

TESIS-TM185400

STUDI NUMERIK PENGARUH *COAL BLENDING MRC* DAN *LRC* TERHADAP KARAKTERISTIK PEMBAKARAN *BOILER* TANGENSIAL DENGAN VARIASI *LEVELING* BATUBARA DAN KONFIGURASI INJEKSI ALIRAN UDARA PRIMER KE RUANG BAKAR

WIESNU ARDYTA WIRAYOGA NRP. 6007201029

DOSEN PEMBIMBING

Bambang Arip Dwiyantoro, ST., M.Sc.Eng PhD

Program Magister Departemen Teknik Mesin Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

TESIS-TM185400

STUDI NUMERIK PENGARUH COAL BLENDING MRC DAN LRC TERHADAP KARAKTERISTIK PEMBAKARAN BOILER TANGENSIAL DENGAN VARIASI LEVELING BATUBARA DAN KONFIGURASI INJEKSI ALIRAN UDARA PRIMER KE RUANG BAKAR

WIESNU ARDYTA WIRAYOGA NRP. 6007201029

DOSEN PEMBIMBING

Bambang Arip Dwiyantoro, ST., M.Sc.Eng PhD

Program Magister Departemen Teknik Mesin Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

LEMBAR PENGESAHAN TESIS

Tesis disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Teknik (MT)

> di Institut Teknologi Sepuluh Nopember Oleh:

WIESNU ARDYTA WIRAYOGA NRP: 6007201029

Tanggal Ujian: 15 Juli 2022 Periode Wisuda: September 2022

> Disetujui oleh: Pembimbing:

1. Dr. Bambang Arip Dwiyantoro, S.T., M.Sc. NIP. 197804012002121001

Penguji:

1. Prof. Dr. Ir. Prabowo., M.Eng NIP. 197205241997021001

- 2. Ary Bachtiar K.P., ST. MT. PhD NIP. 197301161997021001
- 3. Is Bunyamin Suryo, S.T., M.Sc NIP. 19820819201212100

Kepala Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem

KEBUDAYA

Dr. Ir. Atok Setiawan, M. Eng. Sc, NIP: 196604021989031002

Studi Numerik Pengaruh *Coal Blending MRC* Dan *LRC* Terhadap Karakteristik Pembakaran *Boiler* Tangensial Dengan Variasi *Leveling* Batubara Dan Konfigurasi Injeksi Aliran Udara Primer Ke Ruang Bakar

ABSTRAK

Metode *in furnace coal blending* adalah metode pencampuran dua jenis batubara antara *Medium Rank Coal (MRC)* dan *Low Rank Coal (LRC)* untuk mengoptimalkan pembakaran. Latar belakang penelitian adalah kendala *supply* batubara jenis *MRC* pada PLTU Pangkalan Susu (4 x 200 MW) dan optimalisasi terhadap biaya pokok produksi dengan pemakaian jenis *LRC*, sehingga penelitian dilakukan untuk menganalisa pengaruh variasi *leveling* dengan komposisi batubara 75% *LRC* - 25% *MRC* terhadap kondisi pembakaran yang optimal.

Metode konfigurasi *leveling* dilakukan pada *burner* A-D (4 *level* dari total 5 *level burner*). Validasi simulasi diambil dari data *Performance Test* pada Bulan April 2021 *Boiler* Unit 1 (200 MW - MCR). Simulasi menggunakan *Ansys Fluent* dan output parameter untuk dianalisa yaitu distribusi *temperature*, kecepatan, & fraksi *massa* gas buang (NOx & CO₂). Setelah didapati hasil yang optimal, selanjutnya dilakukan analisa pengaturan aliran udara PA pada nilai 62 t/h, 68 t//h, dan 77 t/h.

Hasil simulasi validasi diperoleh nilai error tertinggi pada 7,97%, selanjutnya pada konfigurasi *leveling* batubara dari A-D menunjukkan penempatan batubara MRC di elevasi C memiliki distribusi *temperature* di area ruang bakar & FEGT yang optimal begitu juga distribusi CO2. Pengaturan variasi aliran udara PA *Combustion* menggunakan data parameter injeksi batubara di elevasi C menghasilkan kondisi optimal pada aliran udara 68 t/h dibandingkan variasi 62 t/h & 77 t/h, sehingga pola operasi penggunaan batubara dengan minimum MRC (25%) dapat dilakukan secara berlanjut pada injeksi di level C dengan konfigurasi pembukaan aliran udara 68 t/h.

Kata kunci: *PLTU Pangkalan Susu*, *Boiler PC Tangential*, *In Furnace Coal blending*, *Leveling Batubara*, *Primary Air*

Numerical Study Of The Effect Of Coal Blending MRC And LRC On Combustion Characteristics Of Tangential Boilers With Variations Of Coal Leveling And Primary Airflow Injection Configuration

ABSTRACT

The in furnace coal blending method is a method of mixing two types of coal between Medium Rank Coal (MRC) and Low Rank Coal (LRC) to optimize combustion. The background of the study was the constraints on the supply of MRC type coal at the Pangkalan Susu coal power plant (4 x 200 MW) and optimization of the cost of goods produced with the use of LRC type, so the study was conducted to analyze the effect of leveling variations with coal composition of 75% LRC - 25% MRC on optimal combustion conditions.

The leveling configuration method is carried out on the A-D burner (4 levels out of a total of 5 burner levels). Simulation validation was taken from Performance Test data in April 2021 Boiler Unit 1 (200 MW - MCR). The simulation uses Ansys Fluent and output parameters to be analyzed, namely the distribution of temperature, speed, & mass fraction of exhaust gases (NOx & CO2). After the optimal results were found, an analysis of the PA air flow regulation was then carried out at values of 62 t / h, 68 t// h, and 77 t/h.

The validation simulation results obtained the highest error value at 7.97%, then in the coal leveling configuration from A-D showed that the placement of MRC coal at elevation C had a temperature distribution in the combustion chamber area & FEGT that was optimal as well as the distribution of CO2. The regulation of PA Combustion air flow variation using coal injection parameter data at elevation C results in optimal conditions at air flow of 68 t /h compared to variations of 62 t / h & 77 t / h, so that the operating pattern of coal use with a minimum MRC (25%) can be carried out continuously at injection at level C with an air flow opening configuration of 68 t / h.

Keywords : Pangkalan Susu Coal Fired Power Plant, Boiler PC Tangential, In Furnace Coal blending, Coal Leveling, Primary Air, CFD

KATA PENGANTAR

Puji syukur kehadirat Allah SWT atas segala nikmat, rahmat, dan hidayah-Nya, sehingga penulis dapat menyusun Tesis ini dengan lancar dan sesuai prosedur yang sudah ditetapkan. Proposal ini disusun dalam rangka memenuhi sebagian persyaratan untuk memulai penelitian dan pembuatan Tesis S2 di Magister Teknik Mesin, Program Pascasarjana, Institut Teknologi Sepuluh Nopember.

Penyusunan Tesis ini tentu tidak dapat terselesaikan dengan baik tanpa bantuan dan dukungan dari berbagai pihak. Oleh karena itu pada kesempatan ini, penulis ingin menyampaikan ucapan terimakasih banyak kepeada :

- Dosen pembimbing penulis, Bapak Bambang Arip Dwiyantoro, ST., M.Sc.Eng PhD atas support bimbingannya dalam menyiapkan tesis ini untuk menyelesaikan sampai kelulusan program Master di ITS.
- Bapak Direktur Operasi II PT Indonesia Power atas dukungannya dalam menyelesaikan proses Tesis sehingga meningkatkan kepercayaan diri untuk selalu melangkah.
- Bapak Manajer Operation & Maintenance divisi Power Generation II-2 PT Indonesia Power, atas dukungannya selalu menyelesaikan studi dan tesis meskipun terpaan badai kewajiban silih berdatangan.
- 4. Istri terkasihi Dewati Widitama, anak tercinta Kalandra Hamzah Wirayoga dan Gendhewa Khalid Wirayoga. Ibunda tercinta Eni Triwahyuningsih yang selalu memberika motivasi dalam kemasan yang sedikit menantang, bapak tercinta Rubiyanta yang tetap memberikan wejangan dalam melangkah di kehidupan ini, serta adik-adik tercinta Aryoga Wijaya Krisna & Dutha Chandra Mahardika.

Penulis menyadari bahwa masih banyak kekurangan pada persiapan penyusunan proposal ini. Oleh karena itu, saran atau koreksi sangat diharapkan demi kelancaran penelitian dan pembuatan Tesis S2.

Jakarta, Agustus 2022

Penulis

DAFTAR ISI

LEME	BAR PENGESAHAN ii
ABST	RAKiii
ABST	RACTiv
КАТА	PENGANTARv
DAFT	AR ISI vi
DAFT	AR GAMBARix
DAFT	AR TABEL xi
BAB I	
PEND	AHULUAN1
1.1	Latar Belakang1
1.2	Perumusan Masalah3
1.3	Batasan Masalah4
1.4	Tujuan Penelitian5
1.5	Manfaat Penelitian5
BAB I	I
KAJIA	AN PUSTAKA6
2.1	Dasar Teori
2.1.1	Boiler6
2.2	Perhitungan Efisiensi <i>Boiler</i> 12
2.3	Penyerapan Panas Heat exchanger & Wall Tuber di Boiler15
2.4	Simulasi CFD Pembakaran Batubara (Studi Numerik)16
2.5	Penelitian Sebelumnya
BAB I	П

MET	ODOLOGI PENELITIAN	26
3.1	Pre-Processing	
3.1.1	Permodelan Geometri Boiler	
3.1.2	Meshing	
3.2	Processing	
3.3.1	Set Up Model	
3.3.2	Parameter Injeksi & Boundary Condition	
3.3.3	Parameter Material	34
3.3	Solution	
3.3.1	Metode Initialization	36
3.3.2	Metode Monitoring Residual	
3.4	Post-Processing	
3.4.1	Validasi Hasil Simulasi	
3.5	Desain Variasi Simulasi	
BAB	IV	
ANA	LISA & PEMBAHASAN	40
4.1	Validasi Simulasi	40
4.2	Analisa Hasil Simulasi Numerik Variasi Coal blending	43
4.2.1.	Analisa Distribusi Temperature	44
4.2.2	Analisa Distribusi Kecepatan	52
4.2.3	Analisa Distribusi Kandungan Gas Buang - CO2	55
4.2.4	Analisa Distribusi Kandungan Gas Buang – NOx	59
4.3 A	nalisa Hasil Simulasi Numerik Variasi Udara Pembakaran Primer	63
BAB	V	
KESI	MPULAN	69
5.1 K	esimpulan	69

5.1 Saran	
DAFTAR PU	USTAKA
LAMPIRAN	

DAFTAR GAMBAR

Gambar 1. 1 Laporan <i>Inventory</i> Batubara PLTU Pangkalan Susu Agustus 20213
Gambar 2. 1 Desain <i>Boiler</i> PLTU Pangkalan Susu7
Gambar 2. 2 Konfigurasi Nozzle/Port Tipe Boiler Tangensial9
Gambar 2. 3 Konfigurasi Burner Tangential Firing PLTU Pangkalan Susu11
Gambar 2. 4 Heat exchanger Boiler (Sumber: Reticom)16
Gambar 2. 5 Distribusi NOx pada Boiler (Sumber: Baek dkk, 2014)[1]19
Gambar 2. 6 Distribusi NOx pada <i>Boiler</i> (Sumber: Baek dkk, 2014)[1]20
Gambar 2. 7 Distribusi Temperature & NOx pada Boiler (Sumber: Debo Li dkk,
2017)[2]22
Gambar 2. 8 Geometry Simulasi CFD Boiler (Sumber: Sa'adiyah dkk, 2017)[3]23
Gambar 2. 9 Geometry Meshing Simulasi CFD Boiler (Sumber: Zhang dkk, 2015)[4].
Gambar 3. 1 Diagram Alir Penelitan27
Gambar 3. 2 Model Geometri Boiler PLTU Pangkalan Susu pada Solidworks29
Gambar 3. 3 Hasil Meshing Geometri Boiler PLTU Pangkalan Susu30
Gambar 3. 4 Set Up Solution di Ansys Fluent
Gambar 4. 1 Skema Posisi Pengambilan Data Validasi di Boiler41
Gambar 4. 2 Grafik perbandingan data validasi & data hasil simulasi CFD42
Gambar 4. 3 Kontur distribusi temperature pada z-Center (a) dan di setiap layer
<i>burner/OFA/FEGT</i> (b)43
Gambar 4. 4 Kontur distribusi temperature pada z-Center45
Gambar 4. 5 Kontur distribusi temperature di setiap elevasi burner & OFA46
Gambar 4. 6 Grafik rata-rata temperature pada setiap elevasi burner & OFA48
Gambar 4. 7 Posisi pengambilan data distribusi temperature elevasi 31 m
Gambar 4. 8 Grafik distribusi temperature sepanjang garis A1 (a), A2 (b), & A3 (c)

Gambar 4. 9 Grafik distribusi temperature sepanjang garis B1& B2......51

Gambar 4. 10 Kontur distribusi kecepatan pada z-Center
Gambar 4. 11 Kontur distribusi kecepatan (m/s) pada elevasi injeksi batubara54
Gambar 4. 12 Vektor kecepatan udara pada elevasi coal burner A & OFA55
Gambar 4. 13 Kontur kandungan Gas Buang CO2 (%) pada posisi Z-Center56
Gambar 4. 14 Kontur kandungan Gas Buang CO2 (%) pada posisi Z-Center57
Gambar 4. 15 Grafik rata-rata fraksi masa gas buang-CO2 (%) terhadap58
Gambar 4. 16 Gambar Distribusi NOx pada Z-Center60
Gambar 4. 17 Gambar kontur NOx pada elevasi coal burner dan OFA61
Gambar 4. 18 Grafik rata-rata kandungan gas buang NOx (ppm) pada elevasi boiler
Gambar 4. 19 Kontur temperature pada bidang Z-Center di variasi pembukaan
Damper 36%, 40%, dan 45%63
Gambar 4. 20 Kontur temperature pada masing-masing elevasi di variasi pembukaan
Damper 36%, 40%, dan 45%
Gambar 4. 21 Grafik temperature rata-rata pada masing-masing elevasi di variasi
pembukaan Damper 36%, 40%, dan 45%65
Gambar 4. 22 Kontur CO2 pada Z-Vertical di variasi pembukaan Damper 36%, 40%,
<i>dan 45%</i>
Gambar 4. 23 Kontur CO2 pada masing-masing elevasi di variasi pembukaan
Damper 36%, 40%, dan 45%
Gambar 4. 24 Grafik rata-rata CO2 pada masing-masing elevasi di variasi
pembukaan Damper 36%, 40%, dan 45%66
Gambar 4. 25 Kontur NOx pada Z-Vertical di variasi pembukaan Damper 36%, 40%,
<i>dan 45%</i>
Gambar 4. 26 Kontur NOx pada masing-masing elevasi di variasi pembukaan
Damper 36%, 40%, dan 45%68
Gambar 4. 27 Grafik rata-rata Nox pada masing-masing elevasi di variasi pembukaan
Damper 36%, 40%, dan 45%

DAFTAR TABEL

Tabel 2. 1 Boiler Technical Specification PLTU Pangkalan Susu	8
Tabel 2. 2 Parameter Input Simulasi & Hasil Simulasi	18
Tabel 2. 3 Variasi Kasus Simulasi Coal blending	21
Tabel 3. 1 Setting Model CFD Ansys Fluent	
Tabel 3. 2 Setup Point Inlet Boundary Condition	
Tabel 3. 3 (Lanjutan) Setup Point Inlet Boundary Condition	33
Tabel 3. 4 Coal Properties Injeksi Batubara	33
Tabel 3. 5 Set Up Parameter Injeksi Batubara	34
Tabel 3. 6 Material Properties of Solid CFD Ansys Fluent	35
Tabel 3. 7 Material Properties of Fluid CFD Ansys Fluent	35
Tabel 3. 8 Properties Batubara pada Setup Permodelan CFD	36
Tabel 3. 9 Konfigurasi Pencampuran Batubara (Coal blending)	39
Tabel 3. 10 Konfigurasi Pembukaan Damper Primary Air	

BAB I

PENDAHULUAN

1.1 Latar Belakang

PLTU Pangkalan Susu merupakan pembangkit listrik tenaga uap yang dimiliki PLN dan *operation/maintenance* oleh PT Indonesia Power. PLTU Pangkalan Susu Unit 1 & 2 memiliki kapasitas terpasang 4 x 200 MW yang berlokasi di desa Tanjung Pasir, kecamatan Pangkalan Susu, kabupaten Langkat, Sumatera Utara. Produksi listrik PLTU Pangkalan Susu 1 & 2 disalurkan melalui SUTET 275KV ke Gardu Induk Binjai untuk kemudian didistribusikan ke pelanggan di area pelayanan Sumatra Bagian Utara. Energi Primer yang digunakan adalah batubara dengan konsumsi rata-rata 6.000 ton/hari pada beban penuh 4 x 200 MW.

