

TUGAS AKHIR - TM184835

STUDI NUMERIK PENGARUH DIMPLE SURFACE TERHADAP PERFORMA CIRCULAR CYLINDER DENGAN D = 80 MM DAN VARIASI REYNOLDS NUMBER UNTUK ENERGY HARVESTING PADA DUCTING SYSTEM

JOSEPH JOHANNES DE BRITO KRISNANDA WIDIARTA NRP 02111740000064

Dosen Pembimbing Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. NIP 19810529 200312 2 001

Program Studi Sarjana Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem INSTITUT TEKNOLOGI SEPULUH NOPEMBER Surabaya 2022

TUGAS AKHIR - TM184835

STUDI NUMERIK PENGARUH DIMPLE SURFACE TERHADAP PERFORMA CIRCULAR CYLINDER DENGAN D = 80 MM DAN VARIASI REYNOLDS NUMBER UNTUK ENERGY HARVESTING PADA DUCTING SYSTEM

JOSEPH JOHANNES DE BRITO KRISNANDA WIDIARTA NRP 02111740000064

Dosen Pembimbing Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. NIP 19810529 200312 2 001

Program Studi Sarjana

Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem INSTITUT TEKNOLOGI SEPULUH NOPEMBER Surabaya 2022

FINAL PROJECT - TM184835

NUMERICAL STUDY OF THE EFFECT OF DIMPLE SURFACE ON CIRCULAR CYLINDER PERFORMANCE WITH D = 80 MM AND REYNOLDS NUMBER VARIATIONS FOR ENERGY HARVESTING IN DUCTING SYSTEM

JOSEPH JOHANNES DE BRITO KRISNANDA WIDIARTA NRP 02111740000064

Advisor

Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. NIP 19810529 200312 2 001

Undergraduate Programme

Department of Mechanical Engineering Faculty of Industrial Technology and Systems Engineering SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY Surabaya 2022

LEMBAR PENGESAHAN

STUDI NUMERIK PENGARUH *DIMPLE SURFACE* TERHADAP PERFORMA CIRCULAR CYLINDER DENGAN D = 80 MM DAN VARIASI REYNOLDS NUMBER UNTUK ENERGY HARVESTING PADA DUCTING SYSTEM

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi S-1 Teknik Mesin Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

Oleh : JOSEPH JOHANNES DE BRITO KRISNANDA WIDIARTA

NRP. 02111740000064

Disetujui oleh Tim Penguji Tugas Akhir :

Pengu

Sumko

- 1. Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. Pembimbing
- 2. Triyogi Yuwono, Ir., DEA., Dr., Prof.
- 3. Herman Sasongko, Ir., Dr-Ing., Prof.

SURABAYA

APPROVAL SHEET

NUMERICAL STUDY OF THE EFFECT OF DIMPLE SURFACE ON CIRCULAR CYLINDER PERFORMANCE WITH D = 80 MM AND REYNOLDS NUMBER VARIATIONS FOR ENERGY HARVESTING IN DUCTING SYSTEM

FINAL PROJECT

Submitted to fulfill one of the requirements for obtaining a degree Bachelor of Engineering at Undergraduate Study Program of Mechanical Engineering Department of Mechanical Engineering Faculty of Industrial Technology and Systems Engineering Sepuluh Nopember Institute Of Technology

Oleh : JOSEPH JOHANNES DE BRITO KRISNANDA WIDIARTA

NRP. 0211174000064

Approved by Final Project Examiner Team :

Examiner

Examiner

111

- 1. Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. Advisor
- 2. Triyogi Yuwono, Ir., DEA., Dr., Prof.
- 3. Herman Sasongko, Ir., Dr-Ing., Prof.

SURABAYA July, 2022

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa / NRP	:	Joseph	Johannes	De	Brito	Krisnanda	Widiarta	/
		0211174	40000064					
Departemen	:	S-1 Tek	nik Mesin					
Dosen Pembimbing / NIP	: Vivien Suphandani Djanali, ST., M.Eng.Sc					, M.Eng.Sc.,	Ph.D.	
		/ 19810	529 200312	2 00	1			

dengan ini menyatakan bahwa Tugas Akhir dengan judul "Studi Numerik Pengaruh *Dimple Surface* terhadap Performa *Circular Cylinder* dengan D = 80 Mm dan Variasi *Reynolds Number* untuk *Energy Harvesting* Pada *Ducting System*" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Mengetahui, Dosen Pembimbing Vivien Suphandani Djanali, ST; MEng.S Ph.D.

NIP. 19810529 200312 2 001

Surabaya, 13 Juli 2022

Mahasiswa

Joseph Johannes De Brito Krisnanda Widiarta NRP. 021117 4000 0064

STATEMENT OF ORIGINALITY

The undersigned below:

Name of Student / NRP	:	Joseph	Johannes	De	Brito	Krisnanda	Widiarta	/
		0211174	40000064					
Department	:	Mechan	Mechanical Engineering					
Advisor / NIP	: Vivien Suphandani Djanali, ST., M.Eng.Sc., P					Ph.D.		
		/ 19810:	529 200312	2 00	1			

Hereby declare that the Final Project with the title of "Numerical Study of The Effect of Dimple Surface on Circular Cylinder Performance with D = 80 Mm and Reynolds Number Variations for Energy Harvesting in Ducting System" is the result of my own work, is original, and is written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with the provisions that apply at Sepuluh Nopember Institute Of Technology.

Student

Surabaya, July 13rd 2022

Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D. Joseph Johannes De Brito Krisnanda Widiarta NIP. 19810529 200312 2 001

NRP. 021117 4000 0064

ABSTRAK

STUDI NUMERIK PENGARUH *DIMPLE SURFACE* TERHADAP PERFORMA CIRCULAR CYLINDER DENGAN D = 80 MM DAN VARIASI REYNOLDS NUMBER UNTUK ENERGY HARVESTING PADA DUCTING SYSTEM

Nama Mahasiswa / NRP	:	Joseph Johannes De Brito Krisnanda Widiarta / 02111740000064
Departemen	:	Teknik Mesin FT-IRS ITS
Dosen Pembimbing	:	Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D.

