
      const static PROGMEM float
75
      SOC Conv[202]={0,10.4506,0.01,10.8875,0.02,11.1978,0.03,11.4295,0.04,11.6092,0.05,11.7526,0.06,11.8696,0.07
      ,11.967,0.08,12.0493,0.09,12.1197,0.1,12.1807,0.11,12.234,0.12,12.281,0.13,12.3228,0.14,12.3601,0.15,12.393
      7,0.16,12.4241,0.17,12.4517,0.18,12.4769,0.19,12.5,0.2,12.5212,0.21,12.5408,0.22,12.5589,0.23,12.5757,0.24,
      12.5914,0.25,12.606,0.26,12.6197,0.27,12.6325,0.28,12.6445,0.29,12.6559,0.3,12.6665,0.31,12.6766,0.32,12.68
62,0.33,12.6952,0.34,12.7038,0.35,12.7119,0.36,12.7196,0.37,12.727,0.38,12.734,0.39,12.7407,0.4,12.7472,0.6
      1,12.8368,0.62,12.8397,0.63,12.8425,0.64,12.8452,0.65,12.8478,0.66,12.8503,0.67,12.8528,0.68,12.8552,0.69,1
      2.8576,0.7,12.8599,0.71,12.8621,0.72,12.8643,0.73,12.8665,0.74,12.8686,0.75,12.8707,0.76,12.8728,0.77,12.87
      49,0.78,12.877,0.79,12.8792,0.8,12.8815,0.81,12.884,0.82,12.8868,0.83,12.8899,0.84,12.8936,0.85,12.898,0.86
      ,12.9036,0.87,12.9108,0.88,12.9203,0.89,12.933,0.9,12.9502,0.91,12.9736,0.92,13.006,0.93,13.0509,0.94,13.11
      32,0.95,13.2002,0.96,13.3218,0.97,13.4918,0.98,13.73,0.99,14.0637,1,14.5315};
      const static PROGMEM float
76
      Vb_Conv[202]={0,10.1524,0.01,10.9538,0.02,11.5152,0.03,11.9283,0.04,12.2391,0.05,12.4772,0.06,12.6629,0.07,
      12.81, 0.08, 12.9283, 0.09, 13.025, 0.1, 13.1051, 0.11, 13.1724, 0.12, 13.2297, 0.13, 13.2791, 0.14, 13.3221, 0.15, 13.3599
      ,0.16,13.3935,0.17,13.4236,0.18,13.4508,0.19,13.4754,0.2,13.4979,0.21,13.5186,0.22,13.5376,0.23,13.5553,0.2
      4,13.5717,0.25,13.587,0.26,13.6012,0.27,13.6146,0.28,13.6272,0.29,13.6391,0.3,13.6503,0.31,13.6609,0.32,13.
671,0.33,13.6805,0.34,13.6896,0.35,13.6982,0.36,13.7065,0.37,13.7144,0.38,13.7219,0.39,13.7291,0.4,13.7361,
      0.61,13.9078,0.62,13.9178,0.63,13.9278,0.64,13.9378,0.65,13.9478,0.66,13.9578,0.67,13.9678,0.68,13.9778,0.6
      9,13.9878,0.7,13.9978,0.71,14.0078,0.72,14.0178,0.73,14.0278,0.74,14.0378,0.75,14.0478,0.76,14.0578,0.77,14
      .0678,0.78,14.0778,0.79,14.0878,0.8,14.0978,0.81,14.1078,0.82,14.1178,0.83,14.1278,0.84,14.1378,0.85,14.147
      8,0.86,14.1578,0.87,14.1678,0.88,14.1778,0.89,14.1878,0.9,14.1978,0.91,14.2078,0.92,14.2178,0.93,14.2278,0.