Pembangkit Listrik Tenaga Uap memiliki peralatan-peralatan utama yang menunjang kehandalan dan faktor utama pengoperasian pembangkit. Diantara peralatan utama tersebut, *Boiler* menjadi salah satu komponen utama untuk menghasilkan Uap. *Boiler* sebagai peralatan yang besar, didukung oleh peralatan penunjang lainnya yang menjaga proses pembakaran tetap terjadi secara terus menerus. Pada proses pembentukan Uap di pembangkit, *Boiler* memiliki peranan dalam mengkonversi energi kimia pada Batubara, menjadi energi panas yang memanasi pipa-pipa didalam *furnace* sehingga merubah air menjadi uap. Uap yang dihasilkan pada sistem *Boiler* adalah Uap *Superheat* dengan Tekanan dan *Temperature* yang tinggi.

Boiler PLTU Pangkalan Susu merupakan fabrikasi dari Dongfang Corporation (China). *Boiler* dengan tipe DG693/13.43-22 adalah jenis *Boiler* pada pembangkit *Sub-Critical*. Metode pembakaran pada jenis *Boiler* tersebut adalah pembakaran melalui empat sudut Tangensial. Proses pembentukan uap pada fase awal menggunakan metode natural sirkulasi di dalam *Steam Drum*. Selanjutnya uap tersebut melewati sistem perpipaan uap bertekanan sampai pada fase *Final Superheater*. Model *Boiler* PLTU Pangkalan Susu adalah *Balance Draft*. Model *Boiler Balance Draft* memiliki metode *supply* udara ke dalam *furnace* dengan bantuan *Forced Draft Fan*, sedangkan *Induced Draft Fan* digunakan untuk meyeimbangkan tekanan didalam *Furnace* dengan cara menghisap udara *flue gas* hingga melewati *stack* dan terbuang ke atmosfer.

Construction Design PLTU Pangkalan Susu menggunakan bahan bakar dengan tipe Bituminous Coal atau Medium Rank Coal (MRC) dengan kisaran nilai kalori yaitu \geq 4500 kcal/kg. Seiring dengan perkembangan explorasi batubara dan ketersediaan jenis MRC, maka pada lingkungan PLTU PLN cadangan batubara yang dikirim ke pembangkit-pembangkit adalah sebagian besar Low Rank Coal. LRC banyak dikirimkan oleh perusahaan tambang batubara karena ketersediaannya yang banyak namun memiliki efek samping nilai kalori yang rendah, kandungan moisture dan volatile matter yang tinggi ketimbang MRC. Efek penggunaan batubara full LRC pada PLTU Pangkalan Susu adalah konsumsi batubara yang lebih tinggi pada kisaran \geq 120 Ton/Hour.

Pengaturan aliran batubara yang maksimal pada setiap *pulverizer* yang beroperasi, menghasilkan temuan-temuan kerusakan terhadap peralatan atau komponen *pulverizer* itu sendiri. Kerusakan tersebut misalnya kebocoran pada dinding *mill, grinding tyre* yang tergerus, kerusakan pada *scrapper,* atau kebocoran di area *ducting* & *coal pipe*. Agar tercapainya beban yang maksimum dengan pemakaian volume batubara yang aman untuk peralatan, maka mulai digunakan metode *in furnace Coal blending* dengan menambahkan batubara jenis *MRC*. Sehubungan dengan ketersediaan pasokan batubara jenis *MRC*, seperti dapat diamati pada Gambar 1.1, komposisi batubara *MRC* yang digunakan pada PLTU Pangkalan Susu hanya memenuhi maksimal 25% dari konsumsi batubara. Aplikasi pencampuran batubara *MRC-LRC* pada PLTU Pangkalan Susu masih belum dioptimalkan atau dicari konfigurasi yang sesuai berdasarkan kondisi tersebut. Penelitian yang dilakukan pada kasus *Coal blending* menunjukkan penggunaan konfigurasi yang variatif, namun pada kisaran pencampuran 50:50 atau 60:40.

Usaha pengoptimalan penggunaan konfigurasi pencampuran batubara *MRC-LRC* juga dilakukan dengan simulasi variasi *Primary Air* pada sistem pembakaran *boiler*. Sehingga melalui simulasi *CFD* yang akan dilakukan, dengan konfigurasi pencampuran hanya pada kisaran 75% *LRC* – 25% *MRC*, didapatkan juga proses pembakaran yang optimal dengan pengaturan PA Flow di setiap *burner*.

						100 P 10 P			(of Loadin					_
No	BBO ID	Voyage	Pemasok	Sumber Tambang	GCV ARB	TM ARB	IM ADB	Ash Content ARB	Ash Content ADB	VM ADB	FC ADB	Total Sulphur ARB	Total Sulphur DAFB	HGI	IDT Reducing
*	· · · · · · · · · · · · · · · · · · ·	*	-	*	Kcal/kg	%	%	%	%	%	%	%	%	index	°C
	ARB/120721/49177	S	AI CSR	PT ARUTMIN INDONESIA	4200	35.55			4.71		34.94				1150
1421	ARB/120721/49177	490	AICSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1422	ARB/120721/49177	491	AI CSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1426	ARB/120721/49177	494	ALCSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1428	ARB/120721/49177	495	AI CSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1431	ARB/120721/49177	496	AI CSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1432	ARB/120721/49177	497	AI CSR	PT ARUTMIN INDONESIA	4200	35.55	20.67	3.83	4.71	39.68	34.94	N/A	0.28	55	1150
1427	BUA/220721/49365	050	PTBA	PT BUKIT ASAM	4879	28.73	16.33	5.25	6.16	36.79	40.72	0.50	N/A	N/A	N/A
1429	SPC/120821/49802	018	KSPOT	PT SOROLANGUN PRIMA COAL	4124	34.49	17.22	3.43	4.34	41.80	36.64	0.15	0.24	55	1180
1430	PLB/080821/49668	681	PLNBB LRC	PT SUMBER PANCA ENERGI	4262	31.69	17.48	4.75	5.74	38.29	38.49	0.29	N/A	59	N/A
1433	PLB/080821/49669	682	PLNBB LRC	PT SUMBER PANCA ENERGI	4260	34.41	13.87	4.92	6.46	41.23	38.44	0.21	0.35	58	1160
1434	PLB/080821/49670	683	PLNBB LRC	PT KASIH COAL RESOURCES	4230	33.06	16.99	3.03	3.76	41.82	37.43	0.16	0.25	59	1170
	ARU/040821/49581			PT ARUTMIN INDONESIA	4216				4.09		35.61	N/A	0.25	62	1150
1435	ARU/040821/49581	498	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
1437	ARU/040821/49581	499	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
15/143	ARU/040821/49581	500	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
1439	ARU/040821/49581	501	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
1441	ARU/040821/49581	502	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
17/144	ARU/040821/49581	503	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
1444	ARU/040821/49581	504	AI CSR	PT ARUTMIN INDONESIA	4216	35.60	20.49	3.31	4.09	39.81	35.61	N/A	0.25	62	1150
1436	PLB/190721/49321	684	PLNBB LRC	PT KASIH COAL RESOURCES	4190	32.39	16.20	4.53	5.62	41.55		0.19	0.29	58	1160
1440	BUA/220721/49365	051	PTBA	PT BUKIT ASAM	4929	27.55	17.28	6.08	6.94	36.53	39.25	0.52	N/A	N/A	N/A
1443	PLB/160821/49853	685	PLNBB LRC	PT KASIH COAL RESOURCES	4233	32.26	17.17	4.86	5.94	40.15	36.75	0.18	0.28	59	1170
1447	PLB/160821/49855	686	PLNBB LRC	PT SUMBER PANCA ENERGI	4269	33.99	13.10	4.81	6.34	42.02	38.54	0.22	0.36	58	1160

Gambar 1. 1 Laporan Inventory Batubara PLTU Pangkalan Susu Agustus 2021

1.2 Perumusan Masalah

Tesis ini memiliki ruang lingkup yaitu studi numerik pada kasus *Coal* blending antara *Low Rank Coal & Medium Rank Coal* dengan memvariasikan *Overflow Air, Primary Air Flow, &* Konfigurasi *levelling LRC/MRC*. Rumusan masalah di dalam Tesis ini adalah :

- Bagaimana pengaruh *Coal blending* terhadap *Temperature*, konsentrasi O₂, CO₂, & NO_x pada *flue gas* di *Boiler*?
- 2. Manakah efek yang paling optimal pada analisa *leveling Coal blending* terhadap parameter-parameter yang diharapkan?
- 3. Bagaimana efek pengaturan pembukaan *Damper combustion Primary Air* terhadap distribusi *temperature* & kandungan emisi (CO2 & NO_x) berdasarkan hasil optimasi *levelling Coal blending*?

1.3 Batasan Masalah

Terdapat beberapa Batasan masalah yang harus diimplementasikan pada Tesis ini sehingga hasil yang dipaparkan sesuai dengan tujuan dari perumusan masalah Tesis. Batasan masalah pada Tesis ini diantaranya adalah :

- Studi Numerik menggunakan permodelan *Boiler* pada PLTU Pangkalan Susu Unit 1.
- 2. Parameter *output* yang dianalisa pada kasus studi numerik ini adalah persebaran panas, konsentrasi O₂, CO₂, & NO_x.
- Validasi simulasi yang akan dilakukan adalah mengacu pada data *Performance Test* 100% pada Bulan April 2021.
- 4. Metode *Coal blending* yang dilakukan pada penelitian ini adalah metode *In Furnace Blending*.
- 5. Setiap *level burner* mewakili satu jenis batubara yang identik, sehingga pada setiap *level* memiliki Empat sudut *burner* yang dilewati satu jenis batubara yang serupa.
- 6. Persebaran panas diamati pada beberapa sebaran titik didalam *furnace*, namun tidak diamati pada *fluida-fluida* didalam pipa *uap* atau air.
- 7. Pipa-pipa uap yang terdapat didalam *Boiler* akan dimodelkan sebagai *porous media*.
- Pada simulasi CFD Coal blending, hanya 4 Level Burner yang beroperasi (Level B, C, D, E), Level A tidak digunakan sebagai mana default pengoperasian operator yang menempatkan pulverizer pada level teratas sebagai peralatan dengan status stand by.
- 9. Primary Air pada Level Burner akan divariasikan menjadi 36%, 40%, & 45%
- Output yang dianalisa adalah Flue Gas *Temperature*, Konsentrasi O₂, CO₂, & NO_x pada flue gas.
- 11. Analisa terhadap *output parameter-Temperature* yaitu berkaitan dengan kesempurnaan pembakaran. Semakin tinggi *temperature furnace* dari elevasi terendah sampai dengan elevasi tertinggi, maka hasil yang didapatkan akan semakin optimal. Sebaran *temperature* pada *exit furnace*, akan lebih optimal jika nilai pembandingnya lebih rendah. *Temperature* yang rendah dapat mencegah *Overheating* pada daerah perpipaan yang menjadi *Heat exchanger*. Selanjutnya

pada bagian *exit Boiler*, maka nilai sebaran *Temperature* harus lebih rendah untuk mengoptimalkan penyerapan kalor.

1.4 **Tujuan Penelitian**

Penelitian yang dilakukan mengenai simulasi sumerik (*CFD*) permodelan *Boiler* PLTU Pangkalan Susu adalah untuk mengetahui pengaruh *Coal blending* dengan metode *In-Furnace Blending* terhadap parameter-parameter kritikal operasi. Beberapa Tujuan Utama pada studi numerik yang dilakukan adalah :

- Mengetahui karakteristik proses pembakaran yang terjadi di dalam *boiler* dan pengaruhnya terhadap sebaran panas, kandungan O₂, CO₂, & NO_x dengan variasi *in furnace blending* antara batubara *MRC* & *LRC* pada PLTU *Subcritical* berkapasitas 200 MW.
- Mengetahui konfigurasi *levelling* yang paling optimal terhadap *Coal blending MRC* & *LRC* dengan parameter pembanding sebaran panas, kandungan O₂, CO₂, & NO_x pada *flue gas*.
- 3. Mengetahui konfigurasi pembukaan *Damper combustion Primary Air* yang paling optimal berdasarkan hasil konfigurasi *levelling Coal blending* terhadap kandungan O₂, CO₂, & NO_x pada *flue gas*.

1.5 Manfaat Penelitian

Penelitian yang dilakukan sebagai dasar pembuatan Tesis memiliki beberapa manfaat, yaitu:

- 1. Mereferensikan penelitian mengenai pengaturan konfigurasi *leveling* batubara dengan komposisi *MRC* minimum (25%).
- Merekomendasikan setting-setting parameter pengoperasian hasil simulasi numerik untuk diterapkan pada PLTU Pangkalan Susu ataupun Unit Pembangkit PLN lainnya dengan tipe dan kapasitas yang serupa.

BAB II KAJIAN PUSTAKA

2.1 Dasar Teori

Pembangkit Listrik Tenaga Uap (PLTU) terbagi menjadi beberapa sistem yang saling berhubungan satu sama lain, sehingga semua sistem tersebut berkontribusi terhadap kehandalan Unit Pembangkit. PLTU adalah salah satu jenis pembangkit yang mengubah Energi Kimia dari Batubara menjadi Energi Panas didalam *Boiler/Furnace*. Energi Panas didapatkan dari transfer kalor antara api pembakaran batubara dan air yang mengalir pada sistem perpipaan didalam *Boiler*. Energi Panas yang terkandung didalam Uap akan berubah menjadi energi kinetik untuk menggerakkan Sudu-Sudut Turbin. Energi kinetik yang memutar turbin akan berubah menjadi energi mekanik yang memutar Generator, sehingga menghasilkan Energi Listrik. Sistem-sistem yang telah diterangkan sebelumya saling berkesinambungan untuk mendukung produksi listrik pada pembangkit.

2.1.1 Boiler

Salah satu komponen utama pada pembangkit listaik adalah *Boiler* atau Ketel Uap. *Boiler* adalah peralatan penukar panas atau *heat transfer* yang memproduksi uap pada tekanan dan *temperature* tinggi (*Superheated Vapour*). Pembakaran Batubara didalam ruang bakar atau *furnace* menyebabkan perubahan fase dari air atau *liquid* menjadi uap. *General Arrangement Drawing* dari *Boiler* PLTU Pangkalan Susu dapat diamati pada Gambar 2.1. Konfigurasi struktur *Boiler* yaitu terdiri dari pipa-pipa penukar panas, dinding *furnace*, *manhole* – lubang intip, *bottom boiler, death zone, main furnace*, dan area *flue gas*. Sistem-sistem atau komponen utama pada *Boiler* terdiri atas :

1. Siklus Udara Pembakaran

Secara desain struktur, maka *boiler* didesain untuk dapat dilalui lalulan udara pembakaran atau sistem siklus udara. *Force draft fan* menghisap udara atmosfer, masuk kedalam *furnace*. Udara tersebut kemudian akan mengalami peningkatan tekanan dan kecepatan setelah melalui fan, kemudian melewati *air preheater* sebagai media penukar kalor yang memanfaatkan panas dari udara gas buang (*flue gas*).

Udara yang masuk ke dalam ruang bakar kemudian disebut udara sekunder dan berfungsi sebagai udara pembakaran. Udara sekunder akan terkumpul pada area *wind box* sebelum memasuki *furnace*. Udara tersebut kemudian masuk ke *furnace* dengan bantuan pengaturan pada *Damper*.

Gambar 2. 1 Desain Boiler PLTU Pangkalan Susu

Udara yang digunakan untuk mentrasportasikan gerusan batubara dari Mill Pulverizer System ke ruang bakar disebut udara premier. Primary Air di supply menggunakan Primary Air Fan. Udara primary terbagi menjadi dua yaitu Hot PA dan Cold PA. Udara panas pada Hot PA dibentuk dengan melewatkan udara primary ke laluan air preheater yang berfungsi menukar kalor dari udara sisa pembakaran (flue gas).

No.	Items	Design Data	Unit
1	Boiler Evaporation Rate	693/660	t/h
2	Reheat Steam Flow	603,7	t/h
3	Steam Drum Working Pressure	14,43	MPa
4	Main Steam Pressure	13,43	MPa
5	Main Steam Temperature	540	°C
6	Reheater Inlet Steam Pressure	2,7	MPa
7	Reheater Outlet Steam Pressure	2,5	MPa
8	Reheater Inlet Steam Temperature	324	٥C
9	Reheater Outlet Steam Temperature	540	°C
10	Feed Water Temperature	254,3	°C
11	Air Heater Inlet Air Temperature	33	٥C
12	Hot Primary Air Temperature	378	٥C
13	Hot Secondary Air Temperature	370	°C
14	Furnace Outlet Flue Gas Temperature	987/989	٥C
15	Air Heater Inlet Flue Gas Temperature	388/387	٥C
16	Flue Gas Discharge Temperature	140	٥C
17	Economizer Outlet Temperature	294/299	°C
18	Furnace Outlet Excess Air Factor	1,2	
19	Furnace Capacity Thermal Load	111,99	KW/m ³
20	Furnace Cross Section Thermal Load	3,82	KW/m ³
21	Furnace Wall Thermal Load	116,59/109,98	KW/m ³

Tabel 2. 1 Boiler Technical Specification PLTU Pangkalan Susu

(Sumber: Operation Manual of Boiler Guangdong Power Engineering)

2. Over Fire Air (*OFA*)

Over Fire Air adalah nozzle udara pembakaran atau air compartment yang mengalirkan hingga 20% dari total udara pembakaran. OFA mengalirkan udara ke daerah pembakaran di atas windbox. Pada boiler dengan metode pembakaran tangensial, terdapat dua tipe overfire air. Tipe pertama yaitu close coupled over fire air (CCOFA) dengan menggunakan windbox yang sama untuk udara pembakaran utama. Posisi port atau nozzle OFA seperti dapat diamati paga Gambar 2.2 berdekatan dengan susunan burner. Tipe kedua yaitu separated over fire air (SOFA). Tipe tersebut menggunakan windbox yang terpisah dengan windbox burner. Posisi port SOFA lebih jauh terhadap susunan burner jika dibandingkan dengan konfigurasi CCOFA. Tipe OFA yang terdapat di PLTU Pangkalan Susu adalah CCOFA. Operator mengoperasikan Damper OFA untuk mengatur besaran aliran udara sekunder yang menekan pembentukan CO berlebih dan emisi hidrokarbon. Penggunaan OFA juga sangat berpengaruh terhadap pembentukan NOx.

