

TUGAS AKHIR- TL184834

ANALISIS PENGARUH KATALIS K₂CO₃ TERHADAP KARAKTERISTIK MATERIAL DAN *POWER DENSITY* KARBON AKTIF SEBAGAI BAHAN BAKAR *DIRECT CARBON FUEL CELL* (DCFC)

AHMAD FAHMI PRAKOSO NRP 025118400000082

Dosen Pembimbing Sutarsis S.T., M.Sc., Ph.D. NIP. 197708172005011001 Dr. Agung Purniawan, S.T., M.Eng. NIP. 197604102002121002

Program Studi Teknik Material Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

TUGAS AKHIR - TL184834

ANALISIS PENGARUH KATALIS K₂CO₃ TERHADAP KARAKTERISTIK MATERIAL DAN *POWER DENSITY* KARBON AKTIF SEBAGAI BAHAN BAKAR *DIRECT CARBON FUEL CELL* (DCFC)

AHMAD FAHMI PRAKOSO NRP. 02511840000082

Dosen Pembimbing Sutarsis S.T., M.Sc., Ph.D. NIP. 197708172005011001 Dr. Agung Purniawan, S.T., M.Eng. NIP. 197604102002121002

Program Studi Teknik Material Departemen Teknik Material Dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022 (Halaman ini sengaja dikosongkan)

FINAL PROJECT - TL184834

ANALYSIS OF K₂CO₃ CATALYST ON MATERIAL CHARACTERISTICS AND POWER DENSITY OF ACTIVE CARBON AS DIRECT CARBON FUEL CELL (DCFC) FUEL

AHMAD FAHMI PRAKOSO NRP. 02511840000082

Advisor Sutarsis S.T., M.Sc., Ph.D. NIP. 197708172005011001 Dr. Agung Purniawan, S.T., M.Eng. NIP. 197604102002121002

Study Program of Materials Engineering Department of Materials And Metallurgical Engineering Faculty of Industrial Technology and System Engineering Sepuluh Nopember Institute of Technology Surabaya 2022

(This page is intentionally left blank)

LEMBAR PENGESAHAN

ANALISIS PENGARUH KATALIS K2CO3 TERHADAP KARAKTERISTIK MATERIAL DAN *POWER DENSITY* KARBON AKTIF SEBAGAI BAHAN BAKAR *DIRECT CARBON FUEL CELL* (DCFC)

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi S-1 Teknik Material dan Metalurgi Departemen Teknik Material dan Metalurgi Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

> Oleh : AHMAD FAHMI PRAKOSO NRP. 02511840000082

Disetujui Oleh Tim Penguji Tugas Akhir:

- 1. Sutarsis S.T., M.Sc.Ph.D.
- 2. Dr. Agung Purniawan, S.T., M.Eng.
- 3. Lukman Noerochim, S.T., M.Sc.(Eng)., Ph.D.
- 4. Azzah Dyah Pramata, S.T., M.T., M.Eng., Ph.D.
- 5. Dr. Eng. Hosta Ardhyananta, ST, M.Sc.

SURABAYA Juli 2022

Ami

Penguji

(Halaman ini sengaja dikosongkan)

APPROVAL SHEET

ANALYSIS OF K₂CO₃ CATALYST ON MATERIAL CHARACTERISTICS AND POWER DENSITY OF ACTIVE CARBON AS DIRECT CARBON FUEL CELL (DCFC) FUEL

FINAL PROJECT

Submitted to fulfill one of the requirements for obtaining a Bachelor's Degree in Engineering at Undergraduate Study Program of Materials and Metallurgical Engineering Department of Materials and Metallurgical Engineering Faculty of Industrial Technology and Systems Engineering Institut Teknologi Sepuluh Nopember

> By : AHMAD FAHMI PRAKOSO NRP. 02511840000082

	Approved by Final Project Examiner Team:	" Sain
1.	Sutarsis S.T., M.Sc.Ph.D.	Advisor
2.	Dr. Agung Purniawan, S.T., M.Eng.	Co-Alivisor
3.	Lukman Noerochim, S.T., M.Sc.(Eng)., Ph.D.	Examiner
4.	Azzah Dyah Pramata, S.T., M.T., M.Eng., Ph.D.	Examiner
5.	Dr. Eng. Hosta Ardhyananta, ST, M.Sc.	Examiner
	SURABAYA July 2022	

2

(This page is intentionally left blank)

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa/NRP	: Ahmad Fahmi Prakoso
Departemen	: Teknik Material dan Metalurgi
Dosen Pembimbing 1/NIP	: Sutarsis S.T., M.Sc., Ph.D./197708172005011001
Dosen Pembimbing 2/NIP	: Dr. Agung Purniawan, S.T., M.Eng./19760410 2002121002

Dengan ini menyatakan bahwa Tugas Akhir dengan judul "Analisis Pengaruh Katalis K₂CO₃ Terhadap Karakteristik Material dan *Power Density* Karbon Aktif sebagai Bahan Bakar *Direct Carbon Fuel Cell* (DCFC)" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Mengetahui Dosen Pembimbing

" Anin

(Sutarsis S.T., M.Sc., Ph.D.) NIP. 197708172005011001

Surabaya, 22 Juli 2022

Mahasiswa,

(Ahmad Fahmi Prakoso) NRP. 02511840000082

(Halaman ini sengaja dikosongkan)

Eng 197604

(This page is intentionally left blank)

ANALISIS PENGARUH KATALIS K₂CO₃ TERHADAP KARAKTERISTIK MATERIAL DAN *POWER DENSITY* KARBON AKTIF SEBAGAI BAHAN BAKAR *DIRECT CARBON FUEL CELL* (DCFC)

Nama Mahasiswa / NRP	: Ahmad Fahmi Prakoso/02511840000082
Departemen	: Teknik Material dan Metalurgi
Dosen Pembimbing 1	: Sutarsis S.T., M.Sc., Ph.D.
Dosen Pembimbing 2	: Dr. Agung Purniawan, S.T., M.Eng.

Abstrak

Peningkatan konsumsi listrik di Indonesia tidak diimbangi dengan sumber penyedia listrik yang memadai. Indonesia saat ini bergantung pada pembangkit listrik tenaga batubara dimana pasokan yang dimiliki terus menipis. Direct Carbon Fuel Cell (DCFC) merupakan sebuah pembangkit listrik alternatif berbahan karbon yang bekerja dengan mengkonversi biomassa menjadi energi listrik. Penelitian ini bertujuan untuk menganalisis karakterisasi dan nilai power density material karbon menggunakan metode aktivasi karbon dan catalyst gasification dengan variasi 5%, 8%, 10% katalis K₂CO₃. Pengujian karakterisasi dilakukan dengan menggunakan XRD, TGA, SEM-EDX, dan BET serta pengujian elektrokimia menggunakan OCV, current density, dan power density. Struktur marfologi pada karbon aktif-loaded 5% K₂CO₃ menunjukkan adanya distribusi K₂O secara merata pada permukaan dengan kandungan sebesar 4.53%. Penambahan katalis K₂CO₃ berdampak pada struktur yang lebih amorf dan membentuk K₂O dalam struktur karbon aktif. Pembentukan K₂O meningkatkan reaktivitas gasifikasi (gassification *reactivity* sebesar 42×10^{-5}) dimana konversi karbon tercapai 70.5% pada temperatur 250 °C dengan penambahan optimal 5%. Surface area mengalami penurunan dengan penambahan K₂CO₃ yang didapati sebesar 875 m²/g yang diakibatkan oleh adanya pelapisan yang terjadi pada permukaan struktur karbon. Nilai maksimal *power density* yang didapati jauh lebih tinggi (64.93 mW/cm²) dengan penggunaan katalis 8% K₂CO₃ dibandingkan tanpa penggunaan katalis (13.26 mW/m²) yang diakibatkan oleh mekanisme catalytic gasification yang terjadi.

Kata Kunci : Aktivasi Karbon, Catalytic Gasification, Direct Carbon Fuel Cell, Katalis K₂CO₃, Tempurung Kelapa

(Halaman ini sengaja dikosongkan)

ANALYSIS OF K₂CO₃ CATALYST ON MATERIAL CHARACTERISTICS AND POWER DENSITY OF ACTIVE CARBON AS DIRECT CARBON FUEL CELL (DCFC) FUEL

Student Name / NRP	: Ahmad Fahmi Prakoso/02511840000082
Department	: Materials and Metallurgical Engineering
Advisor	: Sutarsis S.T., M.Sc., Ph.D.
Co-Advisor	: Dr. Agung Purniawan, S.T., M.Eng.

Abstract

The increase in electricity consumption in Indonesia was not matched by an adequate supply of electricity. Indonesia currently relies on coal-fired power plants where supplies were running low. Direct Carbon Fuel Cell (DCFC) as an alternative power plant made from carbon that works by converting biomass into electrical energy. This study aims to analyze the characterization and power density value of carbon material using carbon activation method and catalyst gasification with variations of 5%, 8%, 10% K₂CO₃ catalyst. Characterization testing was carried out using XRD, TGA, SEM-EDX, and BET and electrochemical testing using OCV, current density, and power density. The morphological structure of activated carbon-loaded 5% K₂CO₃ showed distribution of K₂O on the surface with a content of 4.53%. The addition of K₂CO₃ catalyst has an impact on a more amorphous structure and forms K₂O in the structure of activated carbon. The formation of K₂O increases the gasification reactivity (gassification reactivity of 42×10^{-5}) where the carbon conversion reached 70.5% at a temperature of 250°C with an optimal addition of 5%. The surface area decreased with the addition of K₂CO₃ which was found to be 875 m^2/g caused by the coating that occurred on the surface of the carbon structure. The maximum power density was found higher (64.93 mW/cm²) with the use of 8% K₂CO₃ as a catalyst than without the use of a catalyst (13.26 mW/cm^2) due to the catalytic gasification mechanism.

Keywords: Carbon Activation, Catalytic Gasification, Coconut Shell, Direct Carbon Fuel Cell (DCFC), K₂CO₃ Catalyst

(This page is intentionally left blank)

KATA PENGANTAR

Puji dan syukur atas kehadirat Allah SWT yang telah memberikan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan penelitian tugas akhir dengan judul, "Analisis Pengaruh Katalis K₂CO₃ terhadap Karakteristik Material dan *Power Density* Karbon Aktif sebagai Bahan Bakar *Direct Carbon Fuel Cell* (DCFC)". Terselesaikannya laporan tugas akhir ini tidak luput dari dukungan, bantuan, motivasi serta partisipasi dari semua pihak, untuk itu penulis ingin mengucapkan terima kasih yang sebesar-besarnya kepada:

- 1. Bapak Sutarsis, ST., M.Sc., Ph.D. dan Bapak Dr. Agung Purniawan, ST. M.Eng., selaku dosen pembimbing tugas akhir atas segala ilmu dan bimbingan yang telah diberikan selama pelaksanaan tugas akhir hingga laporan selesai.
- 2. Bapak Sigit Tri Wicaksono, S.Si., M.Si., Ph.D., selaku Kepala Departemen Teknik Material dan Metalurgi FT-IRS ITS.
- 3. Ibu Dian Mughni Fellicia, ST., M.Sc., selaku dosen wali penulis yang senantiasa memberikan arahan selama masa perkuliahan.
- 4. Bapak/Ibu Dosen yang telah membimbing dan memberikan banyak ilmu kepada penulis
- 5. Orang tua, keluarga, dan teman kuliah penulis yang selalu memberikan dukungan kepada penulis.

Penulis menyadari bahwa penyusunan laporan ini masih jauh dari kata sempurna. Untuk itu, penulis sangat mengharapkan kritik dan saran yang membangun dari pembaca. Semoga laporan ini dapat bermanfaat bagi penulis dan semua pihak terkait.

Surabaya, 5 Juli 2022 Penulis

Ahmad Fahmi Prakoso

(Halaman ini sengaja dikosongkan)

ABSTRACT vrvi AFTAR ISI vrvi DAFTAR ISI vrvi DAFTAR ABEL vrvi DAFTAR TABEL vrvi Masalah 2 1.1 Latar Belakang 1 1.2 Perumusan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 2.1 Manfaat Penelitian 2 3 2.1.1 Perbadingan performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.2.5 Arbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbon aktif 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7	ABSTRAK	xiii
KATA PENGANTAR vvii DAFTAR ISI vvii DAFTAR GAMBAR xxi DAFTAR GAMBAR xxi DAFTAR GAMBAR xxi BAB I PENDAHULUAN xviii BAB I PENDAHULUAN xviii 1.1 Latar Belakang 1 1.2 Perunusan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaar Penelitian 2 1.5 Manfaar Penelitian 2 1.6 BAB II TINJAUAN PUSTAKA 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.2.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 6 2.3.3 Loptical Activation 7 2.3.4 Chemical Activation	ABSTRACT	XV
DAFTAR ISI xix DAFTAR GAMBAR xix DAFTAR TABEL xxiii BAB I PENDAHULUAN 1 1.1 Latar Belakang 1 1.2 Perumusan Masalah. 2 1.3 Batasan Masalah. 2 1.4 Tujuan Penelitian. 2 1.5 Manfaar Penelitian. 2 1.6 Marfaar Penelitian. 2 1.7 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.1 Perbandingan performansi DCFC. 4 2.1.3 Jenis-jenis DCFC. 4 2.1.4 Reaks Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Karbon Aktif 6 2.3 Karbon Katif 6 2.3 Karbonisasi 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 11 3.1 Dia	KATA PENGANTAR	xvii
DAFTAR GAMBAR xxi DAFTAR TABEL xxii DAFTAR TABEL xxiii BAB I PENDAHUL UAN 1 1.1 Latar Belakang 1 1.2 Perumusan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 1.6 BAB II TINJAUAN PUSTAKA 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3 Karbon Aktif 6 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 8 2.4 Catalytic Gasification 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 11	DAFTAR ISI	xix
DAFTAR TABEL xxiii BAB IPENDAHULUAN I 1.1 Latar Belakang I 1.2 Perumusan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 1.6 Manfaat Penelitian 2 1.7 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Ienis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.2.7 Empurung Kelapa 6 2.3.8 Arbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 2.6 Diagram Alir Pengujian Karbon Aktif-Loaded K ₂ CO ₃ 13 3.1.4 Diagram Alir Penbuatan dan Pengujian Karbon Aktif-Loaded K ₂ CO ₃ 13 3.1.3 Diagr	DAFTAR GAMBAR	xxi
BAB I PENDAHULUAN 1 1.1 Latar Belakang 1 1.2 Perumusan Masalah 2 1.3 Batasan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 2 BAB II TINJAUAN PUSTAKA 3 2.1.1 Perbandingan performansi DCFC dengan <i>Fuel Cell</i> Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Larutan Elektrokimia 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 6 2.3.3 Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9	DAFTAR TABEL	xxiii
1.1 Latar Belakang 1 1.2 Perumusan Masalah. 2 1.3 Batasan Masalah. 2 1.4 Tujuan Penelitian. 2 1.5 Manfaat Penelitian. 2 BAB II TINJAUAN PUSTAKA. 3 2.1 Direct Carbon Fuel Cell (DCFC). 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC. 4 2.1.3 Jenis-jenis DCFC. 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1.1 Diagram Alir Astivasi Karbon 12<	BAB I PENDAHULUAN	1
1.2 Perumusan Masalah 2 1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 1.6 Manfaat Penelitian 2 1.7 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perbaningan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Karbon Aktif 6 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 7 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumpa 9 BAB III METODOLOGI PENELITIAN 11	1.1 Latar Belakang	1
1.3 Batasan Masalah 2 1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 BAB II TINJAUAN PUSTAKA 3 2.1 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC. 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3 Karbon Aktif 6 2.3 Karbon Aktif 6 2.3 Karbon Sasi 6 2.3 Karbonisasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOCI PENELITIAN 11 3.1.1 Diag	1.2 Perumusan Masalah	2
1.4 Tujuan Penelitian 2 1.5 Manfaat Penelitian 2 BAB II TINJAUAN PUSTAKA 3 2.1 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC. 4 2.1.3 Jenis-jenis DCFC. 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Larutan Elektrokimia 6 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.5 Physical Activation 7 2.3.5 Physical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB II METODOLOGI PENELITIAN 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Aktivasi Karbon 12 3.1.3 Diagram Alir Pengujian Karbon Aktif<	1.3 Batasan Masalah	2
1.5 Manfaat Penelitian 2 1.5 Manfaat Penelitian 2 BAB II TINJAUAN PUSTAKA. 3 2.1 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perinsip Kerja dan Faktor Performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC. 4 2.1.3 Jenis-jenis DCFC. 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Larutan Elektrokimia 6 2.3 Karbon Aktif 6 2.3 Karbon Aktif 6 2.3 Karbonisasi 6 2.3.1 Dehidrasi 6 2.3 Karbonisasi 6 2.3 Karbonisasi 6 2.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11	1.4 Tujuan Penelitian	2
BAB II TINIAUAN PUSTAKA	1.5 Manfaat Penelitian	2
2.1 Direct Carbon Fuel Cell (DCFC) 3 2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1.1 Diagram Alir Pengujian Karbon Aktif 12 3.1.2 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 14	RAR II TINIAUAN DUSTAKA	2
2.11 Perbandingan performansi DCFC dengan Fuel Cell Lainnya 3 2.1.2 Prinsip Kerja dan Faktor Performansi DCFC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 12 3.1.2 Diagram Alir Pengujan Karbon Aktif 12 3.1.2 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 15 3.3.1 Studi Literatur dan Per	2.1 Direct Carbon Evel Cell (DCEC)	······ 3
2.1.1 Periodingian performansi DCPC dengan <i>Puer Cell</i> Lamiya 5 2.1.2 Prinsip Kerja dan Faktor Performansi DCPC 4 2.1.3 Jenis-jenis DCPC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbon Aktif 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1.1 Diagram Alir 11 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Pengujian Karbon Aktif 13 3.1.4 Diagram Alir Pengujian Karbon Aktif 13 3.1.4 Diagram Alir Pengujian Karbon Aktif 13	2.1 Direct Carbon Fuel Cell (DCFC)	
2.1.2 Prinsip Kerja dan Paktor Performansi DCPC 4 2.1.3 Jenis-jenis DCFC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1.6 Larutan Elektrokimia 5 2.1.7 Larutan Elektrokimia 5 2.1.8 Karbon Aktif 6 2.3 Karbon Aktif 6 2.3 Karbonisasi 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3 Karbonisasi 6 2.3 Karbonisasi 6 2.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir Pembuatan dan Pengujian Karbon Aktif 12 3.1.3	2.1.1 Perbandingan performansi DCFC dengan <i>Fuel Cell</i> Lainnya	
2.1.3 Jenks-Jenks DCPC 4 2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.2 Tempurung Kelapa 5 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1 Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 <t< th=""><th>2.1.2 Prinsip Kerja dan Faktor Performansi DCFC</th><th></th></t<>	2.1.2 Prinsip Kerja dan Faktor Performansi DCFC	
2.1.4 Reaksi Elektrokimia 5 2.1.5 Larutan Elektrokimia 5 2.1 Tempurung Kelapa 5 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Pengujian Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3.3 Metode Penelitian 15 3.3.4 Pembuatan Karbon Aktif dengan Metode	2.1.3 Jenis-jenis DCFC	
2.1.5 Larutan Elektrokimia 5 2.2 Tempurung Kelapa 5 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Pengujian Karbon Aktif 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2.1 Alat dan Bahan yang digunakan 14 3.2.2 Bahan 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15	2.1.4 Reaksi Elektrokimia	5
2.2 Tempurung Kelapa. 5 2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Pengujian Karbon Aktif 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 14 3.2.1 Alat dan Bahan yang digunakan 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon Aktif Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification 16	2.1.5 Larutan Elektrokimia	5
2.3 Karbon Aktif 6 2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.2 Karbonisasi 6 2.3.2 Karbonisasi 6 2.3.2 Karbonisasi 6 2.3.4 Chemical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOG PENELITIAN 11 3.1 Diagram Alir 12 3.1.1 Diagram Alir Pengujian Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3 Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 <tr< th=""><th>2.2 Tempurung Kelapa</th><th>5</th></tr<>	2.2 Tempurung Kelapa	5
2.3.1 Dehidrasi 6 2.3.2 Karbonisasi 6 2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3.3 Metode Penelitian 15 3.3.4 Preparasi Karbon 15 3.3.2 Preparasi Karbon 15 3.3.3 Puebuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16	2.3 Karbon Aktif	6
2.3.2 Karbonisasi. 6 2.3.3 Physical Activation. 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15	2.3.1 Dehidrasi	6
2.3.3 Physical Activation 7 2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Pengujian Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 15 3.3 Metode Penelitian 15 3.3 Preparasi Karbon 15 3.3 Penbuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4 Pengujian 18 3.4.1	2.3.2 Karbonisasi	6
2.3.4 Chemical Activation 7 2.3.5 Physical-Chemical Activation 8 2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Pengujian Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif-Loaded K ₂ CO ₃ 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3 Preparasi Karbon 15 3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3 Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4.1 Karakterisasi Material 18	2.3.3 Physical Activation	7
2.3.5Physical-Chemical Activation82.4Catalytic Gasification82.5Penelitian Sebelumnya9 BAB III METODOLOGI PENELITIAN 113.1Diagram Alir113.1.1Diagram Alir Aktivasi Karbon123.1.2Diagram Alir Pengujian Karbon Aktif123.1.3Diagram Alir Pengujian Karbon Aktif123.1.4Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3133.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell133.2Alat dan Bahan yang digunakan143.2.1Alat153.3Metode Penelitian153.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.2Preparasi Karbon153.3.3Pembuatan Karbon Aktif -Loaded K2CO3 dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	2.3.4 Chemical Activation	7
2.4 Catalytic Gasification 8 2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.5 3.5 Preparasi Anoda dan Katoda 16 3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4 Pengujian 18 3.4.1 Karakterisasi Material 18	2.3.5 Physical-Chemical Activation	8
2.5 Penelitian Sebelumnya 9 BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K ₂ CO ₃ 13 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.3 Pembuatan Karbon Aktif -Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4 Pengujian 18 3.4.1 Karakterisasi Material	2.4 Catalytic Gasification	8
BAB III METODOLOGI PENELITIAN 11 3.1 Diagram Alir 11 3.1.1 Diagram Alir Aktivasi Karbon 12 3.1.2 Diagram Alir Pengujian Karbon Aktif 12 3.1.3 Diagram Alir Pengujian Karbon Aktif 12 3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell 13 3.2 Alat dan Bahan yang digunakan 14 3.2.1 Alat 14 3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 3.3.4 Pengujian 16 3.4 Pengujian 18 3.4 Pengujian 18 3.4.1 Karakterisasi Material 18 3.4.1 Karakterisasi Material 18 3.4.1 Karakterisasi Material 18 3.4.2 Pengujian Elektrokimia 22 3.5 Rancangan Penelitian 22	2.5 Penelitian Sebelumnya	9
3.1Diagram Alir113.1.1Diagram Alir Aktivasi Karbon123.1.2Diagram Alir Pengujian Karbon Aktif123.1.3Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3133.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell133.2Alat dan Bahan yang digunakan143.2.1Alat143.2.2Bahan153.3Metode Penelitian153.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.2Preparasi Karbon153.3.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.4Pembuatan Karbon Aktif Loaded K2CO3 dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.4.1Karakterisasi Material183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	BAB III METODOLOGI PENELITIAN	11
3.1.1Diagram Alir Aktivasi Karbon123.1.2Diagram Alir Pengujian Karbon Aktif123.1.3Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3133.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell133.2Alat dan Bahan yang digunakan143.2.1Alat143.2.2Bahan153.3Metode Penelitian153.3Studi Literatur dan Persiapan Alat dan Bahan153.3Penpuatan Karbon153.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.4Pembuatan Karbon Aktif Loaded K2CO3 dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.4Pengujian183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.1 Diagram Alir	11
3.1.2Diagram Alir Pengujian Karbon Aktif123.1.3Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3133.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell133.2Alat dan Bahan yang digunakan143.2.1Alat143.2.2Bahan153.3Metode Penelitian153.1Studi Literatur dan Persiapan Alat dan Bahan153.3Penparasi Karbon153.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.4Pembuatan Karbon Aktif-Loaded K2CO3 dengan Metode Catalytic Gasification163.5Preparasi Anoda dan Katoda163.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4.1Karakterisasi Material183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.1.1 Diagram Alir Aktivasi Karbon	
3.1.2Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K2CO3133.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell133.2Alat dan Bahan yang digunakan143.2.1Alat143.2.2Bahan153.3Metode Penelitian153.3Metode Penelitian153.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.2Preparasi Karbon153.3.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.4Pembuatan Karbon Aktif Loaded K2CO3 dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4.1Karakterisasi Material183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.1.2 Diagram Alir Penguijan Karbon Aktif	12
3.1.5Diagram Alir Fenduduan dan Fengujuan Ratioon Aktin Ebaater Recognism3.1.4Diagram Alir Instrumen Direct Carbon Fuel Cell3.2Alat dan Bahan yang digunakan143.2.13.2Bahan3.2Bahan143.2.23.1Alat3.2Bahan153.33.3Metode Penelitian153.3.13.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.23.3.2Preparasi Karbon153.3.33.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.43.4Pembuatan Karbon Aktif-Loaded K2CO3 dengan Metode Catalytic Gasification163.5Preparasi Anoda dan Katoda3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.43.4.1Karakterisasi Material3.4.2Pengujian Elektrokimia223.5Rancangan Penelitian	3.1.3 Diagram Alir Pembuatan dan Pengujian Karbon Aktif- <i>Loaded</i> K ₂ CO ₂	13
3.1.4 Diagram rain instantion Direct Carbon rate Certain 113.2 Alat dan Bahan yang digunakan	3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell	13
3.2Alat dan Dahan yang digunakan143.2.1Alat143.2.2Bahan153.3Metode Penelitian153.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.2Preparasi Karbon153.3.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.4Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.2 Alat dan Bahan yang digunakan	13
3.2.1Alat143.2.2Bahan153.3Metode Penelitian153.3.1Studi Literatur dan Persiapan Alat dan Bahan153.3.2Preparasi Karbon153.3.3Pembuatan Karbon Aktif dengan Metode Chemical Activation153.3.4Pembuatan Karbon Aktif-Loaded K2CO3 dengan Metode Catalytic Gasification163.3.5Preparasi Anoda dan Katoda163.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4Pengujian183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.2 Alat	14
3.2.2 Bahan 15 3.3 Metode Penelitian 15 3.3.1 Studi Literatur dan Persiapan Alat dan Bahan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4 Pengujian 18 3.4.1 Karakterisasi Material 18 3.4.2 Pengujian Elektrokimia 22 3.5 Rancangan Penelitian 22	3.2.1 Alat	14
3.3 Metode Penential	3.2.2 Dallall	13
3.3.1 Studi Literatur dan Persiapan Alat dan Banan 15 3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif-Loaded K2CO3 dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4.1 Karakterisasi Material 18 3.4.2 Pengujian Elektrokimia 22 3.5 Rancangan Penelitian 22	3.5 Metode Pellellual.	13
3.3.2 Preparasi Karbon 15 3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4.1 Karakterisasi Material 18 3.4.2 Pengujian Elektrokimia 22 3.5 Rancangan Penelitian 22	3.3.1 Studi Literatur dan Persiapan Alat dan Banan	15
3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation 15 3.3.4 Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 16 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 16 3.4 Pengujian 18 3.4.1 Karakterisasi Material 18 3.4.2 Pengujian Elektrokimia 22 3.5 Rancangan Penelitian 22	3.3.2 Preparasi Karbon	15
3.3.4 Pembuatan Karbon Aktif-Loaded K ₂ CO ₃ dengan Metode Catalytic Gasification16 3.3.5 Preparasi Anoda dan Katoda 3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC) 3.4 Pengujian 18 3.4.1 Karakterisasi Material 3.4.2 Pengujian Elektrokimia 22 3.5 3.5 Rancangan Penelitian	3.3.3 Pembuatan Karbon Aktif dengan Metode <i>Chemical Activation</i>	15
3.3.5Preparasi Anoda dan Katoda163.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4Pengujian183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.3.4 Pembuatan Karbon Aktif- <i>Loaded</i> K ₂ CO ₃ dengan Metode <i>Catalytic Gasifican</i>	tion16
3.3.6Proses Assembly Direct Carbon Fuel Cell (DCFC)163.4Pengujian183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.3.5 Preparasi Anoda dan Katoda	16
3.4Pengujian183.4.1Karakterisasi Material183.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC)	16
3.4.1 Karakterisasi Material183.4.2 Pengujian Elektrokimia223.5 Rancangan Penelitian22	3.4 Pengujian	18
3.4.2Pengujian Elektrokimia223.5Rancangan Penelitian22	3.4.1 Karakterisasi Material	18
3.5 Rancangan Penelitian	3.4.2 Pengujian Elektrokimia	22
	3.5 Rancangan Penelitian	22