Abstrak

Flow Induced Vibration (FIV) merupakan fenomena getaran yang terjadi karena adanya gaya aerodinamis yang bekerja akibat interaksi antara fluida dengan permukaan silinder terutama fluktuasi gaya *lift*. Energi kinetik dari getaran dimanfaatkan untuk menghasilkan listrik dengan menggunakan *piezoelectric transducer*. Tujuan penelitian untuk meningkatkan nilai *lift (root mean square)* lebih signifikan dibandingkan peningkatan nilai *drag* rata-rata agar energi listrik yang hasilkan besar dengan cara memodifikasi permukaan silinder.

Penelitian ini menggunakan simulasi *transient* 2D menggunakan *software* ANSYS FLUENT 2020 R2 dengan metode K- ε *Realizable*. Diameter silinder utama atau *smooth* cylinder (D) = 80 mm. Variasi diameter dimple (d) dibanding diameter *smooth* $(\frac{d}{D})$ adalah 0.00625, 0.0375 dan 0.0625. Tiap variasi $(\frac{d}{D})$ dimple memiliki kedalaman dimple yang sama sebesar 0.25 mm dan diuji dalam variasi bilangan Reynolds 6.000, 20.000, dan 40.000. Kondisi batas simulasi velocity inlet, pressure outlet, wall pada silinder uji dan symmetry pada permukaan atas dan bawah domain uji. Meshing menggunakan tipe Structured-Mesh Hexahedral.

Hasil penelitian ini secara umum didapat bahwa variasi *dimple* dapat menurunkan nilai *drag coefficient* dan *lift coefficient* jika dibandingkan *smooth cylinder*. Penurunan nilai *drag coefficient* terbesar terjadi pada variasi *dimple* $\left(\frac{d}{D}\right)$ 0.0625 pada Re 6.000 sebesar 13.7 % dan penurunan nilai *lift coefficient* terkecil terjadi pada variasi *dimple* $\left(\frac{d}{D}\right)$ 0.0375 pada Re 40.000 sebesar 40.7 %. Persentase penurunan rasio C_L'/C_D sebesar 36 – 43 % pada rentang Re 6.000 – 40.000. Variasi *dimple* tidak memengaruhi nilai *Strouhal Number* namun menurunkan amplitudo gelombang yang dihasilkan dengan penurunan sebesar 42.7 % - 56.7 % pada rentang Re 6.000 – 40.000.

Kata kunci: Drag, Flow Induced Vibration, Lift, Strouhal Number, Meshing, Dimple, Root Mean Square.

ABSTRACT

NUMERICAL STUDY OF THE EFFECT OF DIMPLE SURFACE ON CIRCULAR CYLINDER PERFORMANCE WITH D = 80 MM AND REYNOLDS NUMBER VARIATIONS FOR ENERGY HARVESTING IN DUCTING SYSTEM

Student Name / NRP	:	Joseph Johannes De Brito Krisnanda Widiarta / 02111740000064
Department	:	Mechanical Engineering FT-IRS ITS
Advisor	:	Vivien Suphandani Djanali, ST., M.Eng.Sc., Ph.D.

Abstract

Flow Induced Vibration (FIV) is a vibration phenomenon that occurs due to the aerodynamic force acting due to the interaction between the fluid and the cylindrical surface, especially fluctuations in the lift force. The kinetic energy of the vibration is used to generate electricity using a piezoelectric transducer. The aim of the study was to increase the lift value (root mean square) more significantly than the average drag value increase so that the electrical energy produced was large by modifying the cylinder surface.

This study uses a 2D transient simulation using the ANSYS FLUENT 2020 R2 software with the K- ε Realizable method. The diameter of the main cylinder or smooth cylinder (D) = 80 mm. Variations in dimple diameter (d) compared to smooth diameter $(\frac{d}{D})$ were 0.00625, 0.0375 and 0.0625. Each variation $(\frac{d}{D})$ dimple has the same dimple depth of 0.25 mm and was tested in variations of the Reynolds number 6000, 20000, and 40000. Simulation boundary conditions of velocity inlet, pressure outlet, wall on the test cylinder and symmetry on the top and bottom surfaces of the test domain. Meshing uses Structured-Mesh Hexahedral type.

The results of this study are generally found that dimple variations can reduce the value of drag coefficient and lift coefficient when compared to smooth cylinders. The largest decrease in the value of drag coefficient occurs in the dimple variation $(\frac{d}{D})$ 0.0625 at Re 6000 by 13.7% and the smallest decrease in the lift coefficient value occurs in the dimple variation $(\frac{d}{D})$ 0.0375 at Re 40000 by 40.7%. The percentage decrease in the C_L'/C_D ratio is 36 – 43% in the range of Re 6000 – 40000. The dimple variation does not affect the Strouhal Number value but decreases the amplitude of the resulting wave with a decrease of 42.7% - 56.7% in the range of Re 6000 – 40000.

Key words: Drag, Flow Induced Vibration, Lift, Strouhal Number, Meshing, Dimple, Root Mean Square.

KATA PENGANTAR

Puji dan syukur kepada Tuhan atas berkat-Nya sehingga penulis dapat menyelesaikan tugas akhir yang berjudul "**Studi Numerik Pengaruh** *Dimple Surface* **Terhadap Performa** *Circular Cylinder* **Dengan D = 80 mm Dan Variasi** *Reynolds Number* **Untuk** *Energy Harvesting* **Pada** *Ducting System*" sebagai syarat untuk menyelesaikan Program Sarjana di Departemen Teknik Mesin FT-IRS ITS. Penulis banyak mendapatkan dukungan, baik secara moral maupun material dari berbagai pihak selama menyusun tugas akhir. Dengan demikian, penulis ingin mengucapkan rasa terima kasih dan penghargaan setinggi-tingginya kepada:

- 1. **Maria Vincentia Denok Amanejah**, selaku Ibu penulis yang telah memberikan doa dan motivasi kepada penulis.
- 2. Liliek Moeslikah dan Agnes Hermien Indrayati, Selaku keluarga yang selalu mendoakan penulis dan memberikan semagat dalam proses pengerjaan Tugas Akhir ini.
- 3. **Vivien Suphandani Djanali, S.T, M.Eng.Sc, Ph.D,** selaku dosen pembimbing Tugas Akhir atas dedikasinya dalam memberikan arahan dan motivasi kepada penulis.
- 4. **Prof. Dr. Ing. Herman Sasongko** dan **Prof. Dr. Ir. Triyogi Yuwono DEA** selaku dosen penguji Sidang Tugas Akhir atas saran dan kritik yang membangun dalam menyempurnakan penulisan tugas akhir ini.
- 5. **Staf** dan **karyawan Departemen Teknik Mesin** atas bantuan yang telah diberikan kepada penulis selama lima tahun berkuliah.
- 6. **Nur Laili Syahrozhadl,** yang selalu memberikan semangat, motivasi dan juga hiburan kepada penulis serta menemani penulis dalam proses pengerjaan Tugas Akhir ini.
- 7. Teman seperjuangan Tugas Akhir ini **Athallah**, **Muflih** dan **Sandrina** yang membantu dalam diskusi dan penulisan Tugas Akhir ini.
- 8. Teman-teman SC 9, Anin, Faiz, Fahrul, Fattah, Ghani, Gosir, Ihsan, Inna, Jonathan, Rayhan, Rewila, Timothy, TP. Terimakasih telah memberikan penulis kesempatan bertemu dan bersama kalian semua. Tetap berkembang sesuai jalan kalian masing-masing dan jangan menyerah.
- 9. Keluarga besar M60, Teman-teman PSDM HMM periode 2019-2020, SC Piston 2020 dan PSDM BEM ITS periode 2021-2022
- 10. **Warga Lab Simanu** sebagai teman bekerja dan berpulang penulis. Terimakasih telah menemani penulis dalam proses pengerjaan Tugas Akhir ini.

Tentunya banyak pihak yang tidak bisa disebutkan namanya satu per satu, penulis menyadari banyak kekurangan pada tugas akhir ini. Oleh karena itu, penulis hendak memohon maaf dan berharap tugas akhir ini dapat memberikan manfaat bagi yang membacanya.

Surabaya, 13 Juli 2022

Penulis,

Joseph Johannes De Brito Krisnanda Widiarta

DAFTAR ISI

LEMBAR PENGESAHAN	i
APPROVAL SHEET	iii
PERNYATAAN ORISINALITAS	V
STATEMENT OF ORIGINALITY	vii
ABSTRAK	ix
ABSTRACT	xi
KATA PENGANTAR	xiii
DAFTAR ISI	XV
DAFTAR GAMBAR	xix
DAFTAR TABEL	xxii
DAFTAR LAMPIRAN	xxiii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	2
1.2 Rumusan Masalah	2
1.3 Batasan Masalah	3
1.4 Tujuan Penelitian	3
1.5 Manfaat Penelitian	3
BAB II TINJAUAN PUSTAKA	4
2.1 Aliran Internal	4
2.2 Vortex Shedding	4
2.2.1 Gaya Akibat Vortex Shedding	5
2.3 Aliran Melalui Silinder	6
2.4 Reynolds Number	8
2.5 Strouhal Number	8
2.6 Penelitian Terdahulu	9
2.6.1 Experimental Study on Flow Past a Circular Cylinder with Rou	gh Surface10
2.6.2 Study of the Drag Reduction Characteristics of Circular Cylina Surface	ler with Dimpled
2.6.3 Experimental Study of Dynamic Drag and Lift Characteris Cylinder	tics of Dimpled 19
BAB III METODE PENELITIAN	24
3.1 Tahapan Penelitian	
3.2 Pre-processing	

3.2.1 Pembuatan Domain Simulasi dan Variasi Penelitian.	24
3.2.2 Meshing	27
3.3 Processing	
3.3.1 Pemodelan Simulasi	
3.3.2 Iterasi	
3.4 Post-Processing	
3.4.1 Grid Independency	
3.5 Diagram Alir	
BAB IV ANALISIS DAN PEMBAHASAN	
4.1 Validasi Simulasi	
4.2 Perbandingan Drag Coefficient Smooth Cylinder dengan Reynolds Number	n <i>Dimple Cylinder</i> terhadap
4.3 Perbandingan Lift Coefficient Smooth Cylinder dengan Reynolds Number	Dimple Cylinder terhadap
4.4 Perbandingan Nilai C _L ' / C _D Smooth Cylinder dengan Reynolds Number	Dimple Cylinder terhadap
4.5 Perbandingan Pressure Coefficient Smooth Cylinder terhadap Reynolds Number	dengan <i>Dimple Cylinder</i> 38
$4.5.1 C_p$ pada Re = 40.000	
$4.5.2 C_p$ pada Re = 20.000	40
4.6 Perbandingan Strouhal Number Smooth Cylinder denga Reynolds Number	n <i>dimple cylinder</i> terhadap 45
4.6.1 St pada Re = 40.000	45
4.6.2 St pada Re = 20.000	46
4.6.3 St pada Re = 6.000	47
4.7 Magnitude Velocity Smooth Cylinder dengan Dimple C Number	Cylinder terhadap Reynolds 49
4.7.1 Magnitude Velocity Re = 20000	
4.8 Pressure Coefficient Smooth Cylinder dengan Dimple C Number	Cylinder terhadap Reynolds 51
4.8.1 Pressure Coefficient Re = 20000	51
BAB V KESIMPULAN DAN SARAN	54
5.1 Kesimpulan	54
5.2 Saran	
DAFTAR PUSTAKA	55
LAMPIRAN	