Gambar 2. 2 Konfigurasi Nozzle/Port Tipe Boiler Tangensial

NOx yang terbentuk pada proses pembakaran didalam *boiler* merupakan reaksi antara Nitrogen didalam udara pembakaran dengan oksigen pada suhu yang cukup tinggi (lebih dari 1350° C). *Vertical Stagging* pada metode pengoperasian udara pembakaran yaitu menurunkan jumlah udara di *fireball* sehingga rasio pembentukan NOx akan menurun.

3. Burner

Burner adalah peralatan utama didalam sistem boiler PLTU untuk mementuk campuran bahan bakar dan udara yang hasilnya uniform sehingga pembakaran terjadi efisien dan memperoleh karakteristik formasi nyala api sesuai jenisnya. Burner PLTU pangkalan susu memiliki tipe burner Tangential Firing dengan konfigurasi seperti terlihat pada Gambar 2.3. Tipe burner tersebut tersusun secara vertikal pada ke-empat sudut furnace. Gerusan batubara yang berasal dari pulverizer diinjeksikan pada arah horizontal ke sisi central dari area furnace. Proses injeksi yang terjadi membentuk garis tangensial dengan lingkaran di titik tengah furnace. Keunggulan pada tipe burner tangential adalah pembakaran yang dihasilkan menjadi lebih teratur dan konsisten membentuk fireball pada sisi tengah furnace. Turbulensi pada fireball menghasilkan vortex yang menyebabkan arah aliran pembakaran terbentuk esmpurna ke bagian atas furnace. Kondisi tersebut menghasilkan heat flux pada waterwall tube yang lebih merata dan mengurangi potensi tube yang overheating.

Konfigurasi *burner* pada PLTU Pangkalan Susu terdiri dari 5 tingkatan. Tingkatan tersebut terdiri dari *burner* udara dan bahan bakar yang menyesuaikan tingkatan *pulverizer* dari A s.d E (5 *Mill*). Susunan *burner* di PLTU Pangkalan Susu dimulai dari Mill E pada bagian bawah, kemudian berurutan sampai dengan mill A pada bagian paling atas. *Burner injeksi* HSD atau *Oil Gun* hanya terdapat 2 tingkatan. Posisinya *Oil Gun* berada diantara *burner Mill* E-D & *burner Mill* C-B. Masing-masing *burner* memiliki *Damper* atau peralatan pengaturan aliran masuk udara pembakaran (udara premier & sekunder). Besaran bukaan *Damper* pada udara pembakaran diatur oleh operator *boiler* sesuai kebutuhan pengoperasian dan *best practice*.

Gambar 2. 3 Konfigurasi Burner Tangential Firing PLTU Pangkalan Susu

4. Waterwall

Pipa-pipa pada bagian *waterwall* berasal dari *steam drum* menuju ke *lower header*. Komposisi fluida yang melewati *waterwall* adalah campuran air dan uap. Fludia yang masuk ke lower header kemudian secara *natural circulation* akan kembali menuju ke *steam drum* untuk meningkatkan *temperature* air pengisi yang baru masuk ke dalam *steam drum*. Istilah *natural circulation* yang telah disebutkan termasuk salah satu keunggulan pada sistem ketel uap di PLTU Pangkalan Susu. Laju perpindahan panas pada area *waterwall tube* dapat dihitung dengan persamaan sebagai berikut ;

$$Q = m x h_{fg} \tag{1}$$

Q : laju perpindahan panas pada *waterwall tube* (kW) *m* : laju aliran massa air pada *waterwall tube* (kg/s)

*h*_{fg} : *entalphy* penguapan pada tekanan *steam drum* (kj/kg)

5. Convection Pass

Convection Pass adalah area yang terdapat didalam boiler yang mengalami perpindahan panas secara konveksi yaitu terdiri dari perpipaan superheater, reheater, dan economizer. Pipa-pipa tersebut memiiki konfigurasi struktur berupa tube bunde atau tube bank. Sebagian besar perpipaan tersebut memiliki pipa header yang terdapat inlet dan outlet laluan fluida (steam). Sistem economizer terletak pada bagian akhir dari area convection pass. Economizer menjadi bagian didalam sistem boiler yang dilalui fluida menuju steam drum setelah melewati high pressure heater dengan tujuan untuk menaikkan temperature air pengisi (feedwater) memanfaatkan panas dari udara sisa pembakaran (flue gas). Superheater & Reheater adalah bagian pada area convection pass yang bertujuan untuk menasuki turbine. Primary Superheater (LTSH), division panel Superheater, Platen Superheater, Final Superheater adalah bagian-bagian pada sistem perpipaan superheater yang bertujuan untuk mengoptimalkan penyerapan panas di dalam furnace.

6. Air Pre-Heater

Air Preheater merupakan peralatan pada *boiler* yang berfungsi untuk memanfaatkan panas dari udara sisa pembakaran sebagai pemanas kembali (*reheating*) udara primer dan sekunder yang baru masuk melewati sisi *inlet* APH. *Temperature outlet boiler* yang masih tinggi yaitu pada kisaran 400° C , dimanfaatkan untuk menaikan *temperature* udara yang akan masuk ke *boiler*. Penggunaan *Air Preheater* dapat meningkatkan efisiensi dari sistem pembakaran di *boiler*. Penurunan pansa udara sisa pembarakan yang melewati *air preheater* juga berdampak baik bagi kehandalan peralatan yang dilalui setelah melwati APH yaitu *electrostatic precipitator* dan *induced draft fan*.

2.2 Perhitungan Efisiensi *Boiler*

Performa *boiler* dapat dianalisa dengan menghitung efisiensi *boiler*. Efisiensi *boiler* berdasarkan ASME (2008) adalah unjuk kemampuan kerja *boiler* melalui perbandingan antara energi yang dipindahkan oleh fluida kerja didalam *boiler* dengan energi kimia (bahan bakar) yang diperlukan selama proses pembakaran. ASME Standard PTC 4.1 membakukan dua metode pendekatan perhitungan

efisiensi *boiler*, diantaranya adalah metode perhitungan langsung (*direct method*) dan metode perhitungan tidak langsung (*indirect method*).

1. Direct Method

Direct Method merupakan metode perhitungan cepat untuk menemukan efisiensi *boiler*, tanpa menambahkan parameter kerugian atau *losses* kedalam perhitungan. Rumus yang digunakan adalah sebagai berikut ;

$$\Pi Boiler = \frac{heat \ output}{heat \ input} \ge 100 \%$$
(2)

$$\Pi Boiler = \frac{Steam Mass Flow Rate x (Steam Enthalpy-Feedwater Enthalpy)}{Fuel Mass Flow Rate x Gross Calorific Value}$$
(3)

Keterangan :	-	Steam Mass Flow Rate (T/h)
	-	Steam Enthalpy (kcal/kg)
	-	Feedwater Enthalpy (Kcal/kg)
	-	Fuel Mass Flow Rate (T/h)

2. Indirect Method

Metode perhitungan efisiensi *boiler* secara *indirect method*, mengkalkulasikan nilai kerugian atau *losses* pada *boiler*. Kerugian-kerugian pada sistem *boiler* diantaranya adalah ;

- a. Kerugian terhadap dry flue gas
- b. Kerugian terhadap H₂
- c. Kerugian terhadap kelembapan pada bahan bakar
- d. Kerugian terhadap kelembapan pada udara pembakaran
- e. Kerugian terhadap CO
- f. Kerugian terhadap permukaan boiler (dinding)
- g. Kerugian terhadap fly ash
- h. Kerugian terhadap bottom ash

Berdasarkan data-data kerugian-kerugian pada *boiler* tersebut diatas, sehingga persamaan efisiensi *boiler* metode *indirect* adalah ;

$$\prod Boiler = 100\% - (L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 + L_8)$$
(4)

Selanjutnya perhitungan kerugian-kerugian pada sistem *boiler*, uraiannya adalah sebagai berikut ;

A. *Heat Loss in Dry Flue Gas* (L^1)

L₁
$$= \frac{m x Cp x (Tf-Ta)}{GCV} \times 100\%$$
(5)

Keterangan : - m (*Mass of dry flue gas* $\frac{kg}{ka}$ of fuel)

- *Cp* (*Specific Thermal Value of Flue Gas* kcal/kg°C)
- *Tf* (*Flue Gas Temperature* °C)
- Ta (Ambient Temperature °C)
- GCF (Gross Calorific Value kCal/kg)
- Combustion product ;
 CO₂ + SO₂ + N (Fuel) + N (Actual Mass Supplied Air) +
 O₂ (flue gas)
- B. Heat Loss Moisture of $H_2(L^2)$

L₂ =
$$\frac{9 x H2 x (584+Cp(Tf-Ta))}{GCV} \times 100 \%$$
 (6)

C. *Heat Loss* Kandungan *Moisture* Pada Batubara (L³)

L₃ =
$$\frac{m x(584+Cp (Tf-Ta))}{GCV} \times 100 \%$$
 (7)

Keterangan : - m (Massa moisture dalam 1 Kg batubara)

D. Heat Loss Kandungan Moisture Pada Udara (L⁴)

L4
$$= \frac{AAS \times Humadity \times Cp (Tf-Ta)}{GCV} \times 100 \%$$
(8)

- Keterangan : AAS (Massa udara aktual dalam 1 Kg Batubara)
 Humidity (Rasio kelembapan atau massa air yang terkandung pada 1 Kg udara kering
- E. *Heat Loss* Konversi C ke $CO(L^5)$

L5
$$= \frac{\%CO x \%C}{\%CO+\%CO2} x \frac{5744}{GCV} x \ 100 \%$$
(9)

Keterangan : - CO (Volume CO di udara *flue gas*)
- CO₂ (Volume CO₂ di udara *flue gas*)
- C (Kandungan Carbon pada Batubara)

F. Heat Loss Radiasi & Konveksi – Surface Area Furnace (L⁶)

L₆ = 0,548 x {
$$\left(\frac{\text{Ts}}{55,55}\right)^4$$
 - $\left(\frac{\text{Ta}}{55,55}\right)^4$ } + 1,957 x (Ts - Ta)^{1,25} x
 $\sqrt{\frac{196,85\text{Vm}+68,9}{68,9}}$ x $\frac{A \text{ boiler}}{m \text{ fuel x GCV}}$ (10)

- G. Heat Loss Kandungan Unburnt pada Fly Ash (L⁷) $L_{7} = \frac{Total Ash Collected (per kg fuel terbakar) x GCV fly ash}{GCV fuel} x 100 \%$ (11)
- H. Heat Loss Kandungan Unburnt pada Bottom Ash (L⁸) $L_8 = \frac{Total Ash Collected (per kg fuel terbakar) x GCV bottom ash}{GCV fuel} x 100 \%$ (12)

2.3 Penyerapan Panas Heat exchanger & Wall Tuber di Boiler

Sistem perpipaan uap dan air merupakan bagian utama penyerapan panas (*Heat Transfer*) pada *Boiler*. Fase pemanasan air menjadi uap air terjadi pada sistem perpipaan *Economizer* dan *Wall Tube* (Downcomer). Fase pemanasan uap air menjadi uap panas lanjutan (*Superheated Steam*) terjadi pada sistem perpipaan *superheater*. Siklus tersebut merupakan bagian dari siklus *Rankine* pada Pembangkit Listrik Tenaga Uap. Pada simulasi *Computational Fluid Dynamics*, permodelan sistem perpipaan didalam *boiler* dapat dimodelkan sebagai *Heat exchanger* dengan *Porous Media* yang memiliki nilai *porosity*. Sebagaiman fungsi dari *Heat exchanger*, maka perlu dilakukan perhitungan penyerapan panas (q), yang diuraikan pada persamaan sebagai berikut ;

q =
$$m_{steam} \ge Cp_{steam} \ge \Delta T$$
 (13)

$$q^{``} = \frac{q}{A} \tag{14}$$

$$q^{\text{```}} = \frac{q}{Volume}$$
(15)

Gambar 2. 4 Heat exchanger Boiler (Sumber: Reticom)

2.4 Simulasi CFD Pembakaran Batubara (Studi Numerik)

Studi Numerik menggunakan *Computational Fluid Dynamics* merupakan metode yang efektif untuk mengetahui proses pembakaran didalam *Boiler*. Proses pembakaran yang terjadi didalam *boiler* dapat dikalkulasikan secara numerik dengan persamaan kekekalan massa (kontinuitas), persamaan kekekalan momentum, persamaan kekekalan energi. Penggunaan perangkat lunak Simulasi *CFD*, membantu memudahkan penyelesaian persemaan-persamaan tersebut sehingga didapatkan hasil eksperimental yang diharapkan.

1. Persamaan Kekekalan Massa (Kontinuitas)

Persamaan kekelan massa yang digunakan pada proses pembakaran didalam *boiler* adalah persamaan umum kontinuitas untuk fluida *incompressible* dan *compressible*, dengan rumusan sebagai berikut ;

$$\frac{\partial \rho}{\partial t} + \nabla \left(\rho \vec{v} \right) = S_{\rm m} \tag{16}$$

Sm = pengurangan/penambahan massa $\rho =$ massa jenis fluid t = waktu

 \vec{v} = *vector* kecepatan total

2. Persamaan Kekekalan Momentum

Persamaan umum kekekalan momentum pada arah (i) adalah sebagai berikut ;

$$\frac{\partial}{\partial t} (\rho \vec{v}) + \nabla (\rho \vec{v} \vec{v}) = -\nabla p + \nabla .(\bar{\tau}) + \rho \vec{g} + \vec{F}$$
(17)

$$p = \text{Tekanan Statis}$$

$$\bar{\tau} = \text{Tensor Tegangan Geser}$$

$$\vec{g} = \text{Percepatan Gravitasi}$$

$$\vec{F} = \text{Gaya Eksternal}$$

Tensor tegangan geser dapat dinyatakan dengan persamaan sebagai berikut ;

$$\tau_{ij} = \mu \left(\frac{\partial ui}{\partial xj} + \frac{\partial uj}{\partial xi} \right) - \frac{2}{3} \mu \frac{\partial uk}{\partial xk} \delta_{ij}$$
(18)
$$\mu = dynamic \ viscocity$$
$$u = velocity$$

3. Persamaan Kekekalan Energi

Persamaan yang diguanakan pada *software CFD Ansys-Fluent* adalah persamaan yang digunakan pada setiap *meshing* di simulasi *CFD*, sehingga sebaran *temperature* yang terbentuk dapat merepresentasikan distribusi *temperature* pada setiap bagian di *boiler*. Persamaan energi yang digunakan adalah sebagai berikut ;

$$\frac{\partial}{\partial t} (\rho E) + \nabla \left[\vec{v} (\rho E + p) \right] = \nabla \cdot (k_{eff} \nabla T - \sum hj J_j + (\tau e_{ff} \cdot v) + S_h \quad (19)$$

$$k_{eff} = effective \ conductifity \ (k + k_l)$$

$$T = Temperature$$

$$k_t = turbulence \ thermal \ conductivity$$

Sehingga, Persamaan Energi dapat didefinisikan dengan persamaan sebagai berikut ;

$$E = h - \frac{p}{\rho} + \frac{v^2}{2} \tag{20}$$

Nilai h merupakan nilai entalpi sensibel yang dirumuskan dengan persamaan sebagai berikut ;

a. Aplikasi pada jenis fluida tipe Ideal Gas

$$h = \sum Y_j h_j$$

b. Aplikasi pada jenis fluida tipe Incompressible Flow

$$h = \sum Y_{j}h_{j} + \frac{p}{\rho} \qquad Y_{j} = \text{fraksi massa spesies } j \qquad (21)$$
$$h_{j} = \int_{Tref}^{T} c_{p,j}dT$$
$$Tref = 298,15 \text{ K}$$

2.5 Penelitian Sebelumnya

Metode *Coal blending* berdasarkan penelitian Baek dkk di Tahun 2014 [1] mensimulasikan metode *Blending* yaitu *In Furnace & Out Furnace*. Metode *Out Furnace Blending* pada penelitian tersebut mencampurkan 40 % Sub-Bituminous (*LRC*) dan 60 % Bituminous (*MRC*). Pada kasus *In Furnace Blending*, Batubara yang dicampurkan adalah berdasarkan konfigurasi *burner*. Batubara Sub-Bituminous terletak pada 2 *level Burner*, batubara Bituminous terletak pada 3 *level Burner*. Peneliti melakukan riset terhadap *Boiler* Tangensial di Pembangkit berkapasitas 500 MW dengan metode Simulasi Numerik (*CFD*) dan Validasi Eksperimental.

