

TESIS-TM185400

OPTIMASI EFISIENSI BOILER, NPHR DAN EMISI NOx PADA PULVERIZED COAL BOILER 200 MW

HANDOYO WIDHY WASISTO 6007201023

DOSEN PEMBIMBING Arif Wahjudi, ST., MT., Ph.D

Program Magister Departemen Teknik Mesin Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

TESIS-TM185400

OPTIMASI EFISIENSI BOILER, NPHR DAN EMISI NOX PADA PULVERIZED COAL BOILER 200 MW

HANDOYO WIDHY WASISTO 6007201023

DOSEN PEMBIMBING Arif Wahjudi, ST., MT., Ph.D

Program Magister Departemen Teknik Mesin Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

"Halaman ini sengaja dikosongkan"

LEMBAR PENGESAHAN TESIS

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (MT)

> di Institut Teknologi Sepuluh Nopember Oleh: HANDOYO WIDHY WASISTO NRP: 6007201023

Tanggal Ujian: 8 Juli 2022 Periode Wisuda: September 2022

> Disetujui oleh: Pembimbing:

1. Arif Wahjudi, S.T., M.T., Ph.D NIP: 197303222001121001

Penguji:

1. Prof. Dr. Ing. Ir. I Made Londen Batan, M.Eng NIP: 195811061986011001

- 2. Dr. Ir. Agus Sigit Pramono, DEA NIP: 196508101991021001
- 3. M. Khoirul Effendi, S.T., M.Sc. Eng., Ph.D NIP: 198204142010121001

Kepala Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem

VESUDAYA

Dr. IroAtok Setiawan, M.Eng.Sc. NIP: 196604021989031002

.....

iii

"Halaman ini sengaja dikosongkan"

Optimasi Efisiensi Boiler, NPHR dan Emisi NOx Pada Pulverized Coal Boiler 200 MW

Nama Mahasiswa	: Handoyo Widhy Wasisto
NRP	: 6007201023
Pembimbing	: Arif Wahjudi, ST., MT., Ph.D

ABSTRAK

Untuk mendukung program peningkatan kinerja pembangkit, khususnya dibidang efisiensi pembangkit, dilakukan kegiatan monitoring performance peralatan-peralatan utama pembangkit. Salah satu peralatan utama yang dimonitoring performancenya adalah boiler. Proses pembakaran di dalam boiler diharapkan terjadi dengan sempurna. Performance boiler yang optimal dapat dicapai dengan memaksimalkan proses pembakaran di dalam boiler. Hal ini akan mempengaruhi performance *Net Plant Heat Rate* (NPHR), Boiler Efisiensi dan emisi NOx. Saat ini performance *Net Plant Heat Rate* (NPHR) dan Boiler Efisiensi masih dibawah target *baseline first year inspection*.

Metode simulasi numerik menggunakan software CFD (*Computational Fluid Dynamic*) untuk mengestimasi nilai *Enthalpy* pada area *nose* boiler dan *outlet economizer*. Dengan mengetahui nilai Enthalpy pada area *nose boiler* dan *outlet economizer*, respon boiler efisiensi dan *Net Plant Heat Rate* (NPHR) dapat dihitung. *Primary Air Ratio, Coal Fineness dan Excess Air* merupakan parameter yang akan dilakukan optimasi. Ketiga parameter tersebut akan dioptimasi menggunakan ANOVA dan Taguchi-Assignment of Weight.

Nilai prediksi respon adalah 325,833 dan masuk kedalam selang kepercayaan 325,8194 $\leq \mu$ confirmation $\leq 325,9364$ sehingga nilai prediksi respon optimal masuk dalam interval selang kepercayaan. Oleh karena itu dapat disimpulkan bahwa rancangan telah memenuhi persyaratan dalam eksperimen Taguchi. Nilai optimal ketiga parameter tersebut kemudian diterapkan di Unit Pembangkit saat melakukan *performance test* sebagai validasi. Hasil yang diperoleh setelah dilakukan *performance test* pada bulan Mei 2022 adalah NPHR sebesar 2826.59 kcal/kWh, efisiensi boiler sebesar 82.15% dan Emisi NOx sebesar 269,30 mg/Nm3. Setelah dilakukan optimasi pada *Primary Air Ratio* di 1:2,45, *Coal Fineness* 60% serta *Excess Air* 15%, NPHR mengalami penurunan 2,66%, efisiensi boiler mengalami kenaikan sebesar 1,97% dan emisi NOx turun sebesar 24%.

Kata kunci : Boiler Efisiensi, NPHR, NOx, Taguchi, Assignment of Weight

"Halaman ini sengaja dikosongkan"

Optimization Boiler Efficiency, NPHR and NOx Emissions in Pulverized Coal Boiler 200 MW

Student Name	: Handoyo Widhy Wasisto
Student Identity Number	: 6007201023
Supervisor	: Arif Wahjudi, ST., MT., PhD

ABSTRACT

To support the improvement program of power plant performance, expecially in the power plant efficiency, performance of the main power plant equipment monitoring is carried out. One of the main equipment whose performance is monitored is the boiler. The combustion process in the boiler is expected to occur perfectly. Optimal boiler performance can be achieved by maximizing the combustion process in the boiler. This will affect the performance of Net Plant Heat Rate (NPHR), Boiler Efficiency and NOx emissions. Currently, the performance of the Net Plant Heat Rate (NPHR) and Boiler Efficiency is still below the baseline of first year inspection target.

The numerical simulation method uses CFD (Computational Fluid Dynamic) software to estimate the Enthalpy value in the boiler nose area and economizer outlet. By knowing the Enthalpy value in the boiler nose area and economizer outlet, the boiler response efficiency and Net Plant Heat Rate (NPHR) can be calculated. Primary Air Ratio, Coal Fineness and Excess Air are parameters that will be optimized. These three parameters will be optimized using ANOVA and Taguchi-Assignment of Weight.

The predicted response value is 325,833 and it is between the confidence interval of 325,8194 $\leq \mu$ confirmation $\leq 325,9364$ so that the optimal response prediction value is included in the interval. Therefore, it can be concluded that the design has met the requirements of the Taguchi experiment. The optimal values for these three parameters are then applied to the Generating Unit when performing a performance test as validation. The results obtained after the performance test in May 2022 were NPHR of 2826,59 kcal/kWh, boiler efficiency of 82,15% and NOx emissions of 269,30 mg/Nm3. After optimizing the Primary Air Ratio at 1:2,45, Coal Fineness 60% and Excess Air 15%, NPHR decreased by 2,66%, boiler efficiency increased by 1,97% and NOx emissions decreased by 24%.

Keywords: Boiler Efficiency, NPHR, NOx, Taguchi, Assignment of Weight

"Halaman ini sengaja dikosongkan"

KATA PENGANTAR

Segala puji dan syukur kehadirat Allah SWT yang telah memberikan karunia, rahmat, serta hidayah-Nya, sehingga penulis dapat menyelesaikan tesis ini yang berjudul "Optimasi Efisiensi Boiler, NPHR dan Emisi NOx Pada Pulverized Coal Boiler 200 MW". Penulis menyadari bahwa tanpa bantuan , do'a dan dukungan dari beberapa pihak, maka penyusunan tesis ini tidak dapat berjalan sesuai harapan. Oleh karena itu, dalam kesempatan ini penulis menyampaikan terima kasih kepada:

- Kedua orang tua : Bapak Wiwik Handajadi dan Ibu Dwi Sumar Sriharti mertua : Bapak Sutrino dan Ibu Suci Nuryani, keluarga: Istri Indrie Hapsari, Anak Aisyah Naila Wasisto dan Aulia Nur Nafisha Wasisto yang senantiasa memberikan do'a, dorongan dan dukungan tanpa henti kepada penulis.
- Dosen pembimbing Bapak Arif Wahjudi, ST., MT. Ph.D. yang telah memberikan saran, pencerahan, dan motivasi dalam proses penyelesaian tesis ini.
- Bapak dan Ibu dosen Departemen Teknik Mesin ITS yang telah mendidik penulis selama masa perkuliahan.
- Seluruh rekan-rekan program S2 Teknik Mesin ITS yang secara langsung maupun tidak langsung bersinergi ikut membantu dalam proses penulisan tesis ini.
- Seluruh rekan-rekan Divisi Engineering PT Indonesia Power Pangkalan Susu OMU dan staf sekretariat Departemen Teknik Mesin atas segala bantuan serta dukungan selama menjalani program S2.
- 6. Semua pihak yang tidak dapat penulis sebutkan satu per-satu atas segala bantuan serta dukungan untuk penyusunan tesis ini.

Selain itu penulis berharap semoga tesis ini dapat memberikan manfaat yang sebesar-besarnya.

Surabaya, Juli 2022

Penulis

"Halaman ini sengaja dikosongkan"

DAFTAR ISI

LEMBAR PENGESAHAN TESISiii
ABSTRAKv
KATA PENGANTAR ix
DAFTAR ISI xi
DAFTAR GAMBAR xiv
DAFTAR TABEL xvi
BAB 1 PENDAHULUAN1
1.1 Latar Belakang1
1.2 Perumusan Masalah4
1.3 Batasan Masalah4
1.4 Tujuan Penelitian5
1.5 Manfaat Penelitian5
BAB 2 KAJIAN PUSTAKA
2.1 <i>Boiler</i>
2.1.1 Fungsi Boiler9
2.1.2 Komponen Boiler
2.2 Pembakaran Batubara dalam Ruang Bakar14
2.3 Performance Test17
2.4 Perhitungan Efisiensi Boiler17

2.5 Pengukuran Net plant heat rate (NPHR)19
2.6 Simulasi Numerik CFD Pembakaran Batubara pada Boiler21
2.7 Taguchi dan Analisis Varians23
2.8 Signal/Noise to Analysis and Assignment of Weight24
2.9 Interval Kepercayaan25
2.10 Eksperimen Konfirmasi27
2.11 Literature Review
BAB 3 METODOLOGI PENELITIAN
3.1 Tahapan Penelitian35
3.2 Rancangan Penelitian
3.3 Diagram Alir Penelitian42
3.4 Simulasi CFD45
BAB 4 ANALISA DAN PEMBAHASAN
4.1 Validasi52
4.2 Analisa Signifikansi Pengaruh Faktor Terhadap Respon54
4.3 Optimasi NPHR dan Efisiensi Terhadap Boiler Primary Air Ratio, Coal Fineness, Excess Air
4.4 Analisa Hasil Optimasi64
4.4.1 Analisa Temperatur64
4.4.2 Analisa Velocity65
4.4.3 Analisa NOx67

4.4.4 Analisa NPHR, Efisiensi Boiler dan NOx68
4.5 Perbandingan Hasil Optimasi dan Performance test69
4.5.1 NPHR, Efisiensi Boiler dan NOx Hasil Performance Test72
4.5.2 Analisa Perbandingan NPHR, Efisiensi Boiler, emisi NOx Hasil
Optimasi dan Performance Test73
BAB 5 KESIMPULAN DAN SARAN
5.1 Kesimpulan78
5.2 Saran
DAFTAR PUSTAKA
LAMPIRAN
BIOGRAFI PENULIS

DAFTAR GAMBAR

Gambar 1.1 Hasil Performance Test saat Full Load	2
Gambar 2.1 Typical Coal Fired Boiler for Power Plant	7
Gambar 2.2 Ilustrasi Burner dengan Metode Downshot Firing	10
Gambar 2.3 Konfigurasi Burner Horizontal Firing	11
Gambar 2.4 Ilustrasi Burner pada Boiler Tangential Firing	11
Gambar 2.5 Komponen utama boiler	14
Gambar 2.6 Skema perhitungan <i>direct method</i> pada boiler	17
Gambar 2.7 Skema Perhitungan <i>indirect method</i> pada boiler	19
Gambar 2.8 Grafik Perubahan Exit Gas temperature dan Excess Air	
terhadap Efisiensi Boiler	29
Gambar 2.9 Skema Konfigurasi Boiler OB-380	30
Gambar 2.10 Kontur Temperatur pada penampang melintang boiler	31
Gambar 2.11 Distribusi dan Vektor Kecepatan pada Penampang Lintang	
Yang Berbeda	31
Gambar 2.12 Distribusi Temperatur	32
Gambar 2.13 Hasil Perhitungan Turbin Heat Rate dan Losses Boiler	33
Gambar 3.1 Tampilan DCS Mill Performance Test April 2021	38
Gambar 3.2. Drawing Mill PLTU Pangkalan Susu	39
Gambar 3.3 Test Report Analisa Coal Fineness	39
Gambar 3.4 Tampilan DCS Boiler Flue Gas Performance	40
Gambar 3.5 Analisa Boiler dengan indirect method	41
Gambar 3.6 Analisa Boiler dengan indirect method	42
Gambar 3.7 <i>Flowchart</i> Metode Penelitian	43
Gambar 3.8 Flowchart Analisa Data	44
Gambar 3.9 Flowchart Simulasi Numerik	45
Gambar 3.10 Geometry Boiler PLTU Pangkalan Susu tampak samping	46
Gambar 3.11 Meshing Geometri Boiler dan Level Burner PLTU	
Pangkalan Susu	46
Gambar 4.1 Posisi Pengambilan Data Temperatur pada Boiler	52
Gambar 4.2 Grafik SN Ratio dari Setiap Faktor Parameter	62

Gambar 4.3 Kontur Distribusi Temperatur Posisi z-centre	64
Gambar 4.4 Kontur Distribusi Temperatur Dilihat Dari Atas	65
Gambar 4.5 Kontur Velocity Hasil Optimasi	66
Gambar 4.6 Kontur NOx Hasil Optimasi	67
Gambar 4.7 Fineness Test Report Analysis dari Laboratorium	70
Gambar 4.8 Tampilan DCS Boiler Flue Gas	71
Gambar 4.9 Tampilan DCS Mill	71
Gambar 4.10 Grafik Boiler Efisiensi	74
Gambar 4.11 Grafik Net Plant Heat Rate (NPHR)	75
Gambar 4.12 Grafik Emisi NOx	75
Gambar 4.13 Kadar Maksimum NOx Sesuai Permen LHK	76

DAFTAR TABEL

Tabel 2.1 Parameter Operasi Boiler	7
Tabel 2.2. Spesifikasi Batubara dan Abu	8
Tabel 3.1 Rancangan Parameter Penelitian	40
Tabel 3.2 Model pada simulasi numerik ANSYS Fluent 2020 R2	47
Tabel 3.3 Parameter Pipa Heater-heater Boiler (Porous Media)	48
Tabel 3.4 Data properties material solid dan fluid simulasi numerik	49
Tabel 3.5 Data properties 100 % batubara	49
Tabel 4.1 Validasi Data Simulasi	52
Tabel 4.2 Penentuan Faktor Menggunakan ANOVA	54
Tabel 4.3 Ortogonal Array Penelitian	56
Tabel 4.4 Data Performance test yang digunakan untuk perhitungan	56
Tabel 4.5 Tabel Perhitungan Efisiensi Boiler dan NPHR	
Tabel 4.6 Faktor dan Hasil Respon	59
Tabel 4.7 Analisa MRPI	60
Tabel 4.8 Tabel Respon Signal to Noise Ratio	62
Tabel 4.9 Hasil Eksperimen Konfirmasi NPHR dan Boiler Efisiensi	63
Tabel 4.10 Data Performance test yang digunakan untuk perhitungan	68
Tabel 4.11 Data Simulasi CFD Fluent yang digunakan untuk perhitungan	68
Tabel 4.12 Data NOx dari Simulasi CFD Fluent	69
Tabel 4.13 Data Coal Fineness Mill	70
Tabel 4.14 Data Primary Air Ratio	71
Tabel 4.15 Hasil Performance Test Bulan Mei 2022	.72
Tabel 4.16 Nilai CO Hasil Performance Test.	.72
Tabel 4.17 Perbandingan Hasil Simulasi dan Performance Test	74
Tabel 4.18 Perhitungan Cost Benefit Analysis	.76

BAB 1 PENDAHULUAN

1.1 Latar Belakang

PT.Indonesia Power PLTU Pangkalan Susu Operation and Maintenance Services Unit (PNS OMU) merupakan salah satu unit kerja di lingkungan PT.Indonesia Power yang mengelola Operasi dan Pemeliharaan PLTU Pangkalan Susu 2x200 MW yang berlokasi di Dusun IV/Sei Dua, Desa Tanjung Pasir, Kec. Pangkalan Susu, Kab. Langkat. PLTU Pangkalan Susu OMU 2x200MW merupakan pembangkit China dengan type Boiler DG693/13.43-22 pabrikan Dongfang, Turbin dengan type N300-16.7/538/538-8, Sub Critical dengan pabrikan Beijing Beijong.

Untuk mendukung program peningkatan kinerja pembangkit, khususnya dibidang efisiensi pembangkit, dilakukan kegiatan monitoring performance peralatan-peralatan utama pembangkit. Salah satu peralatan utama yang dimonitoring performancenya adalah boiler. Boiler merupakan salah satu komponen utama pada PLTU, dimana energi utama dikonversikan di dalam boiler yaitu energi kimia dari bahan bakar dirubah menjadi energi panas yang digunakan untuk memanaskan air hingga menjadi uap panas bertekanan.

Proses konversi energi kimia dari bahan bakar menjadi energi panas melalui proses pembakaran. Performance boiler yang baik ditandai dengan proses pembakaran yang sempurna di dalam boiler. Pembakaran yang sempurna di dalam boiler akan meningkatkan efisiensi boiler sehingga menghemat pemakaian bahan bakar. Untuk itu perlu dilakukan langkah-langkah perbaikan untuk menghasilkan pembakaran yang sempurna di dalam boiler sehingga tujuan peningkatan kinerja pembangkit di bidang efisiensi bisa tercapai.

Pada sebuah PLTU, untuk memantau performance pembangkitnya dapat dilakukan uji performance test setiap bulannya yang dilakukan oleh Tim Efisiensi Unit. Performance test biasanya dilakukan pada full load. Tetapi kadang ada kendala pada peralatan atau batubara sehingga performance test tidak dapat dilakukan pada full load. Berikut ini hasil perhitungan efisiensi Net Plant Heat Rate serta Boiler efisiensi saat performance test kondisi full load :

Gambar 1.1 Hasil Performance Test saat Full Load (Laporan Performance Test Bulanan,2020)

Dari grafik performance NPHR dan Boiler Efisiensi diatas dapat dilihat bahwa hasil yang dicapai masih dibawah hasil uji heat rate dari Puslitbang PLN saat *First Year Inspection*. Gambar 1.1 adalah perbandingan hasil uji heat rate dari Puslibang PLN saat First Year Inspection dengan hasil performance test bulanan.

Performance boiler yang optimal dapat dicapai dengan memaksimalkan proses pembakaran di dalam boiler. Berdasarkan jurnal yang sudah dipublikasikan oleh Storm, R.F. and Reilly, T.J Flame Refractories, Inc. Oakboro, North Carolina berjudul Coal Fired Boiler Performance Improvement Through Combustion Optimization, ada beberapa faktor penghubung yang dianggap sebagai prasyarat pembakaran yang optimal. Faktor utama yang telah diidentifikasi antara lain adalah:

- 1. Furnace exit excess oxygen content tidak kurang dari 3% pada satu titik yang diukur dengan water-cooled probe pada saluran superheater.
- Pulverized fuel fineness tidak kurang dari 72% melewati saringan 200 mesh, dan dengan sisa 1% maksimum pada saringan 50 mesh.
- Secondary air flow menuju ke burners harus seimbang dalam sekitar ± 10% dari aliran rata-rata.
- Primary air flow harus seimbang ± 2% dari rata-rata pada masing-masing pulverized dengan metode clean air test.
- 5. Pulverizer primary air flows harus seimbang \pm 10% atau lebih baik dari pulverizer ke pulverizer.
- Penyeimbangan aliran bahan bakar ke pulverizer harus dapat dikendalikan dan seimbang ± 10% dari rata-rata.
- 7. Fuel flow dari setiap fuel pipe harus seimbang $\pm 10\%$ dari rata-rata.

- Kecepatan secondary air flow harus melebihi primary air flow dengan faktor sekitar 1,5 atau 2,0 hingga 1,0. Kecepatan secondary air melalui burner throats optimal sekitar 7.000 fpm. Kecepatan campuran primary air dan coal sekitar 3,500 fpm pada full pulverizer dan/atau boiler load.
- 9. Rasio optimal primary air/fuel harus berada dalam kisaran 1,5 hingga 2,0 pon udara per pon bahan bakar untuk pengeringan batubara yang memadai dalam pulverizer pada beban penuh, dan lebih disukai tidak melebihi 3,0 pon udara per pon bahan bakar pada tingkat sedang atau low pulverizer loads.
- 10. Kecepatan saluran bahan bakar pada beban menengah dan rendah tidak boleh turun di bawah 3.000 fpm.
- 11. Laju fuel feed harus konstan, dengan perubahan laju aliran lancar selama perubahan beban.

Penelitian mengenai pembakaran boiler juga diusulkan oleh Zixiang Li, Zhengqing Miao (2019). *Primary Air Ratio* (PAR) memiliki efek signifikan pada proses pembakaran batubara. Berdasarkan jurnal ini, metode praktis meningkatkan *Primary Air Ratio* untuk memenuhi kapasitas pengeringan *Mill* akan menghasilkan dalam peningkatan yang signifikan dari emisi NOx. Alternatif yang layak dipilih untuk mempertahankan kapasitas pengeringan sistem Mill adalah mempertahankan nilai PAR yang dirancang.

Penelitian lain mengenai pengaturan *excess air* diusulkan oleh V.I. Kouprianov, V. Tanetsakunvatana (2003). Hasil studi eksperimental dari *heat losses* yang bergantung pada *excess air*, serta gas emisi (NOx, SO2 dan CO) pada boiler 150 MW. NOx emisi ditemukan meningkat dengan rasio excess air yang lebih tinggi. Rasio excess air adalah salah satu variabel operasi yang mempengaruhi baik termal dan *performance* boiler.

Berdasarkan hal-hal yang telah dipaparkan, maka penelitian ini akan mengoptimalkan tiga parameter pembakaran. Dari beberapa faktor yang dipaparkan oleh Storm, R.F. and Reilly, T.J Flame Refractories, Inc. Oakboro, North Carolina berjudul Coal Fired Boiler Performance Improvement Through Combustion Optimization, maka akan dilakukan optimasi dari tiga parameter yaitu *Primary Air* *Ratio, Coal Fineness* dan *Excess Air* dalam mengoptimalkan pembakaran di dalam boiler sehingga didapatkan pembakaran yang sempurna menggunakan simulasi CFD dan melakukan uji konfirmasi ke unit pembangkit. Untuk mengetahui apakah optimasi tersebut berdampak pada peningkatan performance boiler akan terindikasi dari parameter temperature outlet flue gas yang lebih rendah dan Efisiensi boiler yang meningkat.

1.2 Perumusan Masalah

Berdasarkan latar belakang yang telah diuraikan, maka rumusan masalah pada penelitian ini adalah sebagai berikut :

- Bagaimana signifikansi pengaruh pengaturan *Primary Air Ratio,Coal Fineness* dan *Excess air* terhadap konsentrasi NOx pada flue gas di boiler
- Bagaimana signifikansi pengaruh pengaturan *Primary Air Ratio,Coal Fineness* dan *excess air* terhadap Net Plant Heat Rate
- Bagaimana signifikansi pengaruh pengaturan *Primary Air Ratio,Coal Fineness dan excess air* terhadap efisiensi boiler
- Berapa setting primary air ratio,coal fineness dan excess air yang menghasilkan efisiensi boiler, NPHR dan emisi NOx yang optimal

1.3 Batasan Masalah

Terdapat beberapa batasan masalah yang diambil untuk menganalisa permasalahan di atas yaitu sebagai berikut :

- Simulasi pembakaran dilakukan pada boiler PLTU Pangkalan Susu 1-2 dengan kapasitas terpasang 2 x 200 MW
- Baseline penelitian adalah hasil Performance Test bulan April 2021 Unit
 1 yang dilakukan oleh Tim Efisiensi PLTU Pangkalan Susu
- Batubara yang digunakan disesuaikan dengan baseline penelitian yaitu hasil performance Test bulan April 2021 Unit 1
- Maximum Coal Flow (120 T/h) atau kondisi Unit *Full Load* 200 MW pada PLTU Pangkalan Susu Unit 1

- Empat Level Burner yang beroperasi (Level A, C, D, E)
- Primary Air Ratio akan divariasikan menjadi 1 : 1.8, 1 : 2.25 dan 1 : 2.45
- Coal Fineness akan divariasikan menjadi 60%,70% dan 80%
- Excess Air akan divariasikan menjadi 15%, 17% dan 20%
- Output yang dianalisa adalah Efisiensi pembangkit, Net Plan Heat Rate (NPHR), konsentrasi Nox pada flue gas
- Metode Optimasi yang dipilih : Taguchi Assignment of Weight

1.4 Tujuan Penelitian :

Tujuan dilakukannya penelitian ini adalah adalah sebagai berikut :

- 1. Mengetahui signifikansi pengaruh nilai optimal *Primary Air Ratio,Coal Fineness* dan *Excess air* terhadap emisi NOx yang terukur pada *flue gas*.
- 2. Mengetahui signifikansi pengaruh nilai optimal *Primary Air Ratio,Coal Fineness* dan *Excess Air* terhadap NPHR.
- 3. Mengetahui signifikansi pengaruh nilai optimal *Primary Air Ratio,Coal Fineness* dan *Excess Air* terhadap Efisiensi Boiler.
- 4. Mengetahui setting pengaturan *Primary Air Ratio, Coal Fineness dan Excess air* untuk menghasilkan efisiensi boiler, NPHR dan emisi NOx yang optimal.

1.5 Manfaat Penelitian

Manfaat yang akan didapatkan dengan penelitian ini adalah sebagai berikut:

- 1. Mengetahui pengaruh optimasi Primary Air Ratio,Coal Fineness dan Excess air terhadap konsentrasi NOx pada flue gas di Boiler.
- 2. Mengetahui pengaruh optimasi Primary Air Ratio,Coal Fineness dan excess air terhadap NPHR dan Efisiensi Boiler.
- Menentukan nilai paling optimal untuk mendapatkan nilai NPHR, Efisiensi Boiler dan konsentrasi NOx yang lebih baik.

BAB 2 KAJIAN PUSTAKA

2.1 Boiler

Boiler merupakan peralatan utama pembangkit yang berfungsi untuk mengubah air menjadi uap dengan menggunakan energi panas yang dihasilkan oleh bahan bakar yaitu batubara. Boiler pada PLTU Pangkalan Susu 1-2 merupakan boiler tangensial yang terdiri dari furnace yang dikelilingi dinding pipa air vertical atau water wall. Pada bagian bawah water wall terdapat header air pengisi boiler dan pada bagian atas terdapat steam drum yang berfungsi untuk memisahkan uap dan air. Di dalam furnace terdapat dua jenis burner, yaitu oil gun burner dan coal burner. Masing-masing oil gun dan coal burner ini terdiri dari beberapa level dan 4 corner untuk setiap levelnya pada boiler tangensial. Dari seluruh coal burner iasanya satu level dalam keadaan stand by dan digunakan sebagai cadangan jika ada salah satu coal burner yang mati. Dan setiap level coal burner mewakili jumlah mill yang ada.

Boiler berfungsi untuk menghasilkan uap dengan temperatur, tekanan, dan kapasitas tertentu. Boiler menggunakan panas dari hasil pembakaran untuk merubah air menjadi uap melalui pipa-pipa dengan susunan konstruksi yang spesifik. Uap yang dihasilkan dimanfaatkan untuk berbagai macam aplikasi, salah satunya adalah untuk pembangkit tenaga listrik. Sebagian besar boiler menggunakan batubara, natural gas, dan minyak sebagai bahan bakar. Panas dihasilkan oleh proses pembakaran pada area furnace yang berasal dari campuran bahan bakar dan udara pembakaran. Skematik boiler berbahan bakar batubara pada aplikasi pembangkit listrik tenaga uap ditunjukkan pada gambar 2.1.