DAFTAR ISI

BAB IV HASIL DAN PEMBAHASAN	25
4.1 Hasil Karakterisasi Material Karbon aktif dan Karbon Aktif-Loaded K ₂ CO ₃	25
4.1.1 Pengujian XRD	25
4.1.2 Pengujian TGA	26
4.1.3 Pengujian SEM-EDX	28
4.1.4 Pengujian BET	30
4.2 Hasil Pengujian Performa Material Karbon aktif dan Karbon Aktif-Loaded k	X_2CO_3
sebagai Bahan Bakar	31
BAB V KESIMPULAN DAN SARAN	35
5.1 Kesimpulan	35
5.2 Saran	35
DAFTAR PUSTAKA	37
LAMPIRAN	41
UCAPAN TERIMA KASIH	77
BIODATA PENULIS	78

DAFTAR GAMBAR

Gambar 2.1	Cara Kerja Berbagai Macam Tipe Fuel Cell	3
Gambar 2.2	Jenis-jenis DCFC	4
Gambar 2.3	Kesetimbangan Reaksi Boudard	5
Gambar 2.4	Mekanisme Catalytic Gasification	9
Gambar 3.1	Diagram Alir Pengerjaan Direct Carbon Fuel Cell	1
Gambar 3.2	Diagram Alir Aktivasi Karbon	2
Gambar 3.3	Diagram Alir Pengujian Karbon Aktif	2
Gambar 3.4	Diagram Alir Pembutan dan Pengujian Variasi Karbon Aktif-Loaded K ₂ CO ₃ 1	3
Gambar 3.5	Diagram Alir Direct Carbon Fuel Cell (Bagian 1) 1	3
Gambar 3.6	Diagram Alir Direct Carbon Fuel Cell (Bagian 2) 1	4
Gambar 3.7	Skema Catalytic Gasification1	6
Gambar 3.8	Keramik Khusus DCFC Bagian Tutup Bawah1	6
Gambar 3.9	Keramik Khusus DCFC Bagian Tutup Atas1	7
Gambar 3.10	Skema Elektrokimia dalam DCFC1	7
Gambar 3.11	Skema Kerja Sistem Alat DCFC1	7
Gambar 3.12	Sistem Kerja SEM1	8
Gambar 3.13	Pengujian SEM-EDX1	8
Gambar 3.14	Sistem Kerja XRD1	9
Gambar 3.15	Pengujian XRD	0
Gambar 3.16	Pengujian TGA2	0
Gambar 3.17	Pengujian BET2	1
Gambar 3.18	Skema Kerja Pengujian BET2	2
Gambar 4.1	Hasil Pengujian XRD pada Sampel Karbon Aktif dan Karbon Aktif-Loaded K2CC) 3
		5
Gambar 4.2	Ilustrasi mekanisme reaksi K ₂ CO ₃ dengan permukaan karbon2	6
Gambar 4.3	Hasil Pengujian TGA pada sampel karbon aktif dan karbon aktif-Loaded K2CC)3
		6
Gambar 4.4	Hasil Carbon Conversion pada Sampel Karbon Aktif dan Karbon Aktif-Loade	d
	K ₂ CO ₃	7
Gambar 4.5	<i>Gasification Reactivity</i> terhadap Penambahan Katalis K ₂ CO ₃ 2	8
Gambar 4.6	Hasil Pengujian SEM pada Sampel Karbon Aktif dengan Perbesaran Gambar 20x	۲-
	1μm (A) dan 50x-200nm (B) serta Sampel Karbon Aktif-Loaded 5% K ₂ CC) 3
a	dengan perbesaran Gambar 20x- 1µm (C) dan 50x-200nm (D)2	8
Gambar 4.7	Skema Penempelan K_2CO_3 (A) dan Pembentukan K_2O (B) pada Permukaa	n
G 1 40	Karbon Aktif	9
Gambar 4.8	Pengujian UCV pada Karbon Aktif (A), Karbon Aktif-Loaded 5% K_2CO_3 (B), da	n
a 1 46	Karbon Aktit-Loaded 8% K ₂ CO ₃ (C)	1
Gambar 4.9	Pengujian Current Density pada Karbon Aktif (A), Karbon Aktif-Loaded 59	%
A 1 440	K_2CO_3 (B), dan Aarbon Aktit- <i>Loaded</i> 8% K_2CO_3 (C)	2
Gambar 4.10	Pengujian Power Density pada karbon aktif (A), karbon aktif-Loaded 5% K ₂ CC) 3
	(B), dan Karbon Aktif-Loaded 8% K_2CO_3 (C)	3

(halaman ini sengaja dikosongkan)

DAFTAR TABEL

Tabel 2.1	Perbandingan Tipe-tipe Fuel Cell AFC, PEMFC, dan PAFC	3
Tabel 2.2	Perbandingan MCFC, SOFC, dan DCFC	4
Tabel 2.3	Jenis Proses Pirolisis (Seri Maulina & Feni Sari Putri, 2017)	7
Tabel 2.4	Nilai Power Density berdasarkan Modifikasi Bahan Bakar	8
Tabel 2.5	Perbandingan Penelitian Sebelumnya dalam DCFC	10
Tabel 3.1	Rancangan Penelitian	22
Tabel 3.2	Rancangan Penelitian Performansi DCFC untuk Pengujian Elektrokimia	22
Tabel 4.1	Komposisi Permukaan dengan Pengujian EDX pada Sampel Karbon Aktif d	an
	Karbon Aktif-Loaded 5% K ₂ CO ₃	30
Tabel 4.2	Hasil Pengujian BET dengan Nilai surface area pada Sampel Karbon Aktif d	an
	Karbon Aktif-Loaded 5% K ₂ CO ₃	30
Tabel 4.3	Perbandingan Hasil Aktivasi pada Berbagai Macam Material Biomassa	30
Tabel 4.4	Hasil Pengujian BET dengan Nilai Average Pore width, Total Pore Volume, dan Po	re
	Size Distribution pada Karbon Aktif-Loaded 5% K ₂ CO ₃	31

(Halaman ini sengaja dikosongkan)

BAB I PENDAHULUAN

1.1 Latar Belakang

Konsumsi listrik Indonesia terus mengalami kenaikan dimana pada kuartal 3 tahun 2021 pemakaian listrik telah mencapai 1109 kWh/kapita (ESDM, 2021). Tingginya kebutuhan listrik tidak diimbangi oleh kehadiran pasokan listrik yang memadai. Pasokan listrik Indonesia terus menipis dikarenakan ketiadaan pasokan bahan bakar batu bara yang dibutuhkan oleh Pembangkit Listrik Tenaga Uap (PLTU) (IESR, 2021). Penggunaan batu bara sebagai sumber listrik memiliki efek yang berbahaya diantaranya menyumbangkan 44% dari total emisi CO₂ dunia sehingga meningkatkan pemanasan global, sumber terbesar emisi *Green House Gas* (GHG) yang memicu perubahan iklim, serta memancarkan sejumlah polutan berbahaya (NOx, SO₂, dan PM 2.5) yang mengancam kesehatan manusia (*Greenpeace* Indonesia, 2015).

Pemerintah Indonesia terus berupaya dalam menanggulangi kebutuhan listrik dengan Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) merencanakan target bauran energi pembangkit hingga akhir 2025 untuk batubara sebesar 54,4%, Energi Baru Terbarukan (EBT) 23,0%, gas 22,2% dan Bahan Bakar Minyak (BBM) 0,4% (ESDM, 2018). Namun, infrastruktur serta kesiapan teknologi yang ada di Indonesia masih membutuhkan waktu yang cukup lama dalam pengimplementasian EBT. Oleh karena itu, kebutuhan akan sebuah teknologi tepat guna yang dapat menjadi sebuah alternatif dalam penggunaan batu bara serta memiliki kemampuan mumpuni untuk menghasilkan listrik.

Direct Carbon Fuel Cell (DCFC) merupakan sebuah perangkat yang menghasilkan listrik menggunakan *solid carbon* sebagai bahan bakar dengan mengkonversi energi melalui proses oksidasi langsung elektrokimia. DCFC memiliki efisiensi termal mencapai 80-60% yang disebabkan oleh perubahan entropi negatif dalam reaksi serta efisiensi sistem (Giddey *et al.*, 2012; Li *et al.*, 2010). Emisi yang dihasilkan berupa gas CO₂ yang tidak memerlukan pengolahan limbah lebih lanjut dan dapat disimpan sehingga dapat mengurangi biaya produksi dan efisien (Yu *et al.*, 2021). Bahan bakar yang digunakan dalam DCFC tidak hanya batu bara saja, akan tetapi bervariasi dan melimpah seperti kokas, tar, biomassa, dan sampah organik (Giddey *et al.*, 2012). DCFC saat ini masih berada dalam fase pengembangan baik dari anoda, katoda, elektrolit, sistem, serta bahan bakar karbon yang digunakan.

Penelitian ini berfokus dalam pengembangan bahan bakar untuk meningkatkan performa listrik dari DCFC. Performa bahan bakar dipengaruhi oleh struktur, derajat kristalinitas, wettability, konduktivitas listrik, ukuran partikel, distribusi ukuran pori, luas permukaan, gugus fungsi permukaan (sifat dan derajat fungsionalisasi), dan konsentrasi pengotor (Giddey et al., 2012). Performa penggunaan karbon tanpa melakukan treatment didapati menunjukkan hasil kurang maksimal dimana grafit (15 mW cm⁻²) dan biochar (25.15 mW cm⁻²) hanya menghasilkan power density yang rendah(Ahn et al., 2013; Bie et al., 2020). Pengembangan lalu dilanjutkan dengan penggunaan metode aktivasi karbon yang bertujuan meningkatkan porositas dan luas permukaan sehingga berdampak pada konduktivitas listrik dari material karbon. Akan tetapi, hasil vang didapat (56 mW cm⁻²) masih rendah dari target komersialisasi alat⁸. Para peneliti melakukan metode lainnya untuk dapat meningkatkan kembali mengenalkan metode baru yaitu catalyst gasification yang dapat beroperasi stabil ketika reaksi reverse Boudouard berjalan cepat dengan reaksi oksidasi elektrokimia hampir memiliki kecepatan yang sama. Oksidasi elektrokimia dan reaksi reverse Boudouard yang cepat akan meningkatkan performansi dari listrik yang dihasilkan (Yu et al., 2021). Penggunaan catalyst gasification dengan nilai tertinggi yang dihasilkan mencapai 1477 mW/cm⁻³ menggunakan katalis K₂CO₃ (Li *et al.*, 2010).

Berdasarkan pemaparan yang telah diberikan, diperlukan penelitian lebih lanjut dalam pengembangan bahan bakar karbon dengan proses aktivasi serta catalyst gasification

menggunakan katalis K₂CO₃ untuk menciptakan teknologi tepat guna yang dapat menghasilkan listrik dalam jumlah besar sehingga dapat memenuhi kebutuhan listrik di Indonesia.

1.2 Perumusan Masalah

Rumusan masalah pada penelitian ini adalah sebagai berikut:

- 1. Bagaimana mengidentifikasi karbon aktif dari karakteristik yang dimiliki menggunakan metode aktivasi karbon dan metode *catalyst gasification* menggunakan katalis K₂CO₃?
- 2. Bagaimana pengaruh metode aktivasi karbon dan metode *catalyst gasification* menggunakan katalis K₂CO₃ pada material karbon terhadap *power density* yang dihasilkan?

1.3 Batasan Masalah

Batasan masalah pada penelitian ini adalah sebagai berikut:

- 1. Fluktuasi temperatur dalam keramik DCFC diabaikan.
- 2. Pengaruh pengotor dalam keramik DCFC diabaikan.

1.4 Tujuan Penelitian

Tujuan penelitian dijabarkan sebagai berikut:

- 1. Menganalisis karakteristik material pada karbon aktif dengan penggunaan metode aktivasi karbon dan metode *catalyst gasification* menggunakan katalis K₂CO₃.
- 2. Menganalisis pengaruh metode aktivasi karbon dan metode *catalyst gasification* menggunakan katalis K₂CO₃ pada material karbon terhadap *power density* yang dihasilkan.

1.5 Manfaat Penelitian

Penelitian ini bermanfaat sebagai sebuah permulaan dalam pengembangan teknologi tepat guna yaitu DCFC menggunakan bahan bakar alternatif tempurung kelapa dengan perlakuan aktivasi dan *catalyst gasification* guna menciptakan sumber energi listrik alternatif.

BAB II TINJAUAN PUSTAKA

2.1 Direct Carbon Fuel Cell (DCFC)

2.1.1 Perbandingan performansi DCFC dengan Fuel Cell Lainnya

Perkembangan masa telah menciptakan berbagai macam eksplorasi dalam penelitian terhadap *fuel cell. Fuel cell* biasanya ditentukan oleh jenis elektrolit atau bahan bakar yang digunakan. *Proton Exchange Membrane Fuel Cell* (PEMFC) menggunakan elektrolit polimer untuk menghantarkan proton sedangkan *Direct Methanol Fuel Cell* (DMFC) menggunakan membran yang sama seperti PEMFC namun dinamai sesuai bahan bakar yang digunakan untuk membedakannya dari PEMFC.

Fuel Cell	Fuel / Anod. Reaction	Electrolyte	Oxidant / Cath. Reaction	T, ºC
PEMFC	H ₂ H ₂ = 2H ⁺ + 2e ⁻	H ⁺ →	Air as oxidant $\frac{1}{2}O_2 + 2H^+ + 2e^- = H_2O$	60 - 120
DMFC	H₂ CH₃OH + H₂O = CO₂+ 6H⁺+ 6e⁻	PEM H⁺ ➡	Air as oxidant 3/2 O₂ + 6H⁺ + 6e⁻ = 3H₂O	60 - 120
AFC	H_2 $H_2 + 20H^2 = 2H_2O + 2\theta^2$	КОН он [.] 🗲	Air as oxidant $\frac{1}{2}O_2 + H_2O + 2e^- = 2OH^-$	<100
PAFC	H ₂ H ₂ =2H ⁺ + 2e ⁻	H ₃ PO ₄	Air as oxidant ½ O ₂ + 2H⁺ + 2e⁻ = H ₂ O	160 - 220
MCFC	CH_{x}, CO, H_{2} $H_{2} + CO_{3}^{2} = H_{2}O + CO_{2} + 2e^{-1}$	Molten Carbonate CO322	Air as oxidant $\frac{1}{2}O_2 + CO_2 + 2e^- = CO_3^{2-}$	600 - 800
SOFC	$CH_{x1} CO, H_2$ $H_2 + O^2 = H_2O + 2e^{-1}$	O ²⁻ conducting ceramic O ²⁻	Air as oxidant ½ O ₂ + 2 e r = O ²⁻	800 - 1000
DCFC	Carbon	Molten salt, or O ²⁻ conducting ceramic	Air as oxidant	500 - 1000

Gambar 2. 1 Cara Kerja Berbagai Macam Tipe Fuel Cell (Giddey et al., 2012)

Alkaline Fuel Cell (AFC) menggunakan larutan pekat kalium hidroksida (KOH) sebagai elektrolit sedangkan *Phospor Acid Fuel Cell* (PAFC) menggunakan Asam fosfat (H₃PO₄). *Molten Carbonate Fuel Cell* (MCFC) menggunakan karbonat cair sebagai elektrolit untuk menghantarkan ion karbonat. *Solid Oxide Fuel Cells* (SOFC) terdiri dari elektrolit padat penghantar ion oksigen (tebal puluhan mikron) seperti zirkonia yang sebagian atau seluruhnya stabil yang didoping dengan 3-10 mol% Y_2O_3 . *Direct Carbon Fuel Cell* (DCFC) menggunakan berbagai macam elektrolit baik *molten carbonate, molten hydroxide*, O²⁻ *conducting ceramic*.

Tabel 2. 1 Perbandingan Tipe-tipe <i>Fuel Cell</i> AFC, PEMFC, dan PAFC (Giddey <i>et al.</i> , 2012)				
Parameter	AFC	PEMFC	PAFC	
Efisiensi Elektrik (%)	45-60	40-45	40-45	
Insulasi Thermal	Rendah	Rendah	Menengah	
Sensitivitas Pengotor	CO ₂ , CO, S	S, CO (20 ppm)	S	
Siklus Thermal	Tidak terbatas	Tidak terbatas	Baik	
Start-Up/Shut-Down	Sangat Cepat (detik)	Sangat Cepat (detik)	Lambat (jam)	

Fuel cell juga dapat diklasifikasikan berdasarkan suhu operasinya yaitu suhu rendah (AFC dan PEMFC), suhu sedang (PAFC), dan suhu tinggi (MCFC, DCFC dan SOFC) (Tabel 2.1 dan Tabel 2.2). Gambar 2.1 menggambarkan berbagai jenis *fuel cell* dan sifat-sifatnya seperti bahan bakar dan oksidan, reaksi anodik dan katodik, elektrolit, dan rentang suhu operasi.

Berbagai jenis *fuel cell* memiliki kelebihan dan kekurangannya masing masing seperti yang telah digambarkan pada Tabel 2.1 dan Tabel 2.2. DCFC memiliki kelebihan dimana efisiensi

elektrik yang tinggi dibandingkan *fuel cell* lainnya dengan siklus thermal yang baik. Akan tetapi DCFC masih memiliki berbagai kekurangan dimana proses *start-up/shut-down* berjalan dengan cukup lama, temperatur yang digunakan sangat tinggi, dan masih belum memiliki kelayakan sebagai *fuel cell* yang digunakan di industri. DCFC dengan MCFC dan SOFC masih menyisakan emisi karbon sedangkan PEMFC, DMFC, AFC, PAFC tidak memiliki emisi berbahaya sebagai hasil dari produk (Giddey *et al.*, 2012).

Tabel 2. 2 Perbandingan MCFC, SOFC, dan DCFC (Giddey et al., 2012)				
Parameter	MCFC	SOFC	DCFC	
Efisiensi Elektrik (%)	45-55	40-50	>80	
Insulasi Thermal	Tinggi	Tinggi	Tinggi	
Sensitivitas Pengotor	S	S	Tidak diketahui	
Siklus Thermal	Terbatas	Terbatas	Terbatas	
Start-Up/Shut-Down	Beberapa (jam)	Beberapa (jam)	Beberapa (jam)	

2.1.2 Prinsip Kerja dan Faktor Performansi DCFC

Direct Carbon Fuel Cell (DCFC) merupakan sebuah perangkat yang menghasilkan listrik melalui oksidasi elektrokimia dengan mengubah karbon padat (C) menjadi gas karbondioksida (CO₂) (X. Zhang, 2018). Perangkat ini bekerja dengan bagian yang terdiri dari katoda dan anoda yang dipisahkan oleh elektrolit penghantar ion berupa isolator berbentuk padat. Ruang anoda disuplai dengan bahan bakar padat yang bereaksi langsung pada elektroda untuk membentuk produk gas buang (Giddey *et al.*, 2012). Faktor-faktor yang mempengaruhi dalam performansi DCFC antara lain (Giddey *et al.*, 2012):

- 1. Struktur karbon dan derajat kristalinitas karbon.
- 2. Keterbasahan bahan bakar karbon dalam kasus media cair berbasis DCFC.
- 3. Konduktivitas listrik karbon.
- 4. Ukuran partikel, distribusi ukuran pori dan luas permukaan.
- 5. Gugus fungsi permukaan (sifat dan derajat fungsionalisasi).
- 6. Jenis pengotor dan konsentrasinya.