Coal supplied	Case S-1	Case S	-2	Case S-3
F burner set	-	-		-
E burner set	Rotosouth	Blende	ed coal ^a	Moorvale
D burner set	Rotosouth	Blende	ed coal	Moorvale
C burner set	Moorvale	Blende	ed coal	Moorvale
B burner set	Moorvale	Blende	ed coal	Rotosouth
A burner set	Moorvale	Blende	ed coal	Rotosouth
Input data			Case	S-1, 2 and 3
Overall stoichiome	etry		1.08	2
Burner tilt angle (°)		0	
Coal flow rate (tor	n/h)		202	
Primary air flow r	ate (ton/h)		419	
Secondary air flow	rate (ton/h)			
At E & F burner se	ts		233	
At C & D burner se	ets		308	
At A & B burner se	ets		308	
CCOFA air flow rat	te (ton/h)		403	
Crotch air flow rat	te (ton/h)		94	
Predicted results a	it model exit	Case S-1	Case S-2	Case S-
Carbon in ash (wt	.%)	1.65	3.00	4.64
O2 (%, molar fracti	on)	2.38	2.54	2.35
CO (%)		0.21	0.34	0.36
Averaged gas tem	perature (°C)	1471	1484	1485
NO (ppp)		106	109	110

Tabel 2. 2 Parameter Input Simulasi & Hasil Simulasi

Tujuan simulasi yang dilakukan oleh Baek dkk adalah mendapatkan efek dari *Coal blending* terhadap kandungan Carbon di Abu Gas Buang dan kandungan Emisi NOx. Kandungan Carbon pada Abu Gas Buang di deskripsikan oleh penuslis sebagai *Loss of Ignition* (LOI). Penulis membagi simulasi menjadi Tiga kasus, kasus 1 & 3 dengan metode *in furnace blending*, sedangkan kasus 2 dengan metode *out furnace blending*. Pada Tabel 2.2 dapat diamati, penentuan konfigurasi masingmasing kasus, *boundary condition* pada riset, dan hasil simulasi dari setiap kasus.

Hasil simulasi yang didapatkan pada penelitian Baek dkk yaitu metode *Coal* blending memiliki hasil optimal pada parameter kandungan karbon di abu gas buang dibandingkan terhadap parameter kandungan emisi NOx yang juga menjadi target penelitian. Kontur konsentrasi NOx dapat diamati pada Gambar 2.6, pada kasus 1 yang menempatkan batubara jenis bituminous atau *MRC* pada *level* terbawah burner, batubara jenis subbituminous atau *LRC* pada *level* diatasnya berhasil mengurangi kandungan karbon di abu gas dibandingkan pada studi kasus 2 & 3.

Gambar 2. 5 Distribusi CO & Temp. pada Boiler (Sumber: Baek dkk, 2014)[1].

Distribusi O₂, CO, dan *Temperature Gas* didalam *furnace* adalah pendekatan terhadap kandungan karbon di abu gas buang. Semakin tinggi kandungan O₂, semakin tinggi *temperature gas*, dan semakin rendah kandungan CO, menyebabkan kandungan *Carbon* didalam abu gas buang semaking rendah. Hasil kualitatif berupa kontur distribusi *temperature* dan CO dapat diamati pada Gambar 2.5.

Gambar 2. 6 Distribusi NOx pada Boiler (Sumber: Baek dkk, 2014)[1].

Kebalikan terhadap hasil kandungan *Carbon* dalam abu gas buang yang didapatkan optimal pada penelitian Baek dkk, kandungan NOx dari ketiga kasus tidak terlihat perbedaan yang signifikan. Perbandingan ketiga kasus yang diteliti, nilai emisi NOx terendah pada penelitian terdapat pada kasus Pertama. Sehingga pada penelitian Baek dkk, metode *In Furnace Blending* berhasil menurunkan kandungan NOx dan *Carbon* ketimbang metode *Out Furnace Blending*.

Penelitian yang dilakukan Debo Li dkk pada Tahun 2016 menganalisa efek dari *Coal blending* dan parameter pengoperasian terhadap *Temperature*, NOx, O₂, CO. Parameter pengoperasian yang digunakan untuk mengetahui pengaruh *Coal blending* adalah *Excess Air Ratio* dan Konfigurasi SOFA. Varisai simulasi yang dilakukan peneliti dibagi menjadi 5 kasus seperti pada Tabel 2.3. Kasus *Coal Blended* 1 dan 2 yang dilakukan pada simulasi adalah 80% Bituminous Coal (Shenhua Coal) dan 20% Lignite Coal (Shitan Coal), sedangkan pada kasus 3, 4, dan 5 batubara yang digunakan adalah Bituminous (Shenhua Coal). *Excess air ratio*

& SOFA ratio juga divariasikan nilainya pada masing-masing kasus untuk melihat efeknya terhadap hasil simulasi yaitu NOx & *Temperature*.

Tabel 2. 3 Variasi Kasus Simulasi Coal blending

Case	1	2	3	4	5
Fuel	coal blend	coal blend	bituminous	bituminous	bituminous
Excess air ratio	1.1	1.2	1.1	1.2	1.2
SOFA ratio	0.3	0.3	0.3	0.3	0

Simulasi yang dilakukan Debo Li dkk mendapati nilai-nilai sebaran *Temperature* didalam area pembakaran *furnace* dan nilai kandungan emisi NOx, merupakan efek dari kandungan jenis-jenis batubara yang berbeda misalnya *mass fraction* dan N. Pola kenaikan *temperature* didalam *furnace* adalah seperti dapat diamati pada Gambar 2.7, kenaikan *temperature* terdapat di area *burner*. Penurunan *temperature* terdapat di atas area *burner* yang disebabkan optimalnya proses *heat transfer* pada area *waterwall*. Hasil simulasi menunjukkan korelasi antara kenaikan *excess air ratio* terhadap penurunan *temperature flue gas* dan kandungan CO₂, O₂, CO. Namun sebaliknya terhadap parameter NOx, semakin tinggi *excess air* maka nilai NOx nya juga semakin tinggi terutama pada kasus simulasi dengan setting SOFA ratio yang sangat rendah.

NOr distributions: (a) Case 1; (b) Case 2; (c) Case 3; (d) Case 4; (e) Case 5

Gambar 2. 7 Distribusi *Temperature* & NOx pada *Boiler* (Sumber: Debo Li dkk, 2017)[2].

SOFA ratio juga menunjukkan pengaruhnya terhadap kenaikan outlet temperature furnace. Pembangkit-pembangkit dengan kapasitas yang besar atau diatas 300 MW dan memiliki fitur air burner SOFA (Separated Over Fire Air) pada pola pengoperasian yang optimal akan mendukung pengurangan emisi NOx selama proses pembakaran.

Sa'adiyah, Bangga, Widodo, & Nur Ikhwan melakukan penelitian terhadap kasus *Coal blending* pada Tahun 2017 untuk mengetahui konfigurasi metode *in furnace blending* yang optimal pada pembangkit dengan tipe *Boiler* tangensial berkapasitas 625 MW untuk mengetahui karakteristik aliran, pembakaran, dan gas buang. Peneliti membuat konfigurasi komposisi batubara yaitu 70% *Low Rank Coal (LRC)* dan 30 % *Middle Rank Coal (MRC)*. Fenomena *local heating* pada pipa-pipa *boiler*, menjadi salah satu fokus pada penelitian Sa'adiyah untuk mencari deviasi *temperature* yang terjadi pada bagian *upper furnace*. Meskipun focus utama peneliti adalah mengetahui konfigurasi optimal pada *levelling* injeksi batubara *MRC & LRC* di elevasi *burner*. Tujuan penentuan *levelling* injeksi batubara adalah untuk mengetahui nilai optimal pengoperasian terhadap deviasi *temperature* dan kadar gas buang yaitu NOx, O₂, & CO₂.

Gambar 2. 8 Geometry Simulasi CFD Boiler (Sumber: Sa'adiyah dkk, 2017)[3].

Sa'adiyah dkk melakukan validasi terhadap simulasi dengan menggunakan data-data parameter *Boiler* pada pengoperasian *normal* atau saat berbeban penuh menggunakan batubara jenis *Low Rank Coal*. Hasil penelitian yang didapatkan seperti ditunjukkan paga Gambar 2.8 adalah penempatan *MRC* pada bagian *level* bawah *burner* yaitu posisi A & C , menghasilkan sebaran panas atau *local heating* yang lebih kecil pada sisi diantara *upper side wall* dan *front wall* dengan kisaran *temperature* 1900 – 2000 K. Hasil NOx yang diperoleh juga lebih kecil pada konfigurasi tersebut, begitu juga dengan nilai kandungan O₂ pada udara *flue gas*.

Jian Zhang, Qunying Wang, Yajuan Wei, and Lian Zhang melakukan penelitian terkait *Numerical Modelling* dan investigasi secara experimental menggunakan *CFD* terhadap kasus *Coal blending* antara *Brown Coal* dan *Bituminous Coal*. Metode pencampuran batubara yang dilakukan adalah *in furnace blending*. Studi eksperimental yang dilakukan adalah pada Boiler Supercritical 600 MW. Peneliti membagi percobaan simulasi sebanyak 13 kasus. Konfigurasi *Boiler* sesuai dengan kondisi aktual, terdapat SOFA dan CCOFA pada sistem udara pembakaran didalam *furnace*. Zhang dkk melakukan validasi model *CFD* terhadap penyerapan panas di bagian *Platen Superheater*. Validasi dengan pembanding data *Temperature* pada area *platen* superheater, terbutkti efektif pada pembangkit berkapasitas besar. Optimasi parameter dilakukan pada pendekatan wall emissivity, temperature tube, dan area radiasi. CFD yang dilakukan pada penelitian Zhang menggunakan Ansys CFX. Geometry dan Meshing dapat diamati pada Gambar 2.9, permodelan boiler untuk keperluan simulasi dibatasi sampai dengan area economizer boiler. Kerapatan meshing pada geometry lebih diutamakan pada area sekitar burner. Konfigurasi burner inlet batubara ke furnace memliki banyak titik dan dikelilingi oleh udaraudara primary air. Pada perhitungan heat flux radiative di area wall tube, penulis menggunakan rumusan sebagai berikut ; $Q_{t,w} = f_d \varepsilon_w q_m A_w$ (22)

Perhitungan area radiasi A_w pada *water wall* direduksi sebanyak 75% menjadi 0.35. Perhitungan penyerapan panas pada area *superheaters* menggunakan rumusan sebagai berikut ; $Q_{SH} = m_{steam}(h_{out} - h_{in})$ (23)

Gambar 2. 9 *Geometry Meshing* Simulasi *CFD Boiler* (Sumber: Zhang dkk, 2015)[4].

Pengaruh *Coal blending* terhadap pembentukan NOx dapat dikalkulasikan melalui perhitungan pasca simulasi (*post processing*). Perhitungan pembentukan *thermal-NOx* diuraikan oleh peneliti melalui Rumus Zeldovich dengan mencari
nilai konsentrasi O dan OH. Hasil penelitian menunjukkan bahwa variasi pengoperasian pada penelitian yang meliputi konfigurasi penempatan *brown coal*, rasio *blending brown coal*, dan rasio *SOFA*, konfigurasi penempatan *brown coal* yang menghasilkan waktu tahan *tangensial firing* pada sisi *furnace* lebih lama adalah pada penempatan di *level* tengah dan atas *burner*. Rasio *blending brown coal* yang optimal adalah pada komposisi 50 wt % dari *brown coal*, pada kondisi tersebut kandungan *hydrocarbons* pembakaran dan kandungan kelembapan batubara sangat seimbang, sehingga berdampak sangat signifikan terhadap kontur *temperature* pada *flue gas*.

BAB III METODOLOGI PENELITIAN

Pada penelitian ini, terdapat beberapa langkah-langkah yang diperlukan untuk mendapatkan hasil analisa yang sesuai sehingga tujuan-tujuan penelitina dapat tercapai. Metodologi penilitan yang dilakukan adalah dengan simulasi numerik menggunakan perangkat lunak *Computational Fluid Dynamics (CFD)* dalam menganalisa lebih detail permodelan terkait pembakaran yang terjadi di *Boiler*. Penelitian terhadap efek *in furnace Coal blending* pada perbedaan setting parameter *OFA* & Udara Sekunder memiliki beberapa tahapan-tahapan. Tahapan tersebut digunakan untuk mengoptimalkan simulasi numerik agar karakteristik aliran dan pembakaran dapat menunjukkan hasil yang representatif terhadap tujuan penelitian. Metodologi penelitian yang dilakukan adalah sebagai berikut;

- Studi Kasus ; Mengumpulkan sumber-sumber informasi yang bersifat *best* practice atau pengalaman pengoperasian pembangkitan pada lingkungan PLTU. Pengumpulan informasi tersebut digunakan untuk membandingkan studi kasus dan studi literatur sebagai penentuan tujuan penelitian dan korelasinya terhadap aktualisasi pengoperasian di PLTU Pangkalan Susu.
- 2. Studi Literatur ; Pengumpulan informasi terkait riset *Coal blending* yang sudah pernah dilakukan, baik itu berbasis jurnal ataupun laporan tugas akhir. Studi literatur tersebut juga digunakan untuk memastikan penelitian yang dilakukan memiliki *novelty* terhadap sejarah penelitian *Coal blending*.
- 3. Pengumpulan Data ; Simulasi numerik melalui perangkat lunak *Computational Fluid Dynamics* (*CFD*) memerlukan data-data yang sangat akurat. Data-data tersebut digunakan untuk proses simulasi yang tahapannya dimulai dari permodelan, *set up* simulasi, dan sampai ke tahapan validasi data aktual terhadap data hasil simulasi. Data-data yang dikumpulkan pada proses penelitian dapat diamati secara *overview* pada Gambar 3.1 Diagram Alir Metodologi Penelitian.

Gambar 3. 1 Diagram Alir Penelitan

- 4. Perhitungan dan Penentuan Konfigurasi ; Perhitungan yang dilakukan adalah tahap lanjutan terhadap pengolahan data-data yang diperoleh dil langkah sebelumnya untuk kebutuhan simulasi. Penentuan variasi konfigurasi juga dilakukan pada tahapan ini, berdasarkan referensi-referensi penelitian sebelumnya untuk menyiapkan proses simulasi.
- 5. Persiapan dan Proses Simulasi ; Tahapan persiapan simulasi diantaranya adalah pembuatan *Geometry* atau permodelan *Boiler*, *meshing* desain dan pengaturan parameter operasi pada simulasi. Permodelan geometry boiler dilakukan pada software Solidworks. Penentuan domain model, tahap meshing, hingga proses simulasi dilakukan pada software Ansys Fluent.
- 6. Analisa dan Kesimpulan ; Analisa yang dilakukan pada tahapan ini adalah analisa hasil simulasi. Hasil simulasi juga dilakukan validasi kesesuaiannya terhadap data aktual pengoperasian PLTU. Validasi kesesuaian simulasi terhadap aktual pengoperasian dinyatakan berhasil jika mendapatkan nilai parameter-parameter yang sesuai standard deviasi maksimal. Tahapan selanjutnya adalah pengambilan visualisasi atau kontur terhadap nilai-nilai yang menjadi target penelitian. Data hasil simulasi dan visualisasi *CFD* yang didapatkan dapat digunakan sebagai bahan analisa dan penentuan kesimpulan efek *in furnace Coal blending* terhadap variasi Udara Primer.

3.1 *Pre-Processing*

3.1.1 Permodelan Geometri Boiler

Permodelan pada studi numerik ini adalah menggunakan model *boiler* PLTU Pangkalan Susu dengan kapasitas 4 x 200 MW. Pembuatan Geometri dilakukan pada *software Solidwork*. *Solidwork* merupakan perangkat lunak untuk aplikasi desain mekanikal 3 dimensi. Pembuatan basis geometri dengan bantuan *Solidwork* sangat membantu dalam proses penggambaran *boiler* yang akurat sesuai data aktual di pembangkit. Desain *furnace* pada PLTU memiliki beberapa sistem perpipaan. Sistem perpipaan tersebut terdiri dari *water wall* atau *wall tube, economizer,* dan area pipa *steam* (*Superheater-Reheater*) atau lebih jelasnya dapat diamati pada Gambar 3.2. Pada area *steam,* susunan pipa-pipa dimodelkan sebagai *heat exchanger* atau *porous media*. *Domain* Model Geometri yang digunakan pada penelitian adalah ;

- a. Velocity Inlet sebagai domain aliran masuk udara primer, udara sekunder, & OFA.
- b. Massflow Inlet untuk injeksi batubara ke dalam furnace.
- c. Sistem perpiaan *steam* yang dimodelkan sebagai *heat exchanger* atau *porous media*. Pada *heat exchanger* tersebut terdapat transfer kalor dengan satuan *heat flux*.
- d. Waterwall atau wall tube dimodelkan sama dengan dinding furnace.