Gambar 2.1 *Typical Coal Fired Boiler for Power Plant* (Sumber : Babcock & Wilcock, 2015)

Spesifikasi boiler dari segi parameter operasi dan bahan bakar dapat dilihat pada tabel 2.1 dan 2.2 di bawah ini:

Parameter Operasi	BMCR
Main steam Pres.	13,43 MPa
Main steam Temp.	540°C
RH Flow	603,7 t/h
RH inlet/outlet Pres.	2,6 / 2,4 MPa
RH inlet/outlet Temp.	323 / 540°C
Feed water Temp.	254,3°C

Tabel 2.1 Parameter Operasi Boiler

(Sumber : Manual Book Spesifikasi Boiler PLTU Pangkalan Susu)

Tabel 2.2. Spesifikasi Batubara dan Abu

Coal Data

Item	Symbol	Unit	Design Coal	Worst Coal	Change range
Carbon as received basis	Car	%	47.65	45.2	41.25~49.4
Hydrogen as received basis	Har	%	3.36	3.15	3.375~4.55
Oxygen as received basis	Oar	%	13	11.7	7~16.25
Nitrogen as received basis	Nar	%	0.77	0.70	0.375~0.975
Sulfur as received basis	Sar	%	0.23	0.25	0.1~0.23
Ash as received basis	Aar	%	5	4	3~6
Moisture as received basis	Mar	%	30	35	25~35
Air dried basis moisture	Mad	%	20	25	15~25
Dry ash-free basis volatile	Vdaf	%	54	46	42~67.8
Fixation Carbon as received basis	FCar	%	30	-	28~42
LHV as received basis	Qnet,ar	kcal/kg	4200	3900	3900~4500
Grindability index	HGI	-	45	45	45~65

(Sumber : Manual Book Spesifikasi Boiler PLTU Pangkalan Susu)

Item	Symbol	Unit	Design Coal	Change range
Silicon dioxide	SiO ₂	%	11.7	10~32
Ferric oxide	Fe ₂ O ₃	%	34	8.3~38.5
Alumina oxide	Al ₂ O ₃	%	12	2.63~29.2
Calcium oxide	CaO	%	14	4.18~20
Magnesium oxide	MgO	%	12	8.3~16
Titania dioxide	TiO ₂	%	0.3	0.10~0.7
Sulfur oxide	SO ₃	%	13.67	0.12~15
Phosphorus oxide	P_2O_5	%	1.15	0.5~22.7
Natrium oxide	N _{a2} O	%	0.19	0.15~2
Kalium oxide	K ₂ O	%	0.98	0.05~2.4
Ash melting point				
Deformation temperature	DT	°C	1150	1150
Softening temperature	ST	°C	1200	1200
Fusion point	FT	°C	1300	1300
Hemishere temperature	HT	°C	1250	1250

Ash Analysis

(Sumber : Manual Book Spesifikasi Boiler PLTU Pangkalan Susu)

2.1.1 Fungsi Boiler

Boiler memilki fungsi utama sebagai berikut:

- 1. Untuk memproduksi uap sesuai yang dibutuhkan, baik kuantitas maupun kualitas.
- 2. Sebagai alat penukar panas, tempat terjadinya perpindahan panas dari proses pembakaran bahan bakar dan udara, perpindahan secara radiasi ke walltube, perpindahan panas konveksi melalui flue gas ke tube dan perpindahan panas konduksi melalui tube ke air/uap
- 3. Memanaskan uap hingga panas lanjut yang dihasilkan sebelum digunakan untuk memutar turbin.
- 4. Memanaskan kembali uap yang telah digunakan untuk memutar turbin tekanan tinggi (*HP Turbine*) sebelum digunakan untuk memutar turbin tekanan menengah (*LP Turbine*) dan selanjutnya digunakan untuk memutar turbin tekanan rendah (*LP Turbine*).

2.1.2 Komponen Boiler

Komponen utama boiler batubara terdiri atas :

1. *Furnace* (Ruang Bakar)

Furnace merupakan ruangan terbatas tempat terjadinya proses pembakaran batubara. *Furnace* dibatasi oleh *waterwall tube* tempat mengalirnya air sebagai fluida kerja. *Waterwall tube* tersebut merupakan tempat terjadinya proses pemanasan air menjadi uap. Pada *furnace* terjadi pencampuran batubara dan udara pembakaran, proses penyalaan (*ignition*), serta perpindahan panas secara radiasi dari panas hasil pembakaran. Batubara dan udara pembakaran masuk ke dalam *furnace* melalui *burner*. Dimensi dan geometri *furnace* mempunyai desain yang spesifik berdasarkan karakteristik bahan bakar maupun teknologi *combustion* yang digunakan.

2. Burner

Burner adalah peralatan yang berfungsi untuk membentuk campuran bahan bakar dan udara yang *uniform* sehingga terjadi proses pembakaran secara efisien. Batubara masuk pada sisi tengah *burner* dan udara pembakaran pada sisi sekelilingnya. Terbentuk aliran turbulen campuran batubara dan udara pembakaran sehingga terjadi kestabilan pembakaran.

Susunan *burner* didesain dengan konfigurasi secara spesifik untuk memperoleh karakteristik bentuk nyala api tertentu. Jenis *burner* berdasarkan arah masuknya batubara terbagi menjadi 3 metode, yaitu :

a. Downshot Firing

Serbuk batubara diinjeksikan pada area *lower furnace*. Area *lower furnace* didesain dengan *lining refractory* sehingga mempunyai temperatur yang tinggi untuk proses penyalaan. Proses penyalaan awal batubara dan proses pembakaran terjadi selama bahan bakar mengalir naik menuju area *waterwall* pada sisi *upper furnace* seperti ditunjukkan pada gambar 2.2. Konfigurasi ini cocok untuk jenis batubara yang sulit untuk terbakar, dengan kandungan *volatile mater* rendah seperti batubara *anthracite*.

Gambar 2.2 Ilustrasi Burner dengan Metode Downshot Firing (Chaplin, n.d.)

b. Horizontal Firing

Konfigurasi *burner* terpasang pada sisi dinding *furnace*, pada satu sisi *front wall* maupun kedua sisi *front* dan *back wall* seperti ditunjukkan pada gambar 2.3. Serbuk batubara diinjeksikan secara horisontal dengan tingkat *turbulent swirl* yang tinggi untuk menghasilkan pembakaran secara cepat. Masing masing *burner* membentuk nyala api secara individual dan *independent*. Perbandingan batubara dan udara pembakaran pada masing masing *burner* harus tepat untuk menghasilkan pembakaran yang baik.

Gambar 2.3 Konfigurasi Burner Horizontal Firing(Chaplin, n.d.)

c. Tangential Firing

Burner tersusun vertikal pada empat sudut furnace. Serbuk batubara diinjeksikan pada arah horisontal menuju sisi tengah area furnace (membentuk garis tangensial *imaginer* dengan lingkaran di titik tengah furnace). Ilustrasi tangential firing dapat digambarkan pada Gambar 2.4. Pencampuran bahan bakar dan udara pembakaran terdistribusi secara merata pada combustion zone di dalam furnace. Proses penyalaan dan pembakaran yang terjadi lebih teratur membentuk fireball pada sisi tengah furnace.

Gambar 2.4 Ilustrasi Burner pada Boiler Tangential Firing(Chaplin, n.d.)

Turbulensi pada *fireball* tersebut menghasilkan *vortex motion* sehingga terbentuk aliran pembakaran ke atas. *Tangential boiler* menghasilkan *heat flux* pada *waterwall tube* yang lebih merata sehingga meminimalkan potensi *overheating* maupun *thermal stress* (Hidayat, 2015).

3. Convection Pass

Pipa pipa *superheater, reheater,* dan *economizer* terletak pada area *flue* gas downflow. Pipa-pipa tersebut terpasang dalam susunan *tube bundle (tube bank)* yang menghubungkan antara *inlet* dan *outlet header*. Pada sisi tersebut perpindahan panas dominan terjadi secara konveksi.

4. Steam drum

Steam *drum* berfungsi untuk memisahkan uap jenuh dari campuran air-uap hasil pemanasan pada *waterwall tube*. Pada *steam drum* juga terdapat injeksi-injeksi bahan kimia untuk menjaga kualitas air *boiler*. Selain itu, *steam drum* berfungsi sebagai *buffer/reservoir* untuk mengakomodir sedikit perubahan beban unit.

5. Waterwall

Waterwall tube menghubungkan lower header dengan steam drum yang berfungsi juga sebagai pembatas ruangan boiler. Pipa pipa waterwall saling dihubungkan dengan membran membentuk dinding. Pada aliran waterwall tube terjadi proses penguapan sehingga terbentuk campuran air dan uap. Campuran airuap tersebut dipisahkan pada steam drum dan mengalir ke area superheater. Laju perpindahan panas yang terjadi pada area waterwall tube dapat dihitung dengan persamaan 2.1 sebagai berikut :

$$Q = \dot{m}xh_{fg} \tag{2.1}$$

dengan :

Q : laju perpindahan panas pada *waterwall tube* (kW)

 \dot{m} : laju aliran massa air pada *waterwall tube* (kg/s)

 $h_{f,g}$: *entalphy* penguapan pada tekanan steam drum (kJ/kg)

6. Economizer, Steam reheater and superheater

Posisi economizer terletak pada bagian akhir convection pass. Economizer berfungsi untuk memanaskan air pengisi boiler sebelum masuk ke steam drum. Economizer biasanya tersusun dalam horizontal tube bundle dengan konfigurasi yang cukup rapat untuk mengoptimalkan penyerapan panas dengan tetap mempertimbangkan *pressure drop flue gas*. Pada area ini tidak terjadi perubahan fase air pengisi.

Reheater dan superheater berfungsi untuk meningkatkan temperatur uap jenuh sebelum dialirkan ke turbin uap. Desain reheater dan superheater biasanya dibagi menjadi beberapa bagian untuk mengoptimalkan proses penyerapan panas dan mengatur temperatur uap yang dihasilkan. Pembagian perpipaan tersebut berupa tube bank/tube bundle, diantaranya division panel superheater, platen superheater, final superheater, low temperature superheater.

Laju perpindahan panas pada area *superheater*, *economizer*, dan *reheater* dapat dihitung dengan persamaan 2.2 sebagai berikut :

(2.2)

 $Q = \dot{m}xC_px\Delta T$

dengan :

Q : laju perpindahan panas pada *heat exchanger tube* (kW)

 \dot{m} : laju aliran massa air/uap air pada *heat exchanger tube* (kg/s)

 C_p : kalor spesifik air/uap air (kJ/kg.K)

 ΔT : perbedaan temperatur uap/uap air pada sisi masuk dan sisi keluar *heat* exchanger (K)

7. Air preheater

Air preheater tidak termasuk dalam bagan air dan uap *boiler* tetapi mempunyai peran penting dalam pemanfaatan panas *boiler* sehingga mendukung efisiensi. Pada banyak desain *boiler*, temperatur *flue gas* setelah melewati *economizer* masih cukup tinggi. *Air preheater* memanfaatkan energi panas tersebut untuk memanaskan udara pembakaran (udara primer dan udara sekunder) sehingga pemakaian bahan bakar dapat dikurangi. Udara primer digunakan sebagai udara pengering dan transportasi serbuk batubara ke *burner*. Udara sekunder berfungsi sebagai udara pembakaran.

Gambar 2.5 Komponen utama boiler (Shimogori, Yoshio. 2004)

2.2. Pembakaran Batubara dalam Ruang Bakar

Batubara yang dibongkar dari kapal di Coal Jetty dengan menggunakan Ship Unloader dipindahkan ke hopper dan selanjutnya diangkut dengan conveyor menuju penyimpanan sementara (coal yard) dengan melalui Telescopic Chute menggunakan Stacker/Reclaimer atau langsung dari tongkang. Batubara tersebut ditransfer melalui Junction House ke Scrapper Conveyor lalu ke Coal Bunker, seterusnya ke Coal Feeder yang berfungsi mengatur jumlah aliran ke Pulverizer dimana batubara digiling dengan ukuran yang sesuai kebutuhan menjadi serbuk yang halus. Serbuk batubara ini ditansportasikan dan dicampur dengan udara panas dari Primary Air Fan kemudian dibawa ke Coal Burner yang menyemburkan batubara tersebut kedalam ruang bakar untuk proses pembakaran dan terbakar seperti gas untuk mengubah air menjadi uap. Udara pembakaran yang digunakan pada ruang bakar dipasok dari Forced Draft Fan (FDF) yang mengalirkan udara pembakaran melalui Air Heater. Hasil proses pembakaran yang terjadi menghasilkan limbah berupa abu. Abu yang jatuh kebagian bawah boiler secara periodik dikeluarkan dan dikirim ke Ash Valley. Gas hasil pembakaran dihisap keluar dari boiler oleh Induce Draft Fan (IDF) dan dilewatkan melalui Electrostatic Precipitator yang menyerap 99,5% abu terbang dan debu dengan sistem elektroda, lalu dihembuskan ke udara melalui Stack.

Batubara merupakan suatu jenis mineral yang tersusun atas karbon, hidrogen, oksigen, nitrogen, sulfur, dan senyawa-senyawa mineral (Kent,1993).

Batubara digunakan sebagai sumber energi alternatif untuk menghasilkan listrik. Pada pembakaran batubara, terutama pada batubara yang mengandung kadar sulfur yang tinggi, menghasilkan polutan udara, seperti sulfur dioksida, yang dapat menyebabkan terjadinya hujan asam. Karbon dioksida yang terbentuk pada saat pembakaran berdampak negative pada lingkungan (Achmad, 2004).

Ada tiga combustible element yang terdapat pada kebanyakan bahan bakar fosil, yaitu carbon, hydrogen & sulfur. Sulfur mempunyai kontribusi yang kurang signifikan sebagai sumber panas, tetapi merupakan sumber masalah utama dalam korosi dan polusi. Tujuan utama suatu pembakaran adalah memaksimalkan pelepasan energi yang terkandung dalam bahan bakar dan meminimalkan kerugiankerugian yang mungkin dapat timbul selama proses pembakaran. Maka dari itu diperlukan beberapa pengaturan seperti excess air, aliran udara dalam boiler dan penambahan zat tertentu dalam proses pembakaran. Faktor-faktor utama yang mempengaruhi proses pembakaran antara lain :

- 1. *Temperature*, yaitu suhu yang cukup untuk terjadinya penyalaan dan menjaga penyalaan bahan bakar.
- 2. *Turbulence*, efek turbulensi akan berpengaruh terhadap pencampuran antara serbuk batubara dengan oksigen pada udara. Turbulensi yang baik menghasilkan campuran yang merata sehingga mengurangi kerugian akibat *un-burnt carbon*.
- 3. *Time*, adalah kecukupan waktu untuk terjadinya tahapan-tahapan proses pembakaran hingga semua *combustible material* bereaksi sempurna dengan oksigen dan melepaskan energi panas.
- 4. Oxygen, merupakan reaktan utama pada reaksi pembakaran sehingga kecukupan oksigen sangat berpengaruh terhadap kesempurnaan pembakaran. Oleh karena itu dalam aplikasinya selalu digunakan excess air (oksigen berlebih) untuk menjamin kecukupan oksigen untuk reaksi.

Reaksi utama pada proses pembakaran batubara terdiri dari reaksi combustible material (C, H, dan S) dengan oksigen yang menghasilkan produk pembakaran sempurna berupa gas CO2 dan H2O. Persamaan reaksi pembakaran dapat dituliskan sesuai persamaan 2.3 – 2.5 sebagai berikut :

$$C + O_2 \to CO_2 \tag{2.3}$$

$$2H + \tilde{O}_2 \rightarrow 2\tilde{H}_2 0 \tag{2.4}$$
$$S + O_2 \rightarrow SO_2 \tag{2.5}$$

Pembakaran batubara di ruang bakar boiler terjadi melalui beberapa tahapan proses mulai serbuk batubara masuk ke furnace hingga terbakar habis. Serbuk batubara dengan ukuran 200 mesh (74 µm) diinjeksikan masuk ke furnace melalui coal burner nozzle akan melewati beberapa tahapan sebagai berikut (Singer, 1993).

1. Drying

Drying merupakan proses awal batubara untuk menghilangkan *moisture* yang terkandung pada permukaan ataupun pada pori-pori batubara. Proses pengeringan ini terjadi sebelum batubara bercampur dengan udara pembakaran di furnace. Pengeringan dimulai pada saat batubara bercampur dengan *primary air* di mill, sedangkan sisa *moisture* yang terletak dalam pori-pori yang sangat kecil pada batubara akan dikeringkan di dalam furnace karena membutuhkan temperatur yang lebih tinggi untuk menguapkan *moisture* tersebut.

2. Devolatilization

Proses ini merupakan proses pemisahan antara *volatile matter* dan *char* atau *fixed carbon. Volatile matter* akan mengalami penguapan pada suhu sekitar 900° - 950°C menyisakan *char* yang merupakan karbon padat yang menjadi bahan bakar utama dalam proses pembakaran di *furnace*.

3. Char Combustion

Char combustion adalah proses pembakaran karbon padat dengan oksigen baik dari udara pembakaran maupun dari gas oksigen hasil *devolatilization*.

Waktu tinggal batubara sampai habis terbakar di dalam *furnace* disebut *residence time*. *Residence time* merupakan jumlah waktu yang diperlukan batubara untuk mengalami proses *drying*, *devolatilization*, dan *char combustion* dalam furnace. *Residence time* sendiri sangat dipengaruhi oleh komponen partikel batubara.

2.3 Performance Test

Performance Test atau unjuk kerja unit pembangkit adalah prestasi kerja unit/mesin yang mencerminkan segi kuantitas (kemampuan dan efisiensi). Di dalam pemeliharaan prediktif, unjuk kerja dinyatakan dalam efisiensi atau parameterparameter lain yang menunjukan kemampuan pemanfaatan energi. Oleh karena itu, dengan mengetahui unjuk kerja ini kita dapat menilai apakah suatu unit/mesin bekerja dalam kondisi baik atau tidak, baik secara teknis maupun ekonomis. Sehingga berdasarkan gejala yang ditimbulkan tersebut dapat diprediksi kapan harus dilakukan tindakan-tindakan preventif.

2.4 Perhitungan Efisiensi Boiler

Selain efisiensi pembangkit, perhitungan efisiensi boiler digunakan untuk menganalisa performa boiler. Perhitungan efisiensi boiler dapat dilakukan dengan dua pendekatan, secara langsung (*direct method*) dan tidak langsung (*indirect method*).

1. Direct Method

Direct method merupakan adalah metode perhitungan efisiensi boiler secara cepat tanpa memperhitungkan adanya kerugian atau losses dalam evaluasi efisiensi *boiler* (perhitungan Input – Output sesuai Hukum *Thermodinamika*), skema perhitungan *direct method* ditunjukkan pada gambar 2.4.

Gambar 2.6 Skema perhitungan direct method pada boiler

Data yang diperlukan untuk pengujian metode langsung ini adalah sebagai berikut:

- a. Heat Input
 - Jenis bahan bakar
 - o Jumlah bahan bakar
 - o Nilai kalor bahan bakar
- b. Heat Output
 - Jumlah steam yang dihasilkan
 - Tekanan/temperatur steam
 - Entalpi steam
 - Tekanan/temperatur feed water
 - Entalpi feed water

Boiler Efficiency,
$$\eta = \frac{Q (H-h)}{q \, x \, GCV} \, x \, 100\%$$
 (2.6)

Dimana :

Q : Jumlah *steam* yang dihasilkan (Kg/Jam)

q : Jumlah bahan bakar yang digunakan per jam (Kg/Jam)

GCV : Nilai kalori bahan bakar (Kcal/Kg)

- H : Entalpi *steam* (Kcal/Kg)
- h : Entalpi feed water (Kcal/Kg)

2. Indirect Method

Metode *indirect method* (*heat loss*) adalah metode perhitungan efisiensi *boiler* secara akurat dengan memperhitungkan seluruh kemungkinan adanya kerugian atau losses dalam evaluasi efisiensi boiler. Perhitungan efisiensi pada *indirect method* dengan cara mengurangkan efisiensi boiler dengan kerugian-kerugian yang mungkin terjadi pada boiler, skema perhitungan ini ditunjukan oleh gambar 2.5. Untuk menentukan efisiensi boiler dengan metode tidak langsung (*Indirect Method*), semua bentuk energi hilang (*losses*) yang terjadi pada boiler harus dihitung. Kehilangan-kehilangan tersebut berhubungan dengan jumlah bahan bakar yang dibakar, seperti yang tampak pada gambar 2.5. Dengan metode ini, akan sangat mudah untuk membandingkan hasil perhitungan berbagai boiler pada berbagai laju pembebanan.
Efisiensi Boiler = 100 - (L1 + L2 + L3 + L4 + L5 + L6 + L7 + L8) (2.7) dimana :

L1 = *Heat loss* akibat *dry flue gas*

 $L2 = Heat \ loss$ akibat evaporasi dari air yang terbentuk karena keberadaan H2 di dalam bahan bakar (%)

 $L3 = Heat \ loss$ akibat keberadaan air dalam bahan bakar

 $L4 = Heat \ loss \ akibat \ keberadaan \ air \ dalam \ udara$

 $L5 = Heat \ loss \ akibat \ pembakaran \ yang \ tidak \ sempurna$

L6 = *Heat loss* akibat radiasi dan konveksi

 $L7 = Heat \ loss \ akibat \ senyawa \ tak \ terbakar \ di \ fly \ ash \ (\%)$

 $L8 = Heat \ loss \ akibat \ senyawa \ tak \ terbakar \ di \ bottom \ ash \ (\%)$

Efficiency = 100 - (1+2+3+4+5+6+7+8) (by Indirect Method)

2.5 Pengukuran Net Plant Heat Rate (NPHR)

Terdapat dua metode pengukuran net plant heat rate unit yaitu metode input/output dan metode output/loss. Metode input/output dilakukan dengan pengukuran laju aliran dan nilai kalor batubara dan daya gross/bruto yang dibangkitkan dan daya pemakaian sendiri. Metode output/loss antara lain tergantung pada pengukuran laju aliran, komposisi dan suhu gas buang

Gambar 2.7 Skema Perhitungan indirect method pada boiler

meninggalkan cerobong, laju aliran feedwater, suhu dan tekanan uap/air masuk dan keluar boiler serta jumlah karbon tak terbakar.

1. Metode input/output

Pada metode input/output semua parameter yang terkandung pada definisi heat rate diukur secara langsung. *Energy* masuk kedalam boiler diperoleh dari pengukuran laju aliran bahan bakar dan nilai kalor batubara dari laboratorium atau analisis online. Daya listrik diperoleh dengan pengukuran daya output generator dan daya pemakaian sendiri. Dengan persamaan berikut :

$$NPHR = \frac{\dot{m}coalxHHV}{P_G - P_S} \tag{2.8}$$

dimana :

 $P_G = daya \ output \ generator$

 $P_S = daya pemakaian sendiri$

2. Metode Output/Loss

Dengan menggunakan kontrol volume yang meliputi boiler, air preheater, steam air heater, fan dan mill, prinsip konservasi energi dapat digunakan untuk menyusun persamaan yang menghubungkan laju aliran energi masuk ke boiler dengan laju perpindahan panas ke siklus turbine uap, laju perpindahan panas pada air heater, berbagai kerugian boiler dan lainnya seperti daya listrik fan dan mill. Hubungan ini diberikan dalam bentuk persamaan berikut :

$$\dot{m}coalxHHV = Q_T - Q_A + L_B - P_{fm} \tag{2.9}$$

dimana:

Q_T = laju perpindahan panas ke siklus turbin uap

 $Q_A =$ laju perpindahan panas pada air heater

 $P_{fm} = daya listrik fan dan mill$

 L_B = kerugian boiler seperti gas buang, karbon yang tidak terbakar dan panas sensible yang dikandung abu

2.6 Simulasi Numerik CFD Pembakaran Batubara pada Boiler

Computational Fluid Dynamics (CFD) merupakan salah satu metode yang dapat digunakan untuk meprediksi aliran fluida, perpindahan panas, perpindahan massa maupun fenomena fisik yang berhubungan dengan aliran fluida. Metode CFD menggunakan metode numerik dalam penyelesaian persamaan matematik yang berhubungan dengan dinamika fluida. Metode yang digunakan adalah Finite Volume Approach yaitu membagi volume sistem , baik massa atur maupun volume atur, menjadi volume-volume kecil yang disebut grid atau mesh. Setiap grid tersebut memiliki sejumlah nodal untuk menerapkan persamaan-persamaan konservasi. Setiap nodal memiliki karakteristik yang spesifik sebagai volume aturnya. Persamaan konservasi yang digunakan dalam pemodelan CFD adalah :

1. Persamaan Konservasi Massa

Persamaan konservasi massa untuk aliran compressible dan incompressible dapat dituliskan sebagai berikut :

$$\frac{\partial \rho}{\partial t} + \nabla(\rho \vec{v}) = S_m \tag{2.10}$$

dengan :

 S_m = penambahan/pengurangan massa

 ρ = massa jenis fluida

t = waktu

 \vec{v} = vektor kecepatan total

2. Persamaan Konservasi Momentum

Persamaan konservasi momentum pada arah i dapat dituliskan dalam persamaan sebagai berikut :

$$\frac{\partial}{\partial t}(\rho\vec{v}) + \nabla \cdot (\rho\vec{v}\vec{v}) = -\nabla p + \nabla \cdot (\bar{\bar{\tau}}) + \rho\vec{g} + \vec{F}$$
(2.11)

dengan :

p = tekanan statik total

$$\tau$$
 = tensor tegangan geser

 \vec{g} = percepatan gravitasi

 \vec{F} = external body force

Sedangkan tensor tegangan geser dinyatakan dengan persamaan berikut :

$$\bar{\bar{\tau}}_{ij} = \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) - \frac{2}{3} \mu \left(\frac{\partial u_k}{\partial x_k} \right) \delta_{ij}$$
(2.12)

dengan :

 μ = dynamic viscosity

u = velocity

3. Persamaan Konservasi Energi

Persamaan energi yang digunakan pada software FLUENT adalah sebagai berikut :

$$\frac{\partial}{\partial t}(\rho E) + \nabla \cdot \left(\vec{v} \left(\rho E + p\right)\right) = \nabla \cdot \left(k_{eff} \nabla T - \sum_{j} h_{j} \vec{J}_{j} + \left(\bar{\bar{\tau}}_{eff} \cdot \vec{v}\right)\right) + S_{h} \quad (2.13)$$

dengan :

 k_{eff} = effective conductivity (k+k_t)

T = temperatur

k_t = turbulent thermal conductivity

Persamaan energi didefinisikan sebagai :

$$E = h - \frac{p}{\rho} + \frac{v^2}{2}$$
(2.14)

dimana h adalah entalpi sensibel yang dirumuskan sebagai berikut :

a. Untuk gas ideal

$$h = \sum_{j} Y_{j} h_{j} \tag{2.15}$$

b. Untuk incompressible flow

$$h = \sum_{j} Y_{j} h_{j} + \frac{p}{\rho}$$
(2.16)

(2.17)

dengan :

Yj = fraksi massa spesies j $h_j = \int_{T_{ref}}^{T} c_{p,j} dT \, dT$

dimana :

Tref = 298,15 K

Persamaan (2.13) - (2.17) di atas diterapkan pada setiap grid/mesh sehingga diperoleh sebaran temperatur yang membentuk distribusi temperatur pada setiap bagian boiler.

2.7 Taguchi dan Analisis Varians

Metode Taguchi pertama kali dicetuskan oleh Dr. Genichi Taguchi pada tahun 1949 saat mendapat tugas untuk memperbaiki sistem komunikasi di Jepang. Dr. Genichi Taguchi memiliki latar belakang *engineering*, juga mendalami statistika dan metematika tingkat lanjut, sehingga ia dapat menggabungkan antara teknik statistik dan pengetahuan *engineering*. Ia mengembangkan metode Taguchi untuk melakukan perbaikan kualitas dengan metode percobaan 'baru', artinya melakukan pendekatan lain yang memberikan tingkat kepercayaan yang sama dengan SPC (*Statistical Process Controll*). Kelebihan dari penggunaan metode Taguchi adalah :

- 1. Dapat mengurangi jumlah pelaksanaan percobaan jika dibandingkan dengan menggunakan percobaan *full factorial*, sehingga dapat menghemat waktu dan biaya.
- Dapat melakukan penghematan terhadap rata-rata dan variasi karakteristik kualitas sekaligus, sehingga ruang lingkup pemecahan masalah lebih luas.
- 3. Dapat mengetahui faktor-faktor yang berpengaruh terhadap karakteristik kualitas melalui perhitungan *Average* dan Rasio S/N, sehingga faktor-faktor yang berpengaruh tersebut dapat diberikan perhatian khusus.

Sedangkan kekurangan dari metode Taguchi ini adalah apabila percobaan ini dilakukan dengan banyak faktor dan interaksi, akan terjadi pembauran beberapa interaksi oleh faktor utama. Akibatnya, keakuratan hasil percobaan akan berkurang, jika interaksi yang diabaikan tersebut memang benar-benar berpengaruh terhadap karakteristik yang diamati.