2.1.3 Jenis-jenis DCFC

Fuel / Anode	Electrolyte	Cathode	T, °C
Solid graphite rod as fuel & anode	Molten Hydroxides	Air as oxidant	500 -
C + 40H = 2H ₂ O + CO ₂ + 4e	он- 🗲	O ₂ + 2H ₂ O + 4e ⁻ = 4OH ⁻	600
Carbon particles	Molten Carbonates	Air as oxidant	800
$C + 2CO_3^2 = 3CO_2 + 4e^{-1}$	CO32-	$O_2 + 2CO_2 + 4e^- = 2CO_3^{2-}$	800
Carbon particles		Air as oxidant	
$C + 2O^{2-} = CO_2 + 4e^{-1}$	Oxygen ion conducting	O ₂ + 4e - = 2O ²⁻	
Molten tin + C Sn + 20^2 = SnO + 4er	ceramic electrolyte	Air as oxidant	700 —
$SnO_2 + C = Sn + CO_2$		O ₂ + 4e ⁻ = 2O ²⁻	900
Molten salt + C particles	02-	Air as oxidant	
C + 20 ²⁻ = CO ₂ + 4e-		O ₂ + 4e ⁻ = 2O ²⁻	

Gambar 2. 2 Jenis-jenis DCFC (Giddey et al., 2012).

Ada tiga kelompok dasar DCFC yang sedang dikembangkan, dibedakan berdasarkan jenis elektrolit yang digunakan (*molten hydroxide*, *molten carbonate*, dan *solid oxygen ion conducting ceramic*) seperti yang dijelaskan pada Gambar 2.2 (Giddey *et al.*, 2012). Selain penggunaan elektrolit yang berbeda, ada adalah sub-kategori lebih lanjut dari DCFC yang berbeda dalam bahan

dan desain ruang anoda. Berbagai keluarga dan sub-kelompok sel bahan bakar tercantum di bawah ini:

- 1. Aqueous hydroxide (temperatur operasi <250 C).
- 2. Molten hydroxide (temperatur operasi 500-600 C).
- 3. *Molten carbonate* (temperatur operasi 750-800 C).
- 4. Oxygen ion-conducting ceramic (temperatur operasi 500-1000 C).
 - a. Fluidised bed (kontak langsung antara partikel karbon dengan anoda).
 - b. Molten metal anode (Karbon berkontakan dengan molten metal anode).
 - c. Molten salt (partikel karbon tersuspensi dalam slurry).

2.1.4 Reaksi Elektrokimia

Reaksi Elektrokimia yang terjadi dalam DCFC jenis molten carbonate (2.1):

$$C + O_2 \to CO_2 \tag{2.1}$$

dengan reaksi setengah sel keseluruhan (2.2-2.3):

Katoda:
$$O_2 + 2CO_2 + 4e^- \rightarrow 2CO_3^{2-}$$
 (2.2)

Anoda:
$$C + 2CO_3^{2-} \rightarrow 3CO_2 + 4e^-$$
 (2.3)

Reaksi yang terjadi dalam DCFC tak terlepas dari pengaruh reaksi *Boudouard*, dimana reaksi tersebut adalah (2.4):

$$2CO \leftrightarrow C + CO_2 \tag{2.4}$$

Keberlangsungan reaksi *Boudouard* (2.4) digambarkan pada Gambar 2.3 bahwa akan CO terurai menjadi C dan CO₂ pada suhu rendah (<500°C). Pada temperatur yang lebih tinggi (500-800 °C), terdapat sejumlah besar CO dan CO₂ sedangkan temperatur di atas 1000 °C hampir semua CO₂ bereaksi dengan C membentuk gas CO. CO₂ dapat bereaksi dengan partikel C melalui reaksi *Boudouard* yang bersifat endotermik. Hal ini berakibat pada peningkatan reaksi CO₂ dengan C sehingga konsumsi C dan kandungan CO meningkat. Reaksi *Boudouard* dipengaruhi oleh reaktivitas bahan karbon, kandungan CO₂ gas, dan distribusi pemanasan (Tangstad *et al.*, 2018)

Gambar 2. 3 Kesetimbangan Reaksi Boudouard (Tangstad et al., 2018)

2.1.5 Larutan Elektrokimia

Penggunaan larutan elektrokimia berbeda-beda pada setiap jenis DCFC. Berbagai penggunaan larutan elektrokimia dijabarkan sebagai berikut (Giddey *et al.*, 2012):

- 1. Aqueous Hydroxide menggunakan berbagai elektrolit berair yang merupakan berbagai campuran kalium, magnesium, natrium, litium, dan sesium hidroksida.
- 2. Molten Hydroxide menggunakan natrium hidroksida dan kalium hidroksida.
- 3. Molten Carbonates menggunakan campuran lithium dan kalium karbonat.

2.2 Tempurung Kelapa

Kelapa banyak di budidayakan di Indonesia dengan luas lahan mencapai 3,4 juta ha lahan di 34 provinsi di Indonesia, menghasilkan 14,3 miliar buah atau 2,85 juta kopra per tahun pada tahun 2017. Produk kelapa yang diproduksi dan diperdagangkan di Indonesia untuk konsumsi lokal dan sebagai produk ekspor berasal dari tempurung kelapa (sabut kelapa, benang sabut, dan tikar), air

kelapa (minuman kelapa dan *nata de coco*), daging kelapa (minyak kelapa, *virgin coconut oil*, tepung kelapa,dan santan), tempurung kelapa (arang, karbon aktif, kerajinan), sabut kelapa (keset dan pengisi jok mobil), dan batang kelapa (mebel dan rumah) (Alouw & Wulandari, 2020).

Tempurung kelapa memiliki potensi untuk diolah menjadi karbon aktif dikarenakan mudah diperoleh, murah, struktur padat (*dense*), kadar abu rendah, dan kekuatan tinggi (Deng *et al.*, 2021). Selain itu, tempurung kelapa merupakan prekursor potensial untuk produksi karbon aktif karena menyumbang 35% dari massa buah. Pengolahan tempurung kelapa menjadi karbon aktif memiliki luas permukaan yang tinggi dengan nilai berkisar 1000-2825 m²/g (Cazetta *et al.*, 2011).

2.3 Karbon Aktif

Karbon aktif merupakan sebuah senyawa karbon yang memiliki struktur amorf dengan luas permukaan dan kapasitas adsorpsi yang tinggi (Cazetta *et al.*, 2011).Senyawa ini memiliki berbagai macam pengaplikasian diantaranya *water treatment, wastewater treatment, air purification*, dan lainnya. Porositas dalam karbon aktif digolongkan dengan ukuran pori makro > 25 nm, 1 nm < mesopori < 25 nm, pori mikro < 1 nm Pembuatan karbon aktif terbagi menjadi dua bagian yaitu *physical activation* dan *chemical activation* (Heidarinejad *et al.*, 2020).

2.3.1 Dehidrasi

Dehidrasi merupakan proses pengurangan kadar air di dalam karbon aktif untuk menyempurnakan proses karbonisasi. Pengeringan bahan baku dengan sinar matahari dan dilanjutkan pengeringan oven dalam penerapan proses ini (Ramadhani *et al.*, 2020).

2.3.2 Karbonisasi

Karbonisasi merupakan suatu proses pembakaran bahan organik yang ada di dalam tempurung kelapa dengan tujuan mendekomposisi material organik dan mengeluarkan zat-zat pengotor dalam bahan tersebut. Pengeluaran material organik dan zat-zat pengotor menjadi uap menyebabkan terbentuknya pori-pori sehingga terjadi perubahan struktur pori.

Penguraian bahan-bahan organik yang terkandung dalam tempurung kelapa mempunyai beberapa tahapan proses yaitu dimulai dengan penguapan air pada temperatur 100-120°C kemudian terjadi proses penguraian selulosa menjadi larutan piroglinat gas kayu dan sedikit tar pada temperatur 270-310°C setelah itu terjadi proses penguraian lignin sehingga dihasilkan lebih banyak tar sedangkan larutan piroglinat dan gas CO₂ menurun. Gas CH₄, CO dan H₂ meningkat pada temperatur 310-500°C, tahap pemurnian arang atau peningkatan kadar karbon terjadi pada temperatur 500-1000°C, tahap pemurnian arang atau peningkatan kadar karbon terjadi pada temperatur 500-1000°C. Reaksi yang terjadi pada proses karbonisasi yaitu (2.5-2.8) (Seri Maulina & Feni Sari Putri, 2017):

- 1. Reaksi Penguraian Selulosa (270-310 °C):
- $(C_6H_{10}O_5)_n \rightarrow CH_3COOH + 3CO_2 + 2H_2O + CH_3OH + 5H_2 + 3CO$ (2.5) 2. Reaksi Penguraian Lignin (310-500 °C):

$$[(C_9H_{10}O_3)(CH_3O)]_n \to C_{18}H_{11}CH_3 + C_6H_5OH + CO + CO_2 + CH_4 + H_2$$
(2.6)
3. Reaksi Umum Pembentukan Karbon (500-1000 °C):

$$(C_{\chi}H_{\nu}O_{z})_{n} + O_{2} \to C + CO + H_{2}O$$
 (2.7)

Konversi zat organik menjadi karbon atau residu yang mengandung karbon dapat dilakukan melalui dua proses yaitu pirolisis dan destilasi kering (Ramadhani *et al.*, 2020).

2.3.2.1 Pirolisis

Pirolisis merupakan proses konversi termal dengan biomassa diperlakukan dalam kondisi atmosfer inert. Proses ini menghasilkan padatan berupa *biochar*, cairan berupa campuran tar (*biooil*) dan gas (Seri Maulina & Feni Sari Putri, 2017). Produk sampingan dalam proses pirolisis diantaranya gas metana (CH₄), karbon dioksida (CO₂), dan beberapa gas lainnya dalam komposisi yang relatif kecil. Pirolisis dilakukan dengan tingkat pemanasan lambat dengan dua tahap. Tahap pertama yaitu dekomposisi biomassa (122°C-202°C) terjadi pengurangan air, kerusakan ikatan, munculnya radikal bebas, dan pembentukan kelompok karbonil, karboksil, dan hidroperoksida.

Tahap kedua, terjadi dekomposisi padat sesuai dengan proses pirolisis utama yang berlangsung pada pemanasan tingkat tinggi dan pembentukan produk pirolisis. Pada tahap ketiga, *char* terurai pada tingkat pemanasan yang sangat lambat dan terbentuk residu padat yang kaya karbon (Demirbaş & Arin, 2002). Beberapa jenis pirolisis dapat dilihat pada Tabel 2.3 (Ramadhani *et al.*, 2020).

Tabel 2. 3 Jenis Proses Pirolisis (Seri Maulina &	& Feni S	Sari Putri	, 2017)
Drogog	Produk (%)		
Proses		Arang	Gas
Pirolisis Cepat Temperatur 400-700°C		12	12
Waktu tinggal uap panas pendek (<2 detik)	75	12	15
Pirolisis Menengah Temperatur 500°C	50	25	25
Waktu tinggal uap panas sedang	50		
Pirolisis Lambat Temperatur 350-400°C		25	25
Waktu tinggal uap panas yang lebih lama	30	33	55

2.3.2.2 Destilasi Kering

Destilasi kering adalah proses pembuatan karbon secara tidak langsung atau bisa disebut pengarangan. Pengarangan diartikan sebagai pemanasan bahan-bahan organik pada temperatur tertentu dengan bantuan oksigen dengan jumlah terbatas di dalam furnace. Proses pengarangan umumnya dilakukan pada temperatur 400-900°C, lalu hasil proses ini didinginkan dan dicuci untuk menghilangkan dan mendapatkan kembali bahan pengaktif. Setelah itu, dilakukan penyaringan dan pengeringan. Proses pengarangan dipengaruhi oleh beberapa hal, antara lain sebagai berikut (Dewi *et al.*, 2009):

1. Temperatur.

Temperatur pada proses ini sangat berpengaruh pada rendemen karbonisasi. Semakin tinggi temperatur, maka arang hasil karbonisasi akan semakin sempuna tetapi jumlah arang yang didapatkan semakin sedikit sedangkan hasil cairan dan gas semakin banyak. Hal ini disebabkan oleh makin banyaknya zat-zat terurai dan yang teruapkan.

2. Waktu karbonisasi.

Waktu juga berpengaruh pada karbonisasi. Semakin lama waktu karbonisasi maka semakin lama reaksi sehingga reaksi lebih sempurna yang akan menyebabkan hasil arang semakin turun tetapi cairan dan gas makin meningkat. Waktu karbonisasi berbeda beda tergantung pada sifat fisik dan jumlah bahan baku yang dipakai.

2.3.3 Physical Activation

Metode ini menggunakan 2 proses pengerjaan, yaitu (Heidarinejad et al., 2020):

- 1. Pirolisis di atmosfer netral.
- 2. Aktivasi gas pengoksidasi seperti uap, karbon dioksida, karbon dioksida dan nitrogen atau campuran udara dengan peningkatan temperatur pada kisaran 800-1100 °C.

Kelebihan penggunaan metode ini diantaranya struktur berpori dan kekuatan fisik yang baik, murah, dan dianggap ramah lingkungan karena tanpa menggunakan bahan kimia. Namun, metode ini memiliki kekurangan yaitu waktu aktivasi yang lama,kapasitas adsorpsi yang rendah, konsumsi energinya tinggi.

2.3.4 Chemical Activation

Metode ini biasanya digunakan untuk mengolah biomassa yang mengandung selulosa seperti tempurung kelapa, kayu, dan lainnya menjadi karbon aktif. Metode ini bekerja dengan cara bahan baku dicuci dan dikeringkan lalu dijenuhkan dengan bahan kimia pengoksidasi dan sangat dehidrasi. Dehidrasi merupakan proses penghilangan air yang terdapat dalam bahan baku karbon aktif. Bahan kimia yang digunakan dalam aktivasi karbon terdiri atas H₃PO₄, NaOH, K₂CO₃,

ZnCl₂, KOH, dan bahan aktivasi kimia lainnya. Setelah proses impregnasi, suspensi dikeringkan dan sisa campuran dipanaskan dengan waktu tertentu. Proses aktivasi memerlukan pemanasan dengan temperatur 400-900 °C yang berguna untuk mendegradasi selulosa. Proses terakhir dari aktivasi karbon adalah proses pencucian menggunakan bahan kimia (HCl, H₂SO₄, dan lainnya) dan distilled water lalu dikeringkan (Heidarinejad et al., 2020).

Physical-Chemical Activation 2.3.5

Aktivasi kimia-fisika merupakan gabungan antara aktivasi kimia dan aktivasi fisika yang dilakukan melalui beberapa tahapan proses yang membuat proses lebih lama. Pada tahapan proses ini, dilakukan perlakuan awal pada bahan baku hingga menjadi material berkarbon, kemudian material tersebut dicampurkan dengan aktivator kimia dalam suatu reaktor berpengaduk dalam kondisi yang telah ditentukan dan dilakukan pencucian setelahnya. Setelah itu proses dilanjutkan dengan aktivasi fisika, yaitu pemanasan karbon dengan kondisi proses tertentu yang dilakukan pada suatu reaktor panas seperti *furnace* atau kiln. Proses ini tergolong lama dan rumit, ditambah penggunaan alat yang relatif banyak (Ramadhani et al., 2020).

2.4 Catalytic Gasification

Bahan bakar menjadi sebuah komponen utama dalam Direct Carbon Fuel Cell (DCFC) dikarenakan berperan sebagai sumber dalam konversi energi listrik. Interaksi antara bahan bakar dengan gasifikasi Boudouard yang terjadi dalam reaksi DCFC menjadi salah satu indikator penting untuk menentukan hasil listrik yang dihasilkan. Bahan bakar dengan reaktivitas rendah terhadap gasifikasi Boudouard tidak akan memberikan kontribusi yang signifikan terhadap kinerja sel melalui reaksi gasifikasi.ketika reaksi reverse Boudouard berjalan cepat dengan reaksi oksidasi elektrokimia hampir memiliki kecepatan yang sama maka akan menciptakan sebuah sistem yang stabil dan menghasilkan listrik yang tinggi. Oksidasi elektrokimia dan reaksi reverse Boudouard yang cepat akan meningkatkan performansi dari listrik yang dihasilkan (Yu et al., 2021).

Catalytic gasification merupakan sebuah teknik dalam melapisi sebuah karbon dengan melekatkan kandungan anorganik pada permukaan karbon (Rady et al., 2016). Kandungan anorganik berperan dalam mempengaruhi kinetika gasifikasi Boudouard melalui katalisis. Kandungan anorganik yang digunakan bermacam-macam diantaranya Li, K, Ca, Fe, Na, dan lainnya (Li et al., 2010; Rady et al., 2016; Yang et al., 2021). Komparasi berdasarkan nilai power density yang dihasilkan menunjukkan hasil lebih baik dibandingkan dengan karbon dan aktivasi karbon (Tabel 2.4).

Tabel 2. 4 Nilal <i>Power Density</i> berdasarkan Modifikasi Bahan Bakar				
Bahan Bakar	Nilai <i>Power Density</i> (mW/cm ²)	Refrensi		
Grafit	15	(Bie et al., 2020)		
Activated Carbon-Coconut Shell	56			
K-loaded carbon black	1477			
Ni-loaded carbon black	1123	(Yu et al., 2021)		
Na-loaded carbon black	1034			

Tabel ? A Nilai Power Density berdasarkan Modifikasi Bahan Bakar

Catalytic gasification bekerja dengan 3 cara vaitu active intermediate mechanism, cyclic redox mechanism, intercalation compound mechanism (Gambar 2.4). Cara pertama, yaitu active intermediate mechanism, menggunakan katalis berupa logam alkali, iron-based, dan CaO untuk merusak ikatan C=O dan mengikat unsur oksigen pada gas CO₂ (2.8). Logam katalis akan bergabung dengan atom C di material karbon pada saat yang sama untuk membentuk intermediet aktif M–O–C. Ikatan M–O–C mengubah distribusi elektron atom C, mengurangi kekuatan ikatan C–C, dan mudah putus untuk membentuk CO (2.9). Reaksi yang terjadi diantaranya:

$$M + CO_2 \to M(O) + CO \tag{2.8}$$

$$M(0) + C \to M + C0 \tag{2.9}$$

Gambar 2. 4 Mekanisme Catalytic Gasification (Yang et al., 2021)

Cara kedua, yaitu *cylic redox mechanism*, bekerja berbeda pada setiap katalis yang digunakan. Lelehan katalis Na₂CO₃ bekerja dengan langsung bereaksi dengan atom karbon (2.10-2.12). Untuk oksida logam, oksigen kisi internal berpartisipasi dalam reaksi disertai dengan perubahan valensi logam (2.13). Oksida Fe pertama-tama akan kehilangan sebagian oksigen kisi menjadi oksida bervalensi rendah atau bahkan Fe dengan dua kemungkinan jalur transformasi: $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow Fe$ dan $Fe_2O_3 \rightarrow Fe_3O_4 \rightarrow Fe$ (2.12). Lalu unsur oksigen kemudian didapatkan kembali dari CO₂ dan direduksi menjadi Fe bervalensi tinggi (Reaksi 2.14). Reaksi yang terjadi yaitu:

 $Na_2CO_3 + 2C \to 2Na + 3CO$ (2.10)

$$2Na + CO_2 \rightarrow Na_2O + CO \qquad (2.11)$$

$$Na_2O + CO_2 \rightarrow Na_2CO_2 \qquad (2.12)$$

$$C + Fe_x O_y \to CO + Fe_x O_{y-1}$$
 (2.12)

$$O_2 + Fe_x O_{y-1} \to CO + Fe_x O_y \tag{2.14}$$

Cara ketiga, yaitu *intercalation compound mechanism*, bekerja dengan cara berinterkalasi di antara lapisan kristal grafit membentuk senyawa interkalasi selama reaksi gasifikasi dikarenakan logam alkali memiliki dispersi dan mobilitas yang tinggi. Hal ini akan menghasilkan ekspansi multi-dimensi dalam karbon mikrokristalin dan menghancurkan struktur arang yang teratur dan padat. Efek yang dihasilkan diantaranya ekspansi volume, peningkatan kandungan karbon amorf dengan terpecahnya material karbon menjadi serpihan, dan reaksi gasifikasi pada kristalografi material karbon. Pada saat yang sama, *Alkali and Alkaline Earth Metals* (AAEMs) menunjukkan mendorong perengkahan sistem cincin aromatik besar ke sistem cincin aromatik kecil selama gasifikasi dan mengurangi kemungkinan kondensasi cincin aromatik (Yang *et al.*, 2021).

2.5 Penelitian Sebelumnya

Ahn *et al.* pada tahun 2013 melakukan penelitian terhadap bahan bakar kayu dengan kandungan karbon rendah dan struktur morfologi yang mirip dengan batubara dalam DCFC berjenis *molten carbonate* bertemperatur kerja 650-750 °C. Anoda dan katoda yang digunakan berupa Ag serta elektrolit dengan perbandingan 62Li₂CO₃-38K₂CO₃. Hasil menunjukkan bahwa penggunaan bahan bakar kayu didapati sebesar 25.7 mW/cm². Nilai perpindahan massa ditingkatkan dengan pengadukan pada 300 rpm dan didapati nilai *power density* sebesar 40.76 mW/cm² (meningkat lebih dari tiga kali lipat dibandingkan dengan pengujian lain yang tidak

melibatkan pengadukan). Performa dari penggunaan bahan bakar kayu mencapai 60–70% dari nilai *power density* yang dimiliki oleh batubara pada kondisi yang sama (Ahn *et al.*, 2013).

Eom *et al.* pada tahun 2016 membuat sebuah DCFC berjenis *molten carbonate* menggunakan anoda dan katoda berupa Pt serta elektrolit dengan perbandingan $62Li_2CO_3$ - $38K_2CO_3$. Penelitian ini menggunakan bahan bakar *graphite* dan *sub-bituminous coal* dengan temperatur operasi berkisar 650-700°C. Kinerja DCFC menggunakan *sub-bituminous coal* menunjukan hasil yang baik pada 700°C dengan *power density* maksimum hingga 60 mW cm⁻² dan komponen volatil yang dihasilkan membantu mengurangi resistensi transfer muatan pada temperatur tinggi(Eom *et al.*, 2016).Penggunaan bahan bakar yang ditingkatkan pada porositas dan kemurniannya nyatanya belum menghasilkan nilai *power density* yang besar. Oleh karena itu, pengembangan mulai bergeser dalam memberikan katalis pada material karbon agar dapat meningkatkan nilai konduktivitas serta *power density*.