BIODATA PENULIS

DAFTAR GAMBAR

Gambar 2.1 Entrance Region, developing flow, and fully developed flow in a pipe	system4
Gambar 2.2 Skema Terjadinya Fenomena Vortex Shedding	5
Gambar 2.3 Arah Gaya Drag dan Gaya Lift Akibat Aliran Fluida Melalui Silinder	5
Gambar 2.4 Grafik Osilasi Gaya Drag dan Lift dalam Fungsi Waktu	6
Gambar 2.5 Klasifikasi pola aliran fluida pada range Reynolds Number tertentu	7
Gambar 2.6 Grafik hubungan Strouhal Number dengan Reynolds Number unt	uk vortex
shedding	9
Gambar 2.7 The cylinders diameter with different surfaces (a) 40 mm; (b) 100 mm	11
Gambar 2.8 The design sketch of grooved and dimpled cylinder	11
Gambar 2.9 Open Channel and Flow Patterns Measurement Facilities	12
Gambar 2.10 Experimental Setup in The Towing Tank	12
Gambar 2.11 Time history of the instantaneous lift and drag coefficients at $Re = 17$,980 13
Gambar 2.12 Mean Drag Coefficient for a Smooth, Grooved and Dimpled Cylinder	·s14
Gambar 2.13 The schematic diagrams of the computational domain and the cy	linder: (a)
Computational domain; (b) The distribution of four columns of dimples on the surf	ace of the
cylinder	15
Gambar 2.14 Grid independence verification for the dimple cylinder at $Re = 1 \times 10$	⁵ 15
Gambar 2.15 Grid independence verification for the smooth cylinder at $Re = 1 \times 10^{-10}$) ⁵ 16
Gambar 2.16 Included cases of the numerical simulation	16
Gambar 2.17 Schematic diagrams of the mesh: (a) Computational grid; (b) Close	-up of the
grid around the cylinder	16
Gambar 2.18 Comparison of related parameters	17
Gambar 2.19 The input parameters	17
Gambar 2.20 The drag reduction rates of included cases	18
Gambar 2.21 Experimental setup in the water tank	18
Gambar 2.22 Experimental setup in the water tank	19
Gambar 2.23 Experimental setup in the water tank	19
Gambar 2.24 Covered experimental conditions	19
Gambar 2.25 Towing Tank untuk Eksperimen	20
Gambar 2.26 Silinder Model dan Penjelasan Kode Kasus	20
Gambar 2.27 Silinder (a) Smooth, (b) Full-Sparse Dimpled, (c) Full-Dense Dimpled	l, (d) Half-
Sparse Dimpled, (e) Half-Dense Dimpled Surfaces	21
Gambar 2.28 Drag dan Lift Coefficient untuk (a) Smooth Cylinder, (b) Full-Spars	e Dimpled
Cylinder, (c) Full-Dense Dimpled Cylinder pada $Re = 8 \times 10^4$	21
Gambar 2.29 Grafik Variasi Mean Drag Coefficient untuk Silinder Smooth dan Di	mple pada
Rentang Reynolds Number Tertentu	22
Gambar 2.30 Grafik Variasi RMS Lift Coefficient (C _L ') untuk Silinder Smooth da	an Dimple
pada Rentang Reynolds Number Tertentu	23
Gambar 3. 1 Geometri Smooth Cylinder	24
Gambar 3. 2 Geometri Dimple $(dD) = 0.00625$	25
Gambar 3. 3 Geometri Dimple $(dD) = 0.0375$	25
Gambar 3. 4 Geometri Dimple $(dD) = 0.0625$	26
Gambar 3. 5 Domain Simulasi	

Gambar 3. 6 Meshing Smooth Cylinder
Gambar 3. 7 Meshing Dimple $(dD) = 0.0625$
Gambar 3. 8 Diagram Alir Penelitian
Gambar 4. 1 Perbandingan nilai drag coefficient dengan penelitian terdahulu
Gambar 4.2 Grafik perbandingan drag coefficient variasi geometri terhadap Reynolds Number
Gambar 4. 3 Grafik perbandingan CL' variasi geometri terhadap Reynolds Number
Gambar 4.4 Grafik perbandingan CL'/ CD variasi geometri terhadap Reynolds Number37
Gambar 4. 5 Grafik Cp smooth cylinder pada Re 40.000
Gambar 4. 6 Grafik Cp dimple cylinder pada Re 40.000
Gambar 4. 7 Grafik Cp smooth cylinder pada Re 20.000
Gambar 4. 8 Grafik Cp dimple cylinder pada Re 20.00042
Gambar 4.9 Grafik Cp smooth cylinder pada Re 6.00043
Gambar 4. 10 Grafik Cp dimple cylinder pada Re 6.000
Gambar 4. 11 Grafik perbandingan Strouhal Number terhadap lift coefficient setiap variasi
untuk Re 40.000
Gambar 4. 12 Grafik perbandingan Strouhal Number terhadap lift coefficient setiap variasi
untuk Re 20.000
Gambar 4. 13 Grafik perbandingan Strouhal Number terhadap lift coefficient setiap variasi
untuk Re 6.000
Gambar 4. 14 Magnitude velocity pada Re 20.000 (a) smooth cylinder, (b) (dD) 0.0625 dimple,
(c) (<i>dD</i>) 0.0375 dimple, (d) (<i>dD</i>) 0.00625 dimple
Gambar 4.15 Kontur pressure coefficient pada Re 20.000 (a) smooth cylinder, (b) (dD) 0.0625
dimple, (c) (dD) 0.0375 dimple, (d) (dD) 0.00625 dimple

DAFTAR TABEL

Tabel 3.1	Variasi Penelitian	26
Tabel 3.2	Input Parameter Simulasi	29
Tabel 3.3	Grid Independency Smooth Cylinder	30
Tabel 4.1	Perbandingan drag coefficient pada setiap geometri terhadap Reynolds Number	34
Tabel 4.2	Perbandingan lift coefficient pada setiap geometri terhadap Reynolds Number	36
Tabel 4.3	Perbandingan CL' / CD smooth cylinder dengan dimple cylinder terhadap Reynol	ds
	Number	37

DAFTAR LAMPIRAN

Lampiran 1. Kontur Velocity Magnitude Re 40.000	58
Lampiran 2. Kontur Velocity Magnitude Re 6.000	59
Lampiran 3. Kontur Pressure Coefficient Re 40.000	60
Lampiran 4. Kontur Pressure Coefficient Re 6.000	62

BAB I PENDAHULUAN

1.1 Latar Belakang

Pertumbuhan konsumsi energi listrik di kawasan Asia Tenggara sangat tinggi. Dalam *energy report* yang dipublikasikan oleh International Energy Agency (IEA) tahun 2020 [1]. Terjadi peningkatan konsumsi energi sejak tahun 2000-2019 sebesar 6% di setiap tahunnya. Sebagian besar kebutuhan energi di Asia Tenggara dipenuhi oleh batu bara, gas alam, dan tenaga air. Penggunaan energi fosil yang *massive* ini akan habis dalam waktu tertentu. Untuk menjaga ketersediaan energi perlu upaya penciptaan energi alternatif untuk memenuhi kebutuhan konsumsi energi.