Metode Taguchi yang mengusulkan cara mudah dan efisien untuk mengoptimalkan masalah desain adalah salah satu pendekatan statistik yang paling umum digunakan untuk mendapatkan urutan kepentingan berbagai faktor untuk fungsi target. Metode ini digunakan untuk semua jenis studi seperti eksperimental, numerik dan juga teoritis (A.H. Bademlioglu, A.S. Canbolat,2019). Keberhasilan analisis tergantung pada pilihan parameter proses dan hubungannya dengan fungsi tujuan. Dalam studi ini, tinjauan literatur rinci telah dilakukan dan parameter telah ditentukan untuk analisis statistik adalah Primary Air Ratio, Coal Fineness serta Excess Air. Ada dua alat utama yang digunakan dalam metodologi Taguchi seperti rasio sinyal terhadap noise (S/N) dan ortogonal array. Dengan menggunakan alat ini, metode Taguchi memungkinkan untuk mengoptimalkan kinerja sistem dan menentukan opsi parameter terbaik dengan uji coba lebih sedikit daripada analisis faktorial penuh. Penting untuk memilih tipe ortogonal array yang sesuai dengan karakteristik kinerja. Dalam literatur, untuk mengetahui rasio kontribusi pada fungsi target, digunakan metode analisis varians (ANOVA). Dalam penelitian ini, selain metode Taguchi, ANOVA digunakan untuk mengetahui tingkat kepentingan masing-masing parameter terhadap karakteristik kinerja. Rasio dampak dan peringkat masing-masing parameter dihitung dengan bantuan ANOVA. Karena ANOVA menunjukkan tingkat pentingnya mempengaruhi parameter pada respons, ANOVA juga memungkinkan pemeriksaan keandalan statistik dari hasil yang diperoleh dari metode Taguchi. Dalam penelitian ini, pengaruh masing-masing parameter terhadap efisiensi dengan menggunakan metode ini dan hasil perhitungan dilakukan analisis.

2.8 Signal/Noise to Analysis and Assignment of Weight

Rasio S/N bertujuan untuk mengukur sensitifitas dari karakteristik kualitas dari faktor yang dapat dikontrol terhadap pengaruh faktor eksternal yang tidak dikontrol. Dalam suatu percobaan bertujuan untuk mendapat nilai rasio S/N terbesar, karena dengan semakin besar rasio S/N maka variasi produk disekitar nilai target semakin kecil.

Untuk menganalisa hasil eksperimen yang terjadi dari dua pengulangan atau lebih sebaiknya menggunakan rasio S/N daripada menggunakan metode *average*, karena rasio S/N akan memberi dua macam keuntungan yaitu :

- Rasio S/N menyediakan petunjuk untuk memilih level optimum berdasarkan variasi minimum disekitar target dan juga nilai rata-rata yang mendekati target
- Rasio S/N menawarkan perbandingan objektif diantara dua set percobaan yang dilihat dari variasi di sekitar target dan penyimpangan rata-rata dari nilai target

Dalam metode Taguchi, rasio S/N merepresentasikan besarnya variasi yang ada pada karakteristik kualitas. Secara umum, ada tiga kelompok karakteristik kinerja dalam analisis rasio *signal-to-noise*, yaitu semakin rendah semakin baik (*Lower the Better*), semakin tinggi semakin baik (*Higher the Better*) dan nominal semakin baik (*Nominal the Better*). Metode Assignment of Weight membuat masalah multirespon diubah menjadi masalah respons tunggal (Taguchi G., El Sayed EA, Hsiang TC,1989). Misalkan kita memiliki dua tanggapan dalam suatu masalah. Biarkan W1 menjadi bobot yang diberikan, katakanlah respons pertama R1 dan W2 adalah bobot yang diberikan pada respons kedua R2. Ini (W) disebut Multi Response Performance Index (MRPI). Dengan menggunakan MRPI ini, masalah diselesaikan sebagai masalah respons tunggal. Dalam masalah multi-respon, setiap respons dapat berupa data asli yang diamati atau transformasinya seperti rasio S/N. Dalam pendekatan ini, masalah utama adalah metode penentuan bobot. Tinjauan pustaka menunjukkan bahwa beberapa pendekatan telah digunakan untuk mendapatkan MRPI.

$$Z = \sum_{i} W_{i}R_{i}$$
dimana :
$$Z =$$
Multi Response Performance Index (MRPI)
$$(2.18)$$

2.9 Interval Kepercayaan

Interval kepercayaan adalah interval antara dua nilai statistik dengan tingkat probabilitas tertentu dimana nilai yang sebenarnya dari parameter berada didalamnya. Dalam perancangan kualitas suatu produk interval kepercayaan dibagi menjadi tiga macam ketentuan yaitu:

1. Interval kepercayaan untuk *level* faktor, untuk menghitung interval kepercayaan dari masing-masing faktor *level* digunakan rumus :

$$CI = \sqrt{F_{a,vl,v2} \times Ve \times \left[\frac{l}{n}\right]}$$
(2.19)

dengan,

 $F_{\alpha,v1,v2}$ = tabel *F* rasio

- α = resiko. *Level* kepercayaan = 1 resiko
- vI = derajat bebas untuk rata-rata dan nilainya selalu 1 untuk interval

kepercayaan

v2	= derajat bebas untuk pooled error variance
Ve	= variasi kesalahan gabungan (pooled error variance)
n	= jumlah pengamatan

Sehingga interval kepercayaan untuk masing-masing *level* faktor dapat dihitung dengan rumus:

$$XY - CI \le \mu_{XY} \le \overline{XY} + CI$$
dengan,
$$X = Faktor ke-x$$

$$Y = Level ke-y$$
(2.20)

2. Interval kepercayaan untuk prediksi, sehingga menghitung interval kepercayaan untuk prediksi. Sebagai contoh, apabila dalam suatu eksperimen terdapat tujuh faktor (A, B, C, D, E, F, G) dan faktor B, D, F merupakan faktor yang penting, pada saat kita ingin meminimasi variansi. Faktor *level* D1, B1, dan F2 digunakan untuk menghitung *the predicted process mean* maka rumus yang digunakan adalah sebagai berikut:

$$\mu_{\text{predicted}} = (D1 - \overline{y}) + (B1 - \overline{y}) + (F2 - \overline{y})$$
(2.21)

Menghitung interval kepercayaan perkiraan dapat dihitung dengan rumus sebagai berikut:

$$CI = \sqrt{F_{a,vl,v2} \times Ve \times \left[\frac{l}{neff}\right]}$$
(2.22)

dengan,

 $F_{\alpha,v1,v2}$ = tabel F rasio

- α = resiko. Level kepercayaan = 1 resiko
- v1 = derajat bebas untuk rata-rata dan nilainya selalu 1 untuk interval kepercayaan

v2 = derajat bebas untuk pooled error variance

- Ve = variasi kesalahan gabungan (pooled error variance)
- n = banyak pengamatan

neff = _____ Total number of experiment

Sum of degrees of freedom used in estimate of mean

Sehingga interval kepercayaan yang diperoleh dengan rumus sebagai berikut:

$$\mu_{predicted} - CI \le \mu_{predicted} \le \mu_{predicted} + CI \tag{2.23}$$

3. Interval kepercayaan untuk konfirmasi, dapat dihitung dengan menggunakan rumus sebagai berikut:

$$CI = \pm \sqrt{F_{a,vl,v2}} \times V_e \times \left[\frac{l}{n_{ey}} + \frac{l}{r}\right]$$
(2.24)

dengan,

 $F_{\alpha,\nu l,\nu 2}$ = tabel *F rasio* α = resiko. *Level* kepercayaan = 1 - resiko νl = derajat bebas untuk rata-rata dan nilainya selalu 1 untuk interval kepercayaan

- *Ve* = variasi kesalahan gabungan (*pooled error variance*)
- N =banyak pengamatan
- r = jumlah pengulangan atau replikasi ($r \neq 0$)

Sehingga interval kepercayaan dapat diperoleh dengan selang sebagai berikut:

$$\mu_{\text{predicted}} - \text{CI} \le \mu_{\text{predicted}} \le \mu_{\text{predicted}} + \text{CI}$$
(2.25)

2.10 Eksperimen Konfirmasi

Tahap ini dilakukan dengan eksperimen konfirmasi. Eksperimen konfirmasi dilakukan untuk membuktikan performansi yang diramalkan yaitu kondisi optimal untuk level faktor-faktor dalam eksperimen. Jika hasil eksperimen konfirmasi membuktikan performansi yang diramalkan, maka kondisi optimum dapat diterapkan dalam proses. Jika sebaliknya, maka desain eksperimen seharusnya dievaluasi lagi dan eksperimen tambahan yang diperlukan. Jumlah sampel atau replikasi dalam eksperimen konfirmasi yaitu r diambil sejumlah 10 sampel. Keputusan kondisi optimal dapat diterima atau tidak yaitu membandingkan rata-rata nilai estimasi dan rata-rata hasil eksperimen konfirmasi dengan masing-masing level kepercayaan.

2.11 Literature Review

Performance boiler yang optimal dapat dicapai dengan memaksimalkan proses pembakaran di dalam boiler. Berdasarkan jurnal yang sudah dipublikasikan oleh Storm, R.F. and Reilly, T.J Flame Refractories, Inc. Oakboro, North Carolina berjudul *Coal Fired Boiler Performance Improvement Through Combustion Optimization* (1987), ada beberapa faktor penghubung yang dianggap sebagai prasyarat pembakaran yang optimal. Faktor utama yang telah diidentifikasi antara lain adalah:

- 1. Furnace exit excess oxygen content tidak kurang dari 3% pada satu titik yang diukur dengan water-cooled probe pada saluran superheater.
- Pulverized fuel fineness tidak kurang dari 72% melewati layar 200 mesh, dan dengan sisa 1% maksimum pada layar 50 mesh.
- Secondary air flow menuju ke burners harus seimbang dalam sekitar ± 10% dari aliran rata-rata.
- 4. Primary air flow harus seimbang ± 2% dari rata-rata pada masingmasing pulverized dengan metode clean air test.
- Pulverizer primary air flows harus seimbang ± 10% atau lebih baik dari pulverizer ke pulverizer.
- 6. Penyeimbangan aliran bahan bakar ke pulverizer harus dapat dikendalikan dan seimbang \pm 10% dari rata-rata.
- 7. Fuel flow dari setiap fuel pipe harus seimbang $\pm 10\%$ dari rata-rata.
- 8. Kecepatan secondary air flow harus melebihi primary air flow dengan faktor sekitar 1,5 atau 2,0 hingga 1,0. Kecepatan secondary air melalui burner throats optimal sekitar 7.000 fpm. Kecepatan campuran primary air dan coal sekitar 3,500 fpm pada full pulverizer dan/atau boiler load.

- 9. Rasio optimal primary air/fuel harus berada dalam kisaran 1,5 hingga 2,0 pon udara per pon bahan bakar untuk pengeringan batubara yang memadai dalam pulverizer pada beban penuh, dan lebih disukai tidak melebihi 3,0 pon udara per pon bahan bakar pada tingkat sedang atau low pulverizer loads.
- 10. Kecepatan saluran bahan bakar pada beban menengah dan rendah tidak boleh turun di bawah 3.000 fpm.
- 11. Laju fuel feed harus konstan, dengan perubahan laju aliran lancar selama perubahan beban.

Grafik variasi laju panas dan efisiensi boiler ditunjukkan pada gambar 2.7. Grafik ini adalah perkiraan yang disederhanakan dari pengaruh dua variabel laju panas ini. Grafik ini didasarkan pada kurva koreksi pabrikan atau turbin yang dihitung untuk pemanasan ulang 1000°F,2400 psi, Unit Pembangkit Listrik Uap 400 MW.

Gambar 2.8 Grafik Perubahan Exit Gas temperature dan Excess Air terhadap Efisiensi Boiler (Storm, R.F. and Reilly, 1987)

Penelitian mengenai pembakaran boiler juga dilakukan oleh Zixiang Li, Zhengqing Miao (2019). Primary Air Ratio (PAR) memiliki efek signifikan pada proses pembakaran batubara. Berdasarkan jurnal ini, metode praktis meningkatkan Primary Air Ratio untuk memenuhi kapasitas pengeringan Mill akan menghasilkan dalam peningkatan yang signifikan dari emisi NOx Alternatif yang layak dipilih untuk mempertahankan kapasitas pengeringan sistem Mill adalah mempertahankan nilai PAR yang dirancang. Pengaturan excess air memiliki pengaruh yang signifikan juga diungkapkan oleh V.I. Kouprianov, V. Tanetsakunvatana (2003). Hasil studi eksperimental dari heat losses yang bergantung pada excess air, serta gas emisi (NOx, SO2 dan CO) pada boiler 150 MW. NOx emisi ditemukan meningkat dengan rasio excess air yang lebih tinggi. Rasio excess air adalah salah satu variabel operasi yang mempengaruhi baik termal dan performance boiler.

Penelitian mengenai performa *pulverized coal-fired boiler* dengan *tangential burner* dilakukan dengan pendekatan numerikal. Pemodelan *boiler* dilakukan dengan software CFD FLUENT. Pemodelan menggunakan standard *k-* ε model *turbulent flow* dan SIMPLEC *method* untuk *coupling velocity* dan *pressure*. Reaksi kimia pembakaran batubara dimodelkan dengan pendekatan *mixture fraction/PDF*. Perpindahan panas radiasi dihitung dengan cara simplified P-N model. Boiler yang dimodelkan adalah *utility boiler* tipe OB-380 pada pembangkit listrik "Oslomej", Republik Macedonia dengan kapasitas 120 MWe. Model 3-D *boiler* dibuat dengan skala penuh. Model geometri melingkupi 86016 *finite volume cells*, 265056 *faces* dan 93192 *nodes*. Skema konfigurasi dan model geometri boiler

Gambar 2.9 Skema Konfigurasi Boiler OB-380 (Filkoski, 2015)

Simulasi tersebut menghasilkan data *flow fields*, vektor kecepatan, jalur aliran partikel, kontur temperatur, profil fluks panas pada dinding *furnace*, kontur *species consentrations* (O₂, CO₂, dsb). Kontur temperatur hasil simulasi dapat dilihat pada gambar 2.9. Tampak adanya perbedaan temperatur di kedua sisi *boiler*

pada area *furnace exit* yang disebabkan oleh adanya kondisi "*after twirl*" pada area tersebut. Temperatur tertinggi dapat mencapai > 1300^oC berada pada area *furnace core* dimana terjadi proses pembakaran paling intensif. Posisi nyala api pada area tengah *furnace* menunjukkan bahwa beban panas di permukaan dinding *furnace* pada kondisi berimbang.

Gambar 2.10 Kontur Temperatur pada penampang melintang *boiler*(Filkoski, 2015)

Choi dan Kim (2009) memodelkan aliran, pembakaran, dan emisi NOx pada boiler 500 MWe dengan tipe *pulverized coal* dan konfigurasi *burner* tangensial. Penelitian ini dapat dijadikan acuan pola aliran *flue gas* dan juga temperaturnya pada bagian tertentu dari *boiler*. Hasil simulasi untuk vektor dan besar kecepatan pada area *furnace* dan *backpass* dapat dilihat pada gambar 2.10 di bawah ini:

Gambar 2.11 Distribusi dan Vektor Kecepatan pada Penampang Lintang yang Berbeda (Sumber: Choi & Kim, 2009).

Distribusi temperatur juga dimodelkan dan ditunjukkan pada gambar 2.12 berikut:

Gambar 2.12 Distribusi Temperatur (Sumber: Choi & Kim, 2009).

Makalah dari Komarudin dkk (2020) menyajikan analisis kenaikan Plant Heat Rate PLTU sebelum perbaikan berkala terhadap kondisi testing komisioning yang merupakan studi kasus pada salah satu pembangkit listrik di pulau Lombok yang kapasitasnya besar 1x25 MW. Metode yang digunakan dalam perhitungan PLTU adalah metode neraca energi. Metode perhitungan neraca energi digunakan adalah dengan standar American Society of Engineers Mechanichal Performance Test Code (ASME PTC). Perhitungan Plant heat rate bertujuan untuk menganalisa suatu sistem pembangkit terhadap penurunan performance pembangkit tersebut, sehingga dapat memberikan rekomendasi dan membuat langkah-langkah penurunan pada saat perbaikan berkala. dan diharapkan performance pembangkit dapat kembali optimal seperti kondisi saat testing komisioning. Perhitungan dengan metode ini membutuhkan lebih banyak data sehingga jumlah pengukuran yang dilakukan lebih banyak. Metode energy balance yang digunakan sesuai pada American Society of Mechanichal Engineers Performace Test Code (ASME PTC) 4 mengenai fired steam generator dan ASME PTC 6 mengenai steam turbine. Perhitungan plant heat rate metode energy balance dihitung menggunakan rumusan berikut :

Gross Plant Heat Rate =
$$\frac{THR}{Eficienci Eciler - 100} (kJ/kWh$$

Net Plant Heat Rate =
Gross Plant Heat Rate x Generator Power Output
Power Terkirim

Dimana :

a. THR : Turbine heat rate (kJ/kWh)

b. Efisiensi boiler dalam satuan persen (%)

Gambar 2.13 Hasil Perhitungan Turbin Heat Rate dan Losses Boiler (Komarudin dkk, 2020)

Dari perhitungan yang telah dilakukan diperoleh nilai *turbine heat rate* naik sebesar 2533,07 kkal/kWh nilai tersebut lebih tinggi dibandingkan saat komisioning yaitu sebesar 2520,66 kkal/kWh . Dari hasil perhitungan *Turbine Heat Rate* di atas adanya penurunan dari *Feed water Flow* sebesar 118138,42 kg/h. hal ini mempengaruhi penurunan jumlah *flow main steam* yang masuk kedalam turbin sebesar 118138,42 kg/h, akibat dari penurunan ini mempengaruhi penurunan entalpi steam yang masuk kedalam turbin sebesar 3461,65kJ/Kg. Akibatnya daya output yang dihasilkan generator mengalami penurunan sebesar 28,33 MW di banding saat komisioning yaitu 29,06 MW sehingga berdampak pada naiknya nilai turbin heat rate sebesar 2533,07 kkal/kWh. Untuk efisiensi boiler, dari perhitungan yang telah dilakukan diperoleh efisiensi boiler mengalami penurunan sebesar 82,80 %, dibandingkan pada saat komisioning yaitu sebesar 83,37 %. Penurunan efisiensi *boiler* yang terjadi disebabkan bertambahnya kerugian panas yang disebabkan oleh terbentuknya uap air akibat kandungan *hydrogen* pada bahan bakar.

Secara umum, menurut A.H. Bademlioglu dkk (2019) untuk mengoptimalkan fungsi objektif system seperti kinerja, kualitas, biaya, kombinasi optimal dari parameter yang mempengaruhi sistem dan bobot dampak parameter harus ditentukan secara statistik. Metode Taguchi dan varians dari analisis (ANOVA) umumnya digunakan untuk tujuan ini. Meskipun ini metode yang sering digunakan di daerah yang berbeda, penggunaan metode ini dalam optimasi sistem termal terbatas dalam literatur. Di dalam studi ini, parameter desain optimal penukar panas adalah ditentukan dan analisis kinerja dilakukan dengan menggunakan Taguchi dan metode ANOVA. Dalam literatur, untuk mengetahui rasio kontribusi pada target fungsi, metode analisis varians (ANOVA) digunakan. Dalam penelitian ini, di Selain metode Taguchi, ANOVA digunakan untuk menentukan pentingnya setiap parameter pada karakteristik kinerja. Rasio dampak dan peringkat masing-masing parameter dihitung dengan bantuan ANOVA. Karena ANOVA menunjukkan tingkat kepentingan mempengaruhi parameter pada respons, ini juga memungkinkan pemeriksaan statistic keandalan hasil yang diperoleh dari metode Taguchi. Di dalam studi, pengaruh setiap parameter pada efisiensi hukum pertama, hukum kedua efisiensi dan beberapa karakteristik kinerja ORC ditentukan dengan menggunakan metode ini dan hasil perhitungan dianalisis.

Dari tinjauan pustaka yang telah diuraikan dapat disimpulkan penelitian dengan menggunakan metode simulasi numerik lebih tepat dilakukan karena selain tidak mengganggu operasi pembangkit metode ini juga tidak memerlukan banyak memakan biaya dan hasilnya cukup akurat. Perhitungan dan input parameter menggunakan beberapa persamaan yang telah diuraikan pada sub-bab tentang efisiensi boiler dan penyerapan panas oleh heat exchanger. Detail pengaturan akan dijelaskan pada bab III.

BAB 3

METODE PENELITIAN

Metode penelitian yang digunakan dalam penelitian ini adalah simulasi numerik menggunakan *software* CFD (*Computational Fluid Dynamic*) untuk pemodelan dan analisa pembakaran pada *boiler*.

3.1 Tahapan Penelitian

Tahapan yang dilakukan pada penelitian ini adalah sebagai berikut:

a. Studi kasus dan studi literatur

Studi kasus diambil dari kondisi operasional *boiler* di PLTU Pangkalan Susu. Permasalahan yang terjadi adalah NPHR dan Efisiensi Boiler masih dibawah target baseline. Baseline yang dipakai adalah hasil uji heat rate dari Puslibang PLN saat First Year Inspection dilakukan. Selain itu isu lingkungan terkait kandungan NOx pada gas buang PLTU juga merupakan hal yang penting untuk diperhatikan. Pada jurnal yang sudah dipublikasikan oleh Storm, R.F. and Reilly, T.J Flame Refractories, Inc. Oakboro, North Carolina berjudul *Coal Fired Boiler Performance Improvement Through Combustion Optimization* (1987), ada beberapa faktor penghubung yang dianggap sebagai prasyarat pembakaran yang optimal. Dari sebelas parameter yang dianggap prasyarat pembakaran optimal, penulis mengambil tiga parameter untuk dijadikan faktor untuk optimasi. Hal ini disebabkan karena pada unit pembangkit ada hal-hal yang tidak dapat dilakukan. Beberapa parameter tersebut antara lain:

 kecepatan bahan bakar tidak boleh turun dibawah 3000 fpm dan laju fuel feed harus konstan.

Hal ini tidak dapat dilakukan karena pada unit pembangkit tidak bisa secara auto dan masih dilakukan secara manual oleh operator untuk pengaturannya.

 Secondary air flow harus seimbang dan kecepatan secondary air flow harus melebihi primary air flow. Hal ini juga tidak dapat dilakukan karena tidak adanya alat ukur pada unit pembangkit.

 Furnace exit excess oxygen content tidak kurang dari 3%, Pulverized fuel fineness tidak kurang dari 72% melewati layar 200 mesh dan rasio optimal primary air/fuel harus berada dalam kisaran 1,5 hingga 2,0 pon udara per pon bahan bakar.

Pengaturan tiga parameter ini bisa dilakukan saat unit pembangkit running dan sering disetting oleh operator untuk mengatur pembakaran di boiler.

• Primary air flow harus seimbang $\pm 2\%$ dari rata-rata pada masingmasing pulverized dengan metode clean air test dan Fuel flow dari setiap fuel pipe harus seimbang $\pm 10\%$ dari rata-rata.

Pengaturan dan pengukuran ini direkomendasikan hanya dilakukan saat unit overhaul. Melakukan setting parameter saat ini tidak bisa dilakukan karena kondisi orifice macet.

 Pulverizer primary air flow harus seimbang ± 10% atau lebih baik dari pulverizer ke pulverizer dan penyeimbangan aliran bahan bakar ke pulverizer harus dapat dikendalikan dan seimbang ± 10% dari rata-rata.

Pengaturan primary air flow saat ini tidak dapat dilakukan karena kondisi orifice macet dan ada risiko apabila Primary Air flow diperkecil dapat menyebabkan blocking pada outlet mill.

Oleh karena itu dengan adanya parameter yang tidak dapat diukur dan dikendalikan oleh operator, maka penulis mengambil tiga parameter yang bisa dilakukan optimasi saat unit *running*. Parameter yang dapat dilakukan optimasi antara lain mengatur *primary air ratio*, *coal fineness* dan *excess air*. Saat ini masih belum ditemukan setting optimal untuk ketiga parameter tersebut yang dapat memperbaiki efisiensi boiler dan NPHR. Studi literatur dilakukan untuk membantu menganalisa permasalahan yang terjadi yang berkaitan dengan simulasi numerik menggunakan *software* CFD. Simulasi numerik digunakan dalam analisa pembakaran di boiler PLTU. Studi

literatur yang dilakukan berasal dari sumber jurnal, *e-book*, *handbook*, dan tugas akhir (skripsi/thesis/disertasi).

b. Tahap pengumpulan data (Primer dan Sekunder)

Pengumpulan data dilakukan sebagai sumber informasi dalam melakukan perhitungan, membuat pemodelan, dan sebagai validasi proses simulasi. Data-data tersebut meliputi data desain, data operasi, maupun data *performance test*.

c. Pemodelan dan Simulasi

Tahapan pemodelan dan simulasi terbagi menjadi tiga proses utama yaitu preprocessing, processing/solving, dan postprocessing. Langkah preprocessing meliputi proses pembuatan geometri boiler, penentuan domain geometri, meshing model geometri. Langkah processing/solving dilakukan dengan software CFD yang dilakukan yaitu set up model simulasi, sistem injeksi bahan bakar, material, operating dan boundary condition, solution method, initialize, serta monitor residual. Tahapan postprocessing dilakukan untuk menampilkan data kualitatif dan kuantitatif hasil dari proses simulasi. Data kualitatif dapat berupa kontur, vektor, pathlines dari parameter kecepatan, temperatur, tekanan dan lain sebagainya. Sedangkan data kuantitatif dapat berupa grafik maupun tabel data.

d. Simulasi CFD (Computational Fluid Dynamic) dan Perhitungan

Perhitungan dilakukan untuk menghitung nilai efisiensi dan NPHR dengan memasukkan parameter yang didapat dari simulasi CFD (*Computational Fluid Dynamic*). Untuk memperoleh nilai yang paling optimal dari primary air ratio, coal fineness dan excess air, digunakan metode Taguchi-Assignment of weight.

e. Analisa dan Kesimpulan

Pada akhir simulasi ditampilkan post-processing dengan menampilkan hasil simulasi berupa distribusi temperatur, distribusi kecepatan serta kandungan NO_x. Uji konfirmasi akan dilakukan dengan melakukan Performance Test ke Unit Pembangkit dengan memasukkan hasil optimasi yang didapat dari perhitungan metode *Taguchi-Assignment of Weight*. Hasil kedua simulasi

tersebut akan digunakan untuk menganalisa pengaruh *primary air ratio*, *coal fineness* dan *excess air* terhadap efisiensi boiler,NPHR dan emisi NOx.

3.2 Rancangan Penelitian

Beberapa parameter setting operasi *boiler* yang mempengaruhi kondisi pembakaran serta penyerapan panas diantaranya adalah *primary air ratio, coal fineness*, serta *excess air*. Parameter-parameter setup tersebut telah dilakukan penyesuaian setting oleh bidang operasi dan pemeliharaan. Oleh karena itu, pada penelitian ini dasar untuk mendapatkan setting optimal parameter *primary air ratio, coal fineness*, serta *excess air* adalah nilai-nilai yang ada pada manual book dari Dong Fang dan merupakan *best practice* yang digunakan dalam pengoperasian boiler agar mendapatkan efisiensi boiler tinggi, NPHR serta emisi NOx yang rendah. Berikut kami sampaikan setting tiga parameter tersebut saat unit pembangkit beroperasi beban penuh:

Primary Air Ratio

Gambar 3.1 Tampilan DCS Mill Performance Test April 2021

Pada gambar 3.1 terlihat pada tanda kotak warna kuning merupakan coal flow dan primary air flow dari Mill. Untuk menghitung primary air ratio digunakan rumus sebagai berikut:

$$Primary Air Ratio = \frac{Primary Air Flow}{Coal Flow}$$

Coal Fineness

Gambar 3.2 Drawing Mill PLTU Pangkalan Susu

Untuk mengatur coal fineness, kondisi mill harus dalam kondisi tidak beroperasi. Pengaturan dilakukan pada classfier mill. Kemudian saat mill kembali beroperasi, diambil sample dan diuji pada laboratorium untuk mengetahui nilai coal fineness. Berikut ini nilai coal fineness dari laboratorium batubara:

Gambar 3.3 Tes Report Analisa Fineness

Pada gambar 3.3 terlihat pada tanda kotak warna merah merupakan hasil coal fineness dari laboratorium. Nilai tersebut kemudian dijadikan dasar penentuan nilai variasi untuk coal fineness.