Pada tahun 2010, Li *et al.* dalam Yu *et al.* (2021) melakukan penelitian mengenai *catalytic gasification* dengan penambahan logam alkali sebagai katalis pada material karbon. Logam alkali berupa K₂CO₃, Ni(CO₃)₂.6H₂O, Ca(CO₃)₂.4H₂O akan menjadi sebuah katalis pada permukaan material karbon. Hasil menunjukkan bahwa *power density* rata-rata didapati sebesar 1477 Wm⁻² (K-*loaded carbon black*), 1473 Wm⁻² (Ca-*loaded carbon black*) dan 1543 Wm⁻² (Ni-*loaded carbon black*) pada temperatur kerja 750 °C menggunakan DCFC bertipe *solid oxide* (Li *et al.*, 2010). Pada tahun 2014, Zhang *et al.* melakukan penelitian mengenai *catalytic gasification* dengan menggunakan Fe(NO₃)₃.9H₂O yang akan ditambahkan pada *activated carbon.* Hasil yang didapati menunjukkan nilai *power density* sebesar 383 mWcm⁻² at 850 °C dengan DCFC bertipe *solid oxide* (L. Zhang *et al.*, 2014).

Pada tahun 2019, Tang *et al.* melakukan penelitian mengenai penambahan logam alkali BaCO₃ pada karbon aktif dengan parameter kinerja material dalam DCFC bertipe *solid oxide*. Hasil menunjukkan bahwa *power density* yang dihasilkan pada material Ba-*loaded activated carbon* didapati sebesar 328.4 mW cm⁻² pada temperatur kerja 850 °C (Tang *et al.*, 2019). Berdasarkan dari *state of the art* yang telah dibahas sebelumnya, penggunaan katalis K₂CO₃ memiliki nilai *power density* yang paling tinggi dibandingkan dengan penggunaan katalis lainnya. *Power density* yang tinggi menjadi dasaran dalam penggunaannya di penelitian ini agar didapati keterbaruan dan mengeksplorasi lebih jauh nilai *power density* yang dihasilkan (Tabel.2.5).

	U	J	
Bahan Bakar	Nilai <i>Power Density</i> (mW/cm ⁻²)	Temperatur (°C)	Refrensi
Biochar	25.15	650-750	(Ahn et al., 2013)
Sub-bituminous coal	60	700	(Eom et al., 2016)
K-loaded carbon black	1477		
Ni-loaded carbon black	1123	750	(Yu et al., 2021)
Na-loaded carbon black	1034		
Fe-loaded activated carbon	383	950	(L. Zhang et al., 2014)
Ba-loaded activated carbon	328.4	830	(Tang <i>et al.</i> , 2019)

 Tabel 2. 5 Perbandingan Penelitian Sebelumnya dalam DCFC
BAB III METODOLOGI PENELITIAN

3.1 Diagram Alir

Penelitian ini memiliki diagram alir yang telah disusun untuk membuat karbon aktif dan menyiapkan 2 variabel bahan bakar yaitu karbon aktif dan karbon aktif-*Loaded* K₂CO₃. Studi literatur dilakukan untuk memahami dari konsep DCFC, bahan bakar yang digunakan, serta berbagai alat dan bahan yang dibutuhkan. Karbon yang berasal dari arang kelapa akan diaktivasi untuk mendapatkan karbon aktif. Karbon aktif kemudian divariasikan dengan penambahan K₂CO₃ sebagai katalis untuk mengetahui perbedaan performansinya. Instrumen DCFC dibuat dengan penyesuaian dari desain Kouchachvili *et al.*, (2021) Pengujian Karakterisasi dan performansi dilakukan agar mendapatkan hasil data yang diinginkan meliputi uji SEM-EDX, BET, XRD, TGA, OCV, *current density*, dan *power density*. Analisis data dan pembahasan akan dilakukan setelah hasil data terkumpul untuk selanjutnya diambil kesimpulan dari penelitian ini (Gambar 3.1).

Gambar 3. 1 Diagram Alir Pengerjaan Direct Carbon Fuel Cell

3.1.1 Diagram Alir Aktivasi Karbon

Gambar 3.2 Diagram Alir Aktivasi Karbon

3.1.2 Diagram Alir Pengujian Karbon Aktif

Gambar 3. 3 Diagram Alir Pengujian Karbon Aktif.

3.1.3 Diagram Alir Pembuatan dan Pengujian Karbon Aktif-Loaded K₂CO₃

Gambar 3.4 Diagram Alir Pembutan dan Pengujian Variasi Karbon Aktif-Loaded K₂CO₃.

3.1.4 Diagram Alir Instrumen Direct Carbon Fuel Cell

Gambar 3. 6 Diagram Alir *Direct Carbon Fuel Cell* (Bagian 2).

3.2 Alat dan Bahan yang digunakan

Alat dan bahan yang digunakan dalam percobaan ini:

3.2.1 Alat

Alat yang digunakan dalam percobaan ini:

- 1. *Muffle Furnace*. Digunakan sebagai tempat pemanasan keramik khusus DCFC (600-1000°C).
- 2. Keramik khusus DCFC. Digunakan sebagai wadah DCFC.
- 3. *Gold Wire* Digunakan sebagai *current collector*.
- 4. NiO *Foam*. Digunakan sebagai katoda dalam DCFC.
- Ni *Foam.* Digunakan sebagai anoda dalam DCFC.
- 6. Timbangan Digital.Digunakan sebagai alat penimbang bahan-bahan.
- 7. Gelas *Beaker*. Digunakan sebagai wadah dalam proses melarutkan bahan.
- 8. Ball mill

Digunakan sebagai alat penghalus karbon agar mencapai ukuran 325 mesh atau 44 mikrometer

9. Vakum Oven

Digunakan sebagai alat pengeringan karbon

10. Hot Plate dan Magnetic Stirer.

Digunakan sebagai alat untuk melarutkan larutan dengan kecepatan dan temperatur tertentu.

11. Sieve.

Digunakan sebagai alat penyaringan dari hasil karbon aktif.

12. Spatula.

Digunakan sebagai alat untuk mencampurkan dan memindahkan hasil larutan.

13. Multimeter.

Digunakan sebagai alat pengukur voltase dan arus dalam DCFC.

14. Carbon Reservoir.

Digunakan sebagai tempat penyuplai karbon aktif kedalam DCFC.

- 15. *Thermocouple Type* K. Digunakan untuk mengetahui temperatur didalam keramik khusus DCFC.
- 16. Alat uji karakterisasi morfologi dan struktur material:
 - a. Scanning Electron Microscope-Energy Dispersive X-ray (SEM).
 - b. X-ray Diffraction (XRD).
 - c. Brunauer-Emmett-Teller (BET).
- 17. Alat uji power density performance:
 - a. *DC Loader*

3.2.2 Bahan

Bahan yang digunakan dalam percobaan ini :

- 1. Bubuk K₂CO₃.
- 2. Bubuk Na_2CO_3 .
- 3. Bubuk Li_2CO_3 .
- 4. ZYF-50.
- 5. Karbon dari tempurung kelapa.
- 6. Air Deionisasi.
- 7. Aquades.
- 8. Gas N₂.
- 9. Gas O₂.
- 10. Gas CO_2 .

3.3 Metode Penelitian

Penelitian ini menerapkan beberapa proses untuk mengetahui pengaruh aktivasi karbon dan *catalytic gasification* dalam performa *Direct Carbon Fuel Cell*.

3.3.1 Studi Literatur dan Persiapan Alat dan Bahan

Studi literatur dilakukan menggunakan berbagai macam jurnal internasional dan nasional dimana dilakukan berdasarkan variabel keberhasilan kinerja untuk mendapatkan efektivitas bahan bakar dalam *Direct Carbon Fuel Cell*. Adapun poin-poin yang dicari meliputi penentuan kemampuan bahan bakar, metode peningkatan performa bahan bakar, anoda dan katoda dalam DCFC, dan desain sistem DCFC. Alat dan Bahan dipersiapkan disesuaikan dengan kebutuhan dari penelitian serta kajian literatur (Gambar 3.1).

3.3.2 Preparasi Karbon

Karbon dari tempurung kelapa yang digunakan untuk pembuatan karbon aktif akan melalui proses *ball milling* dan penyaringan untuk mengecilkan ukurannya hingga 325 mesh. Karbon kemudian akan dikeringkan dengan vakum oven selama 48 jam dengan temperatur mencapai 110 °C (Gambar 3.2).

3.3.3 Pembuatan Karbon Aktif dengan Metode Chemical Activation

Bubuk tempurung kelapa yang telah disaring akan dicampurkan dengan larutan kimia mengikuti perbandingan 1:4 (Karbon:KOH). Campuran kemudian diaduk menggunakan *magnetic stirrer* selama 2 jam dan keringkan selama 4 jam pada temperatur 130°C. Hasil campuran akan dipindahkan dalam *crucible* keramik dan dipanaskan pada 800°C selama 2 jam dengan gas inert Karbon aktif akan dicuci dengan larutan 1 M HCl, diikuti dengan pencucian menggunakan aquades untuk membuang senyawa Kalium (K) dan kotoran pada permukaan. Hasil pencucian karbon aktif akan dikeringkan kembali dengan temperatur 85 °C selama 12 jam. Proses *ball milling* dan *shieving* 325 mesh dilakukan pada hasil karbon aktif sebagai proses terakhir (Gandla *et al.*, 2021) (Gambar 3.2).

3.3.4 Pembuatan Karbon Aktif-Loaded K₂CO₃ dengan Metode Catalytic Gasification

Gambar 3.7 Skema Catalytic Gasification.

Pembuatan Bubuk K₂CO₃ dengan variasi 5%*wt*, 8%*wt*, dan 10%*wt* masing-masing akan ditambahkan ke dalam 40 ml *deionized water* lalu diaduk hingga terdistribusi merata. Karbon berjumlah 5 g ditambahkan kedalam larutan dan diaduk selama 5 jam lalu didiamkan selama 24 jam diudara terbuka. Larutan lalu dikeringkan pada temperatur 70 °C selama 24 jam menggunakan oven. Selanjutnya, sampel dihancurkan kembali sampai ukuran 100-200 mikrometer (Li *et al.*, 2010) (Gambar 3.4). Model dari karbon aktif*-loaded* K₂CO₃ digambarkan pada Gambar 3.7.

3.3.5 Preparasi Anoda dan Katoda

Anoda menggunakan Ni foam yang memiliki ketebalan 4 mm. Ni foam dipotong menyesuaikan dengan ukuran dari keramik khusus DCFC. Katoda menggunakan NiO foam dengan proses preparasi oksidasi pada Ni foam selama 2 jam pada temperatur 700 °C dengan atmosfer udara (Kouchachvili *et al.*, 2021) yang dijelaskan pada Gambar 3.5.

3.3.6 Proses Assembly Direct Carbon Fuel Cell (DCFC)

Gambar 3.8 Keramik Khusus DCFC Bagian Tutup Bawah.

Rangkaian DCFC terdiri dari dua bagian yaitu bagian tutup atas dan tutup bawah. Bagian tutup bawah (Gambar 3.8) akan berperan sebagai tempat anoda sedangkan bagian tutup atas (Gambar 3.9) berperan sebagai tempat katoda. Area aktif anoda merupakan area yang ditutupi karbon dan tempat berlangsungnya reaksi elektrokimia. Tutup bawah diisi dengan campuran eutektik karbonat (Li/Na/K)₂CO₃ sebanyak 35 gram dengan rasio molar 43.5/31.5/25 dan bubuk karbon sebanyak 5 gram yang dimuat di atas anoda sehingga dapat didistribusikan secara merata di seluruh permukaan aktif (Kouchachvili *et al.*, 2021; Kouchachvili & Ikura, 2011; Mei *et al.*, 2018). Busa NiO dengan *current collector* emas akan ditempatkan pada dasar rumah dari tutup atas. Matriks ZYF-50 akan ditekan di atas busa NiO diikuti oleh anoda dengan *current collector*.

Sebagai langkah terakhir, tutup atas dan tutup bawah akan digabungkan menjadi satu secara horizontal yang bertujuan dalam pengiriman karbon ke permukaan anoda.

Gambar 3. 9 Keramik Khusus DCFC Bagian Tutup Atas.

DCFC yang telah selesai di-*assembly* akan ditempatkan ke dalam *furnace* yang diberikan variabel bebas pada bahan bakar serta variabel terkontrol dalam suplai gas dan temperatur. Variabel bebas yang digunakan dalam bahan bakar adalah karbon aktif dan karbon aktif-*loaded* K₂CO₃. Bahan bakar akan disuplai secara kontinu dengan *carbon reservoir* ke dalam *furnace* yang diproses selama 5 jam. Variabel terkontrol untuk temperatur gas adalah 750 °C sedangkan suplai gas diatur menjadi 50 cm³/menit untuk gas O₂, 20 cm³/menit untuk gas CO₂ yang diumpankan di sisi katoda dan 30 cm³/menit N₂ yang disuplai ke sisi anoda. HV merupakan *Hand Valve*, MFC merupakan *Mass Flow Controller*, dan PRV merupakan *Pressure Reducing Valve*.

Gambar 3. 10 Skema Elektrokimia dalam DCFC

Gambar 3. 11 Skema Kerja Sistem Alat DCFC

Suplai gas dikeluarkan melalui pipa keramik yang dipasang di setiap sisi selubung sel. Selama proses pemanasan, gas nitrogen dimasukkan ke dalam DCFC untuk mencegah konsumsi karbon sebelum elektrolit benar-benar meleleh. Gas nitrogen akan berhenti disuplai ketika kompartemen sel termasuk karbon telah dibasahi oleh elektrolit. Setelah meleleh, elektrolit akan

menjenuhkan matriks zirkonia dan membantu mencegah kontaminasi aliran gas antara gas anoda dan katoda. Hasil *power density* dari DCFC diukur dengan menggunakan pengujian OCV dikalikan dengan nilai *current density* Gambar 3.6). Skema reaksi elektrokimia yang terjadi dan sistem alat lebih detail dapat dilihat pada Gambar 3.10 dan Gambar 3.11.

3.4 Pengujian

3.4.1 Karakterisasi Material

Penelitian ini menerapkan 4 pengujian karakterisasi yaitu dengan SEM, XRD, BET, dan TGA serta dengan variabel karbon aktif (Gambar 3.3) dan karbon aktif-*loaded* K₂CO₃ (Gambar 3.4) serta 3 pengujian performansi yaitu OCV, *current density*, dan *power density* (Gambar 3.6). **3.4.1.1** *Scanning Electron Microscope-Energy Dispersive X-Ray* (SEM-EDX)

Gambar 3. 12 Sistem Kerja SEM (An et al., 2019)

Scanning Electron Microscope (SEM) adalah suatu pengujian yang bekerja dengan sinar elektron berenergi tinggi untuk menggambarkan permukaan sampel yang berbeda dengan resolusi lebih tinggi dari mikroskop optik. SEM dapat menampilkan gambar morfologi sampel dengan perbesaran 2000- 50.000X. Sistem SEM bekerja dengan cara electron gun memproduksi electron beam. Electron beam akan ditangkap oleh anoda dan diarahkan ke sampel kemudian serangkaian lensa magnetik memfokuskan beam ini untuk menembakkan ke sampel. Scanner akan membaca struktur permukaan sampel kemudian menangkap sinyal dari secondary dan back scattered electron untuk dikirim ke sistem kontrol (Gambar 3.12). Hasil yang diterima oleh sistem kontrol akan ditampilkan pada monitor(An et al., 2019).

Gambar 3. 13 Pengujian SEM-EDX (Ikumapayi & Akinlabi, 2019)

Pengujian SEM dilakukan dalam 2 tahap yaitu tahap preparasi dan tahap pengujian. Tahap preparasi dilakukan dengan sampel yang berupa serbuk atau padatan diletakkan pada *holder* yang telah diberikan *carbon tape*. Tahap pengujian dilakukan dengan memasukkan sampel yang telah diletakkan pada *holder* ke dalam mesin uji, kemudian gambar hasil pengujian akan muncul pada layar komputer(An *et al.*, 2019).

Pengujian *Energy Dispersive X-ray Spectroscopy* (EDX) bertujuan untuk mengetahui apa saja jenis unsur penyusun material yang ada dalam sampel, dan sekaligus untuk mengetahui nilai % berat dan % atomik dari semua unsur penyusun tersebut (Gambar 3.13). Pada penelitian ini, EDX digunakan untuk mengetahui kandungan jumlah atom *carbon*, *silicon*, *aluminum*, *calcium*, *magnesium*, dan oksigen yang ada pada sampel. Pengujian EDX dilakukan dengan menggunakan alat SEM yang dilengkapi dengan software INCA.

Pengujian SEM-EDX dilakukan di Laboratorium Energi dan Lingkungan DRPM-ITS. Sampel yang digunakan berupa karbon aktif dan karbon aktif-*loaded* K₂CO₃. Sampel diamati dengan beberapa perbesaran mikroskop agar didapatkan data mengenai morfologi dan struktur dari karbon aktif dan karbon aktif-*loaded* K₂CO₃ yang terbentuk.

3.4.1.2 X-Ray Diffractometer (XRD)

X-Ray Diffractometer (XRD) adalah pengujian yang bertujuan memperoleh informasi dalam skala atomik, baik pada material kristal (*crsytalline*) maupun nonkristal (*amorf*). Kondisi jenis sampel yang digunakan dapat berbentuk padatan, lembaran, maupun serbuk yang sudah dihaluskan.

Gambar 3. 14 Sistem Kerja XRD (Callister Jr, W. D., & Rethwisch, 2014)

Pengujian ini memanfaatkan difraksi dari sinar-X. Sinar-X merupakan salah satu bentuk radiasi elektromagnetik yang mempunyai energi antara 200 eV-1 MeV dengan Panjang gelombang antara 0,5–2,5 Å. Panjang gelombangnya hampir sama dengan jarak antara atom dalam kristal, menyebabkan difraksi sinar-X menjadi salah satu teknik dalam analisa material(Callister Jr, W. D., & Rethwisch, 2014).

Sampel akan ditempatkan pada titik fokus hamburan sinar-X yaitu tepat di tengah-tengah plate Berikut merupakan tahapan dalam pengujian XRD (Gambar 3.14):

- 1. Sampel diletakkan di tengah-tengah tatakan (*plate*), tatakan disini berupa sebuah plat tipis yang berlubang di tengah menggunakan perekat pada sisi baliknya agar *plate* tidak jatuh ketika *plate* diputar. Jika spesimen berupa serbuk, maka digunakan *plate* yang di atasnya ditutup dengan menggunakan plastik.
- 2. Berkas sinar-X didifraksikan oleh sampel dan difokuskan melewati celah, kemudian masuk ke alat pencacah. Apabila sampel berputar sebesar 2θ maka alat berputar sebesar θ .
- 3. Pola difraksi sinar-X direkam dalam bentuk kurva intensitas terhadap sudut difraksi.

Untuk menentukan fasa yang terbentuk dapat dilakukan dengan metode pencocokan terhadap difraksi acuan. Hasil XRD dapat digunakan untuk menghitung ukura kristal (*crystallite size*) menggunakan persamaan *Debye Schrerrer* sesuai dengan Persamaan 3.1 sebagai berikut:

$$D = \frac{0.9\,\lambda}{B\cos\theta} \tag{3.1}$$

di mana,

- D : Ukuran kristal (Å)
- λ : Panjang gelombang (Cu k α = 1.54056 Å)
- B : FWHM (Full Width at Half Maximum) (rad)
- θ : Sudut difraksi (°)

Selain itu, untuk memperkuat kembali fasa yang terbentuk dilakukan pula perhitungan parameter kisi sampel yang telah di uji XRD dan kemudian dibandingkan dengan parameter kisi yang tertera dalam ICDD acuan. Berikut merupakan rumus perhitungan parameter kisi (3.2) dengan struktur kristal tetragonal dimana parameter kisi $a=b\neq c$:

di mana:

 $n\lambda = 2d\sin\theta \tag{3.2}$

d = jarak antar kristal (Å)

h,k,l = nilai orientasi bidang kristal

a = Parameter kisi sampel (Å)

c = Parameter kisi sampel (Å)

Pada penelitian ini untuk mengetahui fasa yang terbentuk pada sampel maka dilakukan pengujian XRD menggunakan instrument PANAnalytical dengan range sudut $10^{\circ}-90^{\circ}$ dan menggunakan panjang gelombang CuK α sebesar 1.54056 Å yang dilakukan di Divisi Karakterisasi Departemen Teknik Material dan Metalurgi FTIRS-ITS (Gambar 3.15). Sampel yang digunakan berupa karbon aktif dan karbon aktif-*loaded* K₂CO₃.

Gambar 3. 15 Pengujian XRD.

3.4.1.3 Thermogravimetric Analysis (TGA)

Pengujian TGA merupakan suatu pengujian untuk mengindentifikasi mengetahui reaktivitas gasifikasi Boudouard dari bahan bakar karbon yang mengalami dekomposisi. Alat ini bekerja dengan mengukur berkurangnya massa material ketika dipanaskan dengan peningkatan temperatur (Rajisha *et al.*, 2011). Sistem kerja dimulai dengan sampel TGA ditempatkan di atas meja putar dan melakukan pengisian data berat awal untuk masing – masing sampel ke dalam sistem komputer. Berat maksimal pada alat ini sebesar 20 mg.

Gambar 3. 16 Pengujian TGA.

Pengoperasian TGA dilakukan dengan mengaliri udara kering dari tabung gas dengan kecepatan pengaliran tertentu. Variabel lainnya berupa kecepatan pemanasan, jarak temperatur, dan pendinginan akan diatur melalui komputer. Analisa dilakukan dengan menaikkan temperatur secara bertahap dan analisa berat terhadap temperatur, sehingga didapatkan kurva hasil pengujian berupa fungsi temperatur terhadap berat sampel. Alat uji TGA ditunjukkan pada Gambar 3.16. Pengujian TGA menggunakan perhitungan *carbon conversion rate* (3.1) dan *gasification reactivity* (3.2) untuk mengetahui reaktivitas gasifikasi *Boudouard*. Rumus *carbon conversion rate* dijabarkan sebagai berikut:

$$X = \frac{W_i - W_t}{W_i - W_f} \tag{3.2}$$

Nilai X berperan sebagai *conversion rate*, r sebagai *reaction rate*, w_i sebagai *initial mass*, w_t sebagai *mass at time t*, dan wf berperan sebagai *final mass*. Rumus *gasification reactivity* sebagai berikut:

$$R_{0.5} = \frac{0.5}{t_{0.5}} \tag{3.3}$$

 $R_{0.5}$ berperan sebagai *gasification reactivity index*, nilai 0.5 berperan sebagai konstanta, dan t_{0.5} berperan sebagai waktu gasifikasi ketika *carbon conversion rate* mencapai 50%.

3.4.1.4 Brunauer, Emmett, and Teller (BET)

Pengujian *Brunauer, Emmett, and Teller* (BET) adalah pengujian yang digunakan untuk karakterisasi permukaan suatu material dengan data yang dihasilkan meliputi *spesific surface area* (SSA, m²/g), diameter pori (D), volume pori (Vpr, mm³/g) yang ditunjukkan pada Gambar 3.17. Alat ini bekerja dengan menyiapkan sampel dalam bentuk serbuk kedalam *sample cell* dan ditimbang berat massa aktifnya. Sampel akan diberikan perlakuan *degassing*. Proses *degassing* bertujuan untuk menghilangkan zat kontaminan pada sampel sehingga hasil akan lebih akurat. Proses ini dimulai dengan temperatur dinaikan secara bertahap yaitu 80°C selama 5 menit, 120°C selama 5 menit, 200°C selama 5 menit, 270°C selama 5 menit dan 300°C selama 3 jam.