      94,14.2378,0.95,14.2478,0.96,14.2578,0.97,14.2678,0.98,14.2778,0.99,14.2878,1,14.2978};
77
78
      /* BUTTON ASSIGNMENT */
79
      #define CLK 17
```

```
80 #define SW 16
```

```
81
     #define DT 15
82
83
     int CLKstate;
84
     int DTstate;
85
     int SWstate;
86
87
     /* PID ASSIGNMENT */
88
     double Setpoint1, Setpoint2, Setpoint3, Input, Output;
     PID blPID(&Input, &Output, &Setpoint1, 8.2582, 61.1057, 0, DIRECT);
89
90
     PID absPID(&Input, &Output, &Setpoint2, 9.0094, 67.4419, 0, DIRECT);
91
     PID trPID(&Input, &Output, &Setpoint3, 5.4203, 48.9966, 0, DIRECT);
92
93
     /* DEFINE DAC PIN */
94
     #define DAC0 14
     #define DAC1 13
95
96
     #define DAC2 12
     #define DAC3 11
97
98
     #define DAC4 10
     #define DAC5 7
99
     #define DAC6 6
100
     #define DAC7 5
101
102
     #define DAC8 0
103
     #define DAC9 1
104
105
     /* DEFINE INPUT OUTPUT PIN */
     #define IN0 A5
106
107
     #define IN1 A6
108
     #define OUT0 A7
109
     #define OUT1 2
110
     #define OUT2 3
111
     /* CHARGING SYSTEM VARIABLES */
112
113
     int input;
114
     float Io;
115
     float V0;
116
     float Ii;
117
     float Vb;
118
     float I;
119
     float SOC;
120
     int UPDATE;
121
     long READV;
122
     byte state;
123
124
     void setup() {
125
       //Serial.begin(9600);
126
       lcd.begin(16,2);
127
128
       pinMode(DAC0, OUTPUT);
       pinMode(DAC1, OUTPUT);
129
130
       pinMode(DAC2, OUTPUT);
131
       pinMode(DAC3, OUTPUT);
       pinMode(DAC4, OUTPUT);
132
133
       pinMode(DAC5, OUTPUT);
       pinMode(DAC6, OUTPUT);
134
       pinMode(DAC7, OUTPUT);
pinMode(DAC8, OUTPUT);
135
136
137
       pinMode(DAC9, OUTPUT);
138
```

```
pinMode(IN0, INPUT);
139
                                       //Current sensor
140
       pinMode(IN1, INPUT);
                                       //Read Battery Voltage
       pinMode(OUT0, OUTPUT);
                                       //Output to transistor
141
       pinMode(OUT1, OUTPUT);
142
                                       //Output relay batt
       pinMode(OUT2, OUTPUT);
                                       //Output relay power
143
       pinMode(CLK,INPUT_PULLUP);
                                       //Tombol up
144
       pinMode(DT,INPUT PULLUP);
145
                                      //Tombol down
       pinMode(SW, INPUT PULLUP);
                                       //Tombol center
146
147
       /*INITIAL VALUE*/
148
       input=0;
149
       V0=0;
150
       I=0;
151
       Io=0;
152
       Vb=0;
153
       UPDATE=0;
154
       READV=1;
155
       state=0;
156
157
       lastState=0;
       stateButton=0;
158
159
       blPID.SetMode(AUTOMATIC);
160
161
       absPID.SetMode(AUTOMATIC);
       trPID.SetMode(AUTOMATIC);
162
163
       b_cap=10;
164
       t_max=32000;
165
166
       analogReference(INTERNAL);
167
168
169
       /*INITIAL RELAY CONDITION*/
       digitalWrite(OUT1, LOW);
170
       digitalWrite(OUT2, LOW);
171
172
       digitalWrite(OUT0, HIGH);
173
174
       delay(8000);
       digitalWrite(OUT0, LOW);
175
176
       delay(1000);
177
178
       V0=analogRead(IN1);
179
       Vb=(V0/1023)*(2.235)*(15.95/0.95)*1.12;
180
181
       /*If battery voltage is abnormal, check battery connection */
182
183
       if(Vb<=1) {state=1;}</pre>
184
       /*If not, check whether user want optimization or not */
185
       else
186
       {
187
188
         state=0;
189
```

```
190
         /*PID Parameter set*/
191
         Setpoint1=2.56;
         Setpoint2=5.61;
192
193
         Setpoint3=0.37;
194
         state=0;
195
196
         /* Check center button pressed or not */
197
198
         if (digitalRead(SW)==LOW) {state=2;}
      }
199
200
       SOC=SOCRead(0,Vb);
201
202
       randomSeed(analogRead(A0));
203
     }
204
205
     void loop() {
206
       if (state==0)
207
208
       {