Gambar 3. 2 Model Geometri Boiler PLTU Pangkalan Susu pada Solidworks

3.1.2 Meshing

Metode *meshing* pada tahapan *pre-processing* adalah metode membagi geometri menjadi ukuran atau volume yang lebih kecil dengan mengikuti ekspektasi pola aliran yang terjadi pada bagian tersebut berdasarkan referensi penelitian serupa. *Meshing* diterapkan pada *pre-processing* simulasi untuk mendapatkan akurasi hasil simulasi *CFD* yang optimal dan sesuai dengan validasi data aktual. *Meshing* yang digunakan untuk melakukan pendekatan akurasi optimal pada permodelan simulasi *CFD* adalah sebanyak 1.039.088 Nodes.

Gambar 3. 3 Hasil Meshing Geometri Boiler PLTU Pangkalan Susu

3.2 Processing

Processing merupakan proses selanjutnya dari permodelan Geometri & *Meshing* pada simulasi *CFD*. Proses *meshing*, *setup*, simulasi, dan *post processing* dilakukan pada *software* Ansys Fluent 2020. Penggunaan data operasional diperlukan sebagai acuan dalam *setup* pada proses simulasi di tahap *processing*.

Data pengoperasian yang digunakan pada simulasi *CFD* adalah data *performance test* (PT) *boiler* yang dilaksanakan pada Tanggal 16 April 2021 Pukul 15:00 – 17:00 WIB. *Performance test* yang dilakukan pada *Boiler* Unit 1 PLTU Pangkalan Susu mendapatkan capaian beban 100% MCR yaitu 200 MW (Gross).

3.3.1 Set Up Model

No	Model	Setting	Remarks
1	Multiphase	Off	Penelitian difokuskan pada hasil aliran <i>flue gas</i> dari proses pembakaran
2	Energy	On	Fokus analisa <i>CFD</i> yaitu pertukaran panas
3	Viscous	k-ε standard	Jenis permodelan dengan tipe <i>fully turbulent flow</i>
4	Radiation	Off	Perpindahan panas pada area <i>waterwall</i> adalah secara radiasi
5	Heat exchanger	On	Konfigurasi <i>tube bank</i> (porous media) pada economizer, superheater, dan reheater yang terjadi perpindahan panas cukup signifikan
6	Species	Species Transport, Reaction	Pencampuran dan pemindahan spesies kimia melalui penyelesaian persamaan konservasi yang mendeskripsikan difusi, konveksi, dan reaksi kimia pada masing-masing komponen
7	Discrete Phase	On	Mendefinisikan injeksi batubara pada <i>inlet burner</i>
8	Solidification & Melting	Off	Not Necessary
9	Acoustic	Off	Not Necessary
10	Eulerian Wall Film	Off	Not Necessary
11	Electrical Potential	Off	Not Necessary

Tabel 3. 1 Setting Model CFD Ansys Fluent

3.3.2 Parameter Injeksi & Boundary Condition

Boundary Condition atau kondisi batas adalah kondisi-kondisi simulasi pada tahapan processing yang memiliki nilai-nilai untuk mendapatkan hasil simulasi yang sesuai dengan proses pembakaran aktual di dalam *boiler*. Data-data yang digunakan sebagai *boundary condition* didapatkan dari aktual pengukuran proses pembakaran atau hasil perhitungan teoritis.

NO	AUXILIARY DAMPER	OPENING DAMPER (%)	PARAMETER	SATUAN	CORNER A	CORNER B	CORNER C	CORNER D
_	Inlet Secondary air		Flow Air (SA)	kg/s	5.24	5.24	5.24	5.24
1	/Overfire Air (OFA)	50	Temp Air (SA)	°C	366.36	366.36	366.36	366.36
2	Inlet Secondary air	45	Flow Air (SA)	kg/s	4.72	4.72	4.72	4.72
	(SA EE)		Temp Air (SA)	°C	366.36	366.36	366.36	366.36
			Coal Flow	kg/s	1.99	1.99	1.99	1.99
3	Inlet	40	Temp Coal	°C	56.92	56.92	56.92	56.92
	air (PA E)	40	Flow Air (PA)	kg/s	4.73	4.73	4.73	4.73
			Temp Air (PA)	°C	56.92	56.92	56.92	56.92
1	Inlet Secondary air	45	Flow Air (SA)	kg/s	4.72	4.72	4.72	4.72
	(SA DE)		Temp Air (SA)	°C	366.36	366.36	366.36	366.36
	Inlet Coal/Primary air (PA D)	40	Coal Flow	kg/s	2.03	2.03	2.03	2.03
5			Temp Coal	°C	59.42	59.42	59.42	59.42
			Flow Air (PA)	kg/s	4.73	4.73	4.73	4.73
			Temp Air (PA)	°C	59.42	59.42	59.42	59.42
	Inlet Oil Gun		Oil Gun STAND BY					
6	CD + inlet Secondary air	50	Flow Air (SA)	kg/s	5.24	5.24	5.24	5.24
	(SA CD)		Temp Air (SA)	°C	366.36	366.36	366.36	366.36
			Coal Flow	kg/s	2.09	2.09	2.09	2.09
7	Inlet Coal/Primary	40	Temp Coal	°C	55.43	55.43	55.43	55.43
,	air (PA C)		Flow Air (PA)	kg/s	4.73	4.73	4.73	4.73
			Temp Air (PA)	°C	55.43	55.43	55.43	55.43
8	Inlet Secondary air	40	Flow Air (SA)	kg/s	4.19	4.19	4.19	4.19
0	(SA BC)		Temp Air (SA)	°C	366.36	366.36	366.36	366.36

Tabel 3. 2 Setup Point Inlet Boundary Condition

Serbuk batubara yang masuk kedalam *boiler* diinjeksikan menggunakan *nozzle burner* yang terdapat di empat sudut *furnace boiler*. *Level coal burner* yang

terdapat di *furnace* PLTU Pangkalan Susu ada sebanyak lima *level*, dimulai dari *level* A – E.

9	Inlet Coal/Primary air (PA B)		STOP					
			Oil Gun			STAND]	BY	
10	AB + inlet Secondary air	50	Flow Air (SA)	kg/s	5.24	5.24	5.24	5.24
	(SA AB)		Temp Air (SA)	°C	366.36	366.36	366.36	366.36
		40	Coal Flow	kg/s	2.25	2.25	2.25	2.25
11	Inlet Coal/Primary air (PA A)		Temp Coal	°C	59.38	59.38	59.38	59.38
			Flow Air (PA)	kg/s	4.73	4.73	4.73	4.73
			Temp Air (PA)	°C	59.38	59.38	59.38	59.38
12	Inlet Socondary air	40	Flow Air (SA)	kg/s	4.19	4.19	4.19	4.19
12	(SA AA)	40	Temp Air (SA)	°C	366.36	366.36	366.36	366.36
12	Inlet	1000/	Flow Air (SA)	kg/s	0.92	0.92	0.92	0.92
13	Secondary air (in PA Layer)	ondary air 100% PA Layer)	Temp Air (SA)	°C	366.36	366.36	366.36	366.36

Tabel 3. 3 (Lanjutan) Setup Point Inlet Boundary Condition

Proses injeksi batubara pada simulasi *CFD* sesuai dengan *Set Up* yang dapat diamati pada Tabel 3.3 Data-data karakteristik batubara dapat diamati pada Tabel 3.4 yang diperoleh berdasarkan data *Performance Test* Unit 1 Bulan April. Tabel 3.4 *Coal Properties* Injeksi Batubara

UKURAN BAHAN BAKAR	SATUAN	MILL A (PA E)	MILL B (PA D)	MILL C (PA C)	MILL D (PA B)	MILL E (PA A)
Min Diameter	mm	0,0740	0,0740	0,0740	STOP	0,0740
Max Diameter	mm	0,2970	0,2970	0,2970	STOP	0,2970
Mean Diameter	mm	0,0924	0,0843	0,0925	STOP	0,0933
Outlet Air Classifier Temp.	°C	56,9167	59,4178	55,4256	STOP	59,3778
Coal Flow	t/h	28,6344	29,2767	30,1178	STOP	32,3844
Coal Flow (Ea. Corner)	t/h	7,1586	7,3192	7,5294	STOP	8,0961

Tabel 3. 5 Set Up Parameter Injeksi Batubara

No	Model	Setting	Remarks
1	Discrete Phase	On > interaction with continues phase	
2	Drag Law	Spherical	Asumsi partikel batubara berbentuk bulat
3	Injection Type	Surface	Partikel batubara diasumsikan keluar dari seluruh permukaan <i>coal</i> <i>burner</i>
4	Particle Type	Combusting	Partiket batubara ditargetkan terbakar
5	Material	Lignite (LRC) Coal MV (MRC)	Berdasarkan target penelitian yaitu analisa efek <i>in-furnace Coal blending</i>
6	Diameter Distribusi Batubara	resin ramler	Metode tersebut sesuai aktual kondisi distribusi diameter partikel batubara yang nilainya tidak tetap
7	Devolating Species	LRC : lig_vol MRC : hv_vol	Data didapatkan dari hasil <i>performance test</i> Unit 1

3.3.3 Parameter Material

Pada pengolahan data set up batubara di simulasi CFD untuk validasi simulasi berdasarkan data Performace Test Unit 1, material yang digunakan adalah

fluid, solid, dan *combusting particle*. Material fuida yang digunakan pada proses simulasi sesuai data teoritis pembakaran batubara adalah *hydrogen, carbon solid, carbon monoxide, & air. Fluid properties* dapat diamati pada Tabel 3.7. Konfigurasi batubara pada *Performance Test* Unit 1 adalah *Full LRC* (100%).

Tabel 3. 6 Material Properties of Solid CFD Ansys Fluent

No	Material Type	<i>Density</i> (Kg/m³)	Thermal Conductivity (W/m.K)	Specific Heat (J/Kg.K)
1	Solid	80,30	16,27	502,4

Tabel 3. 7 Material Properties of Fluid CFD Ansys Fluent

No	Material Type	Unit	Hydrogen	Carbon Solid	Carbon Monoxide	Air
1	Viscosity	Kg/m. s	8,411 e-5	1,72 e-5	1,75 e-5	1,78 e-5
2	Density	Kg/m ³	0,0189	2000	1,1233	Piecewise - Polynomi al
3	Thermal Conductivity	W/m. K	0,1672	0,0454	0,025	0,0242
4	Specific Heat	J/Kg. K	Piecewise - Polynomi al	Piecewise - Polynomi al	Piecewise - Polynomi al	Piecewise - Polynomi al
5	Molecular Weight	Kg/K gmol	2,01594	12,01115	28,01055	28,966
6	Refference Temperature	K	298,15	298	298,17	298,18

No	Properties	Units	Lignite-LRC	Coal-MV (MRC)
1	Density	Kg/m ³	1350	1400
2	Specific Heat (Cp)	J/kg-k	1399	1500
3	Combustible fraction	%	37,43	28,75
4	Volatile Component Fraction	K	43,49	40,25
5	Binary Diffusivity	m ² /s	0,0004	0,0005
6	Vaporation Temperature	K	400	400
7	Swelling Coefficient		2	2
8	Reaction Heat Fraction Absorbed by Solid	%	30	30
9	Devolatilization Model	1/s	20	50
10	Combustion Model		Multiple Surface Reactions	Multiple Surface Reactions

Tabel 3. 8 Properties Batubara pada Setup Permodelan CFD

3.3 Solution

Simulasi CFD In Furnace Coal blending menggunakan metode solusi pada tahap processing yaitu algoritme SIMPLE (Semi-Implicit Method for Pressure-Linked Equation). Penggunaan referensi solusi tersebut berdasarkan penelitian sebelumya yang dilakukan Sa'adiyah (2013) dan Hidayat (205). Pengaturan gradient menggunakan least squares cell based. Pengaturan pressure menggunakan standard. Pengaturan momentum, kandungan partikel pada batubara, dan lig-vol menggunakan second order upwind. Pengaturan turbulent kinectic energy dan turbulent dissipation rate menggunakan first order upwind.

3.3.1 Metode Initialization

Initialize merupakan metode pemberian nilai awal untuk memudahkan perhitungan dalam mencapai nilai konvergen. *Initialization* yang digunakan pada simulasi *CFD* ini adalah *standard initialization*.

Solution Initialization	(?)
Initialization Methods	
Hybrid InitializationStandard Initialization	
Compute from	
all-zones	•
Reference Frame	
 Relative to Cell Zone Absolute 	

Gambar 3. 4 Set Up Solution di Ansys Fluent

3.3.2 Metode Monitoring Residual

Metode monitoring residual adalah upaya untuk mengetahui parameter *acceptance* nilai konvergensi dari hasil iterasi simulasi *CFD* yang sedang di proses. Nilai-nilai residual yang digunakan untuk mengetahui konvergensi pada simulasi *CFD* adalah *continuity, x-velocity, y-velocity, z-velociy,* dan *energy*. Pembatasan nilai yang digunakan adalah *x-y-z velocity = 10⁻³, continuity = 3, 4 x 10⁻³,* dan *energy = 10⁻⁴*. Parameter *net flux* juga dilakukan monitoring residual dengan nilai domain lebih kecil dari 0,1% antara *inlet* dan *outlet. Net flux* pada analisa *CFD* Ansys Fluent pada simulasi ini adalah *mass flow rate*.

3.4 Post-Processing

Pada tahapan dalam proses analisa numerik permodelan 3D menggunakan *Computational Fluid Dynamics* (CFD) dalam mengamati proses pembakaran *in furnace Coal blending* dengan komposisi 25% MRC & 75% LRC memerlukan data-data yang berindikator kualitas dan kuantitas. Data-data yang termasuk ke dalam kualitas adalah data-data visual distribusi *temperature*, kecepatan, CO2, dan NOx. Sedangkan data-data yang berkategori kuantitas terwujudkan dan ditampilkan dengan mengolah data nilai-nilai hasil pengambilan di analisa numerik menjadi bentuk tabel atau grafik.

3.4.1 Validasi Hasil Simulasi

Pada simulasi *computational fluid dynamic* (*CFD*) memerlukan tahapan validasi untuk meningkatkan faktor kesesuaian simulasi dengan proses pembakaran aktual yang terjadi di pembangkit. Proses validasi dilakukan dengan membandingkan data hasil simulasi terhadap nilai-nilai parameter pengoperasian yang terbaca oleh instrumentasi peralatan di *boiler*. Pembacaan parameter pada pembangkit berdasarkan kualitas instrumentasinya dapat berubah-berubah, namun perubahan tersebut dalam range yang tidak terlampau besar sehingga bisa menjadi acuan validasi simulasi.

3.5 Desain Variasi Simulasi

Simulasi numerik (*CFD*) yang dilakukan pada penelitian ini menggunakan validasi dari data *performance test* dengan jenis batubara yang sejenis. Jenis batubara yang digunakan adalah *Low Rank* Coal (*LRC*). Desain simulasi numerik yang digunakan untuk menganalisa pengaruh *in-furnace Coal blending* dengan tipe *mixing* batubara yaitu *LRC-MRC* ditunjukkan pada Tabel 3.10.

Simulasi *CFD* yang dilakukan pada kasus *in furnace Coal Blending* sesuai Tabel 3.9 selanjutnya dianalisa dan diperoleh data optimal pada konfigurasi pencampuran batubara. Konfigurasi *in furnace coal blending* yang optimal, selanjutnya dilakukan Simulasi *CFD* terhadap variasi pengaturan aliran udara (*mass flow rate*) udara primer ke ruang bakar. Model variasi tersebut ditunjukkan pada Tabel 3.12. Konfigurasi udara primer dengan pengaturan aliran udara primer ke ruang bakar berdasarkan jangkauan aliran udara yang dioperasikan operator pembangkitan di PLTU Pangkalan Susu dari yang paling minimum, medium, sampai ke maksimal *flow*. Penggunaan variasi tersebut memiliki efek masingmasing terhadap peralatan, sehingga untuk menemukan pengaruh yang optimal diperlukan analisa *CFD*.