Excess Air

Gambar 3.4 Tampilan DCS Boiler Flue Gas Performance Test Gambar 3.4 merupakan tampilan DCS Boiler Flue Gas saat performance test bulan April 2021. Dapat dilihat pada gambar tersebut terdapat tanda kotak warna merah yang merupakan kandungan O₂ pada boiler. Kandungan O₂ tersebut dapat digunakan untuk menghitung excess air dengan rumusan sebagai berikut :

Excess air = $(O_2/(21-O_2)) \times 100\%$ = $(2,82/(21-2,82)) \times 100\%$ = 15%

Untuk parameter respon yang diamati adalah efisiensi boiler, Net Plant Heat Rate (NPHR) dan kandungan NO_x pada flue gas. Rancangan parameter yang dilakukan pada penelitian ini ditampilkan pada tabel 3.1 sebagai berikut.

Tabel 3.1 Rancangan Parameter Penelitian

Jenis Batubara	Parameter Operasi	Variasi 1	Variasi 2	Variasi 3	Result
Full	Primary air ratio	1:1,8	1:2,25	1:2,45	Contour
LRC,					Temperature
layer B	Coal fineness	60	70	80	Contour
standby	(%)				Kecepatan
	Excess Air (%)	15	17	20	NOx contour
					mass fraction

Untuk mencari respon efisiensi boiler, perhitungan akan menggunakan *indirect methode*. Perhitungan 3.1 akan digunakan sebagai perhitungan response untuk efisiensi boiler. Pada gambar 3.1, data enthalpy diambil menggunakan metode length average pada line sample (garis kuning) pada ketinggian 31 meter dari titik datum dan pada outlet boiler. Dari data H1 dan H2 kemudian effisiensi dapat dihitung menggunakan persamaan :

$$Loss = \frac{(H1-H2) x \dot{m}_{coal}}{HHV x \dot{m}_{coal}}$$
(3.1)
$$\eta_{boiler} = 1 - loss$$

dimana :

H1 = Enthalpy 1 H2 = Enthalpy 2

Gambar 3.5 Analisa Boiler dengan indirect method

Net Plant Heat Rate (NPHR) sebagai *response* akan dihitung menggunakan persamaan dibawah ini :

Gross Plant Heat Rate =
$$\frac{Turbin Heat Rate}{Efisiensi Boiler/100} \left(\frac{kCal}{kWh}\right)$$
 (3.2)

$$NPHR = \frac{Gross Plant Heat Rate x Generator Power Output}{Power terkirim} \left(\frac{kCal}{kWh}\right)$$
(3.3)

Turbin heat rate, generator power output dan *power* terkirim menggunakan data performance test bulan April 2021. Untuk kandungan emisi NO_x sebagai *response* diamati dari *contour mass fraction* yang didapat dari simulasi CFD (*Computational Fluid Dynamic*).

3.3 Diagram Alir Penelitian

Berdasarkan uraian tahapan penelitian yang telah dijelaskan sebelumnya, diagram alir metode penelitian ini ditunjukkan pada gambar dibawah ini :

Gambar 3.6 Flowchart Metode Penelitian

Gambar 3.7 Flowchart Analisa Data

Gambar 3.8 Flowchart Simulasi Numerik

3.4 Simulasi CFD (Computational Fluid Dynamic)

Seperti yang telah dijelaskan pada bagian sebelumnya, pemodelan dan simulasi menggunakan software ANSYS FLUENT 2020 R2 dan SpaceClaim 2020 R2.Tahap utama pemodelan dan simulasi ini ada 3, yaitu pre-processing, processing dan post-processing. Penjelasan masing-masing tahapan akan dijelaskan pada sub-bab berikut:

3.4.1. Pre- Processing

Pre-processing merupakan tahap awal dari simulasi numerik. Tahapan ini meliputi beberapa sub-tahapan sebagai berikut :

1. Pembuatan Geometri Boiler

Gambar geometri boiler PLTU Pangkalan Susu dapat dilihat pada gambar 3.5. Pembuatan geometri boiler tersebut dilakukan dengan SpaceClaim.

Gambar 3.9 Geometri Boiler PLTU Pangkalan Susu tampak samping

2. Meshing

Meshing adalah proses pemecahan domain menjadi volume yang lebih kecil. Hal ini dilakukan untuk memudahkan diskritisasi domain aliran dan menerapkan persamaan pengendali pada domain aliran. Untuk mendapatkan simulasi yang akurat maka pemilihan meshing pada sebuah geometri dibuat mengikuti prediksi perubahan pola aliran yang terjadi.

Nodes pada meshing boiler ini berjumlah 1.240.494 dan Elements 1.548.562. Gambar 3.6 merupakan gambar meshing untuk pemodelan 3D.

Gambar 3.10 Meshing Geometri Boiler dan Level Burner PLTU Pangkalan Susu

3. Penentuan Domain Pemodelan

Pembuatan domain pemodelan terdiri dari mass flow inlet untuk primary & secondary air nozzle, OFA, dan coal/co-firing injection. Sedangkan untuk heat exchanger akan dimodelkan sebagai porous media yang sebelumnya telah dibuat menjadi potongan volume sesuai pembagian heat exchanger. Domain pemodelan boiler PLTU Pangkalan Susu ditunjukkan pada gambar 3.7

Gambar 3.11 Domain pemodelan boiler PLTU Pangkalan Susu

3.4.2 Processing

Processing merupakan proses pengaturan pada software ANSYS Fluent 2020 R2 untuk mensimulasikan proses pembakaran yang terjadi pada boiler. Berikut ini beberapa pengaturan pada software ANSYS Fluent 2020 R2 yang akan digunakan pada penelitian ini:

1. Model

Model yang digunakan pada penelitian ini diuraikan pada tabel 3.2.

Item	Keterangan	Dasar pemikiran			
Multiphase	Off	Penelitian dilakukan pada flue gas yang terjadi			
		akibat pembakaran			
Energy	On	Mencakup perpindahan panas konveksi dan			
Equation		radiasi			
Viscous	k-ε standard	Dapat menyelesaikan permasalahan heating,			
(model		buoyancy, compressibility, dan combustion.			
turbulensi)		(Vuthaluru, 2009)			
Radiation	Off	Dicrete ordinat, paling sesuai untuk			
		pembakaran batubara (Chungen dkk, 2002)			
Heat	Off	Heat Exchanger dimodelkan sebagai porous			
Exchanger		medium pada cell zone condition dengan			
-		penyerapan heat generation			
Species	Species	Karena spesies kimia yang diinjeksikan			
	transport	mempunyai reaksi kimia (pembakaran) yang			
		telah didefinisikan pada material yang			
		digunakan (Sa'adiyah, 2013)			
Discrete Phase	On	Mendefinisikan injeksi untuk inlet			
		batubara (Sa'adiyah, 2013)			
Solidification	Off	Tidak diperlukan			
Acoustic	Off	Tidak diperlukan			
Eulerian Wall	Off	Tidak diperlukan			
Film					

Tabel 3.2 Model pada simulasi numerik ANSYS Fluent 2020 R2

2. Injeksi dan Boundary Condition

Pengumpanan bahan bakar batubara ke dalam boiler dilakukan dengan peng-injeksian batubara melalui coal burner yang terdapat pada masing-masing corner. Pada PLTU Pangkalan Susu terdapat lima elevasi coal burner, elevasi A sampai dengan E dan masing-masing elevasi terdiri dari 4 burner. Batubara diinjeksikan melalui 4 level burner dengan secondary air dan OFA dengan bukaan damper setting pada kondisi aktual boiler saat beroperasi.

3. Cell Zone Condition

Cell zone condition diatur untuk mendefinisikan *heat exchanger*. Dalam penelitian ini domain *heat exchanger* dimodelkan sebagai *porous medium* yang memiliki nilai *heat generation* yang didapat dari proses perhitungan, sedangkan *waterwall-tube* memiliki diasumsikan mempunyai temperatur tertentu (isotherm). Karena *heat exchanger* menyerap panas dari *flue gas*, maka data yang dimasukkan diberi tanda minus didepan nilai tersebut. Pemodelan heat exchanger sebagai porous media ditunjukkan pada tabel 3.3.

Porous Zone	Panel	Division Superheater	Porous Zone	Р	aten Superheater
Inertial Resistance	5		Inertial Resistanc	e	
Direction-1	(1/m)	1,2649 constant	Direction-1	(1/m)	0,8202 constant
Direction-2	(1/m)	0,1204 constant	Direction-2	(1/m)	0.0772 constant
Direction-3	(1/m)	0 constant	Direction-3	(1/m)	0 constant
Fluid Porosity		0.899 constant	Fluid Porosity		0.902 constant
Material		Steel	Material		Steel
Source Terms	(w/m ³)	-55822 constant	Source Terms	(w/m ³)	-112086 constant
	s Zone Final Superheater				
Porous Zone	F	inal Superheater	Porous Zone		Final Reheater
Porous Zone Inertial Resistance	e F	inal Superheater	Porous Zone Inertial Resistanc	e	Final Reheater
Porous Zone Inertial Resistance Direction-1	e (1/m)	inal Superheater 0,2192 constant	Porous Zone Inertial Resistanc Direction-1	e (1/m)	Final Reheater 0,6822 constant
Porous Zone Inertial Resistance Direction-1 Direction-2	e (1/m) (1/m)	inal Superheater 0,2192 constant 0,0248 constant	Porous Zone Inertial Resistanc Direction-1 Direction-2	e (1/m) (1/m)	Final Reheater 0,6822 constant 0 constant
Porous Zone Inertial Resistance Direction-1 Direction-2 Direction-3	e (1/m) (1/m) (1/m)	inal Superheater 0,2192 constant 0,0248 constant 0 constant	Porous Zone Inertial Resistanc Direction-1 Direction-2 Direction-3	e (1/m) (1/m) (1/m)	Final Reheater 0,6822 constant 0 constant 0 constant
Porous Zone Inertial Resistance Direction-1 Direction-2 Direction-3 Fluid Porosity	e (1/m) (1/m) (1/m)	inal Superheater 0,2192 constant 0,0248 constant 0 constant 0.966 constant	Porous Zone Inertial Resistanc Direction-1 Direction-2 Direction-3 Fluid Porosity	e (1/m) (1/m) (1/m)	Final Reheater 0,6822 constant 0 constant 0 constant 0.882 constant
Porous Zone Inertial Resistance Direction-1 Direction-2 Direction-3 Fluid Porosity Material	e (1/m) (1/m) (1/m)	inal Superheater 0,2192 constant 0,0248 constant 0 constant 0.966 constant Steel	Porous Zone Inertial Resistanc Direction-1 Direction-2 Direction-3 Fluid Porosity Material	e (1/m) (1/m) (1/m)	Final Reheater 0,6822 constant 0 constant 0.882 constant Steel

Tabel 3.3 Parameter Pipa Heater-heater Boiler (Porous Media)

Porous Zone	P	rimary Reheater	Porous Zone	Pr	imary Superheater
Inertial Resistance			Inertial Resistar	ice	
Direction-1	(1/m)	0,5113 constant	Direction-1	(1/m)	0 constant
Direction-2	(1/m)	0 constant	Direction-2	(1/m)	0.0198 constant
Direction-3	(1/m) 0 constant		Direction-3	(1/m)	0 constant
Fluid Porosity		0.958 constant	Fluid Porosity		0.445 constant
Material		Steel	Material		Steel
Source Terms	(w/m ³)	-168267 constant	Source Terms	(w/m ³)	-132119 constant

Porous Zone	Economizer			
Inertial Resistance	5			
Direction-1	(1/m)	0 constant		
Direction-2	(1/m)	0,3999 constant		
Direction-3	(1/m)	0 constant		
Fluid Porosity		0.564 constant		
Material		Steel		
Source Terms	(w/m ³)	-125005 constant		

4. Material

Jenis material yang akan digunakan pada simulasi numerik ini ada tiga jenis yaitu *solid, fluid* dan *combusting particle*. *Combusting particle* terdiri dari Batubara *Low Rank Coal* (LRC). Komposisi batubara yang diinjeksikan pada furnace boiler yaitu 100% Batubara LRC. Data properties material *fluid* dan *solid* ditunjukkan pada tabel 3.4 sedangkan data properties masing- masing batubara ditunjukkan pada tabel 3.5.

Material Solid :

Tabel 3.4 Data properties material solid dan fluid simulasi numerik

Material Type	Solid	Steel
Density	(kg/m3)	8030
Specific Heat	(J/kg K)	502,48
Thermal Conductivity	(W/m K)	16,27

Material Type	Fluid	Hydrogen	Carbon Solid	Carbon Monoxide	Air
Density	(kg/m3)	0,08189	2000	1,1233	1.225
Specific Heat	(J/kg K)	piecewise- polynomial	piecewise- polynomial	piecewise- polynomial	piecewise- polynomial
Thermal Conductivity	(W/m K)	0,1672	0,0454	0,025	0,0242
Viscosity	(kg/ms)	8,411e-6	1,72e-5	1,75e-5	1,7894e-5
Molecular Weight	(kg/kg mol	2,01594	12,01115	28,01055	28,966
Reference Temperature	(K)	298,15	298	298,17	298,18

Material Fluid :

Tabel 3.5 Data properties 100 % batubara

Fluent combusting particle materials	100% Batubara	Dasar Pemikiran
Density (kg/m3)	1400	Fluent Database
Cp (j/kg K)	1680	Fluent Database
Vaporation Temperature (K)	400	Fluent Database

Volatile Component Fraction (%)	50,123	Data perusahaan
Binary Difusivity (m2/s)	0,00004	Fluent Database
Swelling Coefficient	1,4	Fluent Database
Combustible Fraction (%)	43,14	Data perusahaan
React. Heat Fraction Absorbed by solid (%)	30	Fluent Database
Devolatilization Model (1/s)	50	Fluent Database
Combustion Model	Multiple surface reactions	reaksi kimia yang disimulasikan meliputi reaksi volumetric dan particle surface

5. Operating Condition

Operating condition merupakan perkiraan tekanan daerah operasi boiler. Sebagai acuan tekanan diambil coal burner A sebesar 101325 Pa.

6. Solution

Solusi pada penelitian ini menggunakan algoritma SIMPLE (*Semi- Implicit Method for Pressure-Linked Equations*) yaitu *least squares cell based* untuk gradient, standard untuk pressure, second order upwind untuk momentum, lig-vol, O2, CO2, H20, H2 dan CO, serta first order upwind untuk turbulent kinetic energy dan turbulent dissipation rate. Penggunaan solusi ini berdasarkan penelitian Sa'adiyah (2013).

7. Initialize

Initialize merupakan tebakan awal sebelum melakukan perhitungan sehingga akan memudahkan dalam mencapai konvergen. Tebakan dapat dimulai dari kondisi batas sisi masuk, sisi keluar, semua zona dan lain-lain. *Initialize* yang digunakan adalah *standard initialize*.

8. Monitoring Residual

Monitor Residual adalah tahap penyelesaian masalah berupa proses iterasi hingga mencapai harga convergence yang diinginkan. Harga *convergence* ditetapkan sebesar 10⁻³ artinya proses iterasi dinyatakan telah konvergen setelah residualnya mencapai harga di bawah 10⁻³. Namun jika nilai konvergen tetap tidak tercapai maka untuk proses validasi dapat dilakukan pengambilan data pada iterasi tertentu dimana pada iterasi tersebut memiliki nilai parameter yang hampir sama dengan data operasi aktual (Sa'adiyah, 2013).

BAB 4 ANALISA DAN PEMBAHASAN

4.1 Validasi

Sebelum melakukan pengamatan pada berbagai kasus variasi, terlebih dahulu dilakukan validasi hasil simulasi dengan data *display* dari *Distributed Control System* (DCS) PLTU Pangkalan Susu Unit 1 pada performance test yang dilaksanakan pada bulan April 2021. Proses validasi dilakukan dengan membandingkan temperatur pada *inlet-outlet* pada masing-masing jajaran *heat exchanger*. Posisi pengambilan data temperatur dapat dilihat sebagai berikut dapat dilihat pada gambar 4.1.

Gambar 4.1. Posisi pengambilan data temperatur pada boiler

Data temperatur yang didapatkan kemudian divalidasi menggunakan *paired comparison test*. Pengambilan data temperatur dilakukan pada jumlah iterasi 3000 dengan nilai yang paling mendekati data aktual.

NO	VALIDASI D	SIMULASI		
	Area	Temp. (C)	Temp. (K)	Temp. (C)
1	Platen SH	812,23	1150	877
2	Final RH	782,445	1069,69	796,69
3	Vertical PRH	711,625	969,006	696,006
4	Horizontal PRH	632,945	937,082	664,082
5	Economizer	443,685	701,706	428,706
6	Outlet Economizer	405,099	657,131	384,131

Tabel 4.1 Validasi data simulasi

Berikut ini adalah paired comparison test menggunakan software minitab :

Descriptive Statistics

Sample	Ν	Mean	StDev	SE Mean
VALIDASI	6	631,3	172,3	70,3
SIMULASI	6	641,1	197,3	80,5

Estimation for Paired Difference

				95% Upper Bound		
Me	ean	StDev	SE Mean	for µ_difference		
-	9,8	33 <mark>,</mark> 8	13,8	18,0		

µ_difference: mean of (VALIDASI - SIMULASI)

Test

Null hypothesis $H_0: \mu_difference = 0$ Alternative hypothesis $H_1: \mu_difference < 0$ **T-ValueP-Value**-0,710,255

Hipotesis H₀ dan H₁, α, dan Kriteria Pengujian

 $H_0: \mu_difference = 0$

Tidak terdapat perbedaan nilai validasi dengan nilai simulasi

 H_1 : µ_difference < 0 Terdapat perbedaan nilai nilai validasi dengan nilai simulasi $\alpha = 0.05$

 α adalah nilai yang dijadikan sebagai tolak ukur untuk menentukan taraf kepercayaan atau generalisasi dari objek yang diteliti setelah dilakukan analisa dan interpretasi data (taraf signifikasi). Dalam hal pengujian ini α ditentukan adalah sebesar 0.05 atau 5%.

Kriteria pengujian adalah sebagai berikut :

Jika Signifikasi < 0.05 H₀ Ditolak

Jika Signifikasi > 0.05 H₀ Diterima

Dari pengolahan data tersebut di atas diketahui bahwa p-value 0,255 > 0.05, tidak signifikan, sehingga H₀ yang dirumuskan di awal dapat diterima pada tingkat signifikasi 5%.

Dengan kata lain, maka kesimpulannya adalah tidak ada perbedaan berarti antara nilai validasi dengan nilai simulasi CFD (Computational Fluid Dynamic).

4.2 Analisa Signifikansi Pengaruh Faktor Terhadap Respon

Untuk menentukan apakah faktor tersebut berpengaruh signifikan terhadap respon, diperlukan analisis varians (ANOVA). Tiga faktor parameter operasi akan dioptimasi untuk mendapatkan output atau respon terhadap efisiensi boiler dan Net Plant Heat Rate (NPHR). Tabel 4.2 merupakan hasil ANOVA dengan menggunakan program Minitab.

Factor	Туре	Levels	Values	
Primary Air Ratio	Fixed	3	1,80, 2,25, 2,45	
Coal Finenes	Fixed	3	60, 70, 80	
Excess Air	Fixed	3	15, 17, 20	

Tabel 4.2 Penentuan Faktor Menggunakan ANOVA

Analysis of Variance

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Primary Air Ratio	2	0,099284	0,049642	1281,96	0,001
Coal Finenes	2	0,001499	0,00075	19,36	0,049
Excess Air	2	0,005244	0,002622	67,71	0,015
Error	2	0,000077	0,000039		
Total	8	0,106105			

Hipotesis yang digunakan adalah:

- H_0 : Faktor tidak berpengaruh terhadap Respon : p-value > 0,05
- \bullet H1 : Faktor-faktor yang berpengaruh signifikan terhadap respon : p-value < 0,05 Kriteria Penolakan : Jika < 0,05 , H0 Ditolak
Hasil Hipotesis:

 Primary Air Ratio: p-value < 0,05 , H₀ Ditolak & H₁ Diterima Faktor berpengaruh signifikan terhadap respons

Coal Fineness > 200 mesh:
 p-value < 0,05 , H₀ Ditolak & H₁ Diterima
 Faktor berpengaruh signifikan terhadap respons

3. Excess Air :

p-value < 0,05, H₀ Ditolak & H₁ Diterima Faktor berpengaruh signifikan terhadap respons

Dari hasil analisis ANOVA dapat diketahui bahwa ketiga faktor yaitu primary air ratio, coal finenes dan excess air memberikan kontribusi yang signifikan terhadap total variasi.

4.3 Optimasi NPHR dan Efisiensi Terhadap Boiler Primary Air Ratio, Coal Fineness, Excess Air

Metode Taguchi memberikan cara yang mudah dan efisien untuk mengoptimalkan masalah desain adalah salah satu pendekatan statistik yang paling umum digunakan untuk mendapatkan urutan kepentingan berbagai faktor untuk fungsi target. Dalam studi ini, tinjauan literatur telah dilakukan dan parameter telah ditentukan untuk analisis statistik sebagai berikut *primary air ratio, coal fineness* dan *excess air*. Parameter dan rentang (level) yang digunakan untuk analisis statistik ditunjukkan pada Tabel 4.2.

Ada dua alat utama yang digunakan dalam metodologi Taguchi seperti rasio sinyal terhadap noise (S/N) dan ortogonal array. Dengan menggunakan alat ini, metode Taguchi memungkinkan untuk mengoptimalkan kinerja sistem dan menentukan opsi parameter terbaik dengan uji coba lebih sedikit daripada analisis faktorial penuh. Untuk penelitian ini kami memilih tipe array ortogonal

menggunakan L9. Ortogonal array tiga faktor dan tiga level penelitian ini ditunjukkan pada Tabel 4.3.

	Faktor							
	А	В	С					
Trial		Coal						
Inai	Primary	fineness >	Excess Air (04)					
	air ratio	200 mesh	Excess All (%)					
		(%)						
1	1:1.8	60	15					
2	1:1.8	70	17					
3	1:1.8	80	20					
4	1:2.25	60	17					
5	1:2.25	70	20					
6	1:2.25	80	15					
7	1:2.45	60	20					
8	1:2.45	70	15					
9	1:2.45	80	17					

Tabel 4.3 Ortogonal Array Penelitian

Respon yang ingin didapat untuk penelitian ini adalah boiler efisiensi dan Net Plan Heat Rate (NPHR). Untuk mendapatkan respon tersebut, dilakukan perhitungan menggunakan indirect method. Data perhitungan didapat dari hasil simulasi CFD dan data *performance test* bulan April 2021 PLTU Pangkalan Susu. Data yang diambil dari performance test antara lain *turbin heat rate*, *generator power output* dan *power* terkirim.

No.	Parameter	Nilai	Satuan
1	Turbin Heat Rate	2145,71	kcal/kwh
2	Pgross	390550	kWh
3	Pnet	360020	kWh

Tabel 4.4 Data *Performance test* yang digunakan untuk perhitungan

Cara perhitungan untuk respon Efisiensi Boiler dan Net Plan Heat Rate (NPHR) untuk sembilan variasi adalah sebagai berikut : Boiler Efisiensi

$$Loss = \frac{(H1-H2) x \dot{m}_{coal}}{HHV x \dot{m}_{coal}}$$
$$\eta_{boiler} = 1 \text{-} \text{loss}$$

• Net Plant Heat Rate (NPHR)

 $GPHR = \frac{(Turbin Heat Rate)}{\eta_{boiler}}$ $NPHR = \frac{Gross Plant Heat Rate x Pgross}{Pnet} \left(\frac{kCal}{kWh}\right)$

Perhitungan Boiler Efisiensi dan NPHR dari sembilan variasi adalah sebagai berikut :

NO	VARIASI	H1	H2	MDOT	HHV	Pgross PT	Pnet PT	LOSS	EFF	THR PT	GPHR	NPHR
		kJ/kg	kJ/kg	kg/s	kJ/kg	MWh	MWh			11		
1	PAR 1:1.18 F60 E15	3956790	765520					0,187508446	0,812491554		2640,90	2864,85
2	PAR 1:1.18 F70 E17	4067560	819358					0,190853582	0,809146418		2651,81	2876,69
3	PAR 1:1.18 F80 E20	3974690	723017					0,191057526	0,808942474		2652,57	2877,51
4	PAR 1:2.25 F60 E17	4091330	1033650					0,179659141	0,820340859		2615,63	2837,44
5	PAR 1:2.25 F70 E20	4116610	1020750	33.44815	17019340.00	390550	360020	0,181902471	0,818097529	2145.71	2622,80	2845,22
6	PAR 1:2.25 F80 E15	4088250	1044970					0,178813044	0,821186956		2612,93	2834,51
7	PAR 1:2,45 F60 E20	4111100	1045898					0,180101109	0,819898891		2617,04	2838,96
8	PAR 1:2,45 F70 E15	4095320	1053630					0,178719621	0,821280379		2612,64	2834,19
9	PAR 1:2,45 F80 E17	4058240	1005200					0,17938651	0,82061349		2615,58	2837,39

Tabel 4.5 Tabel Perhitungan Efisiensi Boiler dan NPHR

		Factor	•	Hasil I	Respon
	А	В	С		
Trial		Coal		NDUD	Boiler
11141	Primary	fineness >	$\mathbf{E}_{\mathbf{x}}$	(kool/kwh)	efficiency
	air ratio	200 mesh	Excess All (%)	(KCal/KWII)	(%)
		(%)			
1	1:1.8	60	15	2864,85	81,25
2	1:1.8	70	17	2876,70	80,91
3	1:1.8	80	20	2877,42	80,89
4	1:2.25	60	17	2837,44	82,03
5	1:2.25	70	20	2845,22	81,81
6	1:2.25	80	15	2834,52	82,12
7	1:2.45	60	20	2838,97	81,99
8	1:2.45	70	15	2834,19	82,12
9	1:2.45	80	17	2836.50	82.06

Tabel 4.6 Faktor dan Hasil Respon

Dalam metode Taguchi, rasio S/N mewakili jumlah variasi yang ada dalam karakteristik kualitas. Secara umum, ada tiga kelompok karakteristik kinerja dalam analisis rasio signal-to-noise, yaitu semakin rendah semakin baik (Lower The Better), semakin tinggi semakin baik (Higher The Better), dan nominal semakin baik (Nominal The Better). Untuk mendapatkan kondisi operasi yang optimal, nilai nominal NPHR menggunakan rasio lower the better dan efisiensi boiler menggunakan rasio Higher the better. Oleh karena itu diperlukan metode untuk mendapatkan respon tunggal. Metode yang kami gunakan adalah assignment of weights untuk mengubah multirespon menjadi masalah respon tunggal. Misalkan kita memiliki dua tanggapan dalam suatu masalah. Pada metode assignment of weight, W1 menjadi bobot yang diberikan, respons pertama R1 dan W2 adalah bobot yang diberikan pada respons kedua R2. W disebut Multi Response Performance Index (MRPI). Dengan menggunakan MRPI ini, masalah diselesaikan sebagai masalah respons tunggal. Dalam masalah multi-respon, setiap respons dapat berupa data asli yang diamati atau transformasinya seperti rasio S/N. Dalam pendekatan ini, masalah utama adalah metode penentuan bobot.