Gambar 3. 17 Pengujian BET

Sample cell lalu akan dipindahkan ke BET analyzer serta memasang pendingin pada BET analyzer untuk mendinginkan sampel. Hal ini bertujuan agar gas inert yang digunakan akan lebih susah mengalami absorbsi dalam temperatur ruangan. Gas nitrogen umumnya digunakan sebagai molekul probe dan diekspos ke sampel pada kondisi nitrogen cair. Specific Surface Area (SSA) benda padat yang diukur didapatkan dari measured monolayer capacity dan data cross sectional area dari molekul yang dijadikan probe. Absorpsi memungkinkan terjadi dengan skema beberapa kemungkinan penempelan pada permukaan adsorben. 1: van der Waals; 2: Connolly, Probe-dapat diakses; 3: dapat diakses, jarak-r (Thommes et al., 2015) (Gambar 3.18).

Gambar 3. 18 Skema Kerja Pengujian BET (Thommes et al., 2015)

Pengujian BET dilakukan secara otomatis dimana data sampel yang diuji akan ditampilkan pada komputer yang terhubung dengan BET *Analyzer* berupa grafik dan tabel data *isotherm*, grafik dan tabel data *Multiple* BET *plot*, grafik dan tabel data *pore diameter*, serta luas *Specific surface*. Pengujian BET dilakukan di Laboratorium Energi dan Lingkungan DRPM-ITS Institut Teknologi Sepuluh Nopember.

3.4.2 Pengujian Elektrokimia

3.4.2.1 Open Circuit Voltage (OCV), Current Density, dan Power Density

Open Circuit Voltage (OCV) merupakan perbedaan potensial listrik antara dua terminal perangkat saat diputuskan dari seluruh sirkuit. Pengujian dikondisikan dengan tidak ada beban eksternal yang terhubung dan tidak ada arus listrik eksternal yang mengalir di antara terminal. Metode ini merupakan metode paling umum untuk menentukan bagaimana perangkat listrik berfungsi dalam suatu rangkaian.Properti utama perangkat elektronik juga dapat diekstraksi dari bentuk dan detail kurva, memungkinkan analisis yang lebih luas tentang pengoperasiannya. Nilai arus pada DCFC diukur menggunakan *Direct Current Loader* dimana hasil yang didapat akan dibagi dengan luasan area reaksi yaitu 25 cm² sehingga didapati nilai *current density. Power density* akan didapati dengan mengalikan hasil *current density* dengan nilai OCV.

3.5 Rancangan Penelitian

Rancangan penelitian dan pengujian DCFC dijabarkan dalam Tabel 3.1 sebagai berikut:

	Ta	bel 3.1 R	ancangai	n Peneli	tian	
	Pengujian	Karakte	risasi Ma	aterial	Temperatur (oC)	Pengujian Elektrokimia
Spesimen	SEM	XRD	TGA	BET		OCV, Current Density, dan Power Density
Karbon Aktif	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Karbon Aktif-5wt% <i>Loaded</i> K ₂ CO ₃	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Karbon Aktif-8 wt% <i>Loaded</i> K ₂ CO ₃		\checkmark	\checkmark		750	
Karbon Aktif-10 wt% <i>Loaded</i> K ₂ CO ₃		\checkmark	\checkmark			

Pengujian elektrokimia memiliki beberapa parameter yang telah ditetapkan dimana dijabarkan pada **Tabel 3.2**.

Tabel 3. 2 Rancangan Penelitian Performansi DCFC untuk Pengujian Elektrokimia

	Skema	Pengerjaan	
Sampel	Temperatur (°C)	Waktu pelelehan (Jam)	Waktu (Jam)
AC			
AC-5% K ₂ CO ₃	750	1	2
AC-8% K ₂ CO ₃			

(halaman ini sengaja dikosongkan)

BAB IV HASIL DAN PEMBAHASAN

4.1 Hasil Karakterisasi Material Karbon aktif dan Karbon Aktif-Loaded K2CO3

Karakterisasi material karbon aktif dan Karbon Aktif-*Loaded* K₂CO₃ bertujuan dalam menganalisis marfologi, persentase susunan unsur dipermukaan, komposisi penyusun, reaktivitas reaksi *boudouard*, dan *surface area* dengan variasi penambahan katalis K₂CO₃ sebesar 5%,8%,10%.

Gambar 4. 1 Hasil Pengujian XRD pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃

Pengujian XRD dilakukan untuk mengetahui komposisi penyusun dan kristalinitas pada material karbon yang digunakan. Pada sampel karbon aktif, hasil pengujian menunjukkan *peak* pada pada 29.8°,50.2°, dan 51.6° (ICSD 00-047-1154, 01-074-2330, dan 01-074-2329). Penambahan katalis 5% K₂CO₃ menunjukkan *peak* K₂O pada 25.78°, 27.69°, dan 41.7° (ICSD 00-011-0526) serta *peak* karbon pada 29.8° dan 43.6° (ICSD 01-080-0004 dan 01-082-0619). Penambahan katalis 8% K₂CO₃ menunjukkan *peak* K₂O pada 31.7° dan 41.7° (ICSD 00-011-0526) serta *peak* karbon pada 29.8° (ICSD 00-048-1256 dan 00-050-1363). Penambahan katalis 10% K₂CO₃ menunjukkan *peak* K₂O pada 31.7° dan 39.6° (ICSD 01-077-0211 dan 01-077-2151) serta *peak* karbon pada 29.8° (ICSD 00-001-0640, 00-008-0415, dan 00-041-1487) (Gambar 4.1).

Pembentukan K₂O terjadi diakibatkan reaksi antara K₂CO₃ yang bereaksi dengan Gugus fungsi karbon (Rady *et al.*, 2016). Reaksi ini bekerja secara redoks dalam mekanisme *cyclic redox* dimana reaksi yang terjadi secara berulang (4.1-4.3) pada Gambar 4.2:

$$K_2 CO_3 + 2C \to 2K + 3CO$$
 (4.1)

$$2K + CO_2 \to K_2O + CO \tag{4.2}$$

$$K_2 O + C O_2 \to K_2 C O_3 \tag{4.3}$$

Hasil XRD juga menunjukkan penurunan kristalinitas yang didapatkan pada sampel dengan penambahan katalis. Nilai kristalinitas yang dihasilkan didapati sebesar 35.67% pada karbon aktif lalu mengalami penurunan dalam sampel yang menggunakan penambahan katalis K₂CO₃. Nilai kristalinitas pada penambahan K₂CO₃ 5%,8%,dan 10% didapati sebesar 18.92%, 15.43%, dan 14.6%.Hal ini sesuai dengan teori *catalytic gasification* dimana tingkat kristalinitas akan menurun diakibatkan dari proses interkalasi oleh kalium dan terjadi *splintering* sehingga mengurangi *dense* pada karbon aktif. Mekanisme secara detail telah dijelaskan pada subbab 2.4

dalam *catalytic gasification*. Proses interkalasi yang dilakukan oleh unsur kalium akan meningkatkan nilai amorf yang dimiliki karbon. Hal ini diakibatkan oleh kalium yang akan memecah struktur karbon sehingga mengurangi kepadatan struktur karbon. Hasil dari semua sampel menunjukkan keberhasilan dari sintesis sehingga dapat dikatakan sesuai dengan proses yang telah dilakukan.

Gambar 4. 2 Ilustrasi Mekanisme Reaksi K2CO3 dengan Permukaan Karbon

4.1.2 Pengujian TGA

Pengujian TGA bertujuan untuk mengetahui tingkat reaktivitas karbon aktif dan temperatur operasi yang optimal dalam proses pembakaran karbon. Karbon aktif dan Karbon Aktif-*Loaded* K₂CO₃ mengalami penurunan massa sebanyak 2 kali penurunan kurva (Gambar 4.3). Karbon Aktif merupakan sampel dengan penurunan paling lambat dimana aktif pada temperatur 67°C (76 *wt*%) dan 331 °C (7.36 *wt*%). Penambahan katalis nyatanya menunjukkan temperatur operasi yang lebih rendah dimana penambahan 8% dan 10% katalis K₂CO₃ aktif pada temperatur 80-85°C (75 *wt*% dan 78 *wt*%) dan 210-235 °C (22.31 *wt*%). Tingkat penambahan paling optimal dicapai pada penambahan 5% katalis K₂CO₃ dengan temperatur 88 °C (89 *wt*%) dan 210 °C (31.57 *wt*%).

Gambar 4.3 Hasil Pengujian TGA pada Sampel Karbon Aktif dan Karbon Aktif-Loaded K₂CO₃

Kemampuan konversi karbon dari sampel karbon aktif dengan variasi penambahan katalis K₂CO₃ diolah menggunakan rumus (3.1) pada Gambar 4.4. Peningkatan konversi karbon terbagi menjadi dua puncak dengan temperatur yang berbeda-beda pada variabel sampel. Karbon aktif tanpa katalis (AC) menunjukkan peningkatan puncak pertama pada temperatur 63 °C dan mulai bereaksi secara reaktif pada puncak kedua dengan menunjukkan peningkatan perubahan drastis pada temperatur 300-400 °C dengan peningkatan dari 30% menuju 95%.

Gambar 4. 4 Hasil *Carbon Conversion* pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃

Penambahan katalis K₂CO₃ menunjukkan kemampuan konversi karbon yang lebih reaktif. Sampel dengan penambahan katalis K₂CO₃ sebanyak 5% (AC-5% K₂CO₃) menunjukkan puncak pertama pada temperatur 83 °C dan secara reaktif pada puncak kedua pada temperatur 200-250 °C dengan peningkatan dari 22% menuju 70.5%. Penambahan 8 dan 10% K₂CO₃ memiliki nilai yang tidak jauh berbeda dengan puncak pertama pada temperatur 90 °C dan reaktif pada puncak kedua pada temperatur 234-265 °C dengan peningkatan dari 37% menuju 78%. Pada 3 variasi penambahan katalis K₂CO₃ yaitu 5,8, dan 10% menunjukkan peningkatan pada proses gasifikasi, peningkatan laju reaksi, dan menurunkan temperatur reaksi. Pergeseran kurva yang mengalami peningkatan konsumsi karbon seiring penambahan temperatur menunjukkan bahwa efek katalitik semakin efektif terjadi seiring dengan peningkatan temperatur (Yang *et al.*, 2021).

Penambahan katalis K₂CO₃ kemudian dianalisis dengan perhitungan *gassification reactivity* dengan rumus (3.2) dimana memperhitungkan waktu yang dibutuhkan dalam mengkonversi karbon sebanyak 50%. Karbon aktif mendapati nilai *gassification reactivity* sebesar 26×10^{-5} dimana menjadi nilai paling rendah. Penggunaan katalis K₂CO₃ relatif menunjukkan peningkatan nilai *gassification reactivity* dengan nilai pada penambahan 5%,8%, dan 10% sebesar 42×10^{-5} , 38.7x10⁻⁵, dan 38.9x10⁻⁵. Penambahan 5% katalis K₂CO₃ menjadi variabel paling optimal yang didasari dari stagnansi nilai *gassification reactivity* pada penambahan 8% dan 10% (Gambar 4.5).

Peningkatan nilai reaktivitas pada karbon menggunakan katalis dapat dijelaskan oleh mekanisme *catalytic gasification* dengan membantu mempercepat reaksi yang terjadi antara karbon dengan oksigen dalam menghasilkan energi. Kalium bekerja dengan 3 cara yaitu *active intermediate mechanism, cyclic redox mechanism, intercalation compound mechanism* seperti yang telah dijabarkan pada sub bab 2.4 mengenai *catalytic gasification* (Rady *et al.*, 2016). Hasil ini menunjukkan bahwa penambahan katalis K₂CO₃ dapat menurunkan temperatur dan waktu operasi yang dibuktikan pada Gambar 4.4 dan Gambar 4.5.

LAPORAN TUGAS AKHIR

Gambar 4. 5 Gasification Reactivity terhadap Penambahan Katalis K₂CO₃

4.1.3 Pengujian SEM-EDX

Gambar 4.6 Hasil Pengujian SEM pada Sampel Karbon Aktif dengan Perbesaran Gambar 20x-1µm (A) dan 50x-200nm (B) serta Sampel Karbon Aktif-*Loaded* 5% K₂CO₃ dengan Perbesaran Gambar 20x- 1µm (C) dan 50x-200nm (D)

Pengujian SEM-EDX pada sampel karbon aktif dan Karbon Aktif-Loaded 5% K₂CO₃ bertujuan dalam menganalisis struktur marfologi yang dimiliki. Gambar 4.6 (A dan B)

menunjukkan struktur karbon aktif yang tidak teratur sehingga bisa dikatakan sesuai dengan struktur biomassa pada umumnya yang memiliki struktur amorf (Singh *et al.*, 2018). Pori-pori pada gambar tidak terlihat yang diprediksi memiliki masuk kedalam kategori *ultramicropores* (<0.8 nm). Pori-pori ini ditemukan dalam susunan yang tidak teratur dari seluruh struktur biokarbon dimana mikropori kecil efektif dalam proses penangkapan molekul yang selanjutnya dapat memasuki mesopori yang lebih besar (Singh *et al.*, 2018; Sultana *et al.*, 2022). Molekul nantinya akan berinteraksi dengan gugus fungsi permukaan yang menghasilkan penangkapan CO₂, CO dan O₂ yang tinggi.

Gambar 4.6 (C dan D) menunjukkan bahwa katalis K₂CO₃ terdistribusi secara merata pada permukaan karbon aktif. Ukuran pori pada struktur karbon menjadi lebih besar setelah dilakukan penambahan kalium (K). Hal ini disebabkan oleh logam alkali yang dapat mendorong pembentukan pori-pori dan retakan pada permukaan karbon aktif. Pemanasan pada sampel karbon aktif-*loaded* 5% K₂CO₃ yang mencapai tingkat temperatur tertentu akan menyebabkan perubahan struktur pada permukaan karbon aktif menjadi sangat hancur dengan munculnya pori-pori dan retakan yang lebih besar. Struktur pori pada karbon aktif dengan K₂CO₃ relatif lebih berkembang dengan ukuran pori yang lebih kecil. Hal ini akan mengakibatkan area kontak antara oksida logam dengan karbon aktif sehingga terjadi peningkatan kinerja katalitik oksida logam serta mempengaruhi laju gasifikasi dan reaksi gasifikasi yang bekerja lebih cepat (Yang *et al.*, 2021).

Tabel 4.1 menunjukkan hasil dari EDX yang dilakukan pada material karbon aktif memiliki nilai .persentase karbon sebesar 78.6%. Nilai tersebut dapat dinyatakan bahwa sampel kehilangan banyak karbon yang disebabkan oleh rasio impregnasi KOH cukup tinggi terhadap karbon biomassa sehingga menghasilkan pembakaran karbon berlebihan. Hal ini berdampak pada permukaan yang akan teroksidasi jauh lebih besar dibandingkan dengan rasio impregnasi KOH yang lebih rendah (Singh *et al.*, 2018).

Gambar 4. 7 Skema Penempelan K₂CO₃ (A) dan Pembentukan K₂O (B) pada Permukaan Karbon Aktif

Nilai persentase oksigen didapati sebesar 20.3% dimana jumlah tersebut dapat dikatakan masih cukup besar. Hal ini menunjukkan tidak optimalnya proses karbonisasi sehingga reaksi tidak berjalan secara maksimal dengan menyisakan banyak kandungan oksigen. Kandungan oksigen yang tinggi akan mempengaruhi dari penurunan kemampuan adsorpsi dan *surface area* dari karbon aktif yang dimiliki (Singh *et al.*, 2018). Hasil EDX pada material karbon aktif*-loaded* K₂CO₃ menunjukkan nilai kandungan karbon yang sangat tinggi sebesar 93.92%. Adanya K₂O sebesar 4.53% menunjukkan keberhasilan dalam proses impregnasi dimana terjadi pelapisan pada permukaan karbon (Gambar 4.7). Pembentukan kalium pada permukaan karbon diakibatkan adanya proses pengikatan pada gugus fungsi karbon sehingga terjadi pembentukan K₂O yang sesuai dengan hasil yang didapati pada data XRD.

Tabel 4. 1 Komposisi Per	mukaan den	gan Pengujian	EDX Pada S	ampel Karbo	on Aktif dan
	Karbon A	ktif-Loaded 59	% K ₂ CO ₃		
Sampel	C (%)	O (%)	N (%)	K ₂ O(%)	Pengotor(%)
Karbon Aktif	78.6	20.3	1.1	-	-
Karbon Aktif- <i>Loaded</i> 5% K ₂ CO ₃	93.92	-	-	4.53	1.55

4.1.4 Pengujian BET

Tabel 4. 2 Hasil Pengujian BET dengan Nilai Surface Area pada Sampel Karbon Aktif dan
Karbon Aktif-Loaded 5% K₂CO₃

Sampel	<i>Surface Area</i> (m ² /g)
Karbon Aktif	927.536
Karbon Aktif-Loaded 5%K ₂ CO ₃	875

Pengujian BET dilakukan untuk menganalisis luasan area serta keberhasilan sintesis dari material karbon. Karbon aktif menunjukkan hasil *surface area* yaitu sebesar 927.536 m²/g dimana semakin tinggi nilai *surface area* maka kemampuan reaksi dari karbon akan semakin baik (Tabel 4.2). Nilai tersebut bisa dikategorikan memiliki hasil yang cukup baik jika dikomparasikan dengan hasil karbon aktif lainnya (Tabel 4.3). Keberhasilan ini disebabkan oleh efek dehidrasi kuat dari asam sulfat dalam menghilangkan banyak pengotor anorganik dan mengkatalisis polimerisasi karbon sebelum melakukan proses aktivasi dengan KOH. Hal ini membantu dalam produksi karbon dengan sifat tekstur dan fungsional yang unggul (Singh *et al.*, 2018).

Bahan	Temperatur (°C)	Waktu (Jam)	Agen Aktivasi	<i>Surface</i> Area (m ² /g)	Refrensi
Olive Stones	800	7	CO_2	1355	
Oil Palm Shell	85	2	КОН	1630	
Phoenix dactylifera L	900	2	H_3PO_4	1225	
Olive Stones	750	6	Steam	807	
Choerospondias axillaris	400	3	NaOH	1000	(Mariana <i>et</i> <i>al.</i> , 2021)
Pistachio shell	1000	4	CaHPO ₄	1919	
Finish wood	800	3	CO_2	590	
Rape straw & H ₃ PO ₄	400	2	FeCl ₃ & MnCl ₂	795	
Molasses	500	2	H ₃ PO ₄	1400	
Coconut shell	800	2	КОН	927.536	Penelitian saat ini

Tabel 4. 3 Perbandingan Hasil Aktivasi pada Berbagai Macam Material Biomassa

Sampel karbon aktif-*loaded* 5% K₂CO₃ menunjukkan nilai *average pore size* sebesar 1.32 nm. Nilai tersebut dapat menjadi rujukan bahwa pori yang dimiliki cukup besar pada karbon. Nilai *total pore volume* yang dimiliki sebesar 0.5793 cm³/g yang dapat dikategorikan bernilai moderat (Guo *et al.*, 2019) sedangkan nilai *pore size distribution* yang dimiliki sebesar 1.32 nm sehingga

dapat dikategorikan kedalam *mesopores* (1-25 nm) (Singh *et al.*, 2018) (Tabel 4.4). Ketiga nilai tersebut memiliki hubungan satu sama lain dimana tingginya nilai *pore size* akan mempengaruhi dalam penurunan *surface area* dan *pore size distribution* akan tetapi meningkatkan nilai *total pore volume* (Sujiono *et al.*, 2022).

Karbon aktif dengan penggunaan 5% Katalis K_2CO_3 (Karbon Aktif-*Loaded* 5% K_2CO_3) menunjukkan hasil *surface area* sebesar 875 m²/g yang dapat dikategorikan cukup baik (Tabel 4.2). Nilai *surface area* didapati berkurang dibandingkan dengan tanpa penambahan katalis. Penurunan nilai tersebut terjadi akibat pelapisan pori karbon oleh katalis K_2CO_3 sehingga menurunkan nilai *surface area* yang dimiliki.

Tabel 4. 4 Hasil Pengujian BET dengan Nilai Average Pore width, Total Pore Volume, dan PoreSize Distribution pada Karbon Aktif-Loaded 5% K2CO3

			Pore Size
	Average Pore	Total Pore Volume	Distribution
Sampel	Size (nm)	(cm^3/g)	$(cm^{3}nm^{-1}g^{-1})$
Karbon Aktif-Loaded			
5% K ₂ CO ₃	1.32 nm	0.5793	0.0699

4.2 Hasil Pengujian Performa Material Karbon aktif dan Karbon Aktif-Loaded K₂CO₃ sebagai Bahan Bakar

Gambar 4. 8 Pengujian OCV pada Karbon Aktif (A), Karbon Aktif-*Loaded* 5% K₂CO₃ (B), dan Karbon Aktif-*Loaded* 8% K₂CO₃ (C)

Pengujian performa dilakukan pada material karbon aktif, karbon aktif-*Loaded* 5% K₂CO₃ (sampel dengan perfoma karakterisasi terbaik), dan karbon aktif-*Loaded* 8% K₂CO₃ untuk

menganalisis data OCV, *current density*, dan *power density* yang dihasilkan. Temperatur yang digunakan dalam sistem DCFC adalah 750 °C yang didasari dari percobaan Kouchachvili & Ikura (2011) dimana elektrolit yang digunakan memiliki temperatur leleh sebesar 410-500 °C dan performansi DCFC terbaik pada temperatur 750 °C. Hasil OCV dan *current density* pada karbon aktif menunjukkan fluktuasi nilai yang cukup kecil yang berkisar 5-30 mV dan 0.04-0.5 mA. Penambahan 5% katalis K₂CO₃ memiliki nilai OCV dan *current density* dengan tren yang lebih baik dimana berkisar 10-76.58 mV dan 0.03-0.28 mA. Penambahan 8% katalis K₂CO₃ menunjukkan performa yang paling optimal yaitu 0.03-96.7 mV dan 0.03-0.67 mA. Akan tetapi, grafik yang dimiliki menunjukkan ketidakstabilan dibandingkan dengan penambahan 5% (Gambar 4.8, Gambar 4.9, dan Gambar 4.10). Karbon aktif menunjukkan nilai fluktuasi yang tidak stabil dibandingkan dengan karbon aktif-*loaded* K₂CO₃. Penggunaan katalis dapat dikatakan mempengaruhi dari kestabilan reaksi yang ditunjukkan dengan bentuk grafik yang jauh lebih *uniform*. Kurva yang terbentuk dalam OCV sesuai dengan penelitian yang telah dilakukan oleh Kouchachvili & Ikura (2011).

Gambar 4. 9 Pengujian *Current Density* pada Karbon Aktif (A), Karbon Aktif-*Loaded* 5% K₂CO₃ (B), dan Karbon Aktif-*Loaded* 8% K₂CO₃ (C).

Karbon aktif menunjukkan performansi maksimal dengan nilai *power density* sebesar 13.26 mW/cm² (0.53 mA/cm² dan 25 mV). Nilai yang dihasilkan dapat dikatakan masih belum cukup baik jika dikomparasikan dengan perfomansi karbon lainnya pada Tabel 2.5. karbon aktif-*Loaded* 5% K₂CO₃ menunjukkan performansi yang cukup baik dengan nilai *power density* sebesar 22.05 mW/cm² (0.288 mA/cm² dan 76.58 mV) akan tetapi nilai optimal dicapai oleh karbon aktif-*Loaded* 8% K₂CO₃ sebesar 64.93 mW/cm² (0.67 mA/cm² dan 96.7 mV). Hal ini didasari pada hasil TGA dimana penambahan 8% katalis K₂CO₃ memiliki konversi karbon yang lebih besar daripada

penambahan 5% katalis K₂CO₃ pada temperatur 750°C. Akan tetapi, karbon aktif pada temperatur 750 °C memiliki nilai konversi karbon yang lebih tinggi dimana hasil yang didapati berbanding terbalik. Hal ini menunjukkan peran elektrolit yang menjadi pembeda dalam hasil yang didapati sehingga diperlukan analisa dari aktivitas elektrolit dalam DCFC.