         digitalWrite(OUT1,HIGH);
209
210
         if(UPDATE==2000){UPDATE=0;}
211
212
         SOC=SOCRead(0,Vb);
213
214
215
         Input=I;
216
         if(SOC<=10)
                                    {blPID.Compute(); if(READV==180000){READV=0;}}
217
                     if(SOC>10&&SOC<=98)
         else
                                                                 {absPID.Compute();
218
     if(READV==750000){READV=0;}}
                                    {trPID.Compute(); if(READV==100000){READV=0;}}
219
         else if(SOC>98)
220
         if(Vb<=14.5){
221
222
           DAC(Output);
         }
223
224
         else if(Vb>14.5)
225
         {
226
           DAC(0);
         }
227
228
229
         Io=analogRead(IN0);
         I=(Io/1023)*2.235*2*1.77;
230
231
         /*Check batt voltage every x time*/
232
         if (READV==0)
233
234
         {
           DAC(0);
235
236
           delay(500);
237
238
           digitalWrite(OUT1, LOW);
239
```

```
240
241
           digitalWrite(OUT0,HIGH);
           if(SOC<=10)
                                        {delay(8000);}
242
           else if(SOC>10&&SOC<=98)
                                        {delay(35000);}
243
244
           else if(SOC>98)
                                       {delay(5000);}
           delay(8000);
245
           digitalWrite(OUT0,LOW);
246
247
           if(SOC<=10)
248
                                        {delay(1000);}
           else if(SOC>10&&SOC<=98)
                                        {delay(2000);}
249
           else if(SOC>98)
                                       {delay(1000);}
250
251
           V0=analogRead(IN1);
252
           Vb=(V0/1023)*(2.235)*(15.95/0.95)*1.12;
253
           digitalWrite(OUT1,HIGH);
254
         }
255
256
         /* Show value on LCD every x time */
257
         if(UPDATE==0)
258
         {
259
           lcd.setCursor(0,0);
260
                               ");
           lcd.print("I:
261
           lcd.setCursor(3,0);
262
           lcd.print(I);
263
           lcd.setCursor(8,0);
264
265
           lcd.print("V:
                                ");
           lcd.setCursor(11,0);
266
           lcd.print(Vb);
267
           lcd.setCursor(0,1);
268
                                ");
           lcd.print("%:
269
270
           lcd.setCursor(3,1);
           lcd.print(SOC);
271
           lcd.setCursor(8,1);
272
           lcd.print(Output);
273
274
275
         }
276
         UPDATE++;
277
         READV++;
278
279
       }
280
       /* ABNORMAL BATTERY VOLTAGE */
281
       else if(state==1)
282
       {
283
284
         lcd.setCursor(0,0);
         lcd.print(" CHECK BATTERY");
285
         lcd.setCursor(0,1);
286
                                      ");
         lcd.print("
                        CONNECTION
287
       }
288
289
       /* ASK COST ORIENTATION */
290
```

```
else if(state==2){
291
292
         lcd.setCursor(0,0);
293
         lcd.print("CAP : DEFAULT");
294
295
         lcd.setCursor(0,1);
         lcd.print("MAXt: DEFAULT");
296
297
         while (stateButton==0){
298
299
           if (digitalRead(SW) == LOW) {
             lastState=1;
300
           }
301
           if (digitalRead(SW) == HIGH && lastState == 1){
302
             stateButton=1;
303
             lastState=0;
304
             break;
305
           }
306
         }
307
308
         /* SET CAPACITY */
309
         while(stateButton==1){
310
311
           if(digitalRead(DT)==LOW)
                                          {b_cap=b_cap+0.1; delay(100); wrt=1;}
           else if(digitalRead(CLK)==LOW){b_cap=b_cap-0.1; delay(100); wrt=1;}
312
313
314
           if(b cap>10)
                                {b_cap=10;}
           else if(b_cap<1.2) {b_cap=1.2;}</pre>
315
316
           if (wrt==1){
317
             lcd.setCursor(6,0);
318
                                 ");
             lcd.print("
319
320