Tabel 4.7	Analisa	MRPI
-----------	---------	------

		Factor		Respor	ise Result	Weight				
Trial	А	В	С	NPHR	Boiler			Weight MRPI		
	Primary air ratio	Coal fineness > 200 mesh (%)	Excess Air (%)	(kcal/kwh)	efficiency (%)	1/NPHR	W NPHR	W Boiler Eff		
	1	1	1							
1	1:1.8	60	15	2864,85	81,25	0,000349	0,110522	0,110514	325,61	
2	1	2	2	2976 70	80.01	0.000248	0 110067	0 110050	225 52	
2	1:1.8	70	17	2876,70	80,91	0,000348	0,110067	0,110059	323,33	
2	1	3	3	2877,42	80.80	0 000248	0 110020	0 110021	225 52	
5	1:1.8	80	20		2877,42	2077,42	80,89	0,000348	0,110059	0,110051
4	2	1	2	2027 11	82.02	0.000252	0 1115 90	0 111592	225 79	
4	1 : 2.25	60	17	2057,44	82,05	0,000552	0,111569	0,111582	525,76	
E	2	2	3	2045 22	01 01	0.000251	0 111294	0 111277	225 72	
5	1 : 2.25	70	20	2845,22	81,81	0,000351	0,111284	0,1112/7	325,73	
6	2	3	1	2826 50	92 12	0.000252	0 111626	0 111607	225.90	
0	1:2.25	80	15	2830,50	82,12	0,000353	0,111020	0,111097	323,80	
7	3	1	3	2838,97	81,99	0,000352	0,111529	0,111522	325,77	

	1 : 2.45	60	20								
0	3	2	1	- 2834,19	2824 10	1	00 10	0 000252	0 111717	0 111600	225.90
0	1 : 2.45	70	15		82,12	0,000353	0,111/1/	0,111099	525,80		
0	3	3	2	2826 50	82.06	0.000252	0 111626	0 111610	225 70		
9	1 : 2.45	80	17	2830,50	82,06	0,000353	0,111626	0,111619	325,79		

735,192 0,00318

Tabel 4.8 Tabel Respon Signal to Noise Ratio

Larger is better

Level	Primary Air Ratio	Coal Fineness	Excess Air
1	50	50	50,26
2	50	50	50,26
3	50	50	50,26
Delta	0	0	0
Rank	1	3	2

Gambar 4.2 Grafik SN Ratio Dari Setiap Faktor Parameter

Metode Taguchi dari grafik plot diperoleh kondisi optimal untuk respons NPHR dan Boiler Efisiensi dengan faktor parameter adalah sebagai berikut:

- 1. Primary Air Ratio: 1:2,45
- 2. Coal Fineness > 200 Mesh : 60%
- 3. Excess Air : 15%

Langkah selanjutnya perlu dilakukan perhitungan interval kepercayaan. Perhitungan interval kepercayaan merupakan tahap akhir eksperimen Taguchi. Selanjutnya dilakukan perhitungan prediksi MRPI dan nilai S/N Rasio berdasar pada data eksperimen. Nilai prediksi ditunjukkan seperti dibawah ini :

rimary ir Ratio	Coal Fineness	Excess Air
45	60	15
	rimary <u>ir Ratio</u> 45	rimary Coal ir Ratio Fineness 45 60

Berdasar pada hasil prediksi yang telah dilakukan maka akan didapatkan prediksi rerata MRPI 325,833 dan prediksi rasio S/N sebesar 50,29. Setelah mendapatkan

nilai prediksi, berikutnya dilakukan perhitungan konfirmasi eksperimen untuk mengetahui estimasi nilai rata– rata dan pada kondisi optimal yang kemudian dibandingkan dengan nilai hasil eksperimen Taguchi pada nilai rata-rata. Eksperimen konfirmasi merupakan tahapan terakhir eksperimen Taguchi. Data yang digunakan sebanyak 9 sampel dengan level pada kondisi optimum.

				Weight		
Percobaan	NPHR (kcal/kwh)	Boiler efficiency (%)	1/NPHR	W NPHR	W Boiler Eff	MRPI
1	2826,59	82,15	0,00035	0,112085	0,11195313	326,02
2	2832,04	82,01	0,00035	0,11187	0,11176234	325,98
3	2830,44	82,03	0,00035	0,111933	0,11178959	325,99
4	2858,49	81,34	0,00035	0,110834	0,11084311	325,83
5	2859,35	81,32	0,00035	0,110801	0,11082201	325,83
6	2860,53	81,29	0,00035	0,110755	0,11077474	325,82
7	2865,17	81,22	0,00035	0,110576	0,11068283	325,81
8	2865,13	81,23	0,00035	0,110577	0,11069655	325,81
9	2865,34	81,21	0,00035	0,110569	0,11067569	325,81
Nilai rata-rata						

Tabel 4.9 Hasil Eksperimen Konfirmasi NPHR dan Boiler Efisiensi

Perhitungan interval kepercayaan merupakan tahap akhir eksperimen Taguchi. Perhitungan ini dilakukan untuk mencari estimasi nilai rata–rata. Jika nilai hasil eksperimen berada dalam interval kepercayaan nilai estimasi, maka dapat disimpulkan bahwa rancangan eksperimen sudah memenuhi syarat metode Taguchi. Berikut hasil perhitungan interval kepercayaan untuk nilai rata-rata:

Rata-rata	Standard Deviasi	Confident Interval	Lower	Upper
325,88	0,089587278	0,058529279	325,8194	325,9364

Sehingga selang kepercayaannya sebagai berikut:

 $\mu_{confirmation} - CI \leq \mu_{confirmation} \leq \mu_{confirmation} + CI$

 $325,\!88-0,\!05829279 \leq \mu_{confirmation} \leq 325,\!88+0,\!05829279$

 $325,8194 \le \mu \text{confirmation} \le 325,9364$

Dari data diatas, dapat kita lihat bahwa prediksi respon dan eksperimen konfirmasi cukup dekat satu sama lain serta nilai prediksi respon optimal masuk dalam interval selang kepercayaan. Oleh karena itu dapat disimpulkan bahwa rancangan telah memenuhi persyaratan dalam eksperimen Taguchi.

4.4 Analisa Hasil Optimasi

Analisa dilakukan dengan membandingkan hasil simulasi numerik pembakaran dengan komposisi batubara 100% LRC. Hasil simulasi numerik yang akan dianalisa adalah distribusi temperatur, kecepatan, dan gas NOx.

4.4.1 Analisa Temperatur

Pengamatan temperatur dilakukan pada posisi *z-center*, elevasi coal burner dan OFA, serta pada *furnace exit* atau posisi sebelum memasuki jajaran heat exchanger. Pengamatan ini dilakukan untuk mengetahui bagaimana sebaran temperatur yang terjadi pada bagian *furnace* dan mengamati kemungkinan terjadinya *local heating*.

Gambar 4.3 Kontur Distribusi Temperatur posisi z-centre

Ketika melihat pada gambar 4.3 potongan vertikal pada axis z-center, terlihat perbandingan kontur temperatur antara kondisi Primary Air Ratio 1:2,45 dengan fineness 60% dan Excess Air 15% hasil optimasi (a) dengan Primary Air Ratio

1:2,45 dengan fineness 60% dan Excess Air 15% hasil performance test (b). Pada gambar terlihat bahwa, dengan nilai penyerapan heatflux pada heat exchanger tetap, kontur merah pada gambar (a) memiliki warna yang lebih banyak daripada gambar (b). Hal ini menunjukkan pada konfigurasi Coal Air Ratio 1:2,45 dengan fineness 60% dan Excess Air 15% hasil optimasi menghasilkan pembakaran yang lebih baik dari pada konfigurasi Coal Air Ratio 1:2,45 dengan fineness 60% dan Excess Air 15% hasil performance test. Hal ini terlihat lebih jelas lagi pada kontur temperatur perlevel yang ditunjukkan pada gambar 4.4. Terlihat pada level A, C, dan D kontur temperatur pada konfigurasi Coal Air Ratio 1:2,45 dengan fineness 60% dan Excess Air 15% hasil optimasi memiliki persebaran panas yang lebih tinggi dilihat dari ketebalan kontur warna merah yang ada.

Gambar 4.4 Kontur Distribusi Temperatur dilihat dari atas

4.4.2 Analisa Velocity

Analisa kontur distribusi kecepatan dilakukan untuk mengamati pola terbentuknya fireball serta aliran flue gas pada boiler. Kontur distribusi kecepatan pada posisi penampang vertikal boiler center untuk kondisi kedua kasus ditampilkan pada Gambar 4.5. Pembentukan *fire ball* pada *tangentially-fired boiler* akan lebih mudah diamati dengan melakukan pengamatan pada distribusi kecepatan. Pola aliran yang memusat pada bagian tertentu akan terlihat.

Gambar 4.5 Kontur Velocity

Ketika melihat pada kontur kecepatan pada axis z-center yang terlihat pada gambar 4.5, secara garis besar kontur kecepatan yang terbentuk memiliki pola yang mirip. Di mana dari furnace terbentuk kecepatan yang tinggi ditunjukkan dengan kontur warna kuning dan merah, yang kemudian seiring naik ke atas mulai menurun karena gerakan melawan gravitasi. Selain itu, semakin tinggi titik tinjau juga mulai terbentuk vortex aliran yang ditandai dengan warna hijau pada daerah dekat dinding dan warna biru pada bagian tengan aliran. Ada sedikit perbedaan antara hasil simulasi dan hasil performance test yaitu terdapat warna yang lebih terang di tengah yang menunjukkan secara besaran kecepatan pada hasil simulasi ini lebih tinggi daripada hasil performance test. Hal ini berarti juga mengindikasikan bahwa energi yang dihasilkan lebih besar.

4.4.3 Analisa NOx

Pada pengamatan ini lebih dikhususkan pada distribusi *gas buang* NOx yang terbentuk dari kandungan nitrogen dan oksigen yang terdapat pada udara pembakaran yang disebut *Thermal NOx*. Pembentukan NOx terjadi pada temperatur pembakaran 1204°C atau 1477,15 K (**Steam Generation-Babcox & Wilcox**). Analisa distribusi *gas buang* NOx dilakukan pada pengamatan pada *c-center* dan masing-masing elevasi.

Gambar 4.6 Kontur NOx (ppm)

Kemudian melihat hasil kontur polutan NOx pada potongan vertical axis z-center, terlihat proses pembentukan NOx pada kedua konfigurasi memiliki kesamaan di mana pada furnace tinggi kemudian berkurang seiring berjalannya flue gas menuju outlet. Ketika melihat kontur pada outlet terlihat bahwa warna pada hasil simulasi memiliki hasil yang lebih terang. Hal ini didukung dengan data kuantitatif NOx yang diambil di outlet terlihat pada gambar di bawah. Nilai terendah yang dicapai pada produksi NOx di dapatkan oleh hasil simulasi pada angka 257.85 mg/Nm3.

4.4.4 Analisa NPHR, Efisiensi Boiler dan NOx

Hasil simulasi CFD (Computational Fluid Dynamic) untuk NPHR, Efisiensi Boiler serta NOx yang didapat adalah sebagai berikut:

Tabel 4.10 Data Performance test yang digunakan untuk perhitungan

No.	Parameter	Nilai	Satuan
1	Turbin Heat Rate	2145,71	kcal/kwh
2	Pgross	390550	kWh
3	Pnet	360020	kWh

Tabel 4.11 Data Simulasi CFD Fluent yang digunakan untuk perhitungan

NO		H1	H2	MDOT COAL	HHV
NO	VARIASI	kJ/kg	kJ/kg	kg/s	kJ/kg
1	PAR 1:2,45 F60 EX 15%	4121050	1097310	33.44815	17019340

Perhitungan untuk respon Efisiensi Boiler dan Net Plan Heat Rate (NPHR) adalah sebagai berikut:

Boiler Efisiensi

Loss =
$$\frac{(H1-H2) x m_{coal}}{HHV x m_{coal}}$$

= $\frac{(4121050-1097310) x 33.44815}{17019340 x 33.44815}$
= 0,177665
 η_{boiler} = 1-loss
= 1-0.177665
= 0.822335
= 82,23%
et Plant Heat Rate (NPHR)
(Turbin Heat Rate Performance Test)

Net

$$GPHR = \frac{(Turbin Heat Rate Performance Test)}{\eta_{boiler}}$$

$$= \frac{(2145.71)}{0.822335}$$

$$= 2609,289$$

$$NPHR = \frac{Gross Plant Heat Rate x Pgross}{Pnet} \left(\frac{kCal}{kWh}\right)$$

$$= \frac{2609.289 \times 390550}{360020} \left(\frac{kCal}{kWh}\right)$$

$$= 2830,559 \text{ kCal/kW}$$

 Tabel 4.12 Data NOx dari Simulasi CFD Fluent

NO		NOx	NOx	
NO VARIASI	PPM	mg/Nm3		
1	PAR 1:2,45 F60 EX 15%	125,564	257,8546	

4.5 Perbandingan Hasil Optimasi dan Performance Test

Pelaksanaan performance test di PLTU Pangkalan Susu Unit 1 dilaksanakan pada tanggal 12 Mei 2022 dengan beban pengujian maksimum yang mampu dicapai pada saat itu adalah 192 MW bruto (90 % MCR). Kondisi pengujian performance test adalah sebagai berikut :

- a. Continous blowdown valve dan make up water dioperasikan normal
- b. Tidak dilakukan shootblowing selama pengambilan data
- c. Data produksi energy Bruto o , SST,UAT diambil dari pencatatan pada kWh meter local di metering room sedangkan pemakaian batubara diambil dari pembacaan counter di DCS Central Control Room (CCR)
- d. Sample batubara diambil pada tapping coalfeeder yang beroperasi.
 Pengambilan sample batubara dilakukan 2 (dua) kali pada tiap beban (diawal dan akhir waktu pencatatan)
- e. Sample fly ash diambil pada outlet APH menggunakan alat isokinetic coal sampling kit, sementara bottom ash diambil pada Submerged Scrapper Conveyor (SSC). Pengambilan sample dilakukan 1 (satu) kali menjelang akhir pencatatan
- f. Melakukan setting pada classifier Mill sebelum pengujian. Hal ini dilakukan untuk memasukkan hasil optimasi dalam pengujian performance test. Berikut ini adalah hasil fineness test analysis report dari laboratorium batubara :

Tabel 4.13 Data Coal Fineness Mill

Doralatan	Coal
Perdiatan	Fineness
Mill B	61,06
Mill C	68
Mill D	66,48
Mill E	67,94

Gambar 4.7 Fineness Test Report Analysis dari Laboratorium

 g. Melakukan pengaturan secondary air agar didapatkan excess air sesuai hasil optimasi yaitu 15%.

Excess air =
$$\left(\frac{O_2}{21 - O_2}\right) \times 100 \%$$

= $\left(\frac{2.83}{21 - 2.83}\right) \times 100 \%$
= 15.5%

Gambar 4.8 Tampilan DCS Boiler Flue Gas

Mengatur Primary Ratio sesuai dengan hasil optimasi yaitu 1 : 2,45.
 Primary Air ratio merupakan perbandingan antara Primary Air dengan Coal Flow. Berikut ini adalah hasil Primary Air Ratio yang didapat :

Tabel 4.14 Data Primary Air Ratio

Peralatan	Coal Flow	PA Flow	Primary Air Ratio
Mill B	28,74	70,58	1:2,45
Mill C	28,17	69 <i>,</i> 56	1:2,46
Mill D	27,6	67,73	1:2,45
Mill E	27,03	66,88	1:2,47

Gambar 4.9 Tampilan DCS Mill

4.5.1 NPHR, Efisiensi Boiler dan NOx Hasil Performance Test

Berdasarkan analisa performance test (metode heat loss) pada tanggal 12 Mei 2022 pada beban 192 MW didapatkan hasil NPHR, Efisiensi Boiler dan NOx *performance test* sebagai berikut:

Parameter	Satuan	Hasil PT Mei 2022
Boiler Efisiensi	%	82,15
NPHR	kCal/kWh	2826,59
NOx	ppm	131,14

Tabel 4.15 Hasil Performance Test Bulan Mei 2022

Berdasarkan data hasil pengujian, terjadi perubahan pada beberapa parameter yang cukup signifikan terhadap perbaikan proses pembakaran di dalam boiler seperti berikut :

a. Nilai CO pada flue gas outlet boiler

Nilai CO dapat dijadikan acuan gambaran hasil pembakaran di dalam boiler. Semakin tinggi nilai CO yang terukur pada flue gas outlet boiler mengindikasikan pembakaran yang tidak sempurna (*incomplete combustion*) di dalam boiler dan sebaliknya.

Parameter	Satuan	Hasil PT April 2021	Hasil PT Mei 2022
CO	ppm	103,27	1,06
O ₂	%	2,08	2,83
Excess Air	%	10,99	15,58

Tabel 4.16 Nilai CO Hasil Performance Test

Dari data performance test tanggal 12 Mei 2022, nilai CO terukur pada flue gas outlet sebesar 1.06 ppm, lebih rendah dibanding hasil performance test bulan April 2021. Pada hasil flue gas CO yang menurun, mengindikasikan bahwa reaksi unsur karbon (C) yang terjadi dalam pembakaran berlangsung dengan baik, sehingga potensi kerugian karbon tidak dapat yang terbakar dapat diminimalisir. Jumlah udara yang terlalu sedikit, akan menyebabkan terlalu sedikit oksigen yang digunakan untuk mengubah bahan bakar hidrokarbon menjadi karbon dioksida dan air. Jumlah udara terlalu sedikit juga berarti pemborosan bahan bakar,

karena tidak semua bahan bakar yang digunakan terbakar dan menjadi energi. Selain itu jumlah udara yang terlalu banyak juga akan menyebabkan pembakaran tidak sempurna. Kelebihan oksigen dan nitrogen akan menyebabkan terserapnya energi dalam pembakaran dan sisa gas buang ini akan dibuang melewati *stack*. Melihat perbandingan data performance test bulan April 2021 dan Mei 2022 untuk CO yang semakin baik, hal ini mengindikasikan pengaturan optimasi parameter excess air sebesar 15% berdampak signifikan terhadap optimalnya pembakaran di dalam boiler sehingga dapat menaikkan Efisiensi boiler.

b. Temperature flue gas outlet boiler

Berdasarkan data hasil performance test tanggal 12 Mei 2022, temperature flue gas outlet boiler terukur sebesar 393.25° C pada sisi inlet air heater. Jika dibandingkan dengan data hasil performance test 16 April 2021 terjadi penurunan sebesar 11.85°C. Hal ini mengindikasikan pengaturan optimasi *Primary Air Ratio* sebesar 1: 2.45 dan *coal fineness* ±60% 200 mesh mampu mengoptimalkan proses pembakaran terjadi pada residen areanya yaitu di area furnace boiler sehingga proses perpindahan panas secara radiasi pada wall tube lebih optimal dan panas yang terbawa ke area konveksi cenderung lebih rendah. Batubara yang digunakan adalah tipe *Low rank Coal* (LRC) yang mempunyai sifat mudah terbakar. Hal tersebut mengakibatkan pembakaran pada area burner jika *coal fineness* semakin halus sehingga penyerapan pada boiler berkurang. *Coal Finenes* 60% lebih cenderung lama terbakar karena lebih kasar dan cenderung lebih lama terbakar sehingga terjadi pembakaran sempurna pada area furnace. Dengan kondisi ini losses panas yang terbuang ke cerobong menjadi lebih kecil sehingga mampu menaikkan kinerja efisiensi boiler.

4.5.2 Analisa Perbandingan NPHR, Efisiensi Boiler, emisi NOx Hasil Optimasi dan Performance Test

Berikut ini adalah hasil perbandingan NPHR, efisiensi boiler, emisi NOx hasil dari simulasi CFD Fluent serta performance test yang dilakukan pada bulan April 2021 dan Mei 2022 :

Parameter	Satuan	Hasil PT April 2021	Hasil Simulasi	Hasil PT Mei 2022
Boiler Efisiensi	%	80,56	82,23	82,15
NPHR	kCal/kWh	2903,84	2830,55	2826,59
NOx	mg/Nm ³	355,49	257,85	269,30

Tabel 4.17 Perbandingan Hasil Simulasi dan Performance Test

Gambar 4.10 Grafik Boiler Efisiensi

Dari gambar grafik 4.11, dapat dilihat bahwa untuk boiler efisiensi hasil simulasi dan hasil PT bulan Mei 2022 mengalami kenaikan dari hasil performance test bulan April 2021. Efisiensi boiler hasil performance test bulan April 2021 adalah 80,56%. Setelah dilakukan optimasi dari tiga parameter operasi yaitu *Primary Air Ratio*, *Coal Fineness* dan *Excess Air*, efisiensi boiler mengalami peningkatan. Dari hasil simulasi CFD didapatkan efisiensi boiler adalah 82,23% dan hasil performance test bulan Mei 2022 adalah 82,15%. Jika hasil performance test bulan April 2021 dibandingkan dengan hasil performance test bulan Mei 2022 terjadi peningkatan efisiensi boiler sebesar 1,97%.

Gambar 4.11 Grafik Net Plant Heat Rate (NPHR)

Gambar 4.12 merupakan grafik *Net Plant Heat Ra*te (NPHR). Dapat dilihat pada grafik, NPHR hasil performance test bulan April 2021 adalah 2903,84 kCal/kWh. Dari hasil simulasi CFD didapatkan NPHR adalah 2830,55 kCal/kWh dan hasil performance test bulan Mei 2022 adalah 2826,59 kCal/kWh. Jika NPHR hasil performance test bulan April 2021 dibandingkan dengan hasil performance test bulan Mei 2022 terjadi penurunan NPHR sebesar 2,66%.

Pada gambar grafik 4.13 dapat dilihat bahwa hasil emisi NOx saat *performance test* bulan April 2021 adalah 355,49 mg/Nm³, hasil simulasi CFD didapatkan emisi NOx sebesar 257,85 mg/Nm³ dan hasil *performance test* bulan Mei 2022 adalah 269,30 mg/Nm³. Jika emisi NOx saat *performance test* bulan April 2021 dibandingkan dengan hasil *performance test* bulan Mei 2022 terjadi

penurunan emisi sebesar 24%. Hasil emisi *performance test* bulan Mei 2022 sebesar 269,30 mg/Nm³ telah memenuhi baku mutu emisi yang dipersyaratkan oleh Kementrian Lingkungan hidup dan Kehutanan melalui Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor P.15/MENLHK/SETJEN/KUM.1/4/2019 untuk pembangkit listrik tenaga termal yaitu kadar maksimum NOx sebesar 550 mg/Nm³.

PERATURAN MENTERI LINGKUNGAN HIDUP DAN KEHUTANAN REPUBLIK INDONESIA NOMOR P. 15/MENLHK/SETJEN/KUM.1/4/2019 TENTANG BAKU MUTU EMISI PEMBANGKIT LISTRIK TENAGA TERMAL

		K	adar Maksimun	1
	Parameter	Batubara	Minyak Solar	Gas
NO		(mg/Nm ³)	(mg/Nm³)	(mg/Nm ³)
1	Sulfur Dioksida (SO ₂)	550	650	50
2	Nitrogen Oksida (NO _x)	550	450	320
3	Partikulat (PM)	100	75	30
4	Merkuri (Hg)	0,03	-	-

Gambar 4.13 Kadar Maksimum NOx Sesuai Permen LHK

Dari hasil NPHR hasil *performance test* bulan April 2021 dan Mei 2022, dapat dihitung *Cost Benefit Analysis*. Berikut ini adalah perhitungan *Cost Benefit Analysis* penurunan NPHR yang didapat setelah optimasi :

Bulan	Feb 2022	Mar 2022	Apr 2022	Rata-rata
Harga BB (Rp/kg)	958,217	898,269	797,366	884,6173
Nilai kalor BB COA (Kcal/kg)	4381,27	4209,14	4267,43	4285,947

Tabel 4.18 Perhitungan Cost Benefit Analysis

Item monitoring	Satuan	Performance test 16 April 2021 (before implemented)	Performance test 12 Mei 2022 (after implemented)
Porsi bahan bakar		100% Coal LRC	100% Coal LRC
Gross load	MW	195,41	192,69
Net load	MW	179,86	179,58
NK Batubara (HHV) batubara saat performance test	Kcal/kg	4065,00	4066,00
NPHR Performance test (Heat loss methode)	Kcal/kwh	2903,84	2826,59
Asumsi Biaya bahan bakar			
Harga batubara per kg	Rupiah	88	34,62
Rupiah per Kcal	Rp/Kcal	0,20	163995
Perhitungan selisih biaya			
Asumsi Kwh Operasi per hari (180 Mw Net)	Kwh	4.32	20.000
Selisih heat rate	Kcal/kwh	7	7,25
Selisih biaya sehari	Rp	68.87	9.647,70

Dari perhitungan *Cost Benefit Analysis* didapat selisih biaya harian dengan adanya dampak penurunan NPHR. Selisih biaya sehari yang didapat adalah sebesar Rp. 68.879.647,00. Jika kita hitung dalam waktu satu bulan didapatkan Rp. 2.066.389.431,00. Nilai rupiah yang cukup besar jika kita bisa terus melakukan optimasi parameter *primary air ratio, coal fineness* dan *excess air* sesuai makalah ini secara konsisten.

BAB 5

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Setelah dilakukan pembahasan mengenai keseluruhan penelitian "Optimasi Efisiensi Boiler, NPHR dan Emisi NOx Pada Pulverized Coal Boiler 200 MW" didapatkan beberapa kesimpulan, yaitu :

- Dari grafik plot Metode Taguchi diperoleh kondisi optimal untuk respon Net Plan heat Rate (NPHR), Efisiensi Boiler dan emisi NOx dengan faktor parameter sebagai berikut:
 - a. Primary Air Ratio : 1 : 2,45
 - b. Coal Fineness > 200 Mesh : 60%
 - c. Excess Air : 15%
- 2. Nilai NPHR dan efisiensi boiler mengalami perbaikan setelah dimasukkan nilai optimal ketiga parameter tersebut. Hasil yang diperoleh sebelum dilakukan optimasi adalah NPHR adalah 2903,84 kcal/kWh dan efisiensi boiler sebesar 80,56%. Kemudian hasil yang diperoleh setelah dilakukan optimasi ketiga faktor parameter adalah NPHR sebesar 2826,59 kkal/kWh dan efisiensi boiler sebesar 82,15%. NPHR mengalami penurunan 2,66% dan efisiensi boiler mengalami kenaikan sebesar 1,97%
- 3. Emisi NOx yang dihasilkan dari hasil performance test bulan Mei 2022 setelah dimasukkan nilai optimal ketiga faktor parameter adalah 269,30 mg/Nm³.Pada hasil performance test bulan April 2021 sebesar 355,49 mg/Nm3. Emisi NOx mengalami penurunan sebesar 24%. Hal ini sesuai dengan yang dipersyaratkan Peraturan Menteri Lingkungan Hidup Dan Kehutanan Nomor P.15/MENLHK/SETJEN/KUM.1/4/2019 terkait baku mutu emisi pembangkit listrik tenaga thermal sebesar 550 mg/Nm3.

5.2 Saran

Saran yang dapat diberikan setelah melakukan penelitian ini dan diharapkan dapat memberikan manfaat pada penelitian selanjutnya, diantaranya:

- Perlu dilakukan penelitian lebih lanjut untuk mengetahui pengaruh beberapa parameter operasi lainnya yang dianggap sebagai prasyarat pembakaran yang optimal sehingga didapat hasil yang lebih baik lagi.
- 2. Titik-titik pengukuran temperatur haruslah jelas dan selalu dikalibrasi untuk mendapatkan data yang akurat sehingga pemodelan yang dibuat berdasarkan data tersebut dapat mewakili keadaan yang sebenarnya.