Power density nyatanya semakin meningkat seiring dengan penambahan katalis dikarenakan mekanisme *catalytic gasification* yang telah dideskripsikan pada subbab 2.4. Logam Kalium diprediksi bekerja dengan 3 cara *active intermediate mechanism, cyclic redox mechanism, intercalation compound mechanism.* Teori tersebut sejalan dengan hasil karakterisasi XRD yang dihasilkan dimana terdapat ikatan antara Kalium dengan unsur O membentuk *potassium oxide* (K₂O). Selain itu, proses interkalasi pada *intercalation compound* dapat dibuktikan dengan perubahan kristalinitas yang dihasilkan dimana karbon yang semakin amorf sehingga mengurangi *dense* dari karbon. Penurunan *dense* akan meningkatkan reaktivitas yang dimiliki (Rady *et al.,* 2016). Kedua sampel memiliki performansi konversi energi listrik yang cukup baik sehingga dapat dikatakan bahwa sistem DCFC telah berjalan secara optimal dengan desain yang lebih sederhana dan efisien.

Gambar 4. 10 Pengujian *Power Density* pada Karbon Aktif (A), Karbon Aktif-*Loaded* 5% K₂CO₃ (B), dan Karbon Aktif-*Loaded* 8% K₂CO₃ (C).

(Halaman ini sengaja dikosongkan)

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Kesimpulan dari penelitian ini didapati sebagai berikut:

- 1. Penambahan Katalis K₂CO₃ berdampak pada struktur yang lebih amorf (Kristalinitas 14-19%) dan membentuk K₂O. Reaktivitas *Boudouard* mengalami peningkatan menggunakan katalis K₂CO₃ dengan nilai optimum didapati pada penambahan 5%. (*gassification reactivity* sebesar 42x10⁻⁵). *Surface area* karbon aktif (927.536 m²/g) mengalami penurunan akibat terlapisinya permukaan oleh katalis K₂CO₃ (875 m²/g).
- Penambahan katalis K₂CO₃ menunjukkan nilai maksimal *power density* sebesar 22.05 mW/cm² (5%) dan 64.93 mW/cm² (8%) yang lebih tinggi dibandingkan penggunaan karbon aktif saja (*power density* 13.26 mW/cm²). Katalis K₂CO₃ meningkatkan *power density* melalui 3 mekanisme *catalytic gasification* yaitu *active intermediate mechanism*, *cyclic redox mechanism*, *intercalation compound mechanism*.

5.2 Saran

Saran yang dapat diberikan pada penelitian ini adalah sebagai berikut:

- 1. Penggunaan *tube furnace* yang terpisah dari spesimen lainnya untuk meminimalisir adanya pengotor yang masuk
- 2. Penggunaan masker, jas lab, dan sarung tangan sangat diperlukan dalam menjaga kualitas dari sampel yang dibuat
- 3. Pengembangan lebih lanjut dalam desain *Direct Carbon Fuel Cell* yang dapat memiliki ketahanan jangka panjang serta kemudahan dalam penggunaannya.

(halaman ini sengaja dikosongkan)

DAFTAR PUSTAKA

- Ahn, S. Y., Eom, S. Y., Rhie, Y. H., Sung, Y. M., Moon, C. E., Choi, G. M., & Kim, D. J. (2013). Utilization of wood biomass char in a direct carbon fuel cell (DCFC) system. *Applied Energy*, 105, 207–216. https://doi.org/10.1016/j.apenergy.2013.01.023
- Alouw, J. C., & Wulandari, S. (2020). Present status and outlook of coconut development in Indonesia. *IOP Conference Series: Earth and Environmental Science*, 418(1). https://doi.org/10.1088/1755-1315/418/1/012035
- An, W., Sun, X., Jiao, Y., Julião, P. S. B., Wang, W., Wang, S., Li, S. D., & Shuang, S. (2019). A solid oxide carbon fuel cell operating on pomelo peel char with high power output. *International Journal of Energy Research*, 43(7), 2514–2526. https://doi.org/10.1002/er.4097
- Bie, K., Fu, P., Liu, Y., & Muhammad, A. (2020). Comparative study on the performance of different carbon fuels in a molten carbonate direct carbon fuel cell with a novel anode structure. *Journal of Power Sources*, 460(January), 228101. https://doi.org/10.1016/j.jpowsour.2020.228101
- Callister Jr, W. D., & Rethwisch, D. G. (2014). *Material Science and Engineering* (6th ed.). John Wiley & Sons.
- Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. *Chemical Engineering Journal*, 174(1), 117–125. https://doi.org/10.1016/j.cej.2011.08.058
- Demirbaş, A., & Arin, G. (2002). An overview of biomass pyrolysis. *Energy Sources*, 24(5), 471–482. https://doi.org/10.1080/00908310252889979
- Deng, Z., Sun, S., Li, H., Pan, D., Patil, R. R., Guo, Z., & Seok, I. (2021). Modification of coconut shell-based activated carbon and purification of wastewater. *Advanced Composites and Hybrid Materials*, 4(1), 65–73. https://doi.org/10.1007/s42114-021-00205-4
- Dewi, T. K., Nurrahman, A., & Permana, E. (2009). Pembuatan Karbon Aktif dari Kulit Ubi Kayu (Mannihot esculenta). *Jurnal Teknik Kimia*, *16*(1), 24–30.
- Eom, S., Cho, J., Ahn, S., Sung, Y., Choi, G., & Kim, D. (2016). Comparison of the Electrochemical Reaction Parameter of Graphite and Sub-bituminous Coal in a Direct Carbon Fuel Cell. *Energy and Fuels*, 30(4), 3502–3508. https://doi.org/10.1021/acs.energyfuels.5b02904
- ESDM, K. (2018). *Kebutuhan Listrik Disesuaikan, Target Bauran Energi Terbarukan Tahun 2025 Tetap Dijaga 23%*. https://www.esdm.go.id/id/media-center/arsip-berita/kebutuhan-listrikdisesuaikan-target-bauran-energi-terbarukan-tahun-2025-tetap-dijaga-23
- ESDM, K. (2021). Konsumsi Listrik Per Kapita Indonesia Capai 1.109 kWH pada Kuartal III 2021. https://databoks.katadata.co.id/datapublish/2021/12/10/konsumsi-listrik-per-kapita-indonesia-capai-1109-kwh-pada-kuartal-iii-2021
- Gandla, D., Wu, X., Zhang, F., Wu, C., & Tan, D. Q. (2021). High-Performance and High-Voltage Supercapacitors Based on N-Doped Mesoporous Activated Carbon Derived from Dragon Fruit Peels. *ACS Omega*, 6(11), 7615–7625. https://doi.org/10.1021/acsomega.0c06171
- Giddey, S., Badwal, S. P. S., Kulkarni, A., & Munnings, C. (2012). A comprehensive review of direct carbon fuel cell technology. *Progress in Energy and Combustion Science*, 38(3), 360– 399. https://doi.org/10.1016/j.pecs.2012.01.003
- Greenpeace Indonesia. (2015). Kita, Batubara & Polusi Udara. April, 1-16.
- Guo, D., Xin, R., Wang, Y., Jiang, W., Gao, Q., Hu, G., & Fan, M. (2019). *N-doped carbons with hierarchically micro- and mesoporous structure derived from sawdust for high performance supercapacitors*.
- Heidarinejad, Z., Dehghani, M. H., Heidari, M., Javedan, G., Ali, I., & Sillanpää, M. (2020).

Methods for preparation and activation of activated carbon: a review. *Environmental Chemistry Letters*, 18(2), 393–415. https://doi.org/10.1007/s10311-019-00955-0

- IESR. (2021). Krisis Listrik Jawa-Bali Masalah yang Tak Kunjung Selesai. https://iesr.or.id/pustaka/krisis-listrik-jawa-bali-masalah-yang-tak-kunjung-selesai
- Ikumapayi, O. M., & Akinlabi, E. T. (2019). Data showing the effects of vibratory disc milling time on the microstructural characteristics of Coconut Shell Nanoparticles (CS-NPs). *Data in Brief*, 22(August), 537–545. https://doi.org/10.1016/j.dib.2018.12.067
- Kouchachvili, L., Geddis, P., & Zhuang, Q. (2021). Direct carbon fuel cell design for continuous operation. *International Journal of Hydrogen Energy*, 46(9), 6792–6802. https://doi.org/10.1016/j.ijhydene.2020.11.179
- Kouchachvili, L., & Ikura, M. (2011). Performance of direct carbon fuel cell. *International Journal* of Hydrogen Energy, 36(16), 10263–10268. https://doi.org/10.1016/j.ijhydene.2010.10.036
- Li, C., Shi, Y., & Cai, N. (2010). Performance improvement of direct carbon fuel cell by introducing catalytic gasification process. *Journal of Power Sources*, *195*(15), 4660–4666. https://doi.org/10.1016/j.jpowsour.2010.01.083
- Mariana, M., Abdul, A. K., Mistar, E. M., Yahya, E. B., Alfatah, T., Danish, M., & Amayreh, M. (2021). Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. *Journal of Water Process Engineering*, 43(June), 102221. https://doi.org/10.1016/j.jwpe.2021.102221
- Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. *Journal of Physical Chemistry C*, 122(1), 194–206. https://doi.org/10.1021/acs.jpcc.7b10582
- Rady, A. C., Giddey, S., Kulkarni, A., Badwal, S. P. S., & Bhattacharya, S. (2016). Catalytic gasification of carbon in a direct carbon fuel cell. *Fuel*, 180, 270–277. https://doi.org/10.1016/j.fuel.2016.04.047
- Rajisha, K. R., Deepa, B., Pothan, L. A., & Thomas, S. (2011). Thermomechanical and spectroscopic characterization of natural fibre composites. *Interface Engineering of Natural Fibre Composites for Maximum Performance*, 241–274. https://doi.org/10.1533/9780857092281.2.241
- Ramadhani, L. F., Imaya M. Nurjannah, Ratna Yulistiani, & Erwan A. Saputro. (2020). Review: teknologi aktivasi fisika pada pembuatan karbon aktif dari limbah tempurung kelapa. In *Jurnal Teknik Kimia* (Vol. 26, Issue 2, pp. 42–53). https://doi.org/10.36706/jtk.v26i2.518
- Seri Maulina, & Feni Sari Putri. (2017). Pengaruh Suhu, Waktu, Dan Kadar Air Bahan Baku Terhadap Pirolisis Serbuk Pelepah Kelapa Sawit. *Jurnal Teknik Kimia USU*, 6(2), 35–40. https://doi.org/10.32734/jtk.v6i2.1581
- Singh, G., Lakhi, K. S., Ramadass, K., Kim, S., Stockdale, D., Vinu, A., Materials, M., Lakhi, K. S., Ramadass, K., Kim, S., Stockdale, D., & Vinu, A. (2018). A combined strategy of acidassisted polymerization and solid state activation to synthesize functionalized nanoporous activated biocarbons from biomass for CO2 capture. https://doi.org/10.1016/j.micromeso.2018.05.035.This
- Sujiono, E. H., D. zabrian, & Mulyati. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application.pdf. *Results in Chemistry*, *4*, 1–10.
- Sultana, M., Rownok, M. H., Sabrin, M., Rahaman, M. H., & Alam, S. M. N. (2022). A review on experimental chemically modified activated carbon to enhance dye and heavy metals adsorption. *Cleaner Engineering and Technology*, 6, 100382. https://doi.org/10.1016/j.clet.2021.100382
- Tang, H., Yu, F., Wang, Y., Xie, Y., Meng, X., Sun, H., Yang, N., & Tan, X. (2019). Enhancing the Power Output of Direct Carbon Solid Oxide Fuel Cell Using Ba-Loaded Activated Carbon Fuel. *Energy Technology*, 7(4). https://doi.org/10.1002/ente.201800885

- Tangstad, M., Beukes, J. P., Steenkamp, J., & Ringdalen, E. (2018). Coal-based reducing agents in ferroalloys and silicon production. In *New Trends in Coal Conversion: Combustion, Gasification, Emissions, and Coking*. Elsevier. https://doi.org/10.1016/B978-0-08-102201-6.00014-5
- Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). *Pure and Applied Chemistry*, 87(9–10), 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Yang, H., Song, H., Zhao, C., Hu, J., Li, S., & Chen, H. (2021). Catalytic gasification reactivity and mechanism of petroleum coke at high temperature. *Fuel*, 293(November 2020). https://doi.org/10.1016/j.fuel.2021.120469
- Yu, F., Han, T., Wang, Z., Xie, Y., Wu, Y., Jin, Y., Yang, N., Xiao, J., & Kawi, S. (2021). Recent progress in direct carbon solid oxide fuel cell: Advanced anode catalysts, diversified carbon fuels, and heat management. *International Journal of Hydrogen Energy*, 46(5), 4283–4300. https://doi.org/10.1016/j.ijhydene.2020.10.259
- Zhang, L., Xiao, J., Xie, Y., Tang, Y., Liu, J., & Liu, M. (2014). Behavior of strontium- and magnesium-doped gallate electrolyte in direct carbon solid oxide fuel cells. *Journal of Alloys and Compounds*, 608, 272–277. https://doi.org/10.1016/j.jallcom.2014.04.154
- Zhang, X. (2018). Current status of stationary fuel cells for coal power generation. *Clean Energy*, 2(2), 126–139. https://doi.org/10.1093/ce/zky012

(halaman ini sengaja dikosongkan)

LAMPIRAN

Lampiran 1 Pembuatan Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃ Penimbangan karbon dan KOH

Pengadukan dengan magnetic stirrer

Peletakan Karbon kedalam Wadah

Pembakaran karbon dalam furnace

Penimbangan Sampel Karbon Aktif

Penghalusan Sampel Karbon Aktif

Pencucian Sampel dengan HCl (Perbandingan 1:3)

Pencucian dengan aquadest

Hasil Akhir Sampel Karbon Aktif

Penambahan K₂CO₃

Pengadukan larutan karbon aktif-K₂CO₃

Proses Pengeringan dengan Oven

Lampiran 2

Hasil Pengujian XRD pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃ Karbon Aktif

Peak List

Pos. [°2Th.]	Height [cts]	FWHM Left [°2Th.]	d-spacing [Å]	Rel. Int. [%]
 261,755	46,16	0,0900	340,174	75,04
 445,944	61,52	0,2448	203,025	100,00

Refrensi Carbon 00-047-1154

Date: 7/12/2022 Time: 1:4	48:58 PM File: AC-baru smoothing	User: H
Name and formula	1	
Reference code:	00-047-1154	
Compound name:	Carbon	
Common name:	diamond-15R	
PDF index name:	Carbon	
Empirical formula:	С	
Chemical formula:	C	

Crystallographic parameters

Crystal system:	Rhombohedral
Space group:	R3m
Space group number:	160
a (Å):	2.5200
b (Å):	2.5200
c (Å):	30.8800
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Volume of cell (10^6 pm^3):	169.83
Z:	30.00
RIR:	

Status, subfiles and quality

Status:	Marked as deleted by ICDD
Subfiles:	Alloy, metal or intermetalic
	Inorganic
Quality:	Calculated (C)

Comments

Creation Date:	
Modification Date:	
Deleted Or Rejected By:	

1/1/1970 1/1/1970 Deleted by 50-1085, more complete; LRB 6/98.

References

Primary reference:

Phelps, A., Howard, W., White, W., Spear, K., Huang, D., Mater. Res. Soc. Symp. Proc., 162, 213, (1990)

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [\$]
1	1	0	1	2.17700	41.444	11.0
2	0	1	2	2.16090	41.767	37.0
3	1	0	4	2.10010	43.036	80.0
4	0	0	15	2.05870	43.946	100.0

1 Of 2

Date: 7	/12/20	22 Tin	ne: 1:48:5	8 PM	File: AC-ba	aru smoothing	User: HF
5	1	0	7	1.95610	46.382	31.0	
6	0	1	8	1.89980	47.840	12.0	
7	0	1	17	1.39610	66.974	3.0	
8	1	0	19	1.30350	72.449	10.0	
9	1	1	0	1.26000	75.374	37.0	
10	1	0	22	1.18050	81.464	10.0	
11	0	1	23	1.14350	84.696	8.0	
12	0	2	4	1.08050	90.944	21.0	
13	1	0	31	0.90620	116.431	2.0	

Stick Pattern

Carbon 01-074-2329

Date: 7/12/2022 Time: 1:49:21 F	M File: AC-baru smoothing	User: H				
Name and formula						
Reference code:	01-074-2329					
Mineral name:	Graphite					
Compound name:	Carbon					
ICSD name:	Carbon					
Empirical formula:	С					
Chemical formula:	с					
Crystallographic paran	neters					
Crystal system:	Rhombohedral					
Space group;	R-3m					
Space group number:	166					
a (Å):	2.4600					
b (Å):	2.4600					
c (Å):	53.5000					
Alpha (°):	90.0000					
Beta (°):	90.0000					
Gamma (°):	120.0000					
Calculated density (g/cm^3):	1.71					
Volume of cell (10^6 pm^3):	280.38					
Z:	24.00					
RIR:	10.04					
Subfiles and Quality						
Subfiles:	Alloy, metal or intermetalic					
	Corrosion					
	Inorganic					
	Mineral					
	Modelled additional pattern					
Quality:	Calculated (C)					
Comments						
ICSD collection code:	028418					
Creation Date:	1/1/1970					
Modification Date:	1/1/1970					
ICSD Collection Code:	028418					
Test from ICSD:	No R value given					
Test from ICSD:	At least one TF missing.					

References

Primary reference: Structure:

Calculated from ICSD using POWD-12++, (1997) Nixon, D.E., Parry, G.S., Ubbelohde, A.R., Proc. R. Soc. London, Ser. A, **291**, 324, (1966)

Peak list

1 Of 3

User: HF

Date: 7	/12/20	22 Tin	ne: 1:49:	21 PM	File: AC-baru smoothing		
						_	
No.	h	k	1	d [A]	2Theta[deg]	I [%]	
1	0	0	3	17.83330	4.951	100.0	
2	0	0	6	8.91667	9.912	15.9	
3	0	0	9	5.94444	14.891	2.7	
4	0	0	12	4.45833	19.899	0.1	
5	0	0	15	3.56667	24.945	13.4	
6	0	0	18	2.97222	30.041	3.2	
7	0	0	21	2.54762	35.199	0.2	
8	0	0	24	2.22917	40.431	0.1	
9	1	0	1	2.12874	42.429	0.6	
10	0	1	2	2.12370	42.534	0.3	
11	0	1	5	2.08941	43.267	0.1	
12	1	0	7	2.05219	44.093	1.0	
13	0	1	8	2.02991	44.602	0.9	
14	0	0	27	1.97927	45.807	0.2	
15	0	1	11	1.95142	46.499	0.1	
16	1	0	13	1.89195	48.051	0.1	
17	0	1	14	1.86079	48.908	0.2	
18	1	0	16	1.79673	50.773	0.2	
19	0	0	30	1.78333	51,182	0.4	
20	0	1	17	1.76420	51.778	0.1	
21	1	0	19	1,69894	53,924	0.1	
22	0	1	20	1.66649	55.062	0.1	
23	0	0	33	1 62121	56 737	0.4	
24	1	0	22	1.60246	57.462	0.2	
25	0	1	23	1.57106	58.721	0.2	
26	1	0	25	1.50981	61.354	0.1	
27	0	1	26	1 48005	62 726	0.1	
28	1	0	28	1 42243	65 577	0.1	
29	ō	1	29	1 39461	67 055	0 1	
30	0	0	39	1 37179	68 323	0.1	
31	1	0	31	1.34101	70.118	0.1	
32	0	1	32	1.31523	71.702	0.1	
33	0	0	42	1 27381	74 418	0.1	
34	1	0	34	1 26572	74 975	0.1	
35	0	1	35	1 24196	76 666	0.1	
36	1	1	0	1 22000	77 640	0.4	
27	1	1	2	1.22700	77.315	0.2	
20	1	1	6	1.22700	70.000	0.3	
20	-	1	0	1.21040	70.424	0.1	
39	-	-	97	1.20449	79.515	0.1	
40	1	0	37	1.19641	80.158	0.1	
10	2	1	10	1.18889	01.000	0.1	
42	1	1	12	1.18570	81.032	0.1	
43	0	1	36	1.1/458	01.962	0.1	
44	1	1	15	1.16280	82.9/4	0.5	
45	1	1	18	1.13653	85.338	0.2	
96	0	0	48	1.11458	87.436	0.1	
47	0	1	41	1.11274	87.618	0.1	
48	1	1	21	1.10766	88.123	0.1	

Stick Pattern

10 20

40 50 60 Position [º2Theta] (Copper (Cu)) 70 80

01-074-2330

Date I Freder Time Tibliza	The Re bard shooting	0361.11
Name and formula		
Reference code:	01-074-2330	
Compound name:	Carbon	
ICSD name:	Carbon	
Empirical formula:	С	
Chemical formula:	с	
Crystallographic param	neters	
Crystal system:	Orthorhombic	
Space group:	Cmc21	
Space group number:	36	
a (Å):	2.4600	
b (Å):	4.2600	
c (Å):	28.9600	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (°):	90.0000	
Calculated density (g/cm^3):	1.58	
Volume of cell (10^6 pm^3):	303.49	
Z:	24.00	
RIR:	10.41	
Subfiles and Quality		
Subfiles:	Alloy, metal or intermetalic Corrosion	
	Inorganic	
Quality:	Calculated (C)	
<u>Comments</u>		
ICSD collection code:	028419	
Creation Date:	1/1/1970	
11 IO II	4. 14. 14. 8 8 8 8	

creation bate:	1/1/.	19/0	
Modification Date:	1/1/1970		
ICSD Collection Code:	0284	19	
Calculated Pattern Original	Remarks:	REM	ODS
Test from ICSD:	No R	value gi	ven
Test from ICSD:	At le	ast one T	F missing.