             lcd.setCursor(6,0);
321
             lcd.print(b_cap);
322
             wrt=0;
           }
323
324
           if (digitalRead(SW) == LOW) {
325
326
             lastState=1;
327
           }
           if (digitalRead(SW) == HIGH && lastState == 1){
328
             stateButton=2;
329
             lastState=0;
330
331
             break;
332
           }
         }
333
334
335
         delay(100);
336
         /* SET MAX TIME */
337
         while(stateButton==2){
338
339
           if(digitalRead(DT)==LOW)
                                          {t_max=t_max+60; delay(100); wrt=1;}
340
           else if(digitalRead(CLK)==LOW){t_max=t_max-60; delay(100); wrt=1;}
341
```

```
342
           if(t_max>32000)
                                {t_max=1;}
343
           else if(t_max<1)
                                {t_max=32000;}
344
345
           if (wrt==1){
              lcd.setCursor(6,1);
346
              lcd.print("
                                  ");
347
348
              lcd.setCursor(6,1);
              lcd.print(t_max);
349
350
             wrt=0;
           }
351
352
           if (digitalRead(SW) == LOW) {
353
              lastState=1;
354
355
           }
           if (digitalRead(SW) == HIGH && lastState == 1){
356
              stateButton=0;
357
              lastState=0;
358
              break;
359
360
           }
         }
361
362
         /* PARAMETER UNTUK KALKULASI MIN MAX T-L */
363
364
365
         a1
                      = exp(-Ts/(Rp*Cp));
         b1
                      = Rp * (1 - exp(-Ts/(Rp*Cp)));
366
367
         eta
                      = 0.9;
368
         Umax[0] = -0.3*b_cap;
369
         Umax[1] = -b_cap;
370
         Umax[2] = -0.05*b_cap;
371
372
         Umin[0] = -0.2*b_cap;
         Umin[1] = -0.5*b_cap;
373
         Umin[2] = -0.033*b cap;
374
375
         /* MAX TIME AND MIN LOSS CALCULATION */
376
377
         Xtmin1=(float)SOC/100;
         Xtmin2=0;
378
379
         for (loops=0; loops<simTime; loops++){</pre>
380
381
382
              if ((0<=Xtmin1)&&(Xtmin1<=0.1))
                                                        {s=0;}
              else if ((0.1<Xtmin1)&&(Xtmin1<=0.98))
383
                                                       {s=1;}
384
              else if ((0.98<Xtmin1)&&(Xtmin1<=1))</pre>
                                                        {s=2;}
              else if (Xtmin1>1)
385
                                                      {break;}
386
              Xtmin1=Xtmin1-((eta * Ts/(3600*b_cap))*Umax[s]);
387
              Xtmin2=a1*Xtmin2+b1*Umax[s];
388
389
              Tmin=Tmin+Ts;
390
391
              Lmax=Lmax+(Ts*Umax[s]*Umax[s]*(Ro+Rp));
392
```

```
393
         }
394
         /* MAX TIME AND MIN LOSS CALCULATION */
395
         Xlmin1=(float)SOC/100;
396
397
         Xlmin2=0;
398
399
         for (loops=0; loops<simTime; loops++){</pre>
400
              if ((0<=Xlmin1)&&(Xlmin1<=0.1))
401
                                                        {s=0;}
              else if ((0.1<Xlmin1)&&(Xlmin1<=0.98))
                                                        {s=1;}
402
              else if ((0.98<Xlmin1)&&(Xlmin1<=1))</pre>
                                                        {s=2;}
403
              else if (Xlmin1>1)
404
                                                        {break;}
405
             Xlmin1=Xlmin1-((eta * Ts/(3600*b_cap))*Umin[s]);
406
             Xlmin2=a1*Xlmin2+b1*Umin[s];
407
408
              Tmax=Tmax+Ts;
409
              Lmin=Lmin+(Ts*Umin[s]*Umin[s]*(Ro+Rp));
410
411
         }
412
413
     /* RUNNING PSO */
414
415
416
         lcd.clear();
         lcd.setCursor(0,0);
417
418
         lcd.print("OPTIMIZING ");
         lcd.print(SOC);
419
420
421
         /* INITIALIZE SOME PARAMETERS */
422
423
424
         min1=-Umin[0]*100;
         max1=-Umax[0]*100;
425
         min2=-Umin[1]*100;
426
427