	INPUT PAR	OUTPUT PARAMETER	
	Konfigurasi Var	iasi Batubara	Post Processing Ansys
Case	Elevasi	Jenis BB	Data Kualitatif &
	Coal Burner D	LRC	Kuantitatif ;
1	Coal Burner C	LRC	- Distribusi
	Coal Burner B	LRC	Temperature
	Coal Burner A	MRC	- Distribusi kecepatan
	Elevasi	Jenis BB	aliran
	Coal Burner D	LRC	- Distribusi CO_2
2	Coal Burner C	LRC	- Distribusi NOX
	Coal <i>Burner</i> B	MRC	
	Coal Burner A	LRC	
	Elevasi	Jenis BB	
	Coal <i>Burner</i> D	LRC	
3	Coal Burner C	MRC	
	Coal <i>Burner</i> B	LRC	
	Coal Burner A	LRC	
	Elevasi	Jenis BB	
	Coal <i>Burner</i> D	MRC	
4	Coal Burner C	LRC	
	Coal Burner B	LRC	
	Coal Burner A	LRC	

Tabel 3. 9 Konfigurasi Pencampuran Batubara (Coal blending)

Tabel 3. 10 Konfigurasi Injeksi Aliran Udara Primer ke Ruang Bakar

INPUT PA	OUTPUT PARAMETER		
Parameter Konstan	Case	Variasi Pembukaan Aliran Udara Primer	Post Processing Ansys
- Pembukaan <i>Damper</i> <i>OFA</i> berdasarkan	1	62 t/h	Data Kualitatif & Kuantitatif ;
pembukaan Simulasi <i>Coal blending</i> - Coal Flow sama	2	68 t/h	- Distribusi <i>Temperature</i> - Distribusi CO2
dengan data Simulasi Coal blending	3	77 t/h	- Distribusi NOx

BAB IV

ANALISA & PEMBAHASAN

4.1 Validasi Simulasi

Metode penelitian yang dijalankan untuk mengamati lebih tajam kasus variasi *Coal blending* adalah melakukan validasi simulasi terhadap aktual *setting* dan aktual hasil pada proses pembangkitan.

Validasi simulasi yang digunakan adalah *performance test* pada Tanggal 16 April 2021 Pukul 15:00 – 17:00 WIB. Kondisi *performance test* yang digunakan pada penelitian ini cukup ideal untuk validasi simulasi *boiler* di PLTU Pangkalan Susu. Sedangkan, Laporan-laporan dan data *performance test* pada metode operasi pembangkit *in-furnace Coal blending* tidak didapatkan kondisi yang optimal sehingga tidak dapat digunakan sabagai data *input parameter* untuk simulasi validasi boiler. Kendala *performance test* pada kondisi *in furnace coal* disebabkan oleh kehandalan peralatan pembangkitan yang mengalami gangguan saat proses *performance test* yang direncanakan sedang berlangsung. Selain itu, juga dikarenakan kesiapan operasi pembangkitan dalam menghadapi *coal blending* batubara yang masih dalam proses peningkatan. Sehingga kesiapan-kesiapan peralatan dalam menunjang *performance test* pada kondisi *coal blending* masih belum optimal.

Kondisi *Coal Burner* yang beroperasi sesuai Tabel 3.2 & 3.3 adalah *level* A, B, C, & E. Kondisi aktual pembebanan PLTU Pangkalan Susu Unit 1 pada *performance test* tersebut adalah 100% MCR atau 200 MW (Gross). Batubara yang digunakan pada *performance test* tersebut adalah *Low Rank Coal (LRC)* dengan nilai kalori 4065 Kcal/Kg. Pengambilan data validasi simulasi sesuai *performance test* dapat diamati pada Gambar 4.1. Titik-titik pengambilan data untuk validasi hasil simulasi disesuaikan dengan instrumentasi yang aktual terdapat di unit. Data tersebut ditampilkan pada sistem *DCS* yang terdapat di *Central Control Room* (*CCR*). Berdasarkan kajian-kajian pada penelitian *computational fluid dynamics* terhadap boiler PLTU, titik-titik pengambilan data yang ditentukan sudah cukup mewakili hasil validasi.

Gambar 4. 1 Skema Posisi Pengambilan Data Validasi di Boiler

Terdapat total enam titik pengambilan data. Keenam data yang digunakan sebagai acuan merupakan data *temperature*. Titik pertama adalah Platen SH, titik kedua berada pada area *final reheater*, titik ketiga berada pada area *vertical primary reheater*, titik keempat berada pada horizontal primary reheater, titik kelima berada pada area *economizer*, dan titik keenam berada pada area *outlet economizer* atau *outlet flue gas*. Validasi *temperature* pada area ruang bakar tidak dapat dilakukan karena tidak terdapat sensor instrumentasi pada area tersebut yang dapat menunjukan *temperature* pada pembakaran 100% di *boiler* PLTU Pangkalan Susu. Area ruang bakar atau *furnace* memilki sensor *thermoprobe* atau pembacaan *temperature* yang digunakan hanya pada saat proses *start up* atau *firing* awal *boiler*. Mode yang dilakukan pada *thermoprobe* juga mengikuti ketentuan batas atas *temperature* nya yaitu pada 630°C sesuai dengan spesifikasi pada jenis *thermoprobe Diamond Power* TP-500.

Berdasarkan simulasi yang dilakukan terhadap data-data parameter operasi di *performance test* Unit 2, sesuai Tabel 4.1 dan tervisualisasi pada grafik di Gambar 4.2, dapat diamati nilai terendah persentase error yang diperoleh pada pembandingan data PT terhadap simulasi CFD yaitu 1,82% dan nilai tertinggi adalah 7,97%. Toleransi tertinggi berada pada nilai dibawah error 10,00% sehingga proses simulasi yang terinisiasi menggunakan data *performance test* dapat dilanjutkan untuk simulai *coal blending* dan konfigurasi injeksi aliran udara primer ke ruang bakar.

Νο	Area	DATA PERFORMANCE TEST	DATA SIMULASI ANSYS	Error (%)
1	Platen SH	812,23	877	7,97
2	Final RH	782,445	796,69	1,82
3	Vertical PRH	711,625	696,006	2,19
4	Horizontal PRH	632,945	664,082	4,9
5	Economizer	443,685	428,706	3,37
6	Outlet Economizer	405,099	384,131	5,17

Tabel 4. 1 Data Validasi Simulasi – Performance Test April 2021 (100% MCR)

Gambar 4. 2 Grafik perbandingan data validasi & data hasil simulasi CFD

4.2 Analisa Hasil Simulasi Numerik Variasi Coal blending

Simulasi numerik yang dilakukan diperuntukkan dalam membandingkan variasi penggunaan batubara. Pengambilan data hasil simulasi dilakukan secara kualitatif berbentuk kontur secara *vertical* seperti dapat diamati pada Gambar 4.3 (a) yang prosesnya diambil secara *z-center*. Pengambilan secara kualitatif lainnya adalah dengan kontur horizontal atau yang dapat diamati pada Gambar 4.3 (b). Pada kontur horizontal diambil berdasarkan layer/elevasi *burner* (A-E), *OFA*, dan *layer inlet FEGT*. Proses pengamatan yang dilakukan pada posisi-posisi simetri di dalam *boiler* tersebut untuk mengetahui keadaan yang terjadi pada proses pembakaran di area *furnace* hingga *flue gas* keluar dari *outlet boiler*. Proses pengamatan pada elevasi *inlet* batubara dan *furnace outlet* dilakukan untuk mengetahui proses pembakaran yang terjadi antara batubara dan udara pembakaran dalam menghasilkan *thermal*/panas.

Gambar 4. 3 *Kontur distribusi temperature pada z-Center* (a) dan di setiap layer *burner/OFA/FEGT* (b)

4.2.1. Analisa Distribusi Temperature

Analisa hasil yang dilakukan terhadap parameter distribusi *temperature* digunakan untuk mengetahui proses penyebaran *temperature* yang terjadi pada area *furnace* sehingga indikasi *local heating* dapat diketahui. Pada pengoperasian pembangkit batubara, *boiler metal temperature* dijaga nilainya sesuai *manual book O&M* pengoperasian sehingga dengan kondisi *slagging* atau *fouling* yang mungkin terjadi, tidak menimbulkan kegagalan pada perpipaan *boiler* akibat pemanasan berlebih di area tersebut.

Distribusi *temperature* diamati pada posisi *z-Center*, elevasi masing-masing *level burner*, elevasi *overfire air* (*OFA*), dan pada *furnace exit gas temperature* (*FEGT*).

4.2.1.1 Analisa Distribusi Temperature pada Z-Center

Analisa kondisi pembakaran dengan metode *in furnace Coal blending* diamati pada posisi Z-*Center* untuk mengamati proses pembakaran yang terjadi dari *level burner*, area *furnace*, sampai menuju *flue gas*. Pada Gambar 4.4 dapat diamati bahwa pross pembakaran yang terjadi berada pada kisaran temperatur dari 300 C – 1200 C. Pada setiap variasi *Coal blending* yang diumpankan di setiap layer dari A – D, kondisi sekitaran *burner* mengalami peningkatan *temperature* yang signifikan. Penunjukan warna merah sesuai dengan indeks *temperature* mengindikasikan tingkatan paling tinggi sedangkan warna biru tua mengindikasikan tingkatan paling rendah.

Gambar 4. 4 Kontur distribusi temperature pada z-Center

Area di bagian *bottom furnace* menunjukkan warna hijau atau kondisi *temperature* yang cukup tinggi disebabkan efek dari batubara-batubara yang tidak terbakar di area *furnace* dan secara gravitasi turun ke bagian bawah. Pada area *furnace* yang terdapat *wall tube*, terjadi proses pertukaran panas merata pada sekeliling *furnace*. Proses tersebut menyebabkan penurunan sebaran *temperature* saat akan melalui deretan *heat exchanger*.

4.2.1.2 Analisa Distribusi Temperature pada Elevasi Burner

Analisa selanjutnya terhadap variasi *Coal blending* dengan nilai MRC 25% dan LRC 75% adalah pada masing-masing elevasi *burner* dan elevasi *OFA* (*over fire air*). Distribusi *temperature* pada elevasi *burner* dilakukan untuk mengamati lebih lanjut efek proses pembakaran terhadap sebaran *temperature* antara batubara dan udara pembakaran. Pengamatan distribusi *temperature* pada elevasi *OFA* digunakan untuk mengetahui proses penurunan *temperature* yang terjadi pada *boiler* sebelum memasuki deretan pipa *heat exchanger*.

Pada variasi *Coal blending*, injeksi batubara tipe MRC dilakukan pada salah satu *level burner*. Medium Rank Coal atau tipe batubara dengan kalori kualitas medium cenderung menghasilkan panas yang lebih besar disebabkan kandungan *carbon* yang tinggi sehingga nilai kalornya juga tinggi namun memerlukan proses pembakaran yang lebih tinggi ketimbang LRC yang mudah terbakar namun panas yang dihasilkan kurang tinggi.

Gambar 4. 5 Kontur distribusi temperature di setiap elevasi burner & OFA

Pada Gambar 4.5 dapat diamati trendline kenaikan temperature terjadi dari elevasi burner A menuju ke elevasi OFA. Pada simulasi dengan konfigurasi yang diperoleh berdasarkan data konfigurasi validasi saat performance test di bulan April 2021, titik nyala pembakaran yang terlihat sempurna terjadi pada elevasi burner A. Pada elevasi tersebut, distribusi temperature terkonsentrasi pada bagian tengah sehingga tidak menimbulkan potensi overheating pada area penyerapan pipa di *walltube*. Selanjutnya pada elevasi B sampai ke elevasi OFA mengalami pergeseran distribusi panas terpusat pada bagian diding boiler atau mendekati perpipaan wall tube. Pada elevasi E tidak terdapat injeksi batubara namun grafik temperature mengalami kenaikan cukup tinggi. Kenaikan temperature tersebut mengindikasikan pada proses pembakaran di dalam boiler, disetiap variasi Coal blending (komposisi 25% MRC; 75% LRC) batubara yang tersisa atau char yang tidak terbakar habis pada elevasi di level-level sebelumnya terkonsentrasi dan semakin homogen di area elevasi burner E.

Pada area diantara *OFA* dan exit furnace, grafik mengalami penurunan disebabkan udara sekunder dengan aliran yang cukup tinggi dialirkan pada *OFA* untuk menekan *temperature* pembakaran sebelum memasuki area *heat exchanger*. Berdasarkan grafik dan data yang diperoleh, varisi *Coal blending* 2 (MRC pada *level burner* B) dan variasi 3 (MRC pada *level burner* C) menunjukkan hasil penyerapan yang optimal dan penurunan *temperature* pada area exit furnace yang lebih kecil dibandingkan dua variasi lainnya.

Pada Gambar 4.6 menunujukkan data rata-rata *temperature* yang diambil dari area elevasi *burner*, *OFA*, dan *exit furnace* terhadap variasi-variasi *Coal blending*. Pada kasus *Coal blending* dengan komposisi batubara 25% MRC dan 75% LRC ditemui *trendline temperature* pada sisi elevasi paling bawah yaitu elevasi A mengalami *temperature* yang tinggi, namun selanjutnya pada elevasi di *level* atasnya yaitu elevasi *burner* B mengalami penurunan yang mengindikasikan terdapat penyerapan panas di area *walltube*. Grafik distribusi *temperature* pada elevasi *burner* C dan D cenderung stabil sehingga penyerapan panas mengindikasikan optimal pada area tersebut.

Gambar 4. 6 Grafik rata-rata temperature pada setiap elevasi burner & OFA

4.2.1.2 Analisa Distribusi *Temperature* Pada Area Exit *Furnace*

Analisa selanjutnya untuk membandingkan hasil *Coal blending* pada variasi A-D adalah dengan mengamati distribusi *temperature* di area keluaran *furnace*. Optimalisasi pembakaran yang ditargetkan berada pada area *furnace* juga perlu dilakukan pada area *heat exchanger*. Parameter yang dijadikan tolak ukur adalah *temperature* untuk mencegah terjadinya *local heating*.

Metode yang dilakukan untuk mengetahui distribusi *temperature* pada *exit furnae* adalah dengan membuat garis yang memotong penampang pada layer tersebut. Pada Gambar 4.7 dapat diamati skema pengambilan data *temperature* di layer *exit furnace*. Pengamatan distribusi *temperature* yang dilakukan pada posisi x meter , menggunakan bantuan garis sepanjang Z atau A, sedangkan pengamatan distribusi *temperature* pada posisi z meter, menggunakan bantuan garis yang berada disepanjang X atau B.

Gambar 4. 7 Posisi pengambilan data distribusi temperature elevasi 31 m

Pada Gambar 4.8 (a), (b), dan (c) dapat diamati distribusi *temperature* yang diambil sepanjang garis A1, A2, dan A3 menunjukan pemerataan yang cukup baik pada variasi 2 & 3 atau MRC di *level burner* B dan C. Pada gambar 4.9 (a) dan (b) menunjukan hasil yang identik yaitu variasi 3 menunjukan *trendline* yang cenderung landai atau indikasi *temperature* di elevasi tersebut merata terdistribusi.

(a)

(c)

Gambar 4. 8 Grafik distribusi temperature sepanjang garis A1 (a), A2 (b), & A3 (c)

(a)

(b)

Gambar 4. 9 Grafik distribusi temperature sepanjang garis B1& B2

Pada metode pengamatan indikasi *local heating* pada area *exit furnace* yang perlu dihindari untuk menjaga umur sistem perpipaan *heat exchanger* di *boiler*, maka dilakukan pengamatan terhadap data *temperature* maksimal disepanjang garis A dan B berdasarkan hasil variasi *Coal blending*. Hasil yang diperoleh seperti dapat diamati pade Tabel 4.2 menunjukan pada perbandingan *temperature* maximal, variasi 3 atau MRC yang diinjeksikan pada *level burner* C memiliki nilai yang paling rendah disetiap tipe garis yang digunakan termasuk nilai rata-rata dari masing-masing data *temperature* variasi *Coal blending* di *level exit furnace*.

Garis	Temp Maximal Hasil Variasi (C)				
	MRC Level A	MRC Level B	MRC Level C	MRC Level D	
A1	1210,53	1065,71	1020,94	1030,00	
A2	1114,70	1017,63	978,30	994,48	
A3	1198,42	1018,10	995,57	1017,31	
B1	1252,71	1129,63	1226,18	1278,13	
B2	1116,29	1114,23	1083,89	1135,40	
Rata-Rata	1178,53	1069,06	1060,98	1091,06	

Tabel 4. 2 Data Temperature Maximal sepanjang garis A1, A2, A3, B1, & B3

Pada pengamatan *temperature* rata-rata dari data hasil variasi yang dapat diamati pada Tabel 4.3 menunjukkan hasil yang serupa dengan data *temperature* maksimal, variasi 3 (MRC *level* C) mendominasi nilai terendah di sepanjang garis A2, A2, dan B2. Penempatan MRC pada *level burner* C juga menunjukan trend nilai rata-rata

temperature pada garis pengamatan *level burner* yang paling rendah disbanding variasi 1,2, dan 4.

Garis	Temp Rata-Rata Hasil Variasi (C)				
	MRC Level A	MRC Level B	MRC Level C	MRC Level D	
A1	1105,96501	1130,237222	1109,403661	1138,997192	
A2	1054,10087	1075,596447	1031,34257	1053,962918	
A3	1067,22881	1068,359294	1058,588691	1094,063367	
B1	1110,43602	1070,295862	1076,27605	1112,554127	
B2	1027,88157	1062,126942	1023,424622	1047,762794	
Rata-Rata	1073,12246	1081,323153	1059,8 <mark>07119</mark>	1089,46808	

Tabel 4. 3 Data Temperature rata-rata sepanjang garis A1, A2, A3, B1, & B3

4.2.2 Analisa Distribusi Kecepatan

Boiler PLTU Pangkalan Susu yang merupakan tipe *boiler* tangensial sangat terpengaruh terhadap konfigurasi udara pembakaran untuk mendukung pembentukan bola api pada area pembakaran, sehingga penyerapan panas pada pipa *boiler* menjadi optimal. Konfigurasi udara yang akan diamati dapat diperoleh pada pengamatan distribusi kecepatan didalam *furnace*.