References

Primary reference: Structure: Calculated from ICSD using POWD-12++, (1997) Nixon, D.E., Parry, G.S., Ubbelohde, A.R., Proc. R. Soc. London, Ser. A, **291**, 324, (1966)

<u>Peak list</u>

User: HF

Date: 7/12/2022 Time: 1:50:24 PM			24 PM	File: AC-baru smoothing		
No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	14.48000	6.099	100.0
2	0	0	4	7.24000	12.215	11.5
3	0	0	6	4.82667	18.366	0.4
4	0	0	8	3.62000	24.572	12.7
5	0	0	10	2.89600	30.851	3.3
6	0	0	12	2.41333	37.227	0.1
7	1	1	0	2.13032	42.396	0.4
8	1	1	1	2.12458	42.516	0.4
9	1	1	2	2.10763	42.874	0.1
10	1	1	3	2.08026	43.467	0.2
11	0	0	14	2.06857	43.725	0.1
12	1	1	4	2.04368	44.286	1.5
13	1	1	5	1,99937	45.321	0.2
14	1	1	6	1,94893	46.562	0.3
15	1	1	7	1,89397	47.997	0.1
16	1	1	8	1,83599	49,613	0.2
17	0	0	16	1.81000	50.375	0.4
18	1	1	9	1,77631	51.399	0.1
19	1	1	10	1.71604	53.344	0.1
20	1	1	11	1 65607	55 438	0 1
21	0	0	18	1.60889	57.211	0.4
22	1	1	12	1.59710	57.673	0.3
23	ĩ	1	13	1 53964	60.041	0.1
24	1	1	14	1 49405	62 597	0.2
25	0	0	20	1 44900	64 279	0.1
26	1	1	15	1 43059	65 157	0.1
20	1	1	16	1.33030	67 007	0.1
20	-	1	17	1.37930	07.057	0.1
20	-	1	17	1.33045	70.757	0.1
29	1	1	10	1.31030	71.031	0.1
21	1	1	10	1.20300	75.757	0.1
31	1	1	19	1.23960	70.030	0.1
32	2	0	2	1.22502	77.505	0.2
33	2	0	4	1.22541	77.095	0.2
34	4	0	24	1.21245	70.000	0.1
33	0	0	24	1.20007	79.341	0.1
30	1	3	5	1.20300	79.631	0.1
37	1	1	20	1.19/55	80.066	0.1
38	2	0	0	1.19174	80.536	0.1
39	2	0	8	1.16445	82.831	0.5
40	1	1	21	1.15766	83.425	0.1
41	2	0	10	1.13198	85.764	0.3
42	1	1	22	1.11982	86.925	0.1
43	1	3	11	1.11385	87.508	0.1
44	1	3	12	1.09575	89.335	0.1

Stick Pattern

no.	peak		2Theta	d	I/I1	FWHM	Intensity	Integrated Int
	no.		(deg)	(A)		(deg)	(Counts)	(Counts)
	1	20	29.7742	2.99827	100	0.53	11	373
	2	1	10.4523	8.45674	73	0.42	8	209
	3	17	25.5849	3.47891	55	0.56	6	234

Refrensi Carbon 01-080-0004

Date: 7/12/2022 Time: 2:06:05	M File: SP20221089_1	User: H
Name and formula		
Reference code:	01-080-0004	
Compound name:	Carbon	
ICSD name:	Carbon	
Empirical formula:	с	
Chemical formula:	c	
Crystallographic param	neters	
Crystal system:	Hexagonal	
Space group:	P63mc	
Space group number:	186	
a (Â):	2.4900	
b (A):	2.4900	
c (A):	4.1440	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (°):	120.0000	
Calculated density (g/cm^3):	3.59	
Volume of cell (10~6 pm^3):	22.25	
Ζ:	4.00	
RIR:	0.51	
Subfiles and Quality		
Subfiles:	Alloy, metal or intermetalic	
	Inorganic	
Quality	Calculated (C)	
Quality:	Calculated (C)	
Comments		
ICSD collection code:	067774	
Creation Date:	1/1/1970	
Modification Date:	1/1/1970	
ICSD Collection Code:	067774	
Calculated Pattern Original Rem	arks: REM THE	
Test from ICSD:	At least one TE missing	
rescholinicsb.	Acteds one of missing.	
References		
Primary reference:	Calculated from ICSD using POWD-12++, (1997)	
Structure:	Yeh, C., Lu, Z.W., Froyen, S., Zunger, A., Phys. Rev. B: Condens. Matter (1992)	7, 46 , 10086,
Peak list		

LAMPIRAN

Date: 7/12/2022 Time: 2:06:05 PM			5 PM	File: SP20	221089_1	User: Hi	
No.	h	k	1	d [A]	2Theta[deg]	I [%]	
1	1	0	0	2.15640	41.859	100.0	
2	0	0	2	2.07200	43.649	54.9	
з	1	0	1	1.91291	47.492	50.8	
4	1	0	2	1.49407	62.071	16.3	
5	1	1	0	1.24500	76.445	26.7	
6	1	0	3	1.16315	82.944	25.7	

Stick Pattern

Carbon 01-082-0619

Date: 7/12/2022 Time: 2:04:59 PM	File: SP20221089_1	User: HF

Name and formula	
Reference code:	01-082-0619
Compound name:	Carbon
ICSD name:	Carbon
Empirical formula:	C ₈
Chemical formula:	C ₈

Crystallographic parameters

Crystal system:	Cubic
Space group:	Ia-3
Space group number:	206
a (Â):	4.2930
b (Å):	4.2930
c (Å):	4.2930
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm^3):	4.03
Volume of cell (10^6 pm^3):	79.12
Z:	2.00
RIR:	0.78

Subfiles and Quality

Alloy, metal or intermetalic
Inorganic
Modelled additional pattern
Calculated (C)

Quality: Comments

Subfiles:

ICSD collection code:	0746	55	
Creation Date:	1/1/1	1970	
Modification Date:	1/1/1	1970	
ICSD Collection Code:	0746	55	
Calculated Pattern Original	Remarks:	REM	THE
Test from ICSD:	No R	value gi	ven
Test from ICSD:	At le	ast one 1	F missing.

References

Primary reference:	Calcula
Structure:	Johnsto

ated from ICSD using POWD-12++ on, R.L., Hoffmann, R., J. Am. Chem. Soc., 111, 810, (1989)

Peak list

Date: 7	ate: 7/12/2022 Time: 2:04:59 PM			9 PM	File: SP20	221089_1	User: HF
No.	h	k	1	d [A]	2Theta[deg]	I [%]	
1	2	0	0	2.14650	42.061	21.6	
2	2	1	1	1.75261	52.146	100.0	
3	2	2	0	1.51780	60.996	0.6	
4	2	2	2	1.23928	76.862	0.1	
5	з	2	1	1.14735	84.346	32.5	

Potassium Oxide 00-011-0526

Date: 7/12/2022 Time: 2:10	5:37 PM File: SP20221089_2	User: H
Name and formula		
Reference code:	00-011-0526	
Compound name:	Potassium Oxide	
PDF index name:	Potassium Oxide	
Empirical formula:	КОз	
Chemical formula:	коз	

Crystallographic parameters

Crystal system:	Tetragonal
a (Å):	4.3000
b (Å):	4.3000
c (Å):	3.5400
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (º):	90.0000
Volume of cell (10^6 pm^3):	65.45
RIR:	-

Status, subfiles and quality

Status:	Marked as deleted by ICDD	
Subfiles:	Alloy, metal or intermetalic	
	Inorganic	
Quality:	Blank (B)	
Comments		
	a fa fa anna	

Creation Date:	1/1/1970	
Modification Date:	1/1/1970	
Reference as quoted by Rama	chandra Rao, C.N., Hoffman, C.W.W., \ITJ. Sci. Ind. Res.\RG,	\BF16B\RG 267-8 (1957).
	Pseudo-CsCl type lattice. Deleted Or Rejected By:	Deleted by 43-1438; insufficient
	data; Weissmann 1/93.	

References

Primary reference:

Zhdanova, Zvonkova., Zh. Fiz. Khim., 25, 100, (1951)

Peak list

No	h	F	1	d [7]	2Theta Ide	1 T [8]
1	1	0	-	4 20000	20 620	91 + [0]
-	-	0	U	1.30000	20.035	0.0
2	1	1	0	3.04000	29.356	17.0
3	1	0	1	2.74000	32.655	100.0
4	1	1	1	2.32000	38.784	17.0
5	2	0	0	2.16000	41.786	20.0
6	2	1	0	1.92000	47.306	10.0
7	2	0	1	1.84000	49.498	2.0

Date: 7/12/2022 Time: 2:16:37 PM				7 PM	File: SP	20221089_2	User: HF
8	0	0	2	1.77000	51.596	15.0	
9	2	1	1	1.69000	54.233	14.0	
10	1	0	2	1.65000	55.660	2.0	
11	1	1	2	1.53000	60.459	4.0	
12	2	2	1	1.39700	66.926	2.0	
13	2	0	2	1.36900	68.482	14.0	
14	3	0	1	1.33100	70.724	6.0	
15	2	1	2	1.30600	72.288	6.0	
16	3	1	1	1.27400	74.405	2.0	

Stick Pattern

Karbon Aktif-Loaded 8% K₂CO₃

	I (CPS) I (CPS)		200 International Internationa						s	Profile	
Peak List	-					1	1		1		
no.	peak	-	2Theta	d	I/I	1	FWHM	Inter	nsity	Integrated	Int
	no.		(deg)	(A)			(deg)	(Cou	ints)	(Counts)	
1		23	29.9391	2.982	13	100	0.68		8		248
2		8	16.8903	5.2450	04	63	0.18		5		118
3		5	13.8773	6.3763	31	63	0.22	,	5		135

Refrensi Carbon 00-048-1206

Date: 7/12/2022 Time: 2:20:16 PI	VI File: \$P20221089_2 User:
Name and formula	
Reference code:	00-048-1206
Compound name:	Carbon
PDF index name:	Carbon
Empirical formula:	C ₇₀
Chemical formula:	C ₇₀
Crystallographic param	<u>eters</u>
Crystal system:	Hexagonal
Space group:	P63/mmc
Space group number:	194
a (Å):	10.5934
b (Å):	10.5934
c (A):	17.2620
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	120.0000
Calculated density (g/cm^3):	1.66
Volume of cell (10^6 pm^3):	1677.62
Z:	2.00
RIR:	1.04
Subfiles and Quality	
Subfiles:	Alloy, metal or intermetalic
	Inorganic
Quality:	Superconducting Material Star (S)
Comments	
<u></u>	
Color:	Black
Creation Date:	1/1/1970
Modification Date:	1/1/1970
Color:	Black
Sample Preparation:	In pure He at 200 torr, an arc was struck between graphite electrodes. The soot was dissolved in toluene and separated chromatographically. The C ₇₀ fraction was
Temperature of Data Collection:	evaporated to dryness and heat treated in vacuum at 250 C for 24 hours Pattern taken at 25 C.
References	
Primary reference:	Narasimha Rao, G., Sastry, V., Premila, M., Bharathi, A., Sundar, C., Seshagiri, V., Radhakrisinan, T., <i>Powder Diffraction</i> , 11 , 5, (1996)

Peak list

User: HF

Date: 7	/12/20	22 Tim	e: 2:20:1	6 PM	File: SP20221089_2		
No.	h	k	1	d [A]	2Theta[deg] I [%]	
1	1	0	0	9.17700	9.630	28.0	
2	0	0	2	8.63000	10.242	63.0	
3	1	0	1	8.09900	10.915	10.0	
4	1	0	2	6.28600	14.078	8.0	
5	1	1	0	5.29400	16.733	100.0	
6	1	0	3	4.87400	18.187	43.0	
7	2	0	0	4.58700	19.335	9.0	
8	1	1	2	4.51000	19.668	79.0	
9	2	0	1	4.43400	20.009	23.0	
10	0	0	4	4.31700	20.557	11.0	
11	2	0	2	4.05100	21.923	1.0	
12	1	0	4	3.90800	22.736	1.0	
13	2	0	3	3.58700	24.801	3.0	
14	2	1	0	3.46800	25.667	3.0	
15	2	1	1	3.39900	26.197	6.0	
16	1	1	4	3.34500	26.628	18.0	
17	1	0	5	3.23100	27.585	4.0	
18	2	1	2	3.21700	27.708	4.0	
19	2	0	4	3.14300	28.374	1.0	
20	3	0	0	3.05800	29.180	8.0	
21	з	0	1	3.01200	29.635	1.0	
22	2	1	3	2.96900	30.075	6.0	
23	з	0	2	2.88300	30.994	6.0	
24	0	0	6	2.87600	31.071	4.0	

Stick Pattern

Carbon 00-050-1363

Date: 7/12/2022 Time: 2:19:50 I	M File: \$P20221089_2	User: H
Name and formula		
Poforonco codo:	00-050-1362	
Reference code.	00-030-1303	
Compound name:	Carbon	
Common name:	fullerite	
PDF index name:	Carbon	
Empirical formula:	C ₇₀	
Chemical formula:	C ₇₀	
Crystallographic parar	neters	
Constal and an	Phone had and	
Crystal system:	P-2m	
Space group:	166	
space group number:	100	
a (Å):	9.9200	
b (Å):	9.9200	
c (Å):	26.5100	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (º):	120.0000	
Calculated density (n/cm^3):	1.85	
Measured density (g/cm 3):	1.80	
volume of cell (10^6 nm^3):	2256 25	
Z:	3.00	
RIR:		
Subfiles and Quality		
Subfiles:	Inorganic	
Quality:	Blank (B)	
<u>Comments</u>		
Creation Date:	1/1/1970	
Modification Date:	1/1/1970	
Sample Source or Locality:	Sample from C ₇₀ (99.6%) was manufactured in the Inst. of Metal Organic Ch	emistry,
Sample Preparation:	Pressure-induced phase was produced by quenching Case at 0.5 CPa and T=7	70 K in the
semple i reportution.	Research Center for Superhard Materials, Troitsk, Moscow region, Russia. Th	e initial Can
	is a very soft material with molecular structure. This phase No. 1 is a polymer with 2-dimensional polymerization of C_{70} molecules in hexagonal layers as it	ized phase was
	observed in C60 . The hardness of C70 phase No. 1 is equal to 2 GPa	
Unit Cell:	Rhombohedral cell: a=10.53, a=56.03. *Not permitted by space group. 1 Post	sible impurity

References

1 Of 2

Date: 7/12/2022 Time: 2:19:50 PM	File: SP20221089_2	User: HF
Primary reference:	Serebryanaya, N., Research Center for Superhard Materials, Troitsk, ICDD Grant-in-Aid, (1998)	Moscow, Russia.,

Peak list

No.	h	k	1	d [A]	2Theta[deg] I [%]
1	0	0	3	8.78376	10.062	49.0
2	1	0	1	8.16900	10.822	56.0
з	1	0	2	7.10945	12.440	10.0
4				6.80988	12.990	10.0
5	1	0	4	5.26159	16.837	57.0
6	1	1	0	4.95799	17.876	100.0
7	1	1	3	4.29497	20.664	48.0
8	1	0	7	3.49302	25.480	10.0
9	2	0	5	3.34607	26.619	13.0
10	2	1	1	3.20903	27.778	76.0
11	0	0	9	2.93365	30.446	41.0

Potassium Oxide 00-011-0526

Date: 7/12/2022 Time: 2:16:37	M File: SP20221089_2	User: H
Name and formula		
Reference code:	00-011-0526	
Compound name:	Potassium Oxide	
PDF index name:	Potassium Oxide	
Empirical formula:	коз	
Chemical formula:	KO3	
Crystal system:	Tetragonal	
a (Å):	4.3000	
b (Å):	4.3000	
c (Å):	3.5400	
Alpha (°):	90.000	
Beta (°):	90.0000	
Gamma (°):	90.0000	
Volume of cell (10^6 pm^3):	65.45	
DID-	-	

RIR:

Status, subfiles and quality

Status:	Marked as deleted by ICDD	
Subfiles:	Alloy, metal or intermetalic	
	Inorganic	
Quality:	Blank (B)	
Comments		

Creation Date: 1/1/1970 Modification Date: 1/1/1970 Reference as quoted by Ramachandra Rao, C.N., Hoffman, C.W.W., \LTJ. Sci. Ind. Res.\RG, \BF16B\RG 267-8 (1957). Pseudo-CsCl type lattice. Deleted Or Rejected By: Deleted by 43-1438; insufficient data; Weiszmann 1/93.

Zhdanova, Zvonkova., Zh. Fiz. Khim., 25, 100, (1951)

References

Primary reference:

Peak list

No.	h	k	1	d [A]	2Theta[deg] I [%]
1	1	0	0	4.30000	20.639	6.0
2	1	1	0	3.04000	29.356	17.0
3	1	0	1	2.74000	32.655	100.0
4	1	1	1	2.32000	38.784	17.0
5	2	0	0	2.16000	41.786	20.0
6	2	1	0	1.92000	47.306	10.0
7	2	0	1	1.84000	49.498	2 0

1 Of 2

Karbon Aktif-Loaded 10% K₂CO₃

ist

no.		peak	2Theta	d	I/I1	FWHM	Intensity	Integrated Int
		no.	(deg)	(A)		(deg)	(Counts)	(Counts)
	1	39	29.9091	2.98505	100	0.34	12	219
	2	42	31.5273	2.83543	58	0.12	7	70
	3	66	42.8639	2.10812	58	0.27	7	104

Refrensi Carbon 00-001-0640

Date. 7/12/2022 Time. 2.:	30:26 PM	File: SP20221089_3	User: H
Name and formula	1		
Reference code:	00-001-0640		
Mineral name:	Graphite		
Compound name:	Carbon		
PDF index name:	Carbon		
Empirical formula:	С		
Chemical formula:	с		
Chemical formula: <u>Crystallographic p</u> Crystal system:	C <u>arameters</u> Hexagonal		
Chemical formula: <u>Crystallographic p</u> Crystal system: a (Å):	C arameters Hexagonal 2.4700		
Chemical formula: <u>Crystallographic p</u> Crystal system: a (Å): b (Å):	C arameters Hexagonal 2.4700 2.4700		
Chemical formula: <u>Crystallographic p</u> Crystal system: $a (\hat{A}):$ $b (\hat{A}):$ $c (\hat{A}):$	C arameters Hexagonal 2.4700 2.4700 6.8000		
Chemical formula: Crystallographic p Crystal system: a (\hat{A}) : b (\hat{A}) : c (\hat{A}) : c (\hat{A}) : c (\hat{A}) :	C Hexagonal 2.4700 2.4700 6.8000 90.0000		
Chemical formula: Crystallographic p Crystal system: a (\hat{A}) : b (\hat{A}) : c (\hat{A}) : a (\hat{A}) : b (\hat{A}) : c (\hat{A}) : B (\hat{A}) : C (\hat{A}) : B (\hat{A}) : C (\hat{A}) :	C Hexagonal 2.4700 6.8000 90.0000 90.0000		

Measured density (g/cm^3): 2.16 Volume of cell (10^6 pm^3): 35.93 Z: 4.00 RIR: -

Status, subfiles and quality

Status: Subfiles:		
Quality:		

Marked as deleted by ICDD Inorganic Mineral Blank (B)

Color: Creation Date: Modification Date: Deleted Or Rejected By:

Black 1/1/1970 1/1/1970 Delete: see SW comments August 31, 1956, 73-64, 25-284 calc. Additional Patterns: To replace 2-456. Color: Black. Optical Data: B=1.93-2.07, Sign=-.

References

Primary reference: Unit cell: Hanawalt. et al., *Anal. Chem.*, **10**, 475, (1938) *Dana's System of Mineralogy, 7th Ed.*

Peak list

No.	h	k	1	d [A]	2Theta[deg]	I [%]
1	0	0	2	3.38000	26.347	100.0
2	1	0	0	2.12000	42.612	5.0
з	1	0	1	2.02000	44.833	10.0

Date: 7	/12/20	22 Tim	e: 2:30:2	6 PM	File: SP.	20221089_3	User: H
4	0	0	4	1.69000	54.233	10.0	
5	1	1	0	1.23000	77.549	18.0	
6	1	0	5	1.15000	84.107	9.0	
7	0	0	6	1.12000	86.907	1.0	
8	2	0	1	1.05000	94.381	1.0	
9	1	1	4	0.99000	102.170	3.0	
10	1	1	6	0.83000	136.273	1.0	
11	2	1	1	0.80000	148.678	1.0	
12	з	0	1	0.71000		1.0	
13	1	1	8	0.70000		1.0	

Stick Pattern

Carbon 00-008-0415

Date: 7/12/2022 Time: 2:29:40 F	M File: SP20221089_3	User: H
Name and formula		
Reference code:	00-008-0415	
Mineral name:	Graphite	
Compound name:	Carbon	
DDE index name:	Carbon	
PDF Index name.	Carbon	
Empirical formula:	С	
Chemical formula:	c	
Crystallographic paran	neters	
Crystal system:	Hexagona	
Space group:	P63/mmc	
Space group number:	194	
a (Å):	2 4640	
b (8).	2.1010	
D (A):	2.4640	
C (A):	6.7360	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (º):	120.0000	
Volume of cell (10^6 pm^3):	35.42	
Z:	4.00	
RIR:		
Chattan and Black and an	- 19	
Status, submes and qu	anty	
Status:	Marked as deleted by ICDD	
Subfiles:	Inorganic	
	Mineral	
Quality:	Blank (B)	
Comments		
Creation Date:	1/1/1970	
Modification Date:	1/1/1970	
Deleted Or Rejected By:	Delete: Post June 10, 1960; SW October 31, 1960 (for Set 13). Spectrogra	aphically pure
	reagent. Temperature of Data Collection: Pattern taken at 25 C.	
References		
Primary reference:	Menary, African Expl. Chem. Ind. Ltd., Transvaal, Africa., Private Commun.	nication
<u>Peak list</u>		
No. h k 1	d [A] 2Theta[deg] I [%]	
1 0 0 2	3.37000 26.426 100.0	
	a 10000 (0 art) a a	

	h	k	1	d [A]	2Theta[deg	7] I [%]
1	0	0	2	3.37000	26.426	100.0
2	1	0	0	2.13200	42.361	2.0
3	1	0	1	2.03600	44.462	3.0
4	0	0	4	1.68200	54.512	8.0

1 Of 2

Date: 7/12/2022 Time: 2:29:40 PM					File: SP20221089_3		User: HF
5	1	0	3	1.54100	59.983	2.0	
6	1	1	0	1.23200	77.400	2.0	

Stick Pattern

Carbon 00-041-1487

Date: 7/12/2022 Time: 2:28:37 PM	A File: SP20221089_3 U	Jser: H
Name and formula		
Reference code:	00-041-1487	
Minoral name:	Craphita 2//	
Compound name:	Carbon	
Compound name.	C L Diamont Black 10	
DDE index name:	Carbon	
Dr index name.	Cabon	
Empirical formula:	c	
Chemical formula:		
Crystallographic param	<u>eters</u>	
Crystal system:	Hexagonal	
Space group:	P63/mmc	
Space group number:	194	
a (Å):	2.4704	
b (Å):	2.4704	
c (Å):	6 7244	
Alpha (0):	90,0000	
Rota (9):	90.0000	
Commo (0)	30.0000	
Gamma (-).	120.0000	
Calculated density (g/cm^3):	2.24	
Measured density (g/cm^3):	2.16	
Volume of cell (10^6 pm^3):	35.54	
Ζ:	4.00	
RIR:	7.78	
Subfiles and Quality		
Submestant Quanty		
Subfiles:	Alloy, metal or intermetalic	
	Common Phase	
	Educational pattern	
	Forensic	
	Inorganic	
	Mineral	
Ouality:	Pigment/Dye Indexed (I)	
Comments		
	nu di	
Color:	Black	
Creation Date:	1/1/1970	
Sample Course or Legality	1/1/1970 Engineen from Notelico, Crachodouskia	
Color:	Plack	
Additional Patterns:	To replace 1-640, 1-646, 2-456, 3-401, 23-64, 25-284 and 34-567 and validated by	
reactional Fatterns.	calculated nattorn 25-294	
Temperature of Data Collection:	Pattern taken at 25(1) C.	