         max2=-Umax[1]*100;
428
         min3=-Umin[2]*100;
429
         max3=-Umax[2]*100;
         vmax = ((max3/100) - (min3/100));
430
         vmin = -vmax;
431
432
433
         // INITIALIZE POSITIONS AND VELOCITIES
         for (p=0;p<pop;p++)</pre>
434
435
         {
           // Generate random solution
436
437
           position_now[0][p] = ((float)random(min1,max1))/100;
           position_now[1][p] = ((float)random(min2,max2))/100;
438
           position_now[2][p] = ((float)random(min3,max3))/100;
439
440
           //Generate initial velocity
441
442
           velocity[0][p] = 0;
           velocity[1][p] = 0;
443
```

```
444
           velocity[2][p] = 0;
445
446
           // Evaluate
447
448
           Costfunc(p,b_cap,((float)SOC/100),t_max);
            cost[p]=J;
449
450
         }
451
452
         xnv=0;
         for (p=0;p<pop;p++)</pre>
453
454
         {
           for (q=0;q<nv;q++)</pre>
455
456
            {
              position_LB[q][p] = position_now [q][p];
457
              cost_LB[p] = cost[p];
458
459
              if (p>0 && cost_LB[p]<cost_LB[p-1])</pre>
460
              {
461
462
                cost_GB = cost_LB[p];
                xnv = p;
463
              }
464
              position_GB[q]=position_LB[q][xnv];
465
466
            }
         }
467
468
469
         lcd.clear();
470
         // PSO Main Loop
471
         for (iter=1;iter<=it;iter++)</pre>
472
473
         {
474
            //Serial.println(iter);
           //lcd.setCursor(0,0);
475
           //lcd.print(iter);
476
477
           for (p=0;p<pop;p++)</pre>
478
479
            {
              for (q=0;q<nv;q++)
480
              {
481
                // Update velocity
482
                randc1=((float)random(100))/100;
483
484
                randc2=((float)random(100))/100;
                velocity[q][p] = w*velocity[q][p] + c1*(randc1*(position LB[q][p]-
485
     position_now[q][p]))+ c2*(randc2*(position_GB[q]-position_now[q][p]));
486
                // Apply velocity limits
487
488
                velocity[q][p]=min(velocity[q][p], vmax);
                velocity[q][p]=max(velocity[q][p], vmin);
489
490
                // Update
491
                position_now[q][p] = position_now[q][p] + velocity[q][p];
492
              }
493
```

```
494
              // Apply solution limits
495
              position_now[0][p] = min(position_now[0][p], max1/100);
              position_now[0][p] = max(position_now[0][p], min1/100);
496
497
              position_now[1][p] = min(position_now[1][p], max2/100);
              position_now[1][p] = max(position_now[1][p], min2/100);
498
              position_now[2][p] = min(position_now[2][p], max3/100);
499
500
              position_now[2][p] = max(position_now[2][p], min3/100);
501
              // Evaluate
502
              Costfunc(p,b_cap,((float)SOC/100),t_max);
503
              cost[p]=J;
504
            }
505
            xnv=0;
506
            for (p=0;p<pop;p++)</pre>
507
            {
508
              for (q=0;q<nv;q++)</pre>
509
510
              {
                if (cost[p]<cost_LB[p])</pre>
511
512
                {
                  cost_LB[p] = cost[p];
513
                  position_LB[q][p] = position_now [q][p];
514
                }
515
516
                if (p>0 && cost_LB[p]<cost_LB[p-1])</pre>
517
518
                {
519
                  cost_GBn = cost_LB[p];
                  if (cost_GBn < cost_GB)</pre>
520
                  {
521
522
                    xnv = p;
523
                    cost_GB=cost_GBn;
524
                    opt_time=T;
525
                    opt loss=L;
                    opt soc=(int)(X1*100);
526
                  }
527
                  position_GB[q]=position_LB[q][xnv];
528
529
                }
530
              }
            }
531
532
            // Update Coefficient
533
534
            w = w * wd;
535
536
            lcd.setCursor(0,0);