Salah satu upaya menciptakan energi alternatif yang saat ini dikembangkan adalah dengan memanfaatkan getaran akibat aliran fluida yang melalui suatu silinder. Energi kinetik akibat getaran diubah menjadi energi listrik menggunakan *transducer piezoelectric*. Getaran yang terjadi disebabkan oleh interaksi antara fluida dengan permukaan silinder. Fenomena ini disebut sebagai *flow induced vibration* (FIV). Adanya interaksi ini menghasilkan gaya – gaya aerodinamis yang diproyeksikan terhadap sumbu tertentu ditinjau dari arah datangnya aliran. Untuk gaya yang searah dengan arah aliran disebut sebagai gaya *drag* dan gaya yang tegak lurus terhadap arah aliran disebut *lift*.

Dalam merancang FIV menjadi energi alternatif perlu memperhatikan faktor bentuk silinder. Hal ini karena bentuk silinder mempengaruhi karakteristik aliran yang melewatinya dan berpengaruh terhadap getaran yang akan dihasilkan. Beberapa peneliti yang melakukan modifikasi terkait bentuk silinder (*passive flow control*), di antaranya Bo Zhou [2] melakukan eksperimen untuk mengetahui pengaruh kekasaran permukaan silinder terhadap penurunan *drag coefficient* dan karakteristik *wake* yang dihasilkan. Hasil dari eksperimen menunjukan bahwa kekasaran permukaan efektif dalam menurunan mean $drag (\overline{C_D})$ dan r.m.s *lift coefficient* (C_L') dengan range persentase *drag reduction* yang bergantung bentuk variasi kekasarannya. Selanjutnya, Fei Yan [3] melakukan studi numerik terkait pengaruh pola *dimple surface* silinder. Hasil dari studi numerik yang dilakukan didapatkan bahwa *dimple surface* dapat menurunkan *drag* secara efektif namun bergantung pada rentang *Reynolds Number* tertentu.

Berdasarkan uraian di atas, FIV membutuhkan desain atau bentuk *silinder dimple surface* yang harapan nya dapat meningkatkan *lift* lebih signifikan dibandingkan peningkatan *drag* oleh sebab itu dibutuhkan pemahaman yang lebih mendetail terkait pengaruh *dimple* pada permukaan silinder terutama karakteristik aliran dalam model 2D serta komparasi koefisien *lift* dan *drag* dengan *smooth* silinder. Untuk menunjang pengaplikasian pada *ducting system* agar energi rumah tangga dapat dikembangkan.

1.2 Rumusan Masalah

Flow induced vibration (FIV) adalah suatu fenomena yang terjadi pada benda yang dilalui aliran fluida. Fenomena ini menghasilkan gerakan mekanis berupa getaran (*vibration*). Getaran tersebut terjadi akibat pengaruh gaya aerodinamis terhadap permukaan benda. *Flow induced vibration* (FIV) dapat dimanfaatkan sebagai energi terbarukan dengan mengubah gerakan mekanis menjadi energi listrik. Energi listrik yang hasilkan FIV dipengaruhi oleh amplitudo dan frekuensi yang terjadi. Jika amplitudo dan frekuensi getaran yang dihasilkan besar maka energi yang mampu dihasilkan semakin besar. Namun frekuensi bergantung pada nilai *Strouhal number* yang dihasilkan oleh bentuk permukaan benda akibat interaksi dengan fluida, sehingga untuk meningkatkan frekuensi perlu meneliti bentuk permukaan benda untuk menghasilkan nilai *Strou hal Number* yang besar. Sedangkan amplitudo getaran dipengaruhi

oleh dua gaya aerodinamis yatu *lift* dan *drag*. Hal ini menjadi menarik karena besaran kedua gaya tersebut dapat diubah dengan memodifikasi permukaan benda. Jika *lift* semakin tinggi maka amplitudo yang dihasilkan semakin tinggi namun jika *lift* tinggi umumnya *drag* juga ikut tinggi. Kondisi optimum yang diinginkan adalah bagaimana cara meningkatkan *lift* lebih signifikan dibandingkan *drag*. Oleh karena itu perlu adanya penelitian terkait perbandingan model dengan modifikasi pada permukaan yang mampu menghasilkan kondisi optimum yang diinginkan.

1.3 Batasan Masalah

Batasan masalah yang digunakan pada penelitian ini adalah sebagai berikut :

- 1. Aliran fluida adalah incompressible flow
- 2. Simulasi dilakukan secara unsteady 2D
- 3. Diameter silinder 80 mm
- 4. Analisis aliran *external flow*
- 5. Silinder dalam keadaan diam.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah mencari bentuk silinder yang sesuai untuk digunakan dalam *flow induced vibration*. Pada penelitian ini, dilakukan dengan memvariasikan permukaan silinder dengan tujuan sebagai berikut :

- 1. Mengetahui pengaruh *dimple surface* dengan variasi *Reynolds Number* terhadap C_L ', C_{D, C_P} , dan St silinder
- 2. Mengetahui pengaruh variasi diameter *dimple* terhadap C_L, C_D, C_P, dan St silinder
- 3. Mengetahui pengaruh *dimple surface* terhadap kontur distribusi tekanan dan kontur kecepatan.

1.5 Manfaat Penelitian

Manfaat dari penelitian ini sebagai berikut.

- 1. Sebagai referensi penelitian selanjutnya terkait pengaruh modifikasi permukaan silinder terhadap gaya aerodinamis yang bekerja
- 2. Mengetahui pengaruh *dimple surface* terhadap aliran yang melewati silinder.

BAB II TINJAUAN PUSTAKA

2.1 Aliran Internal

Aliran internal adalah kondisi aliran dimana fluida yang mengalir dibatasi oleh penampang tertutup, contoh dari aliran internal adalah aliran dalam pipa. Aliran dalam pipa dapat bergerak akibat adanya perbedaan tekanan gradien atau *pressure gradient*, dimana hal ini berbeda jika dibandingkan dengan aliran *external* atupun aliran *open channel* yang memanfaatkan gravitasi sebagai mekanisme yang mendorong aliran tersebut bergerak. (BR, Theodore H, Wade W, & Alric P, 2013).