DAFTAR PUSTAKA

- A.H. Bademlioglu, A.S. Canbolat (2019). Multi-objective optimization of parameters affecting Organic Rankine Cycle performance characteristics with Taguchi-Grey Relational Analysis, Department of Mechanical Engineering, Engineering Faculty, Bursa Uludag University, Turkey, Hal. 1-4,
- Hutabarat, D. (2020). O₂ Content Outlet Economizer Parameter Optimization, Indonesia Power Company, Hal. 1-21,
- Taguchi G., El Sayed EA, Hsiang TC. (1989). Quality Engineering in Production Systems, McGraw-Hill, New York, NY
- 4. Cengel A.Y., Boles M.A. (2008). Thermodynamics: An Engineering Approach, New Media Version, 6th Edition, Mc Graw Hill Inc. New York
- Krishnaiah, K., Shahabudeen, P. (2012). Applied Design of Experiment and Taguchi Methods, PHI Learning Private Limited
- L. Śladewski, K. Wojdan, K. Świrski, T. Janda, D. Nabagło, and J. Chachuła. (2017). Optimization of Combustion Process in Coal-fired Power Plant with Utilization of Acoustic System for In-Furnace Temperature Measurement, Appl. Therm. Eng., vol. 123, Hal. 711–720
- L. Dongfang Boiler Works. (2009). Operation and Maintenance Training Program Boiler Part, pp. 46, Guandong Power Engineering Corporation
- Storm,R.F. and Reilly, T.J. (1987). Coal Fired Boiler Performance Improvement Through Combustion Optimization, Flame Refractorie, Inc., The American Society of Mechanical Engineers, Hal. 1-2
- Filkoski, R. V. (2015). 3-D Modelling Of Pulverised-Coal Combustion In Power Boiler 3-D Modelling Of Pulverised-Coal Combustion
- 10. Hidayat, R. (2015). Studi Numerik Karakteristik Aliran Gas-Solid dan Pembakaran Tangentially Fired Pulverized-Coal Boiler 315 MWe Dengan Variasi Sudut Tilting dan Nilai Kalor Batubara (Studi Kasus PLTU Pacitan Unit 1).Thesis Master.Institut Teknologi Sepuluh November, Surabaya
- Park, H. Y., Baek, S. H., Kim, Y. J., Kim, T. H., Kang, D. S., & Kim, D. W.
 (2013). Numerical and Experimental Investigations on The Gas

Temperature Deviation in a Large Scale, Advanced Low NOx, Tangentially Fire Pulverized Coal Boiler. *Fuel*, hal 641-646

- 12. Sa'Adiyah, D., Bangga, G., Widodo, W., & Ikhwan, N. (2017). Numerical study of flow, combustion and emissions characteristics in a 625 MWe tangentially fired boiler with composition of coal 70% LRC and 30% MRC. *AIP Conference Proceedings*, 1867
- The Babcock&Wilcock Company.(2015). Steam : Its Generation and Use
 42nd Edition. Charlotte, North Carolina, USA
- 14. Tian, Z. F., Witt, P. J., Schwarz, M. P., & Yang, W. (2017). Numerical Modelling of Pulverised Coal Combustion. In Handbook of Multiphase Flow Science and Technology
- 15. Udiklat PLN, (2017), Modul Materi Pemeliharaan Boiler, Jakarta
- 16. Komarudin, Andrian Saputro, Erfiana Wahuningsih (2020). Analisis Kenaikan Plant Heat Rate PLTU Sebelum Perbaikan Berkala Terhadap Kondisi Testing Komisioning (Studi Kasus : PLTU XX) (Juni 2020)
- 17. NS Hutomo, A Wahjudi, Numerical study effect of burner tilt angle on the boiler rear pass temperature on PLTU Banten 1 Suralaya under LRC coal conditions,AIP Conference Proceeding (2019)

LAMPIRAN 1

Data Operasi PLTU Pangkalan Susu Komissioning (reff) & Performance Test

12 Mei 2022

					Fa	ktor	Lo	osses	
No	Parameter	Reff	Actual	Deviasi	% HR	Change	% HR	kCal/ kWh	Juta/hari
1	Generator Gross Output (kW)	192.69	192.69	0.00					
2	NPHR Corrected (kCal/kWh)	2724.42	2826.59	102.17			3.75	102.17	86.85
3	NPHR Tolerance (10%)								
	Subtotal (kCal/kWh)							117.54	99.90
	Other Factors (kCal/kWh)							-15.36	-13.06
Α	Operator Controllable								
1	Flue Gas in AH, °C	382	393	10.90	0.35	5.50	0.69	18.90	16.07
2	Orsat O ₂ Gas in AH, %	1.97	2.90	0.93	0.29	1.00	0.27	7.32	6.22
3	Main Steam Temperature, °C	536.62	516	-20.19	-0.15	5.50	0.55	15.01	12.75
4	Hot Reheat Steam Temperature, °C	536.62	513	-23.54	-0.14	5.50	0.60	16.32	13.87
5	Main Steam Pressure, kg/cm2	114.54	125.58	11.04	-0.04	0.70	-0.63	-17.19	-14.61
6	Water spray to DeSH, %	3.49	0.76	-2.69	0.02	1.00	-0.05	-1.47	-1.25
7	Water spray to DeRH, %	2.51	0.98	-1.45	0.20	1.00	-0.29	-7.89	-6.70
	Subtotal 1							31.01	26.35
В	Unit Controllable								
1	Auxiliary Power, %	8.38	8.36	-0.02	1.00	1.00	-0.02	-0.41	-0.35
2	Final Temperature FW Heater	238.99	212.02	-26.97	-0.10	2.50	1.08	29.39	24.98
3	Conderser Vacuum, mmHgA	-685.00	-676.47	8.53	0.10	1.00	0.85	23.23	19.75
	Subtotal 2							52.21	44.38
С	Turbine Component								
1	HP Turbine Efficiency, %	75.75	73.93	-1.81	-0.18	1.00	0.33	8.90	7.56
2	IP Turbine Efficiency, %	83.57	82.64	-0.93	-0.17	1.00	0.16	4.29	3.65
3	LP Turbine Efficiency, %	69.39	70.24	0.85	-0.45	1.00	-0.38	-10.37	-8.82
	Subtotal 3							2.82	2.39
D	Cycle Component								
1	TTD HPH 1, °C	2.3	-55.0	-57.33	0.10	2.50	-2.29	-62.48	-53.11
2	TTD HPH 2, °C	0.1	10.7	10.60	0.03	2.50	0.13	3.47	2.95
3	TTD HPH 3, °C	2.8	2.4	-0.42	0.03	2.50	-0.01	-0.14	-0.12
4	TTD LPH 5, °C	9.7	1.9	-/.//	0.03	2.50	-0.09	-2.54	-2.16
5	TTD LPH 6, °C	17.9	23.6	5.64	0.03	2.50	0.07	1.84	1.57
0		25.7	20.3	-5.47	0.03	2.50	-0.07	-1.79	-1.52
0		16.5	-52.7	-70.12	0.03	2.50	-0.22	-7.64	6.50
9	DCA HPH 2 °C	32.5	35.6	3.04	0.01	2.50	-0.28	-7.04	0.30
10		17.3	28.0	10.66	0.01	2.50	0.01	1 16	0.20
11	DCALPH 5 °C	24.1	43.5	19 39	0.01	2.50	0.08	2 11	1.80
12	DCA LPH 6. °C	30.4	44.0	13.55	0.01	2.50	0.05	1.48	1.26
13	DCA LPH 7. °C	22.1	15.1	-7.03	0.01	2.50	-0.03	-0.77	-0.65
14	DCA LPH 8, °C	27.5	26.8	-0.73	0.01	2.50	0.00	-0.08	-0.07
	Subtotal 4							-1.97	-1.67
Е	Boiler Component								
1	Moisture in Fuel (%)	30.50	33.89	3.39	0.17	1.00	0.58	15.70	13.35
2	H in Fuel (%)	2.73	3.54	0.81	1.20	1.00	0.97	26.48	22.51
3	Air Heater Leakage, APH A (%)	5.50	8.57	3.07	0.05	1.00	0.15	4.19	3.56
4	Air Heater Leakage, APH B(%)	5.50	7.95	2.45	0.05	1.00	0.12	3.33	2.83
5	Air Heater Effectiveness, APH A(%)	66.00	66.69	0.69	-0.15	1.00	-0.10	-2.81	-2.39
6	Air Heater Effectiveness, APH B(%)	66.00	66.25	0.25	-0.15	1.00	-0.04	-1.02	-0.87
7	FDF Inlet temperature, °C	28.48	30.53	2.05	-0.05	1.00	-0.10	-2.79	-2.37
8	Air Temperature Outlet Mill, °C	60.02	60.16	0.15	-0.04	5.50	0.00	-0.03	-0.02
	Subtotal 5							43.05	36.59
F	Make Up Water, (t/h)	7.32	3.41	-3.91	0.09	1.00	-0.35	-9.59	-8.15
	Subtotal 6							-9.59	-8.15
	Note :	D ///	000	ł					
	Asumsi narga batubara	Kp/Kg	800	ł					
-	nnv balubara saat Perjormance Test	KCal/Kg	4066.00	ł					
-	nupiun per Kan Asumsi kWH Operasi per Hari (190	крукса	0.20	ł					
	MW nett)	Kwh	4320000						

Analisa Batubara PT Mei 2022

	_	REPOR	T OF A	NALYS	s		
Sample NA	ME R	BA	TLBARA	UNIT 1	20054A	10	
SAMPLE TO		E PL	TU PAN	GKALAN	SUSU MB-MD	N/TV /2/	022
DATE OF R	ECEIVED	: Ma	ay 12, 2	022			
ANALYZED	REQUIRED	: Ch	emical A	Inalysis			
DESCRIPTIO	ON OF SAMPLE	: 1(One) Sa	mple	Direction 1		
		Pa	sinht/Va	Unsealed	2.006	ag ía	
DATE OF ANNAL YZED May 12, 2022, up to May 16, 2022							
DATE OF IS	SUED	: Ma	iy 17,20	22			
results are as	rt, that the sample have been de follows :	livered by clien	t and was	carried or	it analysis	n accorda	nce with Standard method. 1
	Parameter	Unit		R	esult		Methods
			AR	ADB	DAF	DAFB	
Total Moistu	re	%	33.89				ASTM D3302/D3302M-15
	Moisture in the Analysis Sample	%	-	13.58			ASTM D3173/D3173M-12
Proximate	Ash Content	%	5.66	7.40	8.56	-	ASTM D 3174-12 (2018)
	Volatile Matter	%	31.66	41.38	47.88	52.37	80 562:2010
	Fixed Carbon	%	28.80	37.64	4356	47.63	ASTM D 3172-13
Total Sulphu	r	%	0.24	0.32	0.37	0.40	A5TM D 4239-18
Gross Calori	lic Value (GCV)	Kcal/Kg	4066	5316	6151	6727	ASTM D5865/D5865-19
	Total Carbon	%	45.62	58.79	58.02	74.39	100000000000
Ultimate*	Nitrozen	96	3.34	5.48	6.34	6.93	ASIM U 55/3-10
	Ovisen	04	10.35	1252	15 66	1712	Br Difference
	Sen Laboratorium PT, Surveyer Indonesia Falantas	70.	1000000	19.93	13.00	17.12	by billelence

Analisa Fly Ash PT Mei 2022

SAMPLE NAME: I CLENT DLENT DATE OF RECEIVED DATE OF RECEIVED DECKIPTION OF SAMPLE DATE OF ANNAL/YZED DATE OF ISSUED This is in cost. that the wards have been directly and a flow	Report N	io. : RC FLY AS PLTUS 055/S May 12 Chemic 1 (One) Packing Weight May 12, May 17, client and	Arcall DA – 010 SH UNIT PANGKAL SEAM-2: 2,2022 Ial Analy:) Sample 1: Unsea /Volume ,2022, u 2022 was carrie	1 AN SUSL 2/LMB-T sis eled Plast : ± 500 p to May	52A 4DN/IV/ ic bag 9 16, 2022 16, 2022	2022
Promotor	11-14		R	esult		
radificter	Unit	AR	ADB	DAF	DAFB	Methods
Total Moisture	%	0.31			-	ASTM D3302/D3302M-1
Moisture in the Analysis Sample	%	-	0.30			ASTM D3173/D3173M-1
Total Carbon*	%	0.55	0.55	0.55	-	ASTM D 5373-16
۵. م	A	GUS R	IA MUR	PRVEN	OR SIA	

Analisa Bottom Ash PT Mei 2022

SAMPLE NAME CLIENT CLIENT DATE OF RECEIVED NANL YZED REQUIRED DESCRIPTION OF SAMPLE DATE OF ANNALYZED DATE OF ISSUED	eport No	BOTTO PLTU P 056/S May 12, Chemic 1 (One) Packing Weight, May 12, May 12, May 12,	M ASH U ANGKAL 2022 al Analys Sample : Unsea Volume 2022, up 2022	AZZODS. NIT 1 AN SUSU (/LMB-M is led Plast : ± 1,09 o to May	10N/IV/ ic bag 8 Kg 16 2022	2022
This is to report, that the sample have been d results are as follows :	elivered by	ctent and	was carrie Re	d out analy esult	sis in acco	dance with Standard method. The
Parameter	Unit	AR	ADB	DAF	DAFB	Methods
Total Moisture	%	37.51		-	-	ASTM D3302/D3302M-1
Moisture in the Analysis Sample	%		0.93			ASTM D3173/D3173M-1
Total Carbon*	%	0.47	0.74	0.75	-	ASTM D 5373-16
	A	GUS RI	Hen MUR		YOR	

LAMPIRAN 2

Hasil pengukuran flue gas outlet boiler (Alat flue gas analyzer) PT Mei 2022

	APH A																
	Parameter	T-gas °C	T-air ⁰C	02 %	CO2 %	CO ppm	NO ppm	NOx ppm		Parameter	T-gas °C	T-air °C	02 %	CO2 %	CO ppm	NO ppm	NOx ppm
	Rata-rata	396.33	32.93	2.83	14.96	1.06	117.82	101.65		Rata-rata	159.20	32.25	3.57	17.06	-3.68	119.41	152.94
INLEI	Max	399.80	33.50	2.95	15.30	2.20	137.00	193.00	UUILEI	Max	165.86	33.40	3.58	17.23	-3.30	134.00	198.00
	Min	391.48	32.20	2.83	14.60	-0.60	102.00	35.00		Min	147.08	31.50	3.55	16.88	-3.90	97.00	100.00
								API	H B								
	Parameter	T-gas °C	T-air ℃	02 %	CO2 %	CO ppm	NO ppm	NOx ppm		Parameter	T-gas °C	T-air °C	02 %	CO2 %	CO ppm	NO ppm	NOx ppm
	Rata-rata	390.13	34.31	2.97	15.04	-3.54	93.57	131.14		Rata-rata	155.29	33.54	3.59	17.86	-2.87	93.25	134.75
INLET	Max	392.73	35.70	2.97	15.40	-2.90	114.00	176.00	UUILEI	Max	157.99	34.00	3.59	18.47	-2.60	113.00	178.00
	Min	386.78	33.00	2.96	14.20	-4.40	77.00	86.00		Min	146.94	32.60	3.58	17.24	-3.20	76.00	100.00

LAMPIRAN 3

NPHR Input-Output Method

Input-o	utput da	ata coal	flow DCS		12	2 Mei	MiL	Ą	MIL	LB	MIL	LC	MILL	D	MIL	LE	
Waktu	Gross Load (MW)	Netto Load (MW)	Gross (MWh)	Netto (MWh)	UAT (MWh)	SST (MWh)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	NPHR (Kcal/Kwh)
5/12/2022 10:00	199	184	96415.01	89181.06	6686.58	12493000	255945.00	0.00	317922	29.63	320221	26.58	284727	28.56	333154	30.60	2552.06
5/12/2022 10:15	197	182				12493750	255945.00	0.00	317929	25.80	320227	27.37	284735	28.96	333162	30.73	2524.00
5/12/2022 10:30	194	179	98356.08	90825.95	6783.92	12494420	255945.00	0.00	317936	27.40	320234	26.76	284742	30.59	333169	26.86	2540.77
5/12/2022 10:45	192	176				12495080	255945.00	0.00	317943	26.08	320241	27.61	284749	29.01	333176	27.82	2548.63
5/12/2022 11:00	192	177	96470.94	89085.55	6688.38	12495740	255945.00	0.00	317949	26.42	320248	28.77	284756	30.23	333183	28.47	2611.24
			194 77	180.01	13.47	274	0.00		27.00		27.00		29.00		29.00		2529.86

LAMPIRAN 4:

Perhitungan Efisiensi Boiler–Indirect Method PT Mei 2022

Parameter	Symbol	Unit	Value
Higher Heating Value (AR)	He	kcal/kg-f	4,066.00
Higher Heating Value (AR)	Hf	kJ/kg-f	17,023.53
Fuel Lower Heating Value			
Total H2 including moisture	Ht	wt %	4.19
Latent Heat Water for LHV	LHVHfg	kJ/kg-f	2,425.44
Lower Heating Value (AR)	Hfl	kJ/kg-f	16,115.69
Ultimate Analysis			,
Carbon Content (AR)	MpCF	wt%	45.62
Hvdrogen Content (AR)	MpH2F	wt%	3.54
Oxygen Content (AR)	MpO2F	wt%	10.35
Sulfur Content (AB)	MpSF	wt%	0.24
Nitrogen Content (AR)	MpN2F	wt%	0.69
Ash Content (AR)	MnAsE	wt%	5.66
Moisture Content (AR)	MpW/F	wt%	33.80
Total	INIPANI	wt%	99.99
Provimate Analysis		VV 1/0	55.55
Total Moisture Content (AR)	MEr\M/E	wt%	33.89
Eived Carbon Content (AR)	MErEC	wt%	28.80
Volatile Matter (AR)	MEr\/m	vv t /0	20.00
Ach Contont (AR)	MErAcE	vv L /0	51.00
Total	IVIFIASE	vv L/6	100.00
Total	Macfa	W1%	100.00
Carbon Content in Fly Ash	NipCta	Wt %	0.55
Carbon Content in Bottom Asn	Пирсва	Wt %	0.75
Fly Ash Split	XUCF	%	0.90
Bottom Asn Split	XUCD	%	0.10
Mass of Residue		kg/kg tuei	0.06
Carbon in Ash	MpCA	kg/kg refuse	1.30
Unburn Carbon in Fuel	MpUbC	wt%	0.65
Carbon Burned Content	MpCb	wt%	44.97
Flue Gas Analysis		1 1.44	
AH Inlet 02 in dry flue gas	DVp02	dry vol %	2.90
AH Outlet 02 in dry flue gas	DVp02Lv	dry vol %	3.58
AH Inlet CO in dry flue gas	DVpCO	dry vol %	0.76
AH Inlet CO2 in dry flue gas	DVpCO2	dry vol %	15.01
Air and Gas Temperature	T	1	
Reference temperature = 30,0 °C (AH inlet temperature)	Tre	°C	30.00
Ambient air temperature (dry bulb) = FDF inlet	Tdb	°C	31.72
Ambient air temperature (wet bulb) = FDF inlet	Twb	°C	27.28
Relative Humidity	RHM	%	61.88
Barometric pressure	Ра	psia	14.65
Saturation pressure of water vapor in air (dry-bulb)	PsWvTdb	psia	0.68
Partial pressure of water vapor in air	PpWvA	psia	0.42
Absolute humidity	MFrWDA	kg/kg-da	0.02
AH inlet dry air temperature	TA2	°C	30.15
AH Inlet Tempering air (AH Inlet dry air) temperature	TA1h	°C	43.37
AH Inlet air mean temperature	Taen	°C	35.83
AH Inlet gas temperature	TFgEn	°C	393.23
AH Outlet gas temperature (uncorrected = including leakage)	TFgLv	°C	157.25
AH Outlet gas temperature (uncorrected = excluding leakage)			
correction value	TDITAEn	°C	-
AH outlet gas temperature (corrected = excluding leakage)	TFgLvCr /	°C	160.82
Correction of AH outlet gas temp, for total moisture in fuel	Cr	°C	_
AH outlet gas temperature (corrected = excluding leakage)	TDITAEnD	د •۲	
Fuel temperature	TF	°C	21 72
Average Bottom Ash Temperatura	TCha	ر د	000.00
Average bottom Ash remperature	i Cua	L L	00.00

Parameter	Symbol	Unit	Value
Enthalphy Calculation			
Enthalphy of dry air at AH inlet air (average)	HDA	kJ/kg	10.87
Enthalphy of dry vapor at AH inlet air (average)	HWv	kJ/kg	20.19
Enthalphy of dry gas at AH outlet gas (corrected=Excluding Leakage)	HDFgLvCr	kJ/kg	136.10
Enthalphy of water vapor at AH outlet gas (corrected=Excluding Leakage)	HWvLvCr	kJ/kg	256.70
Enthalphy of dry gas at AH outlet gas (corrected=Including Leakage)	HDFgLv	kJ/kg	132.45
Enthalphy of dry air at AH outlet gas (corrected=Including Leakage)	HDAFgLv	kJ/kg	133.64
Enthalphy of water vapor at AH outlet gas (corrected=Including Leakage)	HWvLv	kJ/kg	240.17
Enthalphy of steam at AH outlet gas	HstLvCr	kJ/kg	2804.02
Enthalphy of water at reference temperature	Hw	kJ/kg	125.60
Enthalphy of water vapour at reference temperature	Hwv	kJ/kg	2556.35
Enthalphy of Fly Ash at Average Fly Ash Temperature	HCba	kJ/kg	1.19

AH Inlet Gas Calculation

Theoretical air	MFrThACr	kg/kg-f	5.95
Moles of theoretical air at AH inlet	MoThACr	kmol/kg-f	0.21
Moles of dry products from the combustion of fuel	MoDPc	kmol/kg-f	0.04
Excess air	ХрА	%	15.65
Dry air	MFrDA	kg/kg-f	6.89
Moisture from the combustion of hydrogen in the fuel	MFrWH2F	kg/kg-f	0.32
Moisture from water in fuel	MFrWF	kg/kg-f	0.34
Moisture in air	MFrWA	kg/kg-f	0.1265
Moisture in AH inlet gas	MFrWFg	kg/kg-f	0.78
Wet gas from fuel	MFrFgF	kg/kg-f	0.94
Wet gas at AH inlet	MFrFg	kg/kg-f	7.95
Dry gas	MFrDFg	kg/kg-f	7.17

AH Outlet Gas Calculation

Excess air	XpALv	%	20.05
Dry air	MFrDALv	kg/kg-f	7.15
AH leakage dry air	MFrDAL	kg/kg-f	0.26
AH leakage wet air	MFrWAL	kg/kg-f	0.27
AH outlet wet gas	MFrFGLv	kg/kg-f	8.22

AH Outlet Gas Temperature (Corrected) Calculation

Mean specific heat of wet air	MnCpA	kJ/kg/°C	1.03
Mean specific heat of wet gas	MnCpFg	kJ/kg/°C	1.16871
Enthalpy of AH outlet wet gas (corrected)	HFgLvCr	kJ/kg	147.96
Enthalpy of AH outlet wet gas (uncorrected)	HFgLv	kJ/kg	142.77
Moisture in AH outlet gas	MFrWFgLv	kg/kg-f	0.79
AH outlet total moisture in gas (corrected)	MFrWFgLvCr	kg/kg	0.10
AH outlet total moisture in gas (uncorrected)	MgFrWFgLv	kg/kg	0.10
Enthalpy of wet air of AH outlet gas	HATFgLv	kg/kg	135.56
Enthalpy of AH inlet wet air	HAEn	kg/kg	11.04
Moisture in AH inlet wet air	MFrWA	kg/kg	0.02
Secondary air flow ratio	XpFrA2	%	57.04
Primary air flow ratio	XpFrA1h	%	42.96

Boiler Efficiency Calculation (Energy Balance Method)

L1 : Heat Loss due to Heat in Dry Flue Gas

Heat Loss due to heat dry gas	L1	kJ/kg-f	975.40
Heat Loss (% fuel input HHV)		%	5.73
Heat Loss (% fuel input LHV)		%	6.05

Parameter	Symbol	Unit	Value
L2 : Heat Loss due to Moisture in Fuel		· ·	
Heat loss due to moisture in fuel (HHV Basis)	L2	kJ/kg-f	907.71
Heat Loss (% fuel input HHV)		%	5.33
Heat loss due to moisture in fuel (LHV Basis)	L2I	kJ/kg-f	83.93
Heat Loss (% fuel input LHV)		%	0.52
L3 : Heat Loss due to Moisture from Burning of Hydrogen in Fu	el		
Heat loss due to moisture from burning of hydrogen in fuel	1.2		0.47.27
(HHV Basis)	L3	кј/кд-т	847.37
Heat Loss (% fuel input HHV)		%	4.98
Heat loss due to moisture from burning of hydrogen in fuel		1.4	70.05
(LHV Basis)	L3I	kJ/kg-t	/8.35
Heat Loss (% fuel input LHV)		%	0.49
L4 : Heat Loss due to Moisture in Air			
Heat loss due to moisture in air	L4	kJ/kg-f	32.47
Heat Loss (% fuel input HHV)		%	0.19
Heat Loss (% fuel input LHV)		%	0.20
L5 : Heat Loss due to Combustible in Refuse			1
Heat loss due to combustible in refuse	L5	kJ/kg-f	219.05
Heat Loss (% fuel input HHV)		%	1.29
Heat Loss (% fuel input LHV)		%	2.72
L6 : Heat Loss due to Surface Radiation and Convection (ABMA	Chart)		
Maximum continuous output (BMCR Design)	ABMA	x10^6 Btu/h	
Heat Loss due to Surface Radiation and Convection (ABMA	1.6		0.10
Chart)	LO	%	0.18
Heat Loss (kJ/kg fuel)		kJ/kg-f	30.64
Heat Loss due to Surface Radiation and Convection LHV		0/	0.20
Basis(ABMA Chart)	LOI	70	0.20
Heat Loss due to Surface Radiation and Convection LHV		0/	0.19
Basis(ABMA Chart)		70	0.18
L7 : Heat Loss due to Unmeasured Losses			
Heat loss due to Unmeasured Losses (% fuel input HHV)	L7	kJ/kg-f	42.56
		%	0.25
Heat loss due to Unmeasured Losses (% fuel input LHV)		kJ/kg-f	40.29
		%	0.25
Heat Loss due to Sensible Heat in Fly Ash		kJ/kg-f	7.75
Heat Loss (% fuel input HHV)		%	0.05
Heat Loss (% fuel input LHV)		%	0.05
Heat Loss due to Formation Carbon Monoxide		kJ/kg-f	51,198.28
		%	300.75
		%	317.69

B1 : Heat Credit Entering Air

Entering air heat credit	QqBDA	kJ/kg-f	74.88
Moisture Entering with Inlet Air			
Moisture Entering with Inlet Air heat credit	QqBWA	kJ/kg-f	2.55
Sensible Heat in Fuel			
Enthalphy of fixed carbon	HFcRe	kJ/kg	5.19
Enthalphy of Volatile matter 1	HVm1Re	kJ/kg	11.74
Enthalphy of Volatile matter 2	HVm2Re	kJ/kg	20.49
Enthalphy of Ash	HRsrRe	kJ/kg	5.16
Enthalpy of total moisture	HWRe	kJ/kg	28.14
Mass fraction of volatile matter, dry-ash free	MFrVmCr	wt%	52.37
Volatile matter2 content	MfrVm2	kJ/kg-f	0.06
Volatile matter1 content	MfrVm1	kJ/kg-f	0.32
Sensible heat in fuel heat credit	QqBF	kJ/kg-f	16.27
Total heat credit	B1	kJ/kg-f	93.70

Parameter	Symbol	Unit	Value
B2 : Power Consumption odf Pulverizer /Forced Draft Fan/Prima	ary Air Fan/Coal	Feeder	
A-Pulverizer power consumption	QX _{A-Pulverizer}	kJ/h	0.000280
B-Pulverizer power consumption	QX _{B-Pulverizer}	kJ/h	0.092883
C-Pulverizer power consumption	QX _{C-Pulverizer}	kJ/h	0.108642
D-Pulverizer power consumption	QX _{D-Pulverizer}	kJ/h	0.108670
E-Pulverizer power consumption	QX _{E-Pulverizer}	kJ/h	0.106693
A-BCP power consumption	QX _{A-BCP}	kJ/h	0.00
B-BCP power consumption	QX _{B-BCP}	kJ/h	0.00
A-AH power consumption	QX _{A-AH}	kJ/h	0.002296
B-AH power consumption	QX _{B-AH}	kJ/h	0.002489
Total power consumption	B2	kJ/h	0.421953

Qro : Boiler Heat Output

SH outlet steam enthalpy	Нvр	kJ/kg	3,388.88
SH outlet steam pressure	Рvр	Bara	124.25
SH outlet steam temperature	Тvp	°C	516.43
Main steam flow (=Waalim + Wss)	Wvp	kg/h	536,420.12
ECO inlet water enthalpy	Haalim	kJ/kg	911.03
ECO inlet water pressure	Paalim	bar	135.30
ECO inlet water temperature	Taalim	°C	212.02
ECO inlet water flow	Waalim	kg/h	532,282.12
Reheat steam flow	Wvrec	kg/h	536,437.33
RH outlet steam enthalpy	Hrc	kJ/kg	3,493.15
RH outlet steam pressure	Prc	bar	23.67
RH outlet steam temperature	Trc	°C	513.09
RH inlet steam enthalpy	Hrf	kJ/kg	3,057.30
RH inlet steam pressure	Prf	Mpag	23.67
RH inlet steam temperature (RH spray input)	Trf	°C	513.09
RH inlet steam temperature (RH spray output)	Tfr'	°C	
SH spray water flow	Wss	kg/h	4,138.00
SH spray water enthalpy	Hss	kJ/kg	794.59
SH spray water pressure	Pss	Mpag	139.75
SH spray water temperature	Tss	°C	185.66
RH spray water flow	Wrs	kg/h	5,334.00
RH spray water enthalpy	Hrs	kJ/kg	794.59
Boiler heat output	Qro	kJ/h	1,577,850,004.38

BEc : Boiler Efficiency

Boiler Fuel Efficiency (HHV Basis)	η Bf (HHV)	%	82.60
Boiler Fuel Efficiency (LHV Basis)	η Bf (LHV)	%	91.53
Boiler Gross Efficiency (HHV Basis)	η Bg (HHV)	%	82.15
Boiler Gross Efficiency (LHV Basis)	η Bg (LHV)	%	91.00

Boiler Correction Factor

LHV of Fuel vs Eff	f1	%	-0.16
Moisture Content vs Eff	f2	%	0.15
Hydrogen Content	f3	%	-0.16
Ambient Temp and Relative Humidity	f4	%	0.00
Correction for ash of fuel as fired to eff.	f5	%	0.00
Total correction factor	f total	%	-0.17
Boiler Eficiency After Correction		-	
Boiler Gross efficiency (LHV Basis)	η BC (LHV)	%	91.36