            lcd.print(cost_GB);
537
538
            lcd.setCursor(9,0);
539
            lcd.print(opt loss);
            lcd.setCursor(0,1);
540
541
            lcd.print(opt_time);
            lcd.setCursor(9,1);
542
543
            lcd.print(opt_soc);
544
         }
```

```
545
546
         Setpoint1=position_GB[0];
         Setpoint2=position GB[1];
547
         Setpoint3=position_GB[2];
548
549
         delay(1000);
550
551
         lcd.clear();
         lcd.setCursor(0,0);
552
         lcd.print("
                           DONE
                                      ");
553
554
         lcd.setCursor(0,1);
         lcd.print(Setpoint1);
555
         lcd.setCursor(6,1);
556
         lcd.print(Setpoint2);
557
         lcd.setCursor(12,1);
558
         lcd.print(Setpoint3);
559
560
         delay(2000);
561
562
563
         lcd.clear();
564
565
         /* START CHARGING */
         state=0;;
566
567
       }
     }
568
569
570
     float Costfunc(byte S, float Qm, float SOC_Init, float Tin)
571
     {
572
       Χ1
                    = SOC Init;
573
       X2
                    = 0;
574
575
       a1
                    = exp(-Ts/(Rp*Cp));
       b1
                    = Rp * (1 - exp(-Ts/(Rp*Cp)));
576
       eta
                    = 0.9;
577
578
       U[0] = -position_now[0][S];
579
580
       U[1] = -position_now[1][S];
       U[2] = -position_now[2][S];
581
582
       Ymax=14.5240;
583
       Ymin=SOCRead(1,SOC_Init);
584
585
       L=0;
586
587
       T=0;
588
589
       finsimt=Tin;
590
591
       if (Tin>=Tmax)
                                                             {ST=1;}
       else if (Tin<Tmin)</pre>
592
                                                             {ST=0;}
       else if ((Tin>=Tmin)&&(Tin<Tmax))</pre>
                                                             {ST=0;}
593
594
       /* TIME AND LOSS CALCULATION */
595
```

```
596
       for (loops=0; loops<finsimt; loops++){</pre>
597
598
            if ((0<=X1)&&(X1<=0.1))
                                              {s=0;}
599
           else if ((0.1<X1)&&(X1<=0.98))
600
                                             {s=1;}
           else if ((0.98<X1)&&(X1<=1))
                                              {s=2;}
601
           else if (X1>1)
602
                                              {break;}
603
           Y=SOCRead(1,X1)-X2-Ro*U[s];
604
           X1=X1-((eta * (Ts/(3600*Qm)))*U[s]);
605
           X2=a1*X2+b1*U[s];
606
607
           T=T+Ts;
608
            L=L+(Ts*U[s]*U[s]*(Ro+Rp));
609
610
       }
611
612
       /* COST CALCULATION */
613
614
       if (ST==1){
615
         alpha=0.6;
616
         beta=0.4;
617
618
       }
       else{
619
         alpha=0;
620
         beta=0.4;
621
       }
622
623
       J1=(T-Tmin)/(Tmax-Tmin);
624
625
       J2=(L-Lmin)/(Lmax-Lmin);
626
       J3=(Y-Ymax)/(Ymin-Ymax);
627
       J=sqrt((alpha*J1*J1)+(beta*J2*J2)+((1-(alpha+beta))*J3*J3));
628
629
       return J,T,L,X1;
630
631
     }
632
     float SOCRead(int type, float in)
633
     {
634
       int i;
635
636
       float out;
       float data;
637
638
       if (type==0){
639
640
         for (i=1; i<202; i=i+2)</pre>
641
642
          {
           data=pgm_read_float_near(Vb_Conv+i);
643
           if (data>=in)
644
645
            {
              out=pgm_read_float_near(Vb_Conv+(i-1))*100;
646
```

647	break:
648	}
649	}
650	}
651	else if (type==1){
652	for (i=0; i<202; i=i+2)
653	{
654	<pre>data=pgm read float near(SOC Conv+i);</pre>
655	if (data>=in)
656	{
657	<pre>out=pgm_read_float_near(SOC_Conv+(i+1));</pre>
658	break;
659	}
660	}
661	}
662	
663	return out;
664	}
665	
666	void DAC(int input)
667	{
668	int out;
669	int s;
670	int a;
671	int N[10];
672	
673	for (a=0;a<10;a++)
674	1
6/5	S = Input/2;
676	$if(c_{-0}) = (N[c_{-0}] + 0)$
677	N[a]=0;
678	EISE II (SI)(N[a]-I,)
679	5
681	digitalWrite(DACO_N[0]).