Tepat saat fluida berada di saluran masuk pipa, profil kecepatan yang dimiliki fluida masih merata atau *uniform*. Hal ini dapat terjadi karena fluida tidak dipengaruhi oleh tegangan geser akibat dinding pipa. Namun ketika aliran bergerak semakin dalam, profil kecepatan fluida akan berubah pada wilayah *entrance region*. Hal ini terjadi akibat pengaruh tegangan geser dari dinding pipa. Aliran akan terus berkembang sampai stabil dengan profil parabolik. Wilayah saat profil kecepatan aliran stabil atau *fully developed flow* disebut sebagai *fully developed region*.

Gambar 2. 1 *Entrance Region, developing flow, and fully developed flow in a pipe system* Sumber: Munson et al (2012)

2.2 Vortex Shedding

Fenomena Vortex Shedding dapat terlihat pada aliran yang memiliki Reynolds Number di atas 40. (M & J, 2006) Pada kondisi ini lapisan batas aliran pada silinder terpisah oleh perbedaan tekanan yang disebabkan oleh perbedaan geometri pola aliran pada kedua sisi silinder. Akibatnya vortex berlawanan arah dan terbentuk pada kedua sisi silinder dengan ukuran yang berbeda beda, seperti ditunjukan pada Gambar 2.2.

Gambar 2.2 Skema Terjadinya Fenomena *Vortex Shedding* Sumber: Sumer & Fredsoe (2006)

Pertumbuhan *vortex* yang lebih kecil suatu saat akan memotong aliran pertumbuhan dari *vortex* yang lebih besar. (M & J, 2006) Akibatnya *vortex* yang lebih besar akan terlepas dan meninggalkan *vortex* yang lebih kecil. Hal ini akan terjadi secara berulang - ulang dalam batas waktu tertentu.

2.2.1 Gaya Akibat Vortex Shedding

Aliran fluida yang melalui suatu benda akan membangkitkan gaya - gaya resultan akibat interaksi dengan permukaan benda tersebut. Gaya yang memiliki arah searah dengan arah aliran fluida disebut sebagai gaya drag (F_D) dan tegak lurus dengan arah aliran fluida disebut sebagai gaya lift (F_L).

Gambar 2.3 Arah Gaya Drag dan Gaya Lift Akibat Aliran Fluida Melalui Silinder Sumber: Sumer & Fredsoe (2006)

Akibat adanya fenomena *vortex shedding* maka terjadi perubahan pola aliran secara periodik. Hal ini sangat berpengaruh terhadap perubahan tekanan dan nilai gaya yang dihasilkan. Ketika *vortex shedding* terjadi, nilai C_D dan C_L berubah secara periodik pada nilai *mean drag* (\bar{C}_D) tertentu dan *mean lift* (\bar{C}_L) sama dengan nol. (M & J, 2006) (Drescher, 1956) C_D berosilasi pada suatu nilai *mean drag* (\bar{C}_D) tertentu dimana nilai *mean drag* merupakan komponen dari gari gaya friksi dan osilasi (\dot{C}_D) merupakan komponen gaya akibat perubahan tekanan. (M & J, 2006) Koefisien *drag* dan *lift* dapat didapatkan melalui persamaan berikut.

$$\dot{C}_{\rm D} = \frac{\dot{F}_D}{\frac{1}{2}\rho LDU^2} \tag{2.1}$$

$$\bar{C}_{\rm D} = \frac{\bar{F}_D}{\frac{1}{2}\rho LDU^2} \tag{2.2}$$

$$\dot{C}_{\rm L} = \frac{\dot{F}_{\rm L}}{\frac{1}{2}\rho L D U^2} \tag{2.3}$$

Menurut percobaan yang dilakukan oleh Drescher (Drescher, 1956) dalam Sumer dan Fredsoe (M & J, 2006), frekuensi osilasi gaya *drag* adalah dua kali frekuensi *vortex shedding* sedangkan frekuensi osilasi gaya *lift* sama dengan frekuensi *vortex shedding*nya. Dalam statistika, komponen osilasi biasa diwakili oleh komponen *root mean square* (M & J, 2006).

$$F_{L} = F_{L} \sin (\omega_{s} t + \phi_{s})$$

$$F_{L} = F_{L} \sin (\omega_{s} t + \phi_{s})$$

$$(2.4)$$

$$(2.5)$$

$$\mathbf{F}_{\mathrm{D}} = \mathbf{F}_{\mathrm{D}} + \mathbf{F}_{\mathrm{D}} \sin \left(2\mathbf{w}_{\mathrm{s}} \mathbf{t} + \boldsymbol{\varphi}_{\mathrm{s}} \right) \tag{2.5}$$

Gambar 2.4 Grafik Osilasi Gaya *Drag* dan *Lift* dalam Fungsi Waktu Sumber: Drescher (1956); Sumer & Fredsoe (2006)

Dimana,

- $F_L = Gaya lift (kg.m/s2)$
- $F_D = Gaya drag (kg.m/s2)$
- $\overline{F_D}$ = Mean drag (kg.m/s2)
- F_{L} = Amplitudo osilasi gaya lift (kg.m/s2)
- $F_D =$ Amplitudo osilasi gaya drag (kg.m/s2)
- ω_s = Frekuensi vortex shedding (rad/s)
- C_{L}^{\cdot} = Koefisien osilasi gaya lift
- $C_{D} =$ Koefisien osilasi gaya drag
- $\overline{C_D}$ = Koefisien mean drag
- L = Panjang silinder (m)

2.3 Aliran Melalui Silinder

Bentuk atau pola dari aliran fluida berbeda-beda pada setiap *range Reynolds Number*. Untuk kasus pola aliran fluida melalui silinder telah dilakukan oleh Liendhard (Lienhard, 1966). Menurut Liendhard (Lienhard, 1966) pola aliran sedikitnya dapat dikelompokan menjadi enam kelompok sesuai *range Reynolds Number*nya.