4.2.2.1 Analisa Distribusi Kecepatan Pada Z-Center

Konfigurasi *fire ball* di dalam *boiler (furnace)* merupakan target yang diharapkan pada proses pembakaran dengan tujuan meningkatkan proses penyerapan panas pada area *wall tube* dan mencegah terjadinya *over heating*. Analisa dilakukan pada pengamatan distribusi kecepatan di *z-Center* seperti yang dapat diamati pada Gambar 4.10. Konfigurasi pembukaan *Damper* dan pengaturan laju aliran udara primer dan sekunder yang dilakukan pada setiap variasi *Coal blending* adalah sama. Pola distribusi kecepatan yang muncul pada pengamatan di posisi *z-Center* tidak terlalu berbeda antara masing-masing variasi. Kontur kecepatan pada bagian tengah *furnace* lebih tinggi dibandingkan area yang dekat dengan dinding *furnace*. Distribusi kecepatan pada area bawah *boiler* mengalami penurunan karena sistem udara pembakaran yang *vacuum* dan menghisap ke arah *outlet boiler*.

Gambar 4. 10 Kontur distribusi kecepatan pada z-Center

4.2.2.2 Analisa Distribusi Kecepatan Pada Elevasi Burner

Analisa terbentuknya *fire ball* pada setiap variasi *Coal blending* dapat diamati dengan lebih jelas pada masing-masing elevasi. Indikasi *fire ball* dapat diamati pada Gambar 4.11 terjadi di semua variasi dan disetiap elevasi *burner* sampai ke elevasi *overfire air*. Kontur pada setiap elevasi *burner* menunjukkan indikasi kesempurnaan pembentukan pusaran yang dibentuk oleh *burner* tipe tangensial. Pusaran tersebut mengindikasikan terjadinya *fire ball* pada area *furnace*.

Konfigurasi identik pada pembukaan *Damper* udara sekunder dan primer yang berdampak terhadap laju aliran udara masuk ke dalam furnace menyebabkan secara keseluruhan pada setiap variasi *Coal blending* (A-D) tidak terdapat perbedaan signifikan pada kontur distribusi kecepatannya.

Gambar 4. 11 Kontur distribusi kecepatan (m/s) pada elevasi injeksi batubara

& OFA

Pada gambar 4.12 digambarkan detail arah putaran aliran udara secara vector pada elevasi *burner*A dan elevasi *OFA*. Arah putaran yang dapat diamati pada gambar vector tersebut adalah searah *clockwise* pada setiap variasi *Coal blending*. Secara tampilan *vector* dapat diamati bahwa pusaran aliran udara terjadi secara sesuai pada bagian tengah *furnace*.

Gambar 4. 12 Vektor kecepatan udara pada elevasi coal burner A & OFA

4.2.3 Analisa Distribusi Kandungan Gas Buang - CO2

Analisa hasil numerik yang dilakukan pada kandungan Gas Buang adalah konsentrasi CO2. Gas buang atau *flue gas* pada proses pembakaran di *boiler* merupakan hasil akhir pada siklus pembakaran di dalam *boiler* yang menjadi parameter penting untuk melihat efektiftas sistem. CO2 pada gas buang mengindikasikan kesempurnaan proses pembakaran, semakin tinggi kandungan CO2 maka *char* yang terbakar semakin banyak. Analisa numerik melalui kandungan gas buang – CO2 diamati secara kualitatif pada posisi pengambilan *z-Center* dan masing-masing elevasi *burner*, selanjutnya diperkuat dengan data kuantitatif untuk menampilkan *trendline* gas buang CO2.

4.2.3.1 Analisa Distribusi Kandungan Gas Buang - CO2 Pada Z-Center

Pada pengamatan distribusi kandungan gas buang CO2 pada seluruh area *furnace*, sehingga pengamatan menjadi lebih jelas terlihat dalam mengidentifikasi konsentrasi CO2 terutama pada area *heat exchanger*. Identifikasi pada area *heat exchanger* digunakan untuk mengidentifikasi kemungkinan terjadinya pembakaran yang belum sempurna sehingga menimbulkan *over heating* pada area tersebut. Gambar 4.13 menunjukkan perbandingan kontur *z*-*Center* kandungan gas buang – CO2 dari masing-masing variasi.

Gambar 4. 13 Kontur kandungan Gas Buang CO2 (%) pada posisi Z-Center

CO2 dengan kandungan tertinggi berada pada area elevasi *burner*, hal tersebut disebabkan pada area tersebut terdapat proses *initial burning* atau pembakaran awal yang menyeluruh di empat *level burner*. Pada Gambar 4.13 secara visual kontur dapat diamati kandungan CO2 yang paling banyak terdapat terdapat pada coal blending dengan injeksi batubara MRC di *level* C, kemudian disusul dengan *level* B. Pengamatan area pada jejeran *heat exchanger*, dapat diamati kontur

yang minim kandungan CO2 adalah pada variasi *Coal blending* di *level burner* B & C (Variasi 2 & 3)

4.2.3.2 Analisa Distribusi Kandungan Gas Buang - CO2 Pada Elevasi Burner

Pada proses pembakaran yang terjadi antara beberapa senyawa kimia dan salah satu produknya adalah karbon dioksida (CO2). Senyawa carbon yang bereaksi dengan oksigen sehingga menimbulkan reaksi pembakaran dapat diamati distribusi CO2 nya pada kontur di Gambar 4.14

Gambar 4. 14 Kontur kandungan Gas Buang CO2 (%) pada posisi Z-Center

Berdasarkan sebaran gas buang CO2 yang dapat diamati pada kontur di Gambar 4.14, pembakaran awal pada sisi *furnace* bagian bawah terjadi pada setiap variasi *Coal blending*. Pada variasi 1, penempatan MRC di *level* A mengindikasikan kandungan CO2 yang tidak terlalu dominan terjadi dibandingkan pada variasi 2 dan 3, hal tersebut mengindikasikan kemungkinan batubara pada elevasi terbawah atau *level* A jatuh di area bawah *furnace* atau terbawa ke *level* lebih tinggi. Hal tersebut juga dapat diamati pada *level* B yang mengalami kenaikan visual kontur kandungan gas CO2 dibandingkan dengan *level* yang sama pada variasi lainnya (B & C). Grafik perbandingan fraksi massa CO2 (%) pada setiap variasi *Coal blending* dari elevasi *burner* A sampai menuju area *exit furnace* ditunjukkan pada Gambar 4.15. Pada grafik *trendline* kandungan gas buang CO2 menunjukkan kemiripan dengan grafik *trendline* pada indikator analisa disribusi *temperature*. Kemiripan tersebut berhubungan dengan perbandingan linear antara fraksi massa gas buang CO2 dan *temperature*. Proses pembakaran yang sempurna akan selaras dengan tingginya fraksi massa gas buang CO2 sehingga efeknya terjadi kenaikan *temperature*.

Gambar 4. 15 *Grafik rata-rata fraksi masa gas buang-CO2* (%) terhadap elevasi *furnace (m)*

Masing-masing variasi *Coal blending* pada elevasi *burner* A mengindikasikan kandungan CO2 yang cukup sempurna, hal tersebut kemungkinan disebabkan cakupan suplai udara yang cukup untuk mendukung proses pembakaran optimal di area tersebut. Selanjutnya *trendline* mengalami penurunan pada elevasi *burner* B yang disebabkan sisa-sisa batubara yang terhisap ke *level* tersebut bersatu dengan batubara pada *level burner* B sehingga perbandingan udara-bahan bakar tidak seimbang.

Pada elevasi *burner* B-C-D, konsentrasi gas buang CO2 mengalami dinamika kenaikan dan penurunan, hal tersebut mengindikasikan kemungkinan suplai udara berlebih atau terpusat dibagian tengah *furnace* seperti dapat diamati pada gambar 4.19 distribusi kecepatan udara pada area *furnace*. Pada elevasi *burner* E, kandungan CO2 meningkat linear dengan proses pembakaran yang terpusat setelah melewati elevasi-elevasi *burner* dibawahnya (A-D) meskipun pada elebasi *burner* E tidak dilakukan injeksi batubara (*set up pulverizer off*). Analisa terakhir terhadap distribusi kandungan gas buang CO2 adalah pada area *exit furnace*, pencegahan terjadinya panas berlebih di area jejeran *heat exchanger* yang melewati area *furnace* dapat dianalisa dengan mengamati nilai kandungan gas buang CO2 yang paling minimal dari data rata-rata yang diperoleh pada analisa numerik (CFD). Variasi *Coal blending* pada *level burner* B & C menunjukan kandungan gas buang CO2 yang paling minimal ketimbang variasi A & D.

4.2.4 Analisa Distribusi Kandungan Gas Buang – NOx

Analisa numerik yang dilakukan terhadap variasi *Coal blending* dilakukan dengan melakukan pengamatan kandungan gas buang NOx. Kandungan NOx terbentuk dari komposisi gas nitrogen dan oksigen pada udara pembakaran atau *Thermal NOx*. Proses pembentukan NOx terjadi pada kisaran *temperature* pembakaran 1204 C atau 1477,15 K berdasarkan panduan *Steam Genaration* yang dikeluarkan manufaktur *boiler Babcox & Wilcox*. Parameter NOx menjadi indikator kinerja pembangkit yang cukup diperhatikan karena efeknya terhadap lingkungan atau issu pencemaran lingkungan yang dapat memunculkan hujan asam (asam sulfat dan nitrat)

4.2.4.1 Analisa Distribusi Kandungan Gas Buang - NOx Pada Z-Center

Analisa secara kualitatif dengan mengamati distribusi gas buang NOx secara utuh mulai dari pembakaran yang terjadi pada area injeksi batubara atau area *level burner* hingga menuju deretan *heat exchanger* dapat diamati dengan pengambilan visual kontur NOx di posisi z-*Center* sesuai gambar 4.16

Gambar 4. 16 Gambar Distribusi NOx pada Z-Center

Terdapat dua metode pengambilan yang dapat dianalisa pada simulasi numerik (CFD) terhadap kandungan gas buang NOx yaitu *fuel* NOx dan *thermal* NOx. Sehubungan dengan jenis dan jumlah batubara yang sama konfigurasinya antara masing-masing variasi *Coal blending*. NOx yang terbentuk berdasarkan konsentrasi nitrogen pada batubara dapat diamati dengan metode *thermal* NOx &
fuel NOx secara bersamaan sesuai refferensi dan improvisasi pada penelitian Airiningtyas (2016) & Baek (2013).

Hasil analisa distribusi NOx yang dapat diamati pada Gambar 4.16 adalah area terbentuknya NOx di sekeliling *furnace*. NOx yang muncul pada setiap variasi *Coal blending* terpusat pada area *level burner* yang selanjutnya terdistribusi secara merata mengikuti aliran gas buang sampai ke *outlet boiler*. Konsentrasi NOx yang rendah terdapat pada variasi *level* B dan C. Variasi A terdapat kandungan NOx yang tinggi di area bawah *furnace*, hal tersebut menunjukkan batubara MRC yang terdapat di *level* bawah (A) tidak terbakar habis dan terdistribusi ke bagian bawah *boiler* sehingga pergeseran pembakaran tersebut meningkatkan kandungan NOx diarea bawah.

4.2.4.2 Analisa Distribusi Kandungan Gas Buang - NOx Pada Elevasi Burner

Gambar 4. 17 Gambar kontur NOx pada elevasi coal burner dan OFA

Analisa kandungan gas buang NOx pada tiap elevasi digunakan untuk mengamati pola penyebaran NOx di area *boiler*. Pada Gambar 4.17 dapat diamati pembentukan NOx yang terbesar ada pada elevasi B sampai pada elevasi *OFA*. Konsentrasi kandungan NOx dengan nilai yang cukup tinggi secara kontur terdapat pada *level* C sampai *level* E. Kandungan NOx mengalami penurunan pada *level OFA* seperti dapat diamati lebih detail pada Gambar 4.18, disebabkan oleh pengaturan udara sekunder yang lebih tinggi yaitu 50% dibandingkan pengaturan udara sekunder pada area disekitar *burner*. Pada pengamatan kandungan gas buang NOx berdasarkan *level* injeksi *burner* dan *OFA*, dapat diamati variasi yang memiliki kandungan NOx minimal adalah pada variasi *Coal blending* D atau penempatan injeksi batubara MRC (25%) di *level* D. Kandungan NOx tertinggi terdapat pada variasi *Coal blending* C atau penempatan injeksi batubara MRC di *level* C (*level* tertinggi di *furnace*).

Gambar 4. 18 Grafik rata-rata kandungan gas buang NOx (ppm) pada elevasi boiler

4.3 Analisa Hasil Simulasi Numerik Variasi Aliran Udara Primer ke Ruang Bakar

Variasi yang dilakukan terhadap aliran udara primer yang masuk melalui *combustion Damper* diamati menggunakan *post processing* dari distribusi *temperature*, distribusi CO2, dan distribusi NOx. Distribusi *temperature* diamati secara kualitatif berupa kontur dan data kualitatif berupa grafik *temperature* di beberapa eleasi dalam ruang bakar. Distribusi *temperature* diamati pada posisi *z-Center*, elevasi masing-masing *level burner*, elevasi *overfire air* (*OFA*), dan pada *furnace exit gas temperature* (*FEGT*).

Pada perbandingan pembukaan *Damper* laluan udara primary air untuk pembakaran di area *furnace*, dapat diamati *temperature* yang cukup tinggi terbentuk mulai dari elevasi *burner* paling rendah dan kemudian terkonsentrasi pada elevasi sebelum konfigurasi nose *boiler* (area *inlet FEGT*). Perbandingan yang dapat diamati pada grafik 4.21 ditemukan distribusi *temperature* pada variasi 2 yaitu *mass flow rate* PA 68 t/h dan variasi 3 *mass flow rate* PA 77 t/h memiliki distribusi *temperature* yang lebih tinggi pada bagian furnace di elevasi tengah (*middle elevation*).

Gambar 4. 19 *Kontur temperature pada bidang Z-Center di variasi pembukaan* Damper 62 t/h, 68 t/h, dan 77 t/h

Analisa distribusi *temperature* secara detail dapat diamati pada Gambar 4.20. Pada elevasi bawah, *trending temperature* tertinggi terdapat pada variasi *mass flow rate PA Combustion* 68 t/h & 77 t/h, dengan variasi *Coal blending* di *level* C. Pada konfigurasi 68 t/h nilai *FEGT* yang dihasilkan lebih rendah dibandingkan dengan konfigurasi *mass flow rate* lainnya (62 t/h & 77 t/h). Pada penyerapan *temperature* di area elevasi tengah, konfigurasi *mass flow rate PA Combustion* 68 t/h & 77 t/h lebih optimal dibandingkan pada pembukaan *Damper* yang lebih kecil seperti ditunjukkan pada Gambar 4.21.

Gambar 4. 20 Kontur temperature pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Gambar 4. 21 Grafik temperature rata-rata pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Pada analisa CO2 yang dihasilkan secara kualitatif dan kuantitatif, konfigurasi *mass flow rate PA Combustion* 68 t/h mendapati nilai CO2 yang lebih rendah ketimbang konfigurasi 62 t/h & 77 t/h. Trendline yang muncul mengindikasikan keseragaman pada setiap elevasi dan kecenderungan terjadi peningkatan konsentrasi CO2 pada elevasi tertinggi hingga ke elevasi *OFA* (Overfire Air).

Gambar 4. 22 Kontur CO2 pada Z-Vertical di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Gambar 4. 23 Kontur CO2 pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Gambar 4. 24 Grafik rata-rata CO2 pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Analisa NOx yang dilakukan selanjutnya berguna untuk mengamati pengaruh pembukaan *Damper* terhadap optimal pembakaran di dalam *boiler* terutama prediksi pembakaran yang terjadi di *boiler*. Pada Gambar 4.25 terlihat sescara *Z*-*Center* bahwa pada perbandingan pembukaan *Damper* 36%, 40%, dan 45% mengalami perbedaan yang cukup signifikan terhadap fraksi massa NOx nya. NOx yang terkonsentrasi tinggi berada pada area tengah *furnace* di setiap konfigurasi pembukaan *Damper*. Distribusi NOx yang terbentuk didalam boiler terakumulasi sampai ke *outlet boiler*.