File: SP20221089_3	User: H
Sanc, L, Polytechna, Foreign Trade Corporation, Panska, Czecho Aid, (1990)	oslovakia., ICDD Grant-in-
Aust. J. Chem., 42, 479, (1989)	
/	A File: SP20221089_3 Sanc, I., Polytechna, Foreign Trade Corporation, Panska, Czecho Ald, (1990) Aust. J. Chem., 42 , 479, (1989)

Peak list

No.	h	k	1	d [A]	2Theta[deg	g] I [%]
1	0	0	2	3.37563	26.382	100.0
2	1	0	0	2.13865	42.223	2.0
з	1	0	1	2.03901	44.393	6.0
4	1	0	2	1.80737	50.453	1.0
5	0	0	4	1.68110	54.544	4.0
6	1	0	3	1.54777	59.694	1.0
7	1	1	0	1.23408	77.245	3.0
8	1	1	2	1.16038	83.186	3.0
9	0	0	6	1.12084	86.826	1.0
10	2	0	1	1.05672	93.598	1.0

Stick Pattern

Potassium Oxide 01-077-0211

Date: 7/12/2022 Time: 2:32:12	M File: SP20221089_3 Use	User: HF
Name and formula		_
Reference code:	01-077-0211	
Compound name:	Potassium Ovide	
ICSD name:	Potassium Oxide	
Empirical formula:	ко ₂	
Chemical formula:	KO ₂	
Crystallographic paran	neters	
Crystal system:	Tetragonal	
Space group:	I4/mmm	
Space group number:	139	
a (Å):	4.0300	
b (Å):	4.0300	
c (Å):	6.6970	
Alpha (°):	90.0000	
Beta (°):	90.0000	
Gamma (º):	90.0000	
Calculated density (g/cm^3):	2.17	
Volume of cell (10 ⁶ pm ³):	108.77	
Z:	2.00	
RIR:	8.17	
Subfiles and Quality		
Subfiles:	Alloy, metal or intermetalic	
	Inorganic	
	Modelled additional pattern	
Quality:	Calculated (C)	
<u>Comments</u>		
ICSD collection code:	038245	
Creation Date:	1/1/1970	
Modification Date:	1/1/1970	
ICSD Collection Code:	038245	
Calculated Pattern Original Rem	arks: REM TWI	
Temperature Factor:	ΠF.	
References		
Primany references	Calculated from ICCD using POMP-12++ (1007)	
Structure:	Zlegler, M., Rosenfeld, M., Kaenzig, W., Fischer, P., Helv. Phys. Acta, 49, 57, (1976)	
Peak list		
No. h k l	d [A] 2Theta[deg] I [%]	

User: HF

Date: 7/12/2022 Time: 2:32:12 PM				File: SP20221089_3		
1	1	0	1	3.45301	25.780	100.0
2	0	0	2	3.34850	26.599	13.5
3	1	1	0	2.84964	31.366	28.7
4	1	1	2	2.17016	41.581	8.9
5	2	0	0	2.01500	44.950	5.8
6	1	0	3	1.95276	46.466	2.3
7	2	1	1	1.74035	52.541	8.6
8	2	0	2	1.72650	52.996	2.7
9	0	0	4	1.67425	54.785	0.1
10	1	1	4	1.44354	64.501	0.2
11	2	2	0	1.42482	65.453	0.6
12	2	1	3	1.40230	66.640	0.7
13	з	0	1	1.31710	71.584	0.6
14	2	2	2	1.31107	71.965	0.4
15	2	0	4	1.28774	73.479	0.1
16	3	1	0	1.27440	74.377	0.6
17	1	0	5	1.27104	74.607	0.3
18	з	1	2	1.19105	80.593	0.4
19	3	0	3	1.15100	84.018	0.1
20	0	0	6	1.11617	87.280	0.1
21	3	2	1	1.10247	88.646	0.3

Stick Pattern

Potassium Oxide 01-077-2151

Date: 7/12/2022 Time: 2:31:43 PM		File: SP20221089_3	User: HF
Name and formula			2.
Reference code:	01-077-21	51	
Compound name: ICSD name	Potassium	Oxide	
Empirical formula:	K-0		
Chemical formula:	K ₂ O		
Crystallographic pa	arameters		
Crystal system:	Cubic		
Space group:	Fm-3m		

Crystal system:	Cubic
Space group:	Fm-3m
Space group number:	225
a (Å):	6.4360
b (Å):	6.4360
c (Å):	6.4360
Alpha (°):	90.0000
Beta (°):	90.0000
Gamma (°):	90.0000
Calculated density (g/cm^3):	2.35
Volume of cell (10^6 pm^3):	266.59
Z:	4.00
RIR:	5.13

Subfiles and Quality

Subfiles:	

Alloy, metal or intermetalic Inorganic Modelled additional pattern Calculated (C)

Comments

Quality:

ICSD collection code:
Creation Date:
Modification Date:
ICSD Collection Code:
Test from ICSD:
Test from ICSD:
rescholling CSD.

060438 1/1/1970 1/1/1970 060438 No R value given At least one TF missing.

References

Primary reference:	Calculated from ICSD using POWD-12++, (1997)
Structure:	Zinti, E., Harder, A., Dauth, B., Z. Elektrochem, 40 , 588, (1934)
Peak list	

No. h k l d [A] 2Theta[deg] I [%]

ate: 7/12/2022 Time: 2:31:43 PM					File: SP	20221089_3	User: HF
1	1	1	1	3.71583	23.929	10.3	
2	2	0	0	3.21800	27.699	71.9	
3	2	2	0	2.27547	39.574	100.0	
4	з	1	1	1.94053	46.776	2.7	
5	2	2	2	1.85791	48.989	14.0	
6	4	0	0	1.60900	57.207	11.9	
7	з	3	1	1.47652	62.893	0.7	
8	4	2	0	1.43913	64.722	14.1	
9	4	2	2	1.31374	71.796	18.1	
10	5	1	1	1.23861	76.911	0.4	
11	4	4	0	1.13773	85.227	4.8	

Stick Pattern

Persentase Kristalinitas Karbon Aktif

		AC	2	
	Luas Kristal	Luas Total Kristal	Luas Total Area	Persentase
	1402.29271	3053.5332	8558.39604	35.67880226
	1437.65376			
	116.6363			
	96.95043			
Karbon A	ktif <i>-Loaded</i> 5% H	K ₂ CO ₃		
		AC-5%]	K2CO3	
	Luas Kristal	Luas Total Kristal	Luas Total Area	Persentase
	76.5	488.3	2579.74086	18.92825778
	98.68			
	77.34			
	235.78			
Karbon <u>A</u>	ktif-Loaded 8% F	K ₂ CO ₃		
		AC-8%]	K2CO3	
	Luas Kristal	Luas Total Kristal	Luas Total Area	Persentase
	58.82	263.02	1704.1074	3 15.43447293
	147.08			
	57.12			
Karbon <u>A</u>	ktif-Loaded 10%	K ₂ CO ₃		
		AC-10%	K2CO3	
	Luas Kristal	Luas Total Kristal	Luas Total Area	Persentase
	83.96	292.56	2003.	7 14.60098817
	77.48			
	76.44			
	54.68			

Lampiran 3

Hasil Pengujian TGA pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃ Karbon Aktif

Karbon Aktif-Loaded 8% K₂CO₃

Karbon Aktif-Loaded 10% K₂CO₃

Lampiran 4

Hasil Pengujian BET pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃ Karbon Aktif *Surface Area*

Karbon Aktif-Loaded 5% K₂CO₃ Surface Area

Half Pore Width & Pore Size Distribution

Quantachrome® ASiQwin™- Automated Gas Sorption Data Acquisition and Reduction				
	© 1994-2012, Quant vers	achrome Instruments ion 3.0		Quantachrome
Lab. Energi ITS I EL-301 AC-K2CO3 5%	Date:2022/06/22 Filename: Comment:	Report Operator: Lab. Energi iq_phisy_st1_2022_06_22_	ITS Date 12_00_45EL-301 AC-K	:2022/06/23 2CO3 5%.qps
0.0437 g ne:12.9 hrs Nitrogen 3:46 hr:min	Instrument: Final Outgas Temp.: Non-ideality: Bath temp.:	Autosorb iQ Station 1 300 °C 6.58e-05 1/Torr 77 35 K	Extended info: CellType:	Available 9mm
Standard He Measure	Cold Zone V:	1.68628 cc	VoidVol Remeasure Warm Zone V:	e: off 19.3787 cc
	SF method Pore	e Size Distribution		
	-Data Reduction	Parameters Data -		
Thermal Transpiratio Tabulated data interv Nitrogen Molec. Wt.: 28.013 Avg. Diameter:0.300 Molec. Density6.700	n: on Eff. mol. diar al: 1 Temperature Cross Sectio nm Polarizability (mol/cm²)x10 ⁴	neter (D): 3.54 A 77.350K n: 16.200 At 1.460 (cc/molec) x	Eff. cell stem diam. Liquid Density: 10 ⁵⁴ Magn. Suscept.:	(d): 4.0000 mm 0.808 g/cc 2.000
Carbon Atom Diameter: 0.340	nm Surf. Atom D Magn. Susc.:	ens.: 38.450 (mol/cm ²)x1 13.500 (cc/molec)x	0 [™] Polarizability: 10	1.020 (cc/molec)x10 ⁻²⁴
width	dV()	Half pore width	dV	/ 0
	[cc/A/g]	[A]	[cc/.	A/g]
0000 9023 9023 9024 9024 9024 9024 9024 9027	0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.32880 0.00000 0.00000 0.00000 0.00000	3 5531 3 5992 3 6454 3 7476 3 7776 3 7838 3 8299 3 8760 3 9222 3 9683 4 0144 4 0606 4 1067 4 1528 4 1990		00001 00002 00002 00002 00003 00003 00004 00005 00005 00005 00006 00005 00006 00007 00008 00009 00009 00010
920 331 344 354 354 354 354 354 354 354	0.00000 0.000000	4.2451 4.2912 4.3374 4.3355 4.4296 4.47559 4.4559 4.4569 4.4569 4.4603 4.7665 4.7626 4.7626 4.7626 4.7687 4.8449 4.8910 4.9371 4.9833 5.0294 5.0755 5.1276 5.2178		00013 00015 00017 00024 00024 00024 00024 00024 00024 00024 00024 00024 00024 00023 00033 00033 00033 00038 00040 00044 00067 00067 00067 00078 00067 00078
	Lab. Energi ITS I EL-301 AC-K2C03 5% 0.0437 g ie:12.9 hrs Nitrogen 3.46 Inrmin 3.46 Inrmin Tabulated data Interv Nitrogen Thermal Transpiratio Tabulated data Interv Nitrogen 2.8013 Avg. Diameter: 0.340 Molec. Density6 700 Carbon Atom Diameter: 0.340 Molec. Menetar: 0.340 Carbon Atom Diameter: 0.340 Signa	Calculation of Acquisition i @ 1994-2012, Quarning (@ 1994-2012, Quarning) Lab. Energi ITS Date:2022/06/22 EL-301 AC-K2C03 5% Filename: Comment: Instrument. 0.0437 g Instrument. 1:e12.9 hrs Filename: Comment: Instrument. 3:46 hrrmin Bath temp.: 3:46 hrrmin Bath temp.: Standard Cold Zone V: SF method Pore Data Reduction Eff. mol. diar Thermal Transpiration: on Tabulated data interval: 1 Mirogen Temperature Volarizability Molec, W1: 28.013 Cross Sectio Arg. Diameter: 0.340 nm SF method Pore Si SF method Pore Si width dV() SF method Pore Si Si SF method Pore Si Si SF method Pore Si Si width dV() Si 0.32880 037 0.32880 0384 0.32880 037 0.32880 0384 0.32880 037 0.32880 0384 0.32880 0375 0.00000 0384	Contraction of Vacuation of Vacuati	Acquintion and Reduction Acquintion and Reduction 0 1994-2012, Quartachome Instruments version 3.0 Report Lab. Energi ITS Date:2022/06/22 Operator: I.ab. Energi ITS Date:2022/06/22 Comment: I.ab. Energi ITS Date:2022/06/22 Operator: I.ab. Energi ITS Date:2022/06/22 Dete:2012/06/22 Colf Zono Y:: 168628 cc VoidVol Remeasur SF method Pore Size Distribution Date: Reduction Parameters Data Theme: 38 450 (mol/cm/st/0 [®] Polarizability: Molec: Density6 7:00 (mol/cm [®]):10 [®] Date:20:01 Molec: Density6 7:00 (mol/cm [®]):10 [®] Delat:2bility:

ratilischiome@ASIQwrm*+ Anomaled Gas Scripton Data Acquisition and Reduction © 1994-2012, Quartischio me instruments veision 3.0

Report id:{720815206:20220623 072206843} Page 1 of 4

Quantachrome

tachrome® ASiQwin™- Automated Gas Sorption Data Acquisition and Reduction © 1994-2012, Quantachrome Instruments version 3.0

2012 Quartactione instruments resider 3.0

Report id:{720815206:20220623 072206843} Page 2 of 4

		Quantachrome® ASiQw Acquisi © 1994-2012, C	Quantachrome	
<u>Analysis</u> Operator: Sample ID:	Lab. Energi ITS EL-301 AC-K2	5 Date: 2022/06/22 CO3 5% Filename :	Report Operator: Lab. Energi ITS iq_phisy_st1_2022_06_22_12_00_	Date:2022/06/23 45EL-301 AC-K2CO3 5%.qps
5		SF method Por	e Size Distribution Data co	ntinued
Halt	f pore width	dV()	Half pore width	dV()
	[Å]	[cc/Å/g]	[Å]	[cc/Å/g]
	10 7962	0.00743	13 5643	0.00350
	10.8423	0.00737	13.6104	0.00348
	10.8885	0.00731	13.6565	0.00345
1	10.9346	0.00725	13.7027	0.00343
1	10.9807	0.00719	13.7488	0.00341
1	11.0269	0.00712	13.7949	0.00339
1	11.0730	0.00706	13.8411	0.00337
	11.1191	0.00700	13.8872	0.00335
	11.1653	0.00693	13.9333	0.00333
	11.2114	0.00686	13.9795	0.00332
	11.2575	0.00679	14.0256	0.00330
	11.3037	0.00672	14.0717	0.00328
	11.3498	0.00665	14.1179	0.00327
	11.3959	0.00658	14.1640	0.00325
	11.4421	0.00651	14.2101	0.00324
	11.4882	0.00643	14.2563	0.00322
	11.5343	0.00636	14.3024	0.00320
	11.5805	0.00628	14.3485	0.00319
	11.6266	0.00620	14.3947	0.00317
	11.6727	0.00612	14.4408	0.00315
	11.7189	0.00604	14.4869	0.00313
	11.7650	0.00596	14.5331	0.00311
	11.8111	0.00588	14.5792	0.00309
	11.8573	0.00580	14.6253	0.00306
	11.9034	0.005/2	14.6/15	0.00304
	11.9496	0.00564	14.7176	0.00302
	11.9957	0.00556	14.7637	0.00299
	12.0418	0.00548	14.8099	0.00296
	12.0880	0.00540	14.8560	0.00294
	12.1341	0.00532	14.9022	0.00291
	12.1802	0.00524	14.9483	0.00288
	12.2264	0.00516	14.9944	0.00285
	12.2725	0.00508	15.0406	0.00282
1	12.3186	0.00500	15.0867	0.00279
1	12.3040	0.00492	15.1320	0.00270
1	12.4109	0.00403	15.1790	0.00273
1	12.4070	0.00477	15.2201	0.00270
1	12.3032	0.00470	15.2/12	0.00207
1	12.0493	0.00462	15.3174	0.00264
1	12.5854	0.00435	15,0055	0.00261
1	12.6877	0.00441	15.4050	0.00255
1	12.00//	0.00441	15.4330	0.00255
1	12.7330	0.00434	15.5019	0.00255
	12.8261	0.00420	15 5042	0.00247
	12.0201	0.00415	15.6403	0.00244
1	12 9184	0.00413	15.6864	0.00249
1	12 9645	0.00404	15 7326	0.00239
1	13 0106	0.00398	15 7787	0.00237
	13.0568	0.00393	15.8248	0.00235
1	13 1029	0.00388	15.8710	0.00233
1	13 1490	0.00383	15 9171	0.00233
1	13 1952	0.00378	15 9632	0.00229
1	13 2/13	0.00378	16.0094	0.00229
1	13 2874	0.00370	16.0555	0.00226
1	13.2074	0.00370	16 1016	0.00220
1	13.3330	0.00300	10.1010	0.00225
1	13.3/9/	0.00362	10.14/8	0.00224
1	13.4259	0.00359	16.1939	0.00223
1	13.4/20	0.00356	16.2400	0.00222
	40 5404	0.00052	40,0000	0.000000

as Scipton Data Acquisition and Reduction © 1994-2012. Quartactione instruments vesion 3.0

Report id:{720815206:20220623 072206843} Page 3 of 4

		Quantachrome® ASiQwin Acquisiti © 1994-2012, Qu V	Quantachron	
<u>lysis</u> rator: iple ID:	Lab. Energi ITS EL-301 AC-K2CO3	Date:2022/06/22 5% Filename:	Report Operator: Lab. Energi ITS iq_phisy_st1_2022_06_22_12_00_	Date:2022/06/23 45EL-301 AC-K2CO3 5%.qps
		SF method Pore	Size Distribution Data co	ntinued
Half p	oore width	dV()	Half pore width	dV()
	[Å]	[cc/Å/g]	[Å]	[cc/Å/g]
	16 2222	0.00222	17 0000	0.00222
	16 2795	0.00222	17.0009	0.00233
	10.3783	0.00221	17.9470	0.00232
	10.4240	0.00221	17.9932	0.00231
	16.4707	0.00221	18.0393	0.00231
	16.5169	0.00221	18.0854	0.00230
	16.5630	0.00222	18.1316	0.00229
	16.6091	0.00222	18.1777	0.00228
	16.6553	0.00223	18.2238	0.00227
	16.7014	0.00223	18.2700	0.00226
	16.7475	0.00224	18.3161	0.00225
	16.7937	0.00224	18.3622	0.00224
	16.8398	0.00225	18,4084	0.00223
	16 8859	0.00226	18 4545	0.00221
	16 9321	0.00227	18 5006	0.00220
	16 9782	0.00228	18 5468	0.00219
	17 0243	0.00228	18 5929	0.00218
	17 0705	0.00229	18 6390	0.00217
	17 1166	0.00225	18.6852	0.00216
	17 1607	0.00230	10.0032	0.00216
	17,1027	0.00231	10.7313	0.00215
	17.2009	0.00232	10.7774	0.00214
	17.2000	0.00232	18.8230	0.00213
	17.3011	0.00233	18.8697	0.00212
	17.3473	0.00233	18.9158	0.00211
	17.3934	0.00234	18.9620	0.00210
	17.4395	0.00234	19.0081	0.00209
	17.4857	0.00235	19.0542	0.00208
	17.5318	0.00235	19.1004	0.00207
	17.5779	0.00235	19.1465	0.00207
	17.6241	0.00235	19.1926	0.00206
	17.6702	0.00235	19.2388	0.00205
	17.7163	0.00235	19.2849	0.00205
	17.7625	0.00234	19.3311	0.00204
	17.8086	0.00234	19.3772	0.00204
	17.8548	0.00233	1	
			1/2.	
		S	F method summary	
		Mo	10:1./54 A	
		Micropore Volun	ne:0.399 cc/g	

iii Scryton Dika Acquisition and Reduction © 1994-2012. Quarkachiome instruments veision 3.0

Report id:{720815206:20220623 072206843} Page 4 of 4

Lampiran 5

Hasil Pengujian EDX pada Sampel Karbon Aktif dan Karbon Aktif-*Loaded* K₂CO₃ Karbon Aktif

4/20/2022

7. Page

C-K, N-K, O-KDate:4/20/2022 2:38:24 PM Image size:511 x 355 Mag:5000x HV:20.0kV

8. Page

calibration image 7274Date:4/20/2022 2:37:49 PMImage size:512 x 384Mag:5000xHV:20.0kV

Karbon Aktif-Loaded 5% K₂CO₃

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN **TEKNOLOGI UNIVERSITAS DIPONEGORO**

Unit Pelaksana Teknis (UPT) Laboratorium Terpadu Undip Jl. Prof. H. Soedarto, SH, Tembalang, Kota Semarang, Indonesia Telp/WA: 024-76918147 / 081910013241 Website: https://labterpadu.undip.ac.id E-mail: labterpadu@live.undip.ac.id

CORES-DU_R-7.8 LHU

LAPORAN HASIL UJI (LHU) No. Seri : 20221090

Nomor Kode Sampel Uji : SP 2022-1090-01 Jenis Sampel Uji / Pengujian : Serbuk/SEM Nama Pelanggan Tanggal Penerimaan Contoh (jika sesuai) : 17-06-2022 Tanggal Pengambilan Contoh (jika sesuai) . -Titik Pengambilan Contoh / koordinat : -Tanggal Pengujian Contoh : -

: Ahmad Fahmi Prakoso (ITS)

No.	Nama Sampel Uji	Parameter Pengujian	Satuan	Hasil Pengujian	Metode (SNI) / Alat
1.	5%	С	% Berat	93,92	SEM EDX
		SiO ₂		0,23	
		K ₂ O		4,53	
		CuO		0,60	
		ZrO ₂		0,71	

Catatan:

- UPT Laboratorium Terpadu Universitas Diponegoro tidak bertanggung jawab terhadap penyalahgunaan hasil pengujian ini.
- . Dilarang mengutip/meng-copy dan/atau mempublikasikan sebagian isi laporan atau sertifikat ini tanpa seijin UPT Laboratorium Terpadu Universitas Diponegoro.

Semarang, 24-06-2022 Ketua Bidang Pengujian dan Sertifikasi U) Prof. Dr. Meiny Suzery, M.S. NIP. 196005401989032001A-

CORES-DU_R-7.8 LHU

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI UNIVERSITAS DIPONEGORO Unit Pelaksana Teknis (UPT) Laboratorium Terpadu Undip

JI. Prof. H. Soedarto, SH, Tembalang, Kota Semarang, Indonesia Telp/WA: 024-76918147 / 081910013241 Website: https://labterpadu.undip.ac.id E-mail: labterpadu@live.undip.ac.id

Citra Hasil SEM 5%

Lampiran 6 Alat DCFC Keramik DCFC

Proses pembuatan rangkaian keramik DCFC

Elektrolit dan Karbon

Ni Foam

NiO Foam

Kain ZYF-50

LAMPIRAN

Bagian dalam rangkaian DCFC

Rangkaian DCFC

Nilai OCV dan Arus Listrik

Keramik setelah reaksi terjadi

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih terhadap bantuan dan dukungan yang diberikan oleh berbagai pihak dalam mengerjakan laporan penelitian tugas akhir diantaranya:

- 1. Allah SWT yang memberikan kemudahan dan kelancaran dalam mengerjakan tugas akhir hingga penyusunan laporan selesai.
- 2. Orang tua yang memberikan dorongan dan motivasi dalam keberjalanan pengerjaan tugas akhir ini.
- 3. Bapak Sutarsis, S.T.,M.Sc.,Ph.D dan Bapak Dr. Agung Purniawan, S.T.,M.Eng yang selalu memberikan bimbingan, saran, dan arahan dalam pelaksanaan tugas akhir.
- 4. Sahabat-sahabat saya diantaranya Ferdy Armansyah, Naufal Syafiq Dharmawan, Rizkia Putri, Bethari Auchenfloretta Zahra Ashari yang senantiasa mendukung dan membantu dalam pengerjaan tugas akhir.
- 5. Hana Azzahra dan Fairuz Kamila yang telah mendukung perjuangan saya selama ini
- 6. Rekan-rekan kerja tim diantaranya Darell Muflih Arrahman, Demas Muhammad Abyan, Syarief Hidayatulloh yang senantiasa membantu dalam setiap proses keberjalanan pembuatan sampel dan memberikan dukungan dalam menyelesaikan tugas akhir.
- 7. Semua pihak yang tidak dapat disebutkan satu persatu yang telah mendukung dalam kelancaran pengerjaan tugas akhir

Surabaya, 22 Juli 2022 Penulis

Ahmad Fahmi Prakoso

BIODATA PENULIS

Penulis bernama Ahmad Fahmi Prakoso dilahirkan di Jakarta 5 Mei 2000, merupakan anak pertama dari 1 bersaudara. Penulis telah menempuh pendidikan formal yaitu di SDIT Al-muqorrobin (2006-2012), MTsN Al-Azhar Asy-Syarief (2012-2015), dan SMAN 1 Depok (2015-2018). Setelah lulus dari SMAN, Penulis mengikuti SBMPTN dan diterima di Departemen Teknik Material dan Metalurgi FTIRS - ITS pada tahun 2018 dan terdaftar dengan NRP 0251184000082. Selama berkuliah di Departemen Teknik Material dan Metalurgi ITS, penulis aktif dalam kegiatan berorganisasi di BEM FTIRS-ITS sebagai staff departemen riset dan teknologi pada kepengurusan 2019/2020. Selain itu, penulis juga aktif di Tim Antasena ITS sebagai wakil departemen *Science and Technology Research Development*.