682	digitalWrite(DAC1, N[1]):
683	digitalWrite(DAC2, N[2]):
684	<pre>digitalWrite(DAC3, N[3]);</pre>
685	digitalWrite(DAC4, N[4]);
686	digitalWrite(DAC5, N[5]);
687	<pre>digitalWrite(DAC6, N[6]);</pre>
688	<pre>digitalWrite(DAC7, N[7]);</pre>
689	<pre>digitalWrite(DAC8, N[8]);</pre>
690	<pre>digitalWrite(DAC9, N[9]);</pre>
601	1

691 | }

3. Datasheet baterai

-		Standard (mA x hrs.)	110 x 16
Charge		Rapid*1 (mA x hrs.)	1,100x 1.2
	(hame (82)	Standard	0 to +45
Am blent temper at ur	charge (*C)	Rapid	0 to +40
	Discharge (°C)	-10 to +65	
	Storage (°C)	<1 year	-20 to +35
		<3 months	-20 to +45
		<1 month	-20 to +55

.....

Charge time (minutes)

*1 After charging at 0.11t for 16 hours, discharging at 0.21t.

*2 For reference only.

** Need specially designed control system. Please contact Panasonic for details.

4. Datasheet Komponen

4.1. Datasheet ATmega32A

Features High-performance, Low-power AVR® 8-bit Microcontroller Advanced RISC Architecture 131 Powerful Instructions – Most Single-clock Cycle Execution - 32 x 8 General Purpose Working Registers - Fully Static Operation - Up to 16 MIPS Throughput at 16 MHz - On-chip 2-cycle Multiplier · High Endurance Non-volatile Memory segments 32K Bytes of In-System Self-programmable Flash program memory - 1024 Bytes EEPROM - 2K Byte Internal SRAM - Write/Erase Cycles: 10,000 Flash/100,000 EEPROM - Data retention: 20 years at 85°C/100 years at 25°C⁽¹ - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation - Programming Lock for Software Security JTAG (IEEE std. 1149.1 Compliant) Interface - Boundary-scan Capabilities According to the JTAG Standard - Extensive On-chip Debug Support Flash - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode - Real Time Counter with Separate Oscillator - Four PWM Channels - 8-channel, 10-bit ADC • 8 Single-ended Channels • 7 Differential Channels in TQFP Package Only · 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x - Byte-oriented Two-wire Serial Interface - Programmable Serial USART - Master/Slave SPI Serial Interface - Programmable Watchdog Timer with Separate On-chip Oscillator - On-chip Analog Comparator Special Microcontroller Features - Power-on Reset and Programmable Brown-out Detection - Internal Calibrated RC Oscillator - External and Internal Interrupt Sources - Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and Extended Standby I/O and Packages - 32 Programmable I/O Lines 40-pin PDIP, 44-lead TQFP, and 44-pad QFN/MLF Operating Voltages - 2.7 - 5.5V for ATmega32A Speed Grades

- 0 16 MHz for ATmega32A
- Power Consumption at 1 MHz, 3V, 25°C for ATmega32A

- Active: 0.6 mA - Idle Mode: 0.2 mA

- Power-down Mode: < 1 μA

8155AS-AVR-06/08

8-bit **AVR**® Microcontroller with 32K Bytes In-System Programmable

ATmega32A

Summary

4.2. Datasheet TIP142

DARLINGTON COPLEMENTARY SILICON POWER TRANSISTORS

- ...designed for general-purpose amplifier and low speed switching
- applications FEATURES:
- * Collector-Emitter Sustaining Voltage-V_{CE0(SUS)} = 60 V (Min) TIP140,TIP145 = 80 V (Min) TIP141,TIP146
 - - = 100 V (Min) TIP142, TIP147
- * Collector-Emitter Saturation Voltage