 Qri : Boiler Heat Input
 Qri
 kJ/h
 1,910,150,224.43

LAMPIRAN 5

Kalkulasi Heat Rate Performance Test Mei 2022

PARAMETERS	SYMBOL	CALCULATION FORMULA	UNIT	VALUE
Main Steam				
Pressure	P _{ms}	Measured	bar	124.25
Temperature	T _{ms}	Measured	°C	516.43
Enthalphy	H _{ms}	Steam table	kJ/kg	3,388.88
Cold Reheat Steam (HP Exhaust)				24.05
Pressure	P _{crh}	Measured	bar	24.95
Temperature	I crh	Measured Characteristic	C	319.91
Enthalphy	H crh	Steam table	кј/кg	3,057.30
Dressure	P	Measured	bar	22.67
Temperature	T.	Measured	°C	513.09
Enthalphy	H	Steam table	k1/ka	3 493 15
Final Feed Water Outlet	hrh	Steam table	107 Kg	3,433.13
Pressure	P ffw	Measured	bar	136.31
Temperature	T ffw	Measured	°C	212.02
Enthalphy	H _{ffw}	Steam table	kJ/kg	911.07
Feedwater Outlet HP 2 Heater				
Pressure	P ffw_HPH2_Out	Measured	bar	139.15
Temperature	T ffW_HPH2_Out	Measured	°C	211.29
Enthalphy	H ffw_HPH2_Out	Steam table	kJ/kg	907.89
Feedwater Outlet HP 3 Heater	_			
Pressure	P ffW_HPH3_Out	Calculated	bar	139.75
Temperature	T _{ffW_HPH3_Out}	Measured	°C	185.66
Enthalphy	H ffw_HPH3_Out	Steam table	kJ/kg	794.59
Feedwater Inlet HP 3 Heater	-			400.75
Pressure	P _{ffW_HPH3_In}	Measured	bar	139.75
Temperature	T ffW_HPH3_In	Measured	-C	159.27
Enthalphy	H ffw_HPH3_In	Steam table	kJ/kg	680.37
Condenste water Deaerator Outlet	0	Moscurod	bar	7 5 2
Temperature	F ffW_DEA_Out	Measured	°C	150 27
Enthology	ffW_DEA_Out	Steam table	ki/ka	672 50
Deaerator Shell	ffw_DEA_Out	Steam table	107 Kg	072.50
Pressure	P DEA SHELL	Measured	bar	5.65
Temperature		Measured	°C	155.50
Enthalphy	H DEA SHELL	Steam table	kJ/kg	656.04
Condensate Water Inlet Deaerator				
Pressure	P ffW_DEA_In	Measured	bar	22.31
Temperature	T ffw_DEA_In	Measured	°C	142.53
Enthalphy	H ffw_DEA_In	Steam table	kJ/kg	601.24
Extraction Steam Inlet HP 1 Heater				
Pressure	P 1s_in	Measured	bar	5.77
Temperature	T _1s_in	Measured	°C	160.05
Enthalphy	H _{1w_out}	Steam table	kJ/kg	2,761.09
Extraction Steam Inlet HP 2 Heater	-			25.42
Pressure	P 2s_in	Measured	bar	25.42
remperature	1 2s_in	iviedsured	L	280.37
Entraction Steam Inlet HP 3 Heater	T 2s_in	Steam Lable	NJ/Kg	2,975.15
Pressure	P as in	Measured	bar	12
Temperature	T 2- 1-	Measured	°C.	467
Enthalphy	H ar in	Steam table	kJ/kg	3406
Extraction Steam Inlet Deaerator	33_111		., 0	
Pressure	P deas in	Measured	bar	5.22
Temperature	T _{deas in}	Measured	°C	122.48
Enthalphy	H dea in	Steam table	kJ/kg	2,711.15
Drain Water Outlet HP 1 Heater				
Pressure	P 1w_d	Calculated	bar	5.60
Temperaure	T 1w_d	Measured	°C	157.62
Enthalphy	H _{1w_d}	Steam table	kJ/kg	665.26
Drain Water Outlet HP 2 Heater			<u> </u>	
Pressure	P 2w_d	Calculated	bar	24.66
Temperature	T 2w_d	Measured	°C	221.22
Enthalphy	H _{2w_d}	Steam table	kJ/kg	949.31
Drain water Outlet HP 3 Heater	P	Calculated	bar	11 7
Temperature	<u>Γ 3w_d</u> Τ.	Measured	°C	11./5
Enthalphy	- <u>3w_d</u>	Steam table	kl/ka	776 51
encodipity	•• 3w_d			,,5.51

PARAMETERS	SYMBOL	CALCULATION FORMULA	UNIT	VALUE
Deaerator Vent				
Pressure	P dea_vent	Calculated	bar	5.65
Temperature	T dea_vent	Measured	°C	155.50
Enthalphy	H _{dea_vent}	Steam table	kJ/kg	656.04

B. Heat Balance Calculation around HP Heater

Item	Symbol	Calculation Formula	Unit	VALUE
HP #1 Heater Superheat Steam	K1	(Hf-Hw2)/(Hex1-Hd1)		0.00
LID #2 Llootor Superheat Steam	К2	(Hw2-Hw3)/(Hex2-Hd2)		0.06
HP #2 Heater Superneat Steam	К3	(Hd1-Hd2)/(Hex2-Hd2)		(0.14)
LID #2 Llootor Superheat Steam	К4	(Hw3-Hw4)/(Hex3-Hd3)		0.04
HP #3 Heater Superneat Steam	К5	(Hd2-Hd3)/(Hex3-Hd3)		0.07
	К6	(Hcwo-Hcw)/(Hex4-Hcwo)		0.03
Deaerator	К7	(Hd3-Hcwo)/(Hex4-Hcwo)		0.05
	К8	(Hdv-Hcwo)/(Hex4-Hcwo)		(0.01)
	А	K1+K2-K1.K3+K4-K5(K1+K2-K1.K3)		0.10
Condensate Water Flow to Deaerator	Mcw	Measured	kg/h	521,050.40
Deaerator Vent Flow	Mdv	36*vPd/Vd Vd=Volume Spesific	kg/h	6,145.46
Deaerator Tank Storage	Mds	Measured (from tank Storage calculation)	kg/h	40,467.45
Superheater Spray Flow	Mis	Measured	kg/h	4,138.00
Reheater Spray Flow	Mir	Measured	kg/h	5,334.00
Final Feedwater Flow	Mf	(1+K6)*Mcw-(1-K8)*Mdv -Mis-Mir - Mds	kg/h	532,282.12
Final Feedwater Flow (Data DCS)		1-A+K7*A	kg/h	542,682.00

C. Main Steam Flow

Item	Symbol	Calculation Formula	Unit	Value
Final Feed Water Flow	Mf	Calculated	kg/h	532,282.12
Make up Water Flow to Condenser	Mm	Measured	kg/h	3,410.00
Condenser Hot Well Storage	Mcs	Measured (from tank Storage calculation)	kg/h	1.69
Deaerator Tank Storage	Mds	Measured (from tank Storage calculation)	kg/h	40,467.45
Steam Drum Storage	Msd	Measured (from tank Storage calculation)	kg/h	53.71
Dearator Vent Flow	Mdv	36*√Pd/Vd Vd=Volume Spesific	kg/h	6,145.46
Total Make-Up Flow	Mmu	Mcs+Mds+Msd+Mdv	kg/h	46,668.31
Superheater Spray Flow	Mis	Measured	kg/h	4,138.00
Reheater Spray Flow	Mir	Measured	kg/h	5,334.00
Main Steam Flow (at main stop valve inlet)	M1	Mf+Mis+Mmu	kg/h	583,088.43

D. Reheat Steam Flow Calculation

Item	Symbol	Calculation Formula	Unit	Value
Main Steam Flow (at main stop valve inlet)	M1	Mf+Mis-Mmu	kg/h	583,088.43
HP Gland Seal and MSV Leakage	Gs1	Commissioning data	kg/h	21,295.60
Extraction Steam Flow to HP Heater #1	Mex1	K1*Mf	kg/h	808.17
Extraction Steam Flow to HP Heater #2	Mex2	(K2-K1*K3)*Mf	kg/h	29,881.33
Extraction Steam Flow to HP Heater #3	Mex3	(K4-K5*(K1+K2-(K1*K3))*Mf	kg/h	21,107.70
Extraction Steam Flow to Deaerator	Mex4	K6*Mcw - K7*(Mex1+Mex2+Mex3)+K8*Mdv	kg/h	15,519.42
Cold Reheat Steam Flow at HP Exhaust	M2'	M1-Gs1-Mex1	kg/h	560,984.66
Cold Reheat Steam Flow at Reheater inlet	M2	M1-Gs1-Mex1-Mex2	kg/h	531,103.33
Hot Reheat Steam Flow	M3	M2+Mir	kg/h	536,437.33

E. Generator Power Calculation

ltem	Symbol	Calculation Formula	Unit	Value
Generator measured output power	Pg	Measured	MW	192.69
Generator net output power	Pg Net	Measured	MW	179.58
Aux. Power	Paux	Pg - Pgnet - Pexe	MW	12.61
Exitation Power	Pexe	Measured	MW	0.50
Generator Gross Output Power	Pgg	Pg - Pexe	MW	192.19
PARAMETERS SYMBOL CALCULATION FORMULA UNIT VALUE F. Correction Factor and Heat Rate Calculation for Unit Heat Rate F1. Heat in - Out

ltem	Symbol	Calculation Formula	Unit	Value	
Main Steam	Qms	M1*H1	kJ/h	1,976,019,221.35	
Hot Reheat Steam	Qhrs	M3*H3	kJ/h	1,873,854,271.50	
Final feed water	Qf	Mf*Hf	kJ/h	484,947,410.34	
Cold reheat steam	Qcrs	M2*H2	kJ/h	1,623,741,379.51	
Superheater Spray	Qis	Mis*His	kJ/h	2,815,381.94	
Reheater Spray	Qir	Mir*Hir	kJ/h	3,629,107.61	
Make up	Qmu	Mmu*Hmu	kJ/h	707,735.47	
Sum of Heat Input	Qin	Qms+Qhrs+Qmu	kJ/h	3,850,581,228.32	
Sum of Heat Output	Qout	Qf+Qcrs+Qis+Qir	kJ/h	2,115,133,279.41	
Total Heat Consumption	Q	Qin-Qout	kJ/h	1,735,447,948.92	

F2. Correction Factor

Item	Symbol	Calculation Formula	Unit	Value
Correction Factor for Heatrate				
Main steam pressure (MPa)	C1h	Correction Curve	167	1.02674
Main steam temperature (C)	C2h	Correction Curve	538	1.00688
Reheat pressure loss (%)	C3h	Correction Curve	10	0.99579
Reheat temperature (C)	C4h	Correction Curve	538	1.00197
Back pressure (kPa.a)	C5h	Correction Curve	7	1.01108
Superheater spray/throttle steam (%)	C6h	Correction Curve	0	1.00027
Reheater spray/throttle steam (%)	C7h	Correction Curve	0	1.00128
Make up ratio (%)	C8h	Correction Curve	0	1.01000
Total correction factor for Heatrate	TFh	C1h*C2h*C3h**C8h		1.01625
Correction Factor for Power Output				
Main steam pressure (MPa)	C1p	Correction Curve	167	0.95601
Main steam temperature (C)	C2p	Correction Curve	538	0.98602
Reheat pressure loss (%)	СЗр	Correction Curve	538	0.99031
Reheat temperature (C)	C4p	Correction Curve	10	0.99323
Back pressure (kPa.a)	C5p	Correction Curve	7	0.96039
Superheater spray/throttle steam (%)	Сбр	Correction Curve	0	1.00105
Reheater spray/throttle steam (%)	C7p	Correction Curve	0	1.00601
Make up ratio (%)	C8p	Correction Curve	0	1.00000
Total correction factor for Power Output	TFp	C1p*C2p*C3p**C8p		0.89675

F3. Heat Rate Calculation

Item	Symbol	Calculation Formula	Unit	Value
Generator measured output	tput Pg Measured		MW	192.69
Exitation power	Pexe	Measured	MW	0.50
Generator gross output	Pgg	Pg - Pexe	MW	192.19
Corrected Generator gross output	Pggc	Pgg/Fc	MW	214.31
Generator net output power	Pg Net	Pg-Paux-Pexe	MW	179.58
Power Factor	PF	Measured		0.95
Generator Transformer Efficiency	ηGT	Assigned	%	99.41
Steam Generator Efficiency	ηB (LHV)	Calculated	%	91.36
Steam Generator Efficiency	ηB (HHV)	Calculated	%	82.15
Turbine Heat Rate				
Measured Value	ЦРТ	O /Dag	kJ/kWh	9,030.04
Weasured value		Q/Fgg	kcal/kWh	2,156.79
Gross Plant Heat Rate (LHV Basis)				
Massured Value	CDHPn		kJ/kWh	9,883.78
Measured value	GPHKII(LHV)	Q/(I B _(LHV) I GT) Pgg	kcal/kWh	2,360.70
Gross Plant Heat Rate (HHV Basis)				
Massured Value	CDHPn		kJ/kWh	10,992.28
Measured value	GPTIKII _(HHV)	Q/(IIB(HHV) IIGI) Pgg	kcal/kWh	2,625.46
Net Plant Heat Rate (LHV Basis)				
Massured Value	NDHPp	O/(nP *nGT)*Dg Not	kJ/kWh	10,640.94
Weasured value	INP FIKII(LHV)	Q/(IB(LHV) IGT) Pg Net	kcal/kWh	2,541.54
Net Plant Heat Rate (HHV Basis)				
Measured Value	NDHPn	O/(nR *nGT)*Pg Not	kJ/kWh	11,834.37
	INF I IIVII(LHV)	CA (ID (LHV) ID I) FENEL	kcal/kWh	2,826.59

Note : [2] 1 kJ = 4,1868 kcal Efisiensi thermal

LAMPIRAN 6

Data Operasi PLTU Pangkalan Susu Komissioning (reff) & Performance Test

12 Mei 2022

					Faktor		U U	osses	ses	
No	Parameter	Reff	Actual	Deviasi	% HR	Change	% HR	kCal/ kWh	Juta/hari	
1	Generator Gross Output (kW)	195.41	195.41	0.00						
2	NPHR Corrected (kCal/kWh)	2729.54	2903.84	174.31			6.39	174.31	148.19	
3	NPHR Tolerance (10%)									
	Subtotal (kCal/kWh)							218.83	186.05	
	Other Factors (kCal/kWh)							-44.53	-37.86	
A	Operator Controllable									
1	Flue Gas in AH, *C	383	405	21.93	0.35	5.50	1.40	38.10	32.39	
2	Orsat O., Gas in AH, %	1.97	2.08	0.11	0.29	1.00	0.03	0.87	0.74	
2	Main Steam Temperature 10	535.95	522	4.95	-0.15	5.50	0.14	3.68	3.13	
-	Hat Bahast Steam Temperature 10	536.35	532	4.72	-0.14	5.50	0.17	3.50	3.23	
-	Main Steam Processe ke/cm2	114.49	110.20	4.91	-0.04	0.70	-0.27	-7.50	-6.29	
6	Water corruite DeSH %	3.28	4 44	1.18	0.02	1.00	0.02	0.64	0.55	
-	Water spray to Debit, N	2.60	1.04	0.74	0.02	1.00	-0.15	4.04	2.43	
-	Subtotal 1	2.00	1.04	-0.74	0.20	1.00	-0.43	25.04	20.70	
	Subtotal 1							33.04	29.79	
	Unit controllable		7.05	0.01	1.00	1.00	0.25	0.24		
1	Auxiliary Power, %	8.26	7.96	-0.31	1.00	1.00	-0.51	-8.54	10.09	
4	Final remperature FW Heater	235.68	202.90	-35.78	-0.10	2.50	1.4/	40.15	34.14	
3	Conderser Vacuum, mmHgA	-685.00	-6/7.16	7.84	0.10	1.00	0.78	21.39	18.18	
	Subtotal 2							53.20	45.23	
C	Turbine Component									
1	HP Turbine Efficiency, %	86.50	84.87	-1.63	-0.18	1.00	0.29	8.01	6.81	
2	IP Turbine Efficiency, %	93.59	88.17	-5.43	-0.17	1.00	0.92	25.18	21.41	
3	LP Turbine Efficiency, %	69.16	68.81	-0.34	-0.45	1.00	0.15	4.19	3.56	
	Subtotal 3							37.38	31.78	
D	Cycle Component									
1	TTD HPH 1, *C	2.5	3.0	0.56	0.10	2.50	0.02	0.61	0.52	
2	TTD HPH 2, *C	0.2	12.1	11.90	0.03	2.50	0.14	3.90	3.31	
з	TTD HPH 3, *C	2.9	3.8	0.87	0.03	2.50	0.01	0.28	0.24	
4	TTD LPH 5, *C	9.6	1.5	-8.09	0.03	2.50	-0.10	-2.65	-2.25	
5	TTD LPH 6, *C	17.8	24.3	6.49	0.03	2.50	0.08	2.13	1.81	
6	TTD LPH 7, *C	25.5	20.0	-5.52	0.03	2.50	-0.07	-1.81	-1.54	
7	TTD LPH 8, *C	0.0	6.0	5.97	0.03	2.50	0.07	1.96	1.66	
8	DCA HPH 1, "C	16.6	30.9	14.39	0.01	2.50	0.06	1.57	1.34	
9	DCA HPH 2, *C	32.7	42.1	9.44	0.01	2.50	0.04	1.03	0.88	
10	DCA HPH 3, *C	17.4	20.0	2.64	0.01	2.50	0.01	0.29	0.25	
11	DCA LPH 5.*C	24.2	44.0	19.86	0.01	2.50	0.08	2.17	1.84	
12	DCA LPH 6, *C	30.5	44.3	13.75	0.01	2.50	0.06	1.50	1.28	
13	DCA LPH 7. *C	22.2	10.4	-11.76	0.01	2.50	-0.05	-1.28	-1.09	
14	DCA LPH 8.*C	27.9	25.8	-2.07	0.01	2.50	-0.01	-0.23	-0.19	
F	Subtotal 4						0.01	8.86	7.53	
F	Boiler Component									
1	Moisture in Fuel (%)	30.50	35.12	4.62	0.17	1.00	0.79	21.44	18.23	
2	H in Fuel (%)	2.73	5.20	2.47	1.20	1.00	2.95	80.84	68.75	
-	Air Hester Lesksee, APH A (%)	5.50	11.92	6.22	0.05	1.00	0.22	9.64	7 24	
4	Air Hester Leakage, APH 8 (%)	5.50	6.18	0.68	0.05	1.00	0.02	0.04	0.79	
-	Air Heater Effectiveners ADU A(M)	66.00	67.26	1.06	-0.15	1.00	0.03	.5.59	0.75	
-	Air Heater Effectiveness, APT A(%)	66.00	67.30	1.30	-0.15	1.00	-0.20	-0.56		
-	All Heater Effectiveness, APH 8(%)	26.00	32.33	4.73	-0.15	1.00	-0.26	-7.14	-6.07	
-	Air Temperature Outlet Mill 10	20.45	55.22	4.75	-0.05	1.00	-0.24	-0.46	-5.49	
-	Au Temperature Oddet Mill, 10	60.05	33,42	-0.65	-0.04	5.50	0.00	0.13	0.11	
-	Subtotal S		3.00	2.44	0.00	1.00	0.75	92.81	78.91	
	wate op water, (t/h)	7.34	3.90	-5.44	0.09	1.00	-0.31	-8.46	-7.19	
\vdash	Subtotal 6							-8.46	-7.19	
	Note :			ł						
	Asumsi harga batubara	Rp/Kg	800	ł						
	HHV batubara soat Performance Test	Kcal/Kg	4065.00	L I						
	Rupiah per Kcal	Rp/Kcal	0.20	L I						
\vdash	Asumsi kWH Operasi per Hari (180 MW nett)	Kwh	4320000							
<u> </u>										

	PT SL	JRVEYOR	INDONESIA	(Persero)
--	-------	---------	-----------	-----------

REPORT OF ANALYSIS Report No. : ROA – 0104210036A

SAMPLE NAME	: PERFORMANCE TEST - BATUBARA 16-04-21
CLIENT	: PLTU PANGKALAN SUSU
SAMPLE ID	: 041/SEAM-21/LMB-MDN/IV/2021
DATE OF RECEIVED	: April 22 nd , 2021
ANALYZED REQUIRED	Chemical Analysis (ASTM / ISO)
DESCRIPTION OF SAMPLE	: 1 (One) Sample
	Packing : Unsealed Plastic bags
	Weight/Volume : ± 1.174 Kg
DATE OF ANNALYZED	: April 22 nd , 2021 up to April 27 th , 2021
DATE OF ISSUED	April 27th, 2021
DITL OF HOUSEL	

This is to report, that the sample have been delivered by client and was carried out analysis in accordance with Standard method. The results are as follows :

	and a state of the second s		1.1.1	Res	ult		Mathada
Parameter		Unit	AR	ADB	DB	DAFB	Methods
Total Moisture	8	%	35.12	-	-	-	ASTM D 3302-19
	Moisture in the Analysis Sample	%	-	13.24	-	-	ASTM D 3173-17a
	Ash Content	%	4.37	5.84	6.74	-	ASTM D 3174-12 (2018)
Proximate	Volatile Matter	%	32.52	43.49	50.13	53.75	ISO 562:2010
	Fixed Carbon	%	27.99	37.43	43.14	46.25	ASTM D 3172-13
Total Sulphur		%	0.13	0.18	0.21	0.22	ASTM D 4239-18
Gross Calorifi	c Value	Kcal/Kg	4065	5436	6266	6718	ASTM D 5865-19
	Total Carbon	%	42.28	56.54	65.17	69.88	
Ultimate *	Total Hydrogen	%	3.23	4.32	4.98	5.34	ASTM D 5373-16
	Nitrogen	%	0.71	0.95	1.09	1.17	
	Oxygen	%	14.15	18.93	21.82	23.39	By Difference

Analisa Fly Ash PT April 2021

PT SURVEYOR INDONESIA (Persero)

REPORT OF ANALYSIS Report No. : ROA - 0104210034A

SAMPLE NAME	: PERFORMANCE TEST - FLY ASH 16-04-21
CLIENT	: PLTU PANGKALAN SUSU
SAMPLE ID	: 039/SEAM-21/LMB-MDN/IV/2021
DATE OF RECEIVED	: April 22 nd , 2021
ANALYZED REQUIRED	: Chemical Analysis (ASTM)
DESCRIPTION OF SAMPLE	: 1 (One) Sample
	Packing : Unsealed Plastic bags
	Weight/Volume: ± 500 g
DATE OF ANNALYZED	: April 22 nd , 2021 up to April 27 th , 2021
DATE OF ISSUED	: April 27 th , 2021
This is to see at that the second has	

This is to report, that the sample have been delivered by client and was carried out analysis in accordance with Standard method. The results are as follows :

Parameter				Res				
		Unit	AR	ADB	DB	DAFB	Methods	
FLY ASH	Total Moisture	%	0.50	-	-	-	ASTM D 3302/D 3302M-19	
	Moisture in the Analysis Sample	%	-	0.38	-	-	ASTM D 3173/D 3173M- 17a	
	Total Carbon*	%	0.09	0.09	0.09	-	ASTM D 5373-16	

é

PT SURVEYOR I	NDONESIA (Persero)
REF Repo	PORT OF ANALYSIS rt No. : ROA – 0104210035A
SAMPLE NAME	: PERFORMANCE TEST - BOTTOM ASH 16-04-21
CLIENT	: PLTU PANGKALAN SUSU
SAMPLE ID	: 040/SEAM-21/LMB-MDN/IV/2021
DATE OF RECEIVED	: April 22 nd , 2021
ANALYZED REQUIRED	: Chemical Analysis (ASTM)
DESCRIPTION OF SAMPLE	: 1 (One) Sample
	Packing : Unsealed Plastic bags
	Weight/Volume: ± 1.364 Kg
DATE OF ANNALYZED	: April 22 nd , 2021 up to April 27 th , 2021
DATE OF ISSUED	: April 27 th , 2021

This is to report, that the sample have been delivered by client and was carried out analysis in accordance with Standard method. The results are as follows :

Demonstra		Ilmit		Re	sult		
	Unic	AR	ADB	DB	DAFB	Methods	
BOTTOM ASH	Total Moisture	%	29.41	-	- ;	-	ASTM D 3302/D 3302M-19
	Moisture in the Analysis Sample	%	-	0.34	-	-	ASTM D 3173/D 3173M-17a
	Total Carbon*	%	0.12	0.17	0.17	-	ASTM D 5373-16

LAMPIRAN 7

Hasil pengukuran flue gas outlet boiler (Alat flue gas analyzer) PT April 2021

16 April 2020													
						API	HA						
	Parameter	T-gas °C	T-air ⁰C	02 %	CO2 %	CO ppm		Parameter	T-gas °C	T-air °C	02 %	CO2 %	CO ppm
INLET	Rata-rata	401.75	29.70	1.69	18.02	92.72		Rata-rata	164.98	34.80	3.14	16.60	127.97
INCLI	Max	404.17	32.60	2.33	18.60	1041.10	OUTLET	Max	175.10	39.50	3.90	17.30	1020.70
	Min	398.28	28.20	0.98	17.41	2.50		Min	154.61	33.10	2.30	15.95	1.40
						4.04	LD.						
						API	10	-					
	Parameter	T-gas "C	T-ar °C	02%	CO2 %	CO ppm		Parameter	1-qas "C	T-air 'C	02%	CO2 %	CO ppm
NIET	Rata-rata	408.45	32.09	2.47	17.21	113.82	OUTLET	Rata-rata	164.82	35.13	2.90	16.85	15.71
INCLU	Max	409.62	34.00	3.26	18.12	866.70	CONTLET	Max	173.65	36.00	3.81	17.57	202.10
	Min	405.46	29.20	1.44	16.52	3.40		Min	156.05	34.10	2.10	16.24	-1.20

LAMPIRAN 8

NPHR Input-Output Method PT April 2021

Input-output data coal flow DCS				16 /	April 2020	Mil	А	ML	LB	MIL	LC	MILL	D	MIL	LE		SEC	
Waktu	Gross Load (MW)	Netto Load (MW)	Gross (MWh)	Netto (MWh)	UAT (MWh)	SST (MWh)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	Totalizer (Ton)	Flow Rate (Ton/h)	NPHR (Kcal/Kwh)	Gross (t/mwh)
15:00:00 AM	192	176	97065.57	89433.47	6955.77	6455780	135420.00	28.47	173968	30.58	120332	29.90	133720	0.05	185198	31.80	2788.33	0.63
15:15:00 AM	200	185				6455780	135427.00	27.21	173975	27.83	120339	30.04	133720	0.05	185206	30.95	2552.00	0.58
15:30:00 AM	193	179	98718.41	91091.54	6962.95	6455780	135434.00	30.95	173982	31.89	120346	29.53	133720	0.05	185214	31.99	2833.20	0.64
15:45:00 AM	196	180				6455800	135441.00	30.16	173990	28.12	120354	30.61	133720	0.05	185222	32.04	2738.37	0.62
16:00:00 AM	195	180	97502.98	89907.53	6928.06	6455800	135448.00	28.62	173997	29.69	120361	30.48	133720	0.05	185230	32.62	2748.01	0.62
16:15:00 AM	195	180				6455800	135455.00	26.95	174004	28.62	120369	30.05	133720	0.05	185238	33.03	2684.52	0.61
16:30:00 AM	193	178	97258.86	89588.60	6994.46	6455820	135462.00	27.63	174011	30.01	120376	30.18	133720	0.05	185246	32.54	2752.75	0.62
16:45:00 AM	200	184				6455820	135469.00	28.12	174019	29.56	120384	30.18	133720	0.05	185255	33.27	2678.90	0.60
17:00:00 PM	194	179	97746.25	90020.40	7067.91	6455820	135476.00	29.60	174026	27.19	120391	30.09	133720	0.05	185263	33.22	2736.19	0.62
			390.55	360.02	27.84	0.04	56.00		58.00		59.00		0.00		65.00		2687.26	0.61