Gambar 2.5 Klasifikasi pola aliran fluida pada *range Reynolds Number* tertentu Sumber: Liendhard (1966)

Berdasarkan Gambar 2.5 dapat diketahui bahwa pola aliran fluida yaitu:

- 1. Untuk harga Re < 5, Aliran yang melewati silinder belum mengalami pemisahan (*regime of unseparated flow*), artinya pada *range* tersebut belum terbentuk *vortex* di belakang silinder.
- 2. Untuk 5 15 < Re < 40, akibat nilai *Reynolds Number* yang semakin besar maka pola aliran yang terjadi semakin tidak teratur sehingga pada *range* ini mulai terbentuk sepasang *foppl vortices*.
- 3. Untuk 40 < Re < 90 dan 90 < Re < 150, Mulai terjadi pelepasan *vortex* yang membentuk *laminar vortex streets* yang disebabkan ketidakstabilan area *wake* atau area di belakang silinder.
- Untuk 150 < Re < 3 x 10⁵, Pada *range* ini *vortex shedding* menjadi kurang beraturan dan tampak bahwa akan muncul pola aliran turbulen. Dalam rentang nilai 300 < Re < 3 x 10⁵, terbentuk pola *turbulence vortex street* daerah ini disebut juga sebagai daerah *subcritical*.
- 5. Untuk 3 x 10^5 < Re < 3.5 x 10^6 , *Laminar boundary layer* telah mengalami transisi sepenuh nya menjadi turbulen, akibatnya *wake* yang dihasilkan semakin tidak teratur dan lebih sempit sehingga koefisien *drag* turun hingga 0.3. (Blevins, 2001) Daerah ini disebut sebagai daerah *transitional* antara daerah *subcritical* dengan *supercritical*.
- 6. Untuk harga Re > $3.5 \ge 10^6$, Pada range ini pola *turbulence vortex streets* terbentuk kembali dengan lapisan batas sepenuhnya turbulen. Namun *wake* yang dihasilkan di belakang silinder semakin tipis. Daerah ini sebut sebagai daerah *supercritical*.

2.4 Reynolds Number

Reynolds Number merupakan salah satu parameter penting dalam mendefinisikan suatu aliran fluida. Reynolds Number merupakan dimensionless parameter yang menunjukkan kondisi aliran dalam turbulent atau laminar. Nilai tinggi Reynolds Number menunjukkan aliran pada kondisi turbulent sedangkan nilai rendah menunjukkan aliran pada kondisi laminar. Dasasrnya Reynolds Number merupakan nilai perbandingan antara gaya viskositas dengan inersia dari fluida. Nilai dari Reynolds Number ditentukan berdasarkan persamaan :

$$Re = \frac{\rho \bar{V}L}{\mu} = \frac{\bar{V}L}{\nu}$$
(2.6)

Variabel L (*m*) merupakan panjang spesifik dari geometri aliran, ρ (kg/m³) merupakan massa jenis fluida yang mengalir dengan kecepatan V (m/s) dan μ merupakan viskositas dinamis fluida, sedangkan v merupakan viskositas kinetik fluida (Pritchard & Leylegian, 2010).

2.5 Strouhal Number

Strouhal Number merupakan parameter yang penting dalam menganalisis kondisi suatu aliran yang tidak stabil. Bilangan ini menunjukan nilai dari rasio gaya inersia akibat percepatan lokal terhadap gaya inersia akibat perubahan kecepatan dari suatu titik ke titik lain dalam suatu aliran fluida. Umumnya *Strouhal Number* bernilai 0.2, nilai ini adalah hasil pendekatan tepat untuk rentang *Reynolds Number* yang luas pada silinder. Nilai *Strouhal Number* didapatkan dari persamaan:

$$\mathbf{St} = (\mathbf{f}_{\mathrm{s}}.\mathbf{D})/\mathbf{U} \tag{2.7}$$

Dimana,

St = *Strouhal Number*

f_s = Frekuensi *vortex shedding* (Hz)

- U = Kecepatan aliran (m/s)
- D = Diameter struktur (m)

Gambar 2.6 Grafik hubungan Strouhal Number dengan Reynolds Number untuk vortex shedding Sumber: Liendhard (1966); Achenbach & Heinecke (1981)

Pada Gambar 2.6 dijelaskan hubungan antara *Reynolds Number* dengan *Strouhal Number*. Bahwa nilai *Strouhal Number* silinder yang permukaannya kasar dengan silinder yang permukaannya halus untuk harga *Reynolds Number* kurang dari 10^5 tidak memiliki perbedaan yang signifikan. Namun hal ini berbeda pada rentang *Reynolds Number* $10^5 < \text{Re} < 10^6$ selisih nilai *Strouhal Number* cukup besar. Tetapi saat nilai *Reynolds Number* mendekati 10^7 selisih menjadi tidak signifikan antara silinder yang permukaan nya kasar dengan silinder yang permukaannya halus.

2.6 Penghitungan Power Output Dalam Kasus Flow Induced Vibration

Dalam penelitian yang dilakukan oleh (Stinson, 2011) dijelaskan bahwa energi yang mampu diekstrak dari getaran yang dihasilkan akibat *flow induced vibration* dapat dihitung melalui beberapa persamaan berikut.

$$F_{L} = \frac{1}{2} \rho fluid. U^{3}. D. L. C_{L}$$
(2.8)

$$Y_{Res}\left(t\right) \frac{F_{L} \cdot Sin\left(\omega_{n}t + \frac{\pi}{2}\right)}{k \sqrt{\left(1 - \left(\frac{fs}{fn}\right)^{2}\right)^{2} + 4\zeta^{2} \left(\frac{fs}{fn}\right)^{2}}}$$
(2.9)

$$v(t) = \frac{d}{dt} Y_{Res}(t)$$
(2.10)

$$P(t) = v(t). F_L. Sin(\omega_n t)$$
(2.11)

Pada Persamaan 2.10 untuk mendapatkan *power output* terhadap fungsi waktu pada sistem perlu didapatkan besar nilai gaya *lift* dan besar nilai kecepatan dalam fungsi waktu. Untuk mendapatkan nilai gaya *lift* dihitung menggunakan Persamaan 2.7. Dalam Persamaan 2.7 gaya *lift* dipengaruhi oleh densitas fluida, kecepatan fluida, diameter benda, panjang benda dan *lift coefficient*. Untuk mendapatkan nilai *lift coefficient* (C_L) yang tidak mendekati nol, maka perlu menggunakan metode *root mean square* yang dihitung minimal satu gelombang saat data gelombang telah stabil. Jika benda mampu menghasilkan nilai C_L' yang besar maka gaya *lift* yang dihasilkan pun besar.