- $V_{CE(sat)} = 2.0 V (Max.) @ I_c = 5.0 A$ * Monolithic Construction with Built-in Base-Emitter Shunt Resistor

MAXIMUM RATINGS

Characteristic	Symbol	TIP140 TIP145	TIP141 TIP146	TIP142 TIP147	Unit
Collector-Emitter Voltage	V _{CEO}	60	80	100	v
COllector-Base Voltage	V _{CBO}	60	80	100	v
Emitter-Base Voltage	V _{EBO}		5.0		v
Collector Current-Continuous -Peak	I _с I _{см}	-	10 15		A
Base Current	і _в		0.5		A
Total Power Dissipation $@T_c = 25^{\circ}C$ Derate above $25^{\circ}C$	PD		125 1.0		w ₩/°c
Operating and Storage Junction Temperature Range	T _J ,T _{STG}		- 65 to +150)	°C

NPN PNP TIP140 TIP145 **TIP141 TIP146** TIP142 TIP147

10 AMPERE DARLINGTON COMPLEMENTARY SILICON POWER TRANSISTORS 60-100 VOLTS 125 WATTS

TO-247(3P)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	Rejc	1.0	°c/w

~699~

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					I
Collector - Emitter Sustaining Voltage (1) ($l_c = 30 \text{ mA}, l_B = 0$)	TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	V _{CEO(sus)}	60 80 100		v
Collector Cutoff Current (V _{CE} = 30 V, I _B = 0) (V _{CE} = 40 V, I _B = 0) (V _{CE} = 50 V, I _B = 0)	TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	ICEO		2.0 2.0 2.0	mA
Collector Cutoff Current ($V_{cB} = 60 V$, $I_{E} = 0$) ($V_{cB} = 80 V$, $I_{E} = 0$) ($V_{cB} = 100 V$, $I_{E} = 0$)	TIP140,TIP145 TIP141,TIP146 TIP142,TIP147	Ісво		1.0 1.0 1.0	mA
Emitter Cutoff Current (V _{EB} = 5.0 V,I _C = 0)		I _{EBO}		2.0	mA
ON CHARACTERISTICS (1)					
DC Current Gain (I _C = 5.0 A, V _{CE} = 4.0 V) (I _C = 10 A, V _{CE} = 4.0 V)		hFE	1000 500		
Collector-Emitter Saturation Voltage (I _C = 5.0 A, I _B = 10 mA) (I _C = 10 A, I _B = 40 mA)		V _{CE(sat)}		2.0 3.0	v
Base-Emitter Saturation Voltage (I _C = 10 A, I _B = 40 mA)		V _{BE(sat)}		3.5	v
Base-Emitter On Voltage (I _C = 10 A, V _{CE} = 4.0 V)		V _{BE(on)}		3.0	v
SWITCHING CHARACTERISTICS			· · · · · · · · · · · · · · · · · · ·		
Delay Time V _{cc} = 3	30 V, I _c = 5.0 A	td	0.15(Typ)		us
Rise Time $I_{B1} = 0$	-l _{B2} =20 mA,	tr	0.55(Typ)		us
Storage Time $t_p = 200s, Duty Cycle \ge 2.0\%$		ts	2.5(Typ)		us
Fail Time			2.5(Тур)		us

TIP140, TIP141, TIP142 NPN / TIP145, TIP146, TIP147 PNP

~700~

с

(Halaman ini sengaja dikosongkan)

BIODATA PENULIS

Nuh Enola, lahir di Malang, 04 Desember 2001. Penulis telah menyelesaikan pendidikan formal di SDN Pagerwojo Sidoarjo (2008 – 2014), MTsN 3 Malang (2014 – 2016), dan SMAN 1 Lawang (2016 – 2018). Kemudian, pada tahun 2018, penulis memutuskan untuk melanjutkan studi S-1 di Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember (ITS). Pada semester 4 perkuliahan, penulis memilih Teknik Sistem Pengaturan sebagai bidang studi karena ketertarikan penulis terhadap perkembangan teknologi di bidang studi tersebut. Selama masa perkuliahan, penulis aktif mengikuti kegiatan organisasi dan kepanitiaan yang terdapat di kampus, seperti Himpunan Mahasiswa Teknik Elektro ITS, UKM

Teater Tiyang Alit ITS, Pemandu FTEIC ITS, dan beberapa kegiatan lainnya. Selain itu, penulis juga aktif sebagai asisten laboratorium di Lab. Kontrol dan Otomasi AJ-104 Teknik Sistem Pengaturan ITS. Untuk menghubungi penulis, dapat melalui alamat email berikut nuhenola@gmail.com.