LAMPIRAN 9

Perhitungan Efisiensi Boiler–Indirect Method PT April 2021

Parameter	Symbol	Unit	Value
Fuel Higher Heating Value			
Higher Heating Value (AR)	He	kcal/kg-f	4,065.00
Higher Heating Value (AR)	Hf	kJ/kg-f	17,019.34
Fuel Lower Heating Value			
Total H2 including moisture	Ht	wt%	4.51
Latent Heat Water for LHV	LHVHfg	kJ/kg-f	2,425.44
Lower Heating Value (AR)	Hfl	kJ/kg-f	16,041.44
Ultimate Analysis			
Carbon Content (AR)	MpCF	wt%	41.06
Hydrogen Content (AR)	MpH2F	wt%	5.20
Oxygen Content (AR)	MpO2F	wt%	12.41
Sulfur Content (AR)	MpSF	wt%	0.13
Nitrogen Content (AR)	MpN2F	wt%	1.71
Ash Content (AR)	MpAsF	wt%	4.37
Moisture Content (AR)	MpWF	wt%	35.12
Total		wt%	100.00
Proximate Analysis			
Total Moisture Content (AR)	MFrWF	wt%	35.12
Fixed Carbon Content (AR)	MFrFC	wt%	27.99
Volatile Matter (AR)	MFrVm	wt%	32.52
Ash Content (AR)	MFrAsF	wt%	4.37
Total		wt%	100.00
Carbon Content in Fly Ash	MpCfa	wt%	0.09
Carbon Content in Bottom Ash	MpCba	wt%	0.17
Fly Ash Split	xUCf	%	0.90
Bottom Ash Split	xUCb	%	0.10
Mass of Residue	MFrR/wdp	kg/kg fuel	0.04
Carbon in Ash	MpCA	kg/kg refuse	0.26
Unburn Carbon in Fuel	MpUbC	wt%	0.13
Carbon Burned Content	MpCb	wt%	40.93
Hue Gas Analysis	D11-02	41.04	2.02
AM Inlet 02 in dry flue gas	DVp02	dry vol %	2.08
All Outlet 02 in dry flue gas	DVp02Lv	dry vol %	3.02
AM Inlet C0 in dry flue gas	DVpCO	dry vol %	103.27
AM Inlet CU2 in dry flue gas	DVpCO2	dry vol %	17.62
Air and Gas Tomporphyse			
Air and Gas temperature	Tro	*0	30.00
Reference temperature = 30,0 °C (AH inlet temperature)	Tre	C	30.00
Ambient air temperature (dry bulb) = FDF inlet	Tdb	-0	31.72
Ambient air temperature (wet bulb) = FDF inlet	Twb	-c	27.28
Relative Humidity	RHM	76	61.88
Saturation processore	Pa DollarTalb	psia	14.05
Dartial pressure of water vapor in air (ury-buib)	PSWVIDD	psia	0.08
Absolute humidity	PPWVA	psia ha/ka da	0.42
Absolute numidity	TAD	kg/kg-da	0.02
All lefet Tempering air (All lefet des air) temperature	TAIL		32.94
Ari inlet rempering air (Ari inlet dry air) temperature	Taon	°C	43.22
All lolet as temperature	TeeEn	°C	405.10
All Outlet are temperature (uncorrected = including lookage)	Testa	*0	403.10
All Outlet gas temperature (uncorrected = including leakage)	TERLY	L.	104.90
correction value	TDITAEn	°C	-
AH outlet gas temperature (corrected = excluding leakage)	TFgLvCr / TFgLvCrd	°C	169.84
Correction of AH outlet gas temp, for total moisture in fuel	Cr	°C	-
AH outlet gas temperature (corrected = excluding leakage)	TDITAEnD	°C	
Fuel temperature	TF	°C	31.72
Average Bottom Ash Temperature	TCba	°C	800.00

Parameter	Symbol	Unit	Value
Enthalphy Calculation			
Enthalphy of dry air at AH inlet air (average)	HDA	kJ/kg	12.13
Enthalphy of dry vapor at AH inlet air (average)	HWv	kJ/kg	22.51
Enthalphy of dry gas at AH outlet gas (corrected=Excluding Leakage)	HDFgLvCr	kJ/kg	145.30
Enthalphy of water vapor at AH outlet gas (corrected=Excluding Leakage)	HWvLvCr	kJ/kg	274.04
Enthalphy of dry gas at AH outlet gas (corrected=Including Leakage)	HDFgLv	kJ/kg	140.26
Enthalphy of dry air at AH outlet gas (corrected=Including Leakage)	HDAFgLv	kJ/kg	141.44
Enthalphy of water vapor at AH outlet gas (corrected=Including Leakage)	HWvLv	kJ/kg	254.30
Enthalphy of steam at AH outlet gas	HstLvCr	kJ/kg	2821.38
Enthalphy of water at reference temperature	Hw	kJ/kg	125.60
Enthalphy of water vapour at reference temperature	Hwv	kJ/kg	2556.35
Enthalphy of Fly Ash at Average Fly Ash Temperature	HCba	kJ/kg	1.18

AH Inlet Gas Calculation

Theoretical air	MFrThACr	kg/kg-f	5.96
Moles of theoretical air at AH inlet	MoThACr	kmol/kg-f	0.21
Moles of dry products from the combustion of fuel	MoDPc	kmol/kg-f	0.03
Excess air	ХрА	%	10.60
Dry air	MFrDA	kg/kg-f	6.60
Moisture from the combustion of hydrogen in the fuel	MFrWH2F	kg/kg-f	0.46
Moisture from water in fuel	MFrWF	kg/kg-f	0.35
Moisture in air	MFrWA	kg/kg-f	0.1212
Moisture in AH inlet gas	MFrWFg	kg/kg-f	0.94
Wet gas from fuel	MFrFgF	kg/kg-f	0.96
Wet gas at AH inlet	MFrFg	kg/kg-f	7.67
Dry gas	MFrDFg	kg/kg-f	6.73

AH Outlet Gas Calculation

Excess air	XpALv	%	16.16
Dry air	MFrDALv	kg/kg-f	6.93
AH leakage dry air	MFrDAL	kg/kg-f	0.33
AH leakage wet air	MFrWAL	kg/kg-f	0.34
AH outlet wet gas	MFrFGLv	kg/kg-f	8.01

AH Outlet Gas Temperature (Corrected) Calculation

Mean specific heat of wet air	MnCpA	kJ/kg/°C	1.03
Mean specific heat of wet gas	MnCpFg	kJ/kg/°C	1.16871
Enthalpy of AH outlet wet gas (corrected)	HFgLvCr	kJ/kg	161.03
Enthalpy of AH outlet wet gas (uncorrected)	HFgLv	kJ/kg	153.69
Moisture in AH outlet gas	MFrWFgLv	kg/kg-f	0.94
AH outlet total moisture in gas (corrected)	MFrWFgLvCr	kg/kg	0.12
AH outlet total moisture in gas (uncorrected)	MgFrWFgLv	kg/kg	0.12
Enthalpy of wet air of AH outlet gas	HATFgLv	kg/kg	143.48
Enthalpy of AH inlet wet air	HAEn	kg/kg	12.31
Moisture in AH inlet wet air	MFrWA	kg/kg	0.02
Secondary air flow ratio	XpFrA2	%	66.38
Primary air flow ratio	XpFrA1h	%	33.62

Parameter	Symbol	Unit	Value
Boiler Efficiency Calculation (Energy Balance Method)			
L1 : Heat Loss due to Heat in Dry Flue Gas			
Heat Loss due to heat dry gas	L1	kJ/kg-f	978.53
Heat Loss (% fuel input HHV)		%	5.75
Heat Loss (% fuel input LHV)		%	6.10
L2 : Heat Loss due to Moisture in Fuel			
Heat loss due to moisture in fuel (HHV Basis)	L2	kJ/kg-f	946.76
Heat Loss (% fuel input HHV)		%	5.56
Heat loss due to moisture in fuel (LHV Basis)	L2I	kJ/kg-f	93.08
Heat Loss (% fuel input LHV)		%	0.58
L3 : Heat Loss due to Moisture from Burning of Hydrogen in Fu	iel		
Heat loss due to moisture from burning of hydrogen in fuel	1.2	hilling 6	1 252 47
(HHV Basis)	L3	KJ/Kg-T	1,252.47
Heat Loss (% fuel input HHV)		%	7.36
Heat loss due to moisture from burning of hydrogen in fuel	1.01	110-0	
(LHV Basis)	131	kJ/kg-f	123.13
Heat Loss (% fuel input LHV)		%	0.77
L4 : Heat Loss due to Moisture in Air	•	• •	
Heat loss due to moisture in air	L4	kJ/kg-f	33.21
Heat Loss (% fuel input HHV)		%	0.20
Heat Loss (% fuel input LHV)		%	0.21
L5 : Heat Loss due to Combustible in Refuse	•	1 22 1	
Heat loss due to combustible in refuse	L5	kJ/kg-f	43.81
Heat Loss (% fuel input HHV)		%	0.26
Heat Loss (% fuel input LHV)		%	0.55
L6 : Heat Loss due to Surface Radiation and Convection (ABM/	(Chart)		
Maximum continuous output (BMCR Design)	ABMA	x10^6 Btu/h	
Heat Loss due to Surface Radiation and Convection (ABMA			
Chart)	L6	%	0.18
Heat Loss (kJ/kg fuel)		kJ/kg-f	30.63
Heat Loss due to Surface Radiation and Convection LHV			
Basis(ABMA Chart)	LGI	%	0.20
Heat Loss due to Surface Radiation and Convection LHV			
Basis(ABMA Chart)		%	0.18
L7 : Heat Loss due to Unmeasured Losses		- I I	
Heat loss due to Unmeasured Losses (% fuel input HHV)	L7	kJ/kg-f	42.55
		%	0.25
Heat loss due to Unmeasured Losses (% fuel input LHV)		kl/kg-f	40.10
		%	0.25
		14	
Heat Loss due to Sensible Heat in Fly Ash		kJ/kg-f	6.25
Heat Loss (% fuel input HHV)		%	0.04
Heat Loss (% fuel input LHV)		%	0.04
		14	
Heat Loss due to Formation Carbon Monoxide		kl/kg-f	826,206,84
		%	4,854.52
		%	5,150.45

B1 : Heat Credit

Entering An			
Entering air heat credit	QqBDA	kJ/kg-f	79.97
Moisture Entering with Inlet Air			
Moisture Entering with Inlet Air heat credit	QqBWA	kJ/kg-f	2.73
Sensible Heat in Fuel			
Enthalphy of fixed carbon	HFcRe	kJ/kg	5.19
Enthalphy of Volatile matter 1	HVm1Re	kJ/kg	11.74
Enthalphy of Volatile matter 2	HVm2Re	kJ/kg	20.49
Enthalphy of Ash	HRsrRe	kJ/kg	5.16
Enthalpy of total moisture	HWRe	kJ/kg	28.14
Mass fraction of volatile matter, dry-ash free	MFrVmCr	wt%	53.74
Volatile matter2 content	MfrVm2	kJ/kg-f	0.06
Volatile matter1 content	MfrVm1	kJ/kg-f	0.32
Sensible heat in fuel heat credit	QqBF	kJ/kg-f	16.61
Total heat credit	B1	kJ/kg-f	99.31

Parameter	Symbol	Unit	Value			
82 : Power Consumption odf Pulverizer /Forced Draft Fan/Primary Air Fan/Coal Feeder						
A-Pulverizer power consumption	QX _{A-Pulverizer}	kJ/h	0.101546			
B-Pulverizer power consumption	QX _{B-Pulveriber}	kl/h	0.106872			
C-Pulverizer power consumption	QX _{C-Pulverizer}	kl/h	0.103497			
D-Pulverizer power consumption	QX _{D-Pulverber}	kl/h	0.000285			
E-Pulverizer power consumption	QX _{E-Pulverizer}	kl/h	0.100913			
A-BCP power consumption	QX _{A-DCP}	kl/h	0.00			
B-BCP power consumption	QX _{B-BCP}	kJ/h	0.00			
A-AH power consumption	QX _{A-AH}	kJ/h	0.002334			
B-AH power consumption	QX _{D-AH}	kl/h	0.002531			
Total power consumption	B2	kl/h	0.417977			

Qro : Boiler Heat Output			
SH outlet steam enthalpy	Hvp	kJ/kg	3,437.02
SH outlet steam pressure	Pvp	Bara	118.09
SH outlet steam temperature	Тур	*C	532.00
Main steam flow (=Waalim + Wss)	Wvp	kg/h	558,649.25
ECO inlet water enthalpy	Haalim	kJ/kg	870.32
ECO inlet water pressure	Paalim	bar	135.28
ECO inlet water temperature	Taalim	*C	202.90
ECO inlet water flow	Waalim	kg/h	535,494.81
Reheat steam flow	Wvrec	kg/h	528,070.71
RH outlet steam enthalpy	Hrc	kJ/kg	3,535.72
RH outlet steam pressure	Prc	bar	23.72
RH outlet steam temperature	Trc	*C	532.22
RH inlet steam enthalpy	Hrf	kJ/kg	3,055.20
RH inlet steam pressure	Prf	Mpag	23.72
RH inlet steam temperature (RH spray input)	Trf	*C	532.22
RH inlet steam temperature (RH spray output)	Tfr'	*C	
SH spray water flow	Wss	kg/h	23,154.44
SH spray water enthalpy	Hss	kJ/kg	775.24
SH spray water pressure	Pss	Mpag	138.24
SH spray water temperature	Tss	*C	181.24
RH spray water flow	Wrs	kg/h	9,608.89
RH spray water enthalpy	Hrs	kJ/kg	775.24
Boiler heat output	Qro	kl/h	1,716,356,996.99

BEc : Boiler Efficiency

Boiler Fuel Efficiency (HHV Basis)	η Bf (HHV)	%	81.03
Boiler Fuel Efficiency (LHV Basis)	η Bf (LHV)	%	92.26
Boiler Gross Efficiency (HHV Basis)	η Bg (HHV)	%	80.56
Boiler Gross Efficiency (LHV Basis)	η Bg (LHV)	%	91.69

Boiler Correction Factor

LHV of Fuel vs Eff	f1	%	-0.17
Moisture Content vs Eff	f2	%	0.21
Hydrogen Content	f3	%	-0.45
Ambient Temp and Relative Humidity	f4	%	0.00
Correction for ash of fuel as fired to eff.	f5	%	0.00
Total correction factor	ftotal	%	-0.41
Boiler Eficiency After Correction			
Boiler Gross efficiency (LHV Basis)	η BC (LHV)	%	91.85
Qri : Boiler Heat Input			
Boiler heat input	Qri	kl/h	2,118,187,246.57

LAMPIRAN 10

Kalkulasi Heat Rate Performance Test PT April 2021

PARAMETERS	SYMBOL	CALCULATION FORMULA	UNIT	VALUE
Main Steam				
Pressure	Pm	Measured	bar	118.09
Temperature	Tme	Measured	°C	532.00
Enthalphy	Hat	Steam table	ki/kg	3,437.02
Cold Reheat Steam (HP Exhaust)				
Pressure	Pat	Measured	bar	25.04
Temperature	Tet	Measured	°C	319.11
Enthalphy	Hat	Steam table	kl/kg	3.055.20
Hot Reheat Steam				
Pressure	Poter	Measured	bar	23.72
Temperature	Terr	Measured	°C	532.22
Enthalphy	Has	Steam table	kl/kg	3.535.72
Final Feed Water Outlet				
Pressure	Pro	Measured	bar	136.29
Temperature	Te	Measured	°C	202.90
Enthalphy	Ha	Steam table	k1/kg	870.37
Feedwater Outlet HP 2 Heater				
Pressure	P are sent out	Measured	bar	137.64
Temperature	Terring	Measured	°C	210.97
Enthalphy	H .	Steam table	ki/ke	906.44
Feedwater Outlet HP 3 Heater	The HPH2 Out	announced satisfies	~/~6	
Pressure	Party man out	Calculated	bar	138.24
Temperature	T	Measured	°C	181.24
Fathalahu	- W HHILOW	Steam table	ki/ka	775.24
Enclarator Inlat MP 3 Master	T SW_HPHD_OUT	Steam table	10/16	113.24
Precowater met nr 5 neater	0	Manured	har	128.24
Temperature	T	Measured	10	156.24
Temperature	" MW_MPHD_In	Steep table	Lifes	203.44
Enthalphy Condents Water Descriptor Outlet	H ffw_HPHD_In	Steam table	KU/Kg	/02.44
Condensie water Deaerator Outlet		Manured	har	9.25
Pressure	T T	Measured	20	164.43
Temperature	" WW_DEA_OUT	(heast table	Life-	104.43
Enthalphy	H BL BEA OUT	steam table	KU/Kg	094.93
Deaerator Snell		Manured	har	643
Pressure	P DEA_SHUL	Measured	Dar	160.90
Temperature	DIA_SWEL	intersureu	Life-	100.00
Enthalphy Condensate Michaelel December	H DIA SHILL	steam table	KU/Kg	679.06
Condensate water Iniet Deaerator		Meaning	har	22.00
Pressure	P gw DEA /s	Measured	Dar	22.09
Temperature	TW_DIA_In	Measured (here table	C LUDe	143.31
Enthalphy	H BR DEALIN	Steam table	KU/Kg	605.45
Extraction Steam Inlet HP 1 Heater		Managed	here	27.06
Pressure	10 M	weasured	bar to	35.86
remperature	T stole	Measured	т С	378.55
Enthalphy	H jw_out	steam table	KU/kg	3,171.29
Extraction Steam Iniet HP 2 Heater		Maximud	here	35.05
Pressure	P 20,00	measured	bar	25.95
remperature	T _{20,0}	Measured	°C	224.94
Enthalphy	H 21_8	steam table	KU/Kg	2,803.36
Extraction Steam Injet HP 3 Heater		Magazzard	here	
Pressure	Pacie	Measured	bar	11
Temperature	Tach	Measured	°C	167
Enthalphy	Hack	Steam table	kl/kg	2784
Extraction Steam Injet Deaerator		Margare 1		
Pressure	Pdecick	Measured	bar	5.71
Temperature	Tdeach	Measured	°C	163.16
Enthalphy	H dea_in	Steam table	kJ/kg	2,769.03
Drain Water Outlet HP 1 Heater				
Pressure	Paret	Calculated	bar	34.78
Temperaure	Time	Measured	°C	241.92
Enthalphy	H and	Steam table	kl/kg	1,046.69

PARAMETERS	SYMBOL	CALCULATION FORMULA	UNIT	VALUE
Drain Water Outlet HP 2 Heater				
Pressure	Para	Calculated	bar	25.1
Temperature	Tree	Measured	°C	223.3
Enthalphy	H	Steam table	k1/kg	959.2
Drain Water Outlet HP 3 Heater	11.26.0			
Pressure	P	Calculated	bar	10.9
Temperature	7.00	Maggurad	10	194.4
Temperature Saturble	1 34.4	Steam table	Life a	104.4
Enthalphy	Hand	steam table	KL/Kg	//6.4
Deaerator Vent		Columband	har	
Pressure	P deq_vent	Calculated	Dar	6.4
Temperature	T dec_vent	Measured	.с	160.8
Enthalphy	H deq_vent	Steam table	kJ/kg	679.0
B. Heat Balance Calculation around HP Heater				
Item	Symbol	Calculation Formula	Unit	VALUE
HP #1 Heater Superheat Steam	K1	(Hf-Hw2)/(Hex1-Hd1)		(0.0)
	K2	(Hw2-Hw3)/(Hex2-Hd2)		0.0
HP #2 Heater Superheat Steam	K3	(Hd1-Hd2)/(Hex2-Hd2)		0.0
	K4	(Hw3-Hw4)/(Hex3-Hd3)		0.0
HP #3 Heater Superheat Steam	KS	(Hd2-Hd3)/(Hex3-Hd3)		0.0
	KG	(Howo-How)/(Hex4-Howo)		0.0
Deserator	K7	(Hd3-Hcwo)/(Hex4-Hcwo)		0.0
	KS	(Hdv-Hcwo)/(Hex4-Hcwo)		(0.0
	A	K1+K2-K1 K3+K4-K5(K1+K2-K1 K3)		0.0
Condensate Water Flow to Deserator	Mow	Measured	kg/h	512 380.1
Deserator Vent Flow	Mdv	36*VPd/Vd Vd=Volume Spesific	ka/h	6 963 9
Deserator Tank Storage	Mds	Measured (from tank Storage calculation)	ka/h	3 569 (
Superheater Spray Elow	Mir	Measured (Iron tank storage carculation)	ka/h	22 154
Bebester Spray Flow	Mir	Measured	ka/h	9 603 0
Final Feedwater Flow	MF	(1+K6)*Mrw-(1-K9)*Mdy -Mie-Mir - Mde	ka/h	535 494 1
Final Foodwater Flow (Data D/S)		1-4+87*4	ka/h	516 512 1
ltem	Symbol	Calculation Formula	Unit	Value
Final Feed Water Flow	Mf	Calculated	kg/h	535,494.8
Make up Water Flow to Condenser	Mm	Measured	kg/h	3,905.5
Condenser Hot Well Storage	Mcs	Measured (from tank Storage calculation)	kg/h	0.0
Deaerator Tank Storage	Mds	Measured (from tank Storage calculation)	kg/h	3,569.0
Steam Drum Storage	Msd	Measured (from tank Storage calculation)	kg/h	12.
Dearator Vent Flow	Mdv	36*VPd/Vd Vd=Volume Spesific	kg/h	6,963.9
Total Make-Up Flow	Mmu	Mcs+Mds+Msd+Mdv	kg/h	10,545.
Superheater Spray Flow	Mis	Measured	kg/h	23,154.4
Reheater Spray Flow	Mir	Measured	kg/h	9,608.
Main Steam Flow (at main stop valve inlet)	M1	Mf+Mis+Mmu	kg/h	569,194.
D. Reheat Steam Flow Calculation				
Item	Symbol	Calculation Formula	Unit	Value
Main Steam Flow (at main stop valve inlet)	M1	Mf+Mis-Mmu	kg/h	569,194.
HP Gland Seal and MSV Leakage	Gs1	Commissioning data	kg/h	21,295.0
Extraction Steam Flow to HP Heater #1	Mex1	K1*Mf	kg/h	(9,090.7
Extraction Steam Flow to HP Heater #2	Mex2	(K2-K1*K3)*Mf	kg/h	38,527.
Extraction Steam Flow to HP Heater #3	Mex3	(K4-K5*(K1+K2-(K1*K3))*Mf	kg/h	16,738.
Extraction Steam Flow to Deaerator	Mex4	K6*Mcw - K7*(Mex1+Mex2+Mex3)+K8*Mdv	kg/h	20,235.0
Cold Reheat Steam Flow at HP Exhaust	M2'	M1-Gs1-Mex1	kg/h	556,989.3
Cold Reheat Steam Flow at Reheater inlet	M2	M1-Gs1-Mex1-Mex2	kg/h	518,461.8
Hot Reheat Steam Flow	MB	M2+Mir	kg/h	528,070.7
E. Generator Power Calculation	-			
Itam	Sumbol	Calculation Exemula	Unit	Value
Generator measured cutout power	Pa	Magazined	Mill	105.4
Generator net output power	Pa Net	Maggurad	MW	193.4
Aux Power	Para	Pa - Paret - Pere	MW	1/92
Evitation Down	Beur	rg - rgitet - read	MW	154
Generator Gross Codent Barrow	Dar	Par Deve	NOV	0.
deserator dross output Power	*88	rg - rexe	NW	194.

PARAMETERS	SYMBOL	CALCULATION FORMULA	UNIT	VALUE
F. Correction Factor and Heat Rate Calculation	for Unit Heat R	tate		
F1. Heat in - Out				
the sec	formhal	Coludation Formula	11-2	Mahas
Item	Symbol	Calculation Formula	Unit	Value
Main Steam	Qms	M1*H1	ki/h	1,956,333,735.94
Not kereat steam	uns	M3°H3	Ki/n	1,867,108,981.69
Final feed water	Q.	MICHI MORHO	ku/m	466,077,612.77
Cold reneat steam	Qua	Miz-riz	Nyn Lub	1,504,004,602.19
Supermeater Spray Rebeater Spray	Qis	Mis*His Mis*His	ki/h	6 749 679 91
Make up	Omu	Marcelline .	- Marin	0,743,075.81
Sum of Heat Innut	Qin	OmseObyseOmu	kt/b	3 824 274 913 32
Sum of Heat Output	Oout	Of+OcrseOis+Oir	ki/h	2 073 096 531 39
Total Heat Consumption	0	Oin-Oast	ki/h	1 751 178 381 93
Total Treat Consumption		ager agained		
F2. Correction Factor				
Item	Symbol	Calculation Formula	Unit	Value
Correction Factor for Heatrate	CIL	Correction Comm	167	1.02220
Main steam pressure (MPa)	CIN	Correction Curve	167	1.03220
Rebest pressure loss (%)	C2h C2h	Correction Curve	538	1.00186
Reheat pressure loss (%)	Can	Correction Curve	10	0.99579
Reneat temperature (C)	C4h	Correction Curve	538	1.00205
Back pressure (knaua)	Con	Correction Curve		1.01108
Superheater spray/throttle steam (%)	CBh	Correction Curve	0	1.00160
Reheater spray/throttle steam (%)	C/h	Correction Curve	0	1.00239
Make up ratio (%)	Can	Correction Curve		1.01000
Total correction factor for headate	IFR	CIn-C2n-C5nCon		1013/2
Correction Factor for Power Output				
Main steam pressure (MPa)	C1p	Correction Curve	167	0.94699
Main steam temperature (C)	C2p	Correction Curve	538	0.99614
Reheat pressure loss (%)	C3p	Correction Curve	538	0.99157
Reheat temperature (C)	C4p	Correction Curve	10	0.99294
Back pressure (kPa.a)	CSp	Correction Curve	7	0.96141
Superheater spray/throttle steam (%)	C6p	Correction Curve	0	1.00612
Reheater spray/throttle steam (%)	C7p	Correction Curve	0	1.01123
Make up ratio (%)	C8p	Correction Curve	0	1.00000
F3. Heat Rate Calculation	TPp	C1p*C2p*Csp**Csp	1 1	0.30849
Item	Symbol	Calculation Formula	Unit	Value
Generator measured output	198	Measured	MW	195.41
Exitation power	Pexe	Measured	MW	0.48
Generator gross output	788	Pg - Picke	NIW	194.95
Corrected Generator gross output	Page	Pig/rc	NIW	214.56
Generator net output power	Pg Net	Pg-Paux-Pexe	MW	1/9.86
Power Factor	PF	Measured	~	0.96
Steam Generator Efficiency	ngai	Assigned	70	35.41
Steam Generator Efficiency	np (LHV)	Calculated	70	91.65
Turbine Heat Rate	de (nnv)	Carculated	70	80.36
Measured Value	HRT	Q/Pes	kJ/kWh	8,983.68
Total Correction factor	TEL	Calculated	kcal/kWh	2,145.71
Companya di la la		LINT POL	kl/kWh	8,862.08
Corrected Value	MICIC	HKI/IPh	kcal/kWh	2,116.67
Gross Plant Heat Rate (LHV Basis)			1.10.10	0.301.01
Measured Value	GPHRn(uw)	Q/(ηB _{p.mg} *ηGT)*Pgg	ki/kWh	9,781.03
			kl/kWh	9,648.64
Corrected Value	GPHRnc _(UNV)	GPHRn _{DHVI} /TFh	kcal/kWh	2,304.54
Gross Plant Heat Rate (HHV Basis)				
Measured Value	GPHRn	Q/(nBpergetar	ki/kWh	11,151.96
	(ma)	and a second second	kcal/kWh	2,663.60

Measured Value Note : [2] 1 kJ = 4,1868 kcal

Efisiensi thermal

Corrected Value

Measured Value

Corrected Value

Net Plant Heat Rate (LHV Basis)

Net Plant Heat Rate (HHV Basis)

29.61

11,001.01

2,627.55

10,663.23 2,546.87 10,518.90

2,512.40

12,157.81

2,903.84

GPHRnpont/TFh

Q/(nB_(uvt)*nGT)*Pg Net

NPHRn_{LIMY}/TFh

Q/(nB_(LHV)*nGT)*Pg Net

kl/kWh

kcal/kWh

kJ/kWh

kcal/kWh kJ/kWh kcal/kWh

ki/kWh

kcal/kWh

GPHRnc_(KKM)

NPHRn_(UNV)

NPHRnc_(LWV)

NPHRn(LHV)

"Halaman ini sengaja dikosongkan"

BIOGRAFI PENULIS

Handoyo Widhy Wasisto, lahir di Yogyakarta pada tanggal 22 April 1981, merupakan putra sulung dari pasangan Bapak Wiwik Handajadi dan Ibu Dwi Sumar Sriharti, memiliki dua adik kandung, Anita Nur Handayani dan Hananto Adhi Susanto. Penulis menempuh pendidikan formal SD N Ungaran 1 Yogyakarta, SLTP N 8 Yogyakarta, SMU N 8 Yogyakarta dan melanjutkan S1 di Jurusan Teknik Elektro Universitas Gadjah Mada pada

tahun 1999. Penulis memiliki pengalaman bekerja di PT Teijin Fiber Corporation pada tahun 2005-2007 sebelum kemudian bergabung dengan PT Indonesia Power dari tahun 2008 hingga sekarang.

Selama bekerja di PT. Indonesia Power, penulis mendapatkan pengalaman di beberapa unit pembangkit, diantaranya PLTU Suralaya 1-7, Banten (2008-2010), PLTU Banten 2 Labuan, Banten (2010-2020) dan PLTU Pangkalan Susu, Sumatera Utara (2020-sekarang).

email : handoyowidhy@gmail.com