Gambar 4. 25 Kontur NOx pada Z-Vertical di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Pada Gambar 4.26 distribusi NOx disetiap elevasi *burner*, *OFA*, dan *FEGT* dapat diamati pembentukan NOx semakin meningkat pada elevasi tertinggi. Kontur Z-Center dan kontur pada setiap elevasi menujukkan NOx yang terakumulasi di area atas atau elevasi burner tertinggi dan area sekitar Oú. Dapat diamati bahwa produksi NOx yang paling minim terdapat pada konfigurasi pembukaan *Damper* 45%. Emisi NOx yang konsentrasinya cukup tinggi terlihat pada konfigurasi *Damper* 40% disebabkan oleh distribusi *temperature* yang cukup optimal

Gambar 4. 26 Kontur NOx pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

Gambar 4. 27 Grafik rata-rata Nox pada masing-masing elevasi di variasi mass flow rate PA Combustion 62 t/h, 68 t/h, dan 77 t/h

BAB V

KESIMPULAN

5.1 Kesimpulan

Hasil simulasi numerik pembakaran dengan metode *in furnace blending* dengan komposisi 25% MRC dan 75% LRC diperoleh konfirgurasi variasi *leveling* atau penempatan injeksi batubara dan variasi pengaturan *mass flow rate PA Combustion* adalah sebagai berikut ;

- Pada simulasi yang dilakukan dengan menggunakan *Computational Fluid Dynamics* (CFD) dan data pengoperasian aktual pelaksanaan *performance test* bulan April 2021 pada Unit 1, diperoleh hasil simulasi yang tervalidasi error terkecil pada 1,82 % dan terbesar pada 7,97 %.
- 2. Analisa pengaruh variasi coal blending di elevasi burner A-D, berdasarkan pengamatan pada distribusi temperature area ruang bakar s.d area FEGT diperoleh penyebaran temperature yang optimal pada area furnae yaitu saat injeksi MRC di elevasai C atau variasi coal blending ke -3. Nilai optimal pada area ruang bakar ditandai dengan optimalnya temperature mencapai 1181 C dibandingkan variasi lainnya. Selanjutnya dilakukan analisa lebih dalam distribusi temperature di area exit furnace sebelum memasuki area sistem perpipaan steam bertekanan tinggi di dalam boiler, garis-garis bantu pengamatan (A1-A3 & B1-B2) menghasilkan grafik yang menunjukan distribusi merata atau tidak terdapat kenaikan dan penurunan yang signifikan pada kasus variasi Coal blending ke-3 (MRC di elevasi C) dan ke-2 (MRC elevasi B). Analisa distribusi temperature dengan metode perbandingan temperature maksimal sepanjang garis A & B mendapati variasi Coal blending ke-3 atau injeksi MRC di elevasi C memiliki nilai distribusi temperature yang paling minimal pada area FEGT Boiler dibandingkan variasi yang lainnya yaitu pada temperature terendah mencapai 1023 C.
- Analisa konfigurasi mass flow rate PA Combustion pada 62 t/h, 68 t/h, & 77 t/h memperoleh hasil yang optimal pada pengaturan mass flow rate di 68 t/h berdasarkan analisa konfigurasi distribusi temperaturee, distribusi konsentrasi CO2, dan NOx.

5.1 Saran

Saran yang dapat diberikan pada penelitian yang dapat dikembangkan selanjutnya adalah :

- 1. Perlu dilakukan evaluasi konfigurasi *mass flow rate* yang lebih mendekati pengaturan pada 68 t/h, baik lebih besar atau lebih kecil agar detail pengaruh bukaan damper terhadap proses pembakaran dapat diperoleh lebih tajam.
- 2. Berkaitan sensor yang tidak terdapat diarea *furnace*, pada saat pengambilan data validasi untuk dipertimbangkan adanya mekanisme pengambilan data secara manual agar validasi temperature diarea *furnace* dapat optimal diperoleh.
- 3. Pengaturan *opening damper secondary air* mengikuti data pembukaan pada *performance test* (data validasi), sehingga perlu dilakukan penyeragaman dan analisa pengaruhnya terhadap pembakaran.

DAFTAR PUSTAKA

- Baek, S.H. Park, H.Y. Ko, S.H. 2014. "The Effect of the Coal blending method in a coal fired boiler on carbon in ash and NOx emission". Fuel 128, page 67-70.
- [2] Ikeda M, Makino H, Morinaga H, Higashiyama K, Kozai Y. 2003. " Development of reduction technology of both emissions of NOx and unburned carbon by infurnace blended method". Report No. M07007. Tokyo: Central Research Institute of Electric Power Industry.
- [3] Ariningtyas, N. 2014. "Studi Numerik Pengaruh Konfigurasi Pengumpanan Dua Jenis Batubara Dengan Metode In-Furnace Blending Terhadap Proses Pembakaran Pada Boiler Tangensial". Teknik Mesin FTI-ITS. Surabaya
- [4] Hidayat, R. 205. "Studi Numerik Karakteristik Aliran Gas-Solid dan Pembakaran pada Tangetially Fired Pulverized-Coal Boiler 315 MWe dengan Variasi Sudut Tilting dan Nilai Kalor". Teknik Mesin FTI-ITS. Surabaya
- [5] Febyanasari, R. 2014. "Studi Numerik Karakteristik Aliran Dan Pembakaran Pada Tangentially Fired Pulverized Coal Boiler Dengan Menggunakan Oxy-Fuel Pada Kasus Coal blending Antara Medium Rank Coal (MRC) Dan Low Rank Coal (LRC)". Teknik Mesin FTI-ITS. Surabaya
- [6] Debo Li, Qiang Lv, Yongxin Feng, Chang'an Wang, Xuan Liu, Kai Chen, Kai Xu, Jun Zhong, Defu Che. 2017. "Effects of Coal blending and Operating Conditions on Combustion and NOx Emission Characteristics in a Tangetially-Fired Utility Boiler". Energy Procedia via Science Direct.
- [7] Jian Zhang, Qunying Wang, Yajuan Wei, Lian Zhang. 2021. "Numerical Modeling and Experimental Investigation on the Use of Brown Coal and Its Beneficiacted Semicoke for Coal blending Combustion in a 600 MWe Utility Furnace". Energy & Fuels Article via ACS Publication.

LAMPIRAN

La	mpiran	1.	Flue	Gas	Anal	yzer	Perj	formance	Test	April	202	1
						/						

	INLET								
	Parameter	Rata-rata	Max	Min					
	T-gas °C	401,75	404,17	398,28					
	T-air °C	29,70	32,60	28,20					
	O2 %	1,69	2,33	0,98					
	CO2 %	18,02	18,60	17,41					
	CO ppm	92,72	1041,10	2,50					
AFIA	OUTLET								
	Parameter	Rata-rata	Max	Min					
	T-gas °C	164,98	175,10	154,61					
	T-air °C	34,80	39,50	33,10					
	O2 %	3,14	3,90	2,30					
	CO2 %	16,60	17,30	15,95					
	CO ppm	127,97	1020,70	1,40					

	INLET								
	Parameter	Rata-rata	Max	Min					
	T-gas °C	408,45	409,62	405,46					
	T-air °C	32,09	34,00	29,20					
	O2 %	2,47	3,26	1,44					
	CO2 %	17,21	18,12	16,52					
A DLI D	CO ppm	113,82	866,70	3,40					
AIIID	OUTLET								
	Parameter	Rata-rata	Max	Min					
	T-gas °C	164,82	173,65	156,05					
	T-air °C	35,13	36,00	34,10					
	O2 %	2,90	3,81	2,10					
	CO2 %	16,85	17,57	16,24					
	CO ppm	15,71	202,10	-1,20					

Layer	Elever	Data Temp, Hasil Variasi								
	Lievasi	MRC Level A	MRC Level B	MRC Level C	MRC Level D					
A	11,35 993,52 1008,23		1008,23	1032,58	1020,36					
В	12,65	922,86	919,67	919,93	914,55					
С	14	921,64	939,59	920,6	940					
D 15,35 913,1 9		925,62	929,9	929,81						
Е	16,7	1157,05	1178,55	1181,8	1160,69					
OFA	18	1162,01	1103,27	1144,28	1102,46					
Exit Furnace	31	1106,88	1106,07	1094,52	1118,82					

Lampiran 2. Perbandingan Data Temperature Variasi Coal Blending

Lampiran 3. Perbandingan Data Konsentrasi NOx Variasi Coal Blending

Larran	Elerresi	Data NOx								
Layer	Elevasi	Tipe A	Tipe B	Tipe C	Tipe D					
А	11,35	571,174	571,174 524,39		523,456					
В	B 12,65 554,454 5		539,82	530,470	539,336					
С	14	563,047	522,13	522,031	518,521					
D	15,35	581,526	517,62	527,541	531,178					
Е	16,7	574,918	546,60	540,357	562,759					
OFA	18	481,043	530,98	492,964	541,515					
Exit Furnace	31 m	525,048	510,95	534,604	504,174					

Lavor	Elovaci	Coal Blending								
Layer	LIEVASI	Variasi A	Variasi B	Variasi C	Variasi D					
A	11,35	11,35 16,07%		16,98%	16,70%					
В	12,65	15,25%	15,16%	15,46%	15,33%					
С	14	15,48%	15,76%	15,72%	15,92%					
D	15,35	15,15%	15,41%	15,53%	15,58%					
E	16,7	18,11%	18,36%	18,47%	18,18%					
OFA	18	17,67%	16,75%	17,39%	16,79%					
Exit Furnace	31 m	17,81%	17,68%	17,68%	18,03%					

Lampiran 4. Perbandingan Data Konsentrasi CO2 Variasi Coal Blending

Lampiran 5. Data Batubara MRC (COA)

Description of the second seco	1 Institut		Mathada			
Parameters	Units	ARB	ADB	DB	DAFB	Methods
Proximate Analysis:						
- Total Moisture	%	29.25	-	-	-	ASTM D 3302/3302M-17
 Moisture in analysis 	%	-	12.96	-	-	ASTM D 3173-17a
- Ash Content	%	5.16	6.35	7.30	-	ASTM D 3174-18
- Volatile Matter	%	32.41	39.88	45.82	49.42	ASTM D 3175-18
- Fixed Garbon	%	33.17	10.81	46.89	59.58	ASTM D 3172-13
Total Sulfur	%	0.47	0.58	0.67	0.72	ASTM D 4239-18e1
Gross Calorific Value	Kcal/Kg	4716	5802	6666	7190	ASTM D 5865-13
Ultimate Analysis:						
- Total Molsture	%	29.25	-	-	-	ASTM D 3302/3302M-17
- Moisture in analysis	%	-	12.96	-	-	ASTM D 3173-17a
- Ash Content	%	5.16	6.35	7.30	-	ASTM D 3174-18
- Sulfur	%	0.47	0.58	0.67	0.72	ASTM D 4239-18e1
- Hydrogen (1)	%	3.69	4.54	5.22	5.63	ASTM D 5373-16
- Carbon	%	48.76	59.99	68.92	74.35	ASTM D 5373-16
- Nitrogen	%	0.79	0.97	1.11	1.20	ASTM D 5373-16
- Oxygen (1)	%	11.88	14.61	16.79	18.11	ASTM D 3176-15
HOL	Point		60			ACTALD 400M 16
HGI	Index	-	60	-	-	ASTM D 409M-16
Papping mooh 70 mm	96	00.62			A6TM D 4740	
Size Distribution						
Papping mooh 70 mm	96	00.62			A6TM D 4749	
Passing mesh 50 mm	%		96	.20		ASTM D 4749
Passing mesh 32 mm	%		13	./1		ASTM D 4749
Passing mesh 2.38 mm	%		19	.16		ASTM D 4749
Ash Analysis				0.5		40711 0 0000 10
- 5102	% DB		50	.25		ASTM D 3062-13
- Al ₂ O ₃	% DB		28	.33		ASTM D 3682-13
- Fe ₂ O ₃	% DB		7	.15		ASTM D 3682-13
- CaO	% DB		5	.25		ASTM D 3682-13
- MgO	% DB		2	.74		ASTM D 3682-13
- K ₂ O	% DB		0	.81		ASTM D 3682-13
- Na ₂ O (a)	% DB		0	28		ASTM D 3682-13
- MnO ₂	% DB		0	.03		ASTM D 3682-11
- Mn ₃ O ₄	% DB		0	0.11		ASTM D 3682-11
- 1102	% DB		0	.95		ASTM D 3682-13
- 1205	% DD		0	0.02		100 622 - 2016
- 5U3	% DB		2	.00		ASTM D 5016-16
Ash Classified	% DB		0	.33		Du Difference
Nan Glassified	Indau		LIGI	NITIC NAME		By Difference (2)
Slagging Index	Index		LC			By Difference (2)
Found index	Index		LC		1-1	By Difference (2)
Ash rusion Temperature		Redu	icing	Oxid	lizing	
	°C.	13	40	14	40	ASTM D 1857M-18
Initial Deformation Temperature (IDT)	0.0	40	6671	14	60	ASTM D 1857M-18
- Initial Deformation Temperature (IDT) - Softening Temperature (ST)	°C	13	00		00	LOTH D LOOPILL IT
Initial Deformation Temperature (IDT) Softening Temperature (ST) Hemispherical Temperature (HT)	°C °C	13	70	14	80	ASTM D 1857M-18

CERTIFICATE OF SAMPLING AND ANALYSIS

Hydrogen and Oxygen is not include H and Ox in sample moisture The Babcock & Wilcox Company, Steam its generation and uses, 41st edition, 2005, Chapte äsh effects on boiler design and operation Sodium content in ash (1) (2)

(3)

Lampiran 6. Data Batubara LRC (COA)

PT SURVEYOR INDONESIA (Persero)

REPORT OF ANALYSIS Report No. : ROA - 0104210036A

SAMPLE NAME	PERFORMANCE TEST - BATUBARA 16-04-21
CLIENT	: PLTU PANGKALAN SUSU
SAMPLE ID	: 041/SEAM-21/LMB-MDN/IV/2021
DATE OF RECEIVED	: April 22 nd , 2021
ANALYZED REQUIRED	: Chemical Analysis (ASTM / ISO)
DESCRIPTION OF SAMPLE	; 1 (One) Sample
	Packing : Unsealed Plastic bags
	Weight/Volume: ± 1.174 Kg
DATE OF ANNALYZED	April 22 nd , 2021 up to April 27 th , 2021
DATE OF ISSUED	April 27th 2021
DATE OF ISSOLD	

This is to report, that the sample have been delivered by client and was carried out analysis in accordance with Standard method. The results are as follows :

Parameter Total Moisture				Res	ult		Mathada
		Unit	AR	ADB	DB	DAFB	Methods
		%	35.12	-		-	ASTM D 3302-19
	Moisture in the Analysis Sample	%	-	13.24	-	-	ASTM D 3173-17a
	Ash Content	%	4.37	5.84	6.74		ASTM D 3174-12 (2018)
Proximate	Volatile Matter	%	32.52	43.49	50.13	53.75	ISO 562:2010
	Fixed Carbon	%	27.99	37.43	43.14	46.25	ASTM D 3172-13
Total Sulphur		96	0.13	0.18	0.21	0.22	ASTM D 4239-18
Gross Calorifi	c Value	Kcal/Kg	4065	5436	6266	6718	ASTM D 5865-19
	Total Carbon	%	42.28	56.54	65.17	69.88	ASTM D 5373-16
	Total Hydrogen	%	3.23	4.32	4.98	5.34	
Ultimate *	Nitrogen	96	0.71	0.95	1.09	1.17	
	Oxygen	96	14.15	18.93	21.82	23.39	By Difference

Coal Analysis

Parameter	Symbol	Unit	Value	Commissioning	Remarks				
Fuel Higher Heating Value									
Higher Heating Value (AR)	He	kcal/kg-f	4.065,00		Coal Analysis				
Ultimate Analysis									
Carbon Content (AR)	MpCF	wt%	41,06		Ultimate Analysis				
Hydrogen Content (AR)	MpH2F	wt%	5,20		Ultimate Analysis				
Oxygen Content (AR)	MpO2F	wt%	12,41		Ultimate Analysis				
Sulfur Content (AR)	MpSF	wt%	0,13		Ultimate Analysis				
Nitrogen Content (AR)	MpN2F	wt%	1,71		Ultimate Analysis				
Ash Content (AR)	MpAsF	wt%	4,37		Ultimate Analysis				
Moisture Content (AR)	MpWF	wt%	35,12		Ultimate Analysis				
Total		wt%	100,00		MpCF + MpH2F +MpO2F+MpSF+MpN2F+MpAsF+MpWF				
Proximate Analysis									
Total Moisture Content (AR)	MFrWF	wt%	35,12		Proximate Analysis				
Fixed Carbon Content (AR)	MFrFC	wt%	27,99		Proximate Analysis				
Volatile Matter (AR)	MFrVm	wt%	32,52		Proximate Analysis				
Ash Content (AR)	MFrAsF	wt%	4,37		Proximate Analysis				
Total		wt%	100,00		MFrWF+MFrFC+MFrVM+MFrAsf				
Ash Analysis									
Carbon Content in Fly Ash	MpCfa	wt %	0,09	0,720	Proximate Analysis				
Carbon Content in Bottom Ash	MpCba	wt %		0,880	Proximate Analysis				
Fly Ash Split	xUCf	%	0,90	0,900	Gas Analysis				
Bottom Ash Split	xUCb	%	0,10	0,100	Gas Analysis				
Mass of Residue	MFrR/wdp	kg/kg fuel	0,04	0,079	MpAsF / (100-MpUbC)				
Carbon in Ash	MpCA	kg/kg refuse	0,26	0,474	MpCRfa x MpCfa + MpCRba x MpCba				
Unburn Carbon in Fuel	MpUbC	wt%	0,13	0,038	MFrR x MpCA				
Carbon Burned Content	MpCb	wt%	40,93	46,222	MpCF-MpUbC				