Untuk mendapatkan kecepatan terhadap fungsi waktu terlebih dahulu kita perlu mengetahui amplitudo gelombang yang dihasilkan. Pada Persamaan 2.8 ditunjukan rumus untuk menghitung besar amplitudo yang terjadi. Jika amplitudo semakin tinggi, maka waktu benda untuk berakselerasi semakin lama, hal ini mungkin akan meningkatkan kecepatan maksimum yang mampu didapatkan benda saat mencapai posisi titik pada sumbu Y = 0. Pada Persamaan 2.9 ditunjukan pula bahwa kecepatan bisa didapatkan melalui penurunan atau *differential* dari Persamaan 2.8 terhadap fungsi waktu. Jadi agar nilai *power output* yang dihasilkan maksimum maka harus memperbesar nilai gaya *lift* yang mampu dihasilkan benda dan maksimum amplitudo getaran gelombang yang terjadi.

2.7 Penelitian Terdahulu

2.7.1 Experimental Study on Flow Past a Circular Cylinder with Rough Surface

Bo Zhou (Zhou, Li, Wang, Guo, & Tan, 2016) melakukan eksperimen untuk mengetahui pengaruh kekasaran permukaan silinder sirkular terhadap penurunan *drag coefficient* dan karakteristik *wake* yang dihasilkan. Eksperimen dilakukan pada rentang Reynolds Number 7.4 x 103 hingga 8 x 104 dengan variasi bentuk silinder sirkular, yaitu *groove* dan *dimple* silinder dan variasi diameter yaitu 40 mm dan 100 mm.

Pola bentuk *groove* dan *dimple* disebar secara merata pada enam belas titik di permukaan selimut silinder. Untuk lebar dan kedalaman dari *grooves* adalah 4 mm (0.1D) dan 2 mm (0.05), sedangkan dimple memiliki kedalaman sebesar 2 mm (0.05D) dan jarak antar titik pusat *dimple* secara longitudinal sebesar 8 mm (0.2D).

Gambar 2.7 *The cylinders diameter with different surfaces* (a) 40 mm; (b) 100 mm Sumber: Bo Zhou (2015)

Gambar 2.8 *The design sketch of grooved and dimpled cylinder* Sumber: Bo Zhou (2015)

Pengujian dilakukan pada dua media pengujian berbeda. Untuk dimensi silinder dengan diameter 40 mm dan panjang 400 mm dilakukan pada *re-circulating open water channel* dengan *free* stream velocity 0.18, 0.29, 0.37 dan 0.45 m/s. Hal ini bertujuan agar pengamatan pola aliran kompleks pada silinder lebih akurat. Untuk dimensi silinder dengan diameter 100 mm dan panjang 1100 mm dilakukan pada *towing tank* dengan *free stream velocity* 0.2, 0.4, 0.6, 0.8 m/s yang bertujuan untuk pengamatan *dynamic drag* dan *lift* yang bekerja pada silinder lebih akurat.

Gambar 2.9 Open Channel and Flow Patterns Measurement Facilities Sumber: Bo Zhou (2015)

Gambar 2.10 *Experimental Setup in The Towing Tank* Sumber: Bo Zhou (2015)

Gambar 2.11 *Time history of the instantaneous lift and drag coefficients at Re = 17,980* Sumber: Bo Zhou (2015)

Ditunjukkan pada Gambar 2.11 fluktuasi nilai C_D dan C_L terhadap waktu untuk nilai Re = 17.980 dari masing - masing variasi silinder. Untuk nilai C_D *smooth* silinder berkisar 1.1, Sedangkan pada *groove* dan *dimple* silinder perbedaan nilai C_D kedua nya tidak terlalu signifikan dan berada di bawah *smooth* silinder pada kisaran nilai 0.8. Selain itu jika diamati fluktuasi nilai C_L lebih tinggi dari fluktuasi nilai C_D di masing - masing variasi. Hal ini terjadi akibat adanya perubahan fluktuatif tekanan secara periodik oleh *vortex shedding* di kedua sisi silinder.

Gambar 2.12 Mean Drag Coefficient for a Smooth, Grooved and Dimpled Cylinders Sumber: Bo Zhou (2015)

Jika dilihat dari gambar 2.12, nilai *mean drag* ($\overline{C_D}$) dari *smooth* silinder cenderung meningkat jika nilai *Reynolds Number* juga meningkat. Namun pada *dimple* silinder nilai *mean drag* ($\overline{C_D}$) lebih rendah dibanding *smooth* silinder pada rentang *Reynolds Number* yang sama, tetapi lebih tinggi jika dibandingkan *groove* silinder pada rentang *Reynolds Number* -7400 hingga 19980. Pada Re = 19980 perbedaan nilai *mean drag* ($\overline{C_D}$) antara *groove* dan *dimple* tidak signifikan atau hampir sama. Selanjutnya nilai *mean drag* ($\overline{C_D}$) *groove* silinder akan meningkat dan lebih tinggi pada nilai Re > 19980 jika dibanding *dimple* silinder.

Kesimpulan dari penelitian ini adalah groove atau dimple silinder efektif dalam menurunkan mean drag $(\overline{C_D})$ dan r.m.s lift coefficient $(\overline{C_D})$. Untuk groove silinder mampu menurunkan dalam range 18% sampai 29% sedangkan untuk dimple silinder antara 10% sampai 30%. Hal ini dibuktikan dengan pengamatan menggunakan particle image velocimetry. Jika dibandingkan smooth silinder, keduanya mengurangi luas dan panjang area resirkulasi. Akibatnya wake yang terbentuk lebih kecil.

2.7.2 Study of the Drag Reduction Characteristics of Circular Cylinder with Dimpled Surface

Penelitian Fei Yan (Yan, Yang, & Wang, 2021) bertujuan untuk mengetahui pengaruh pola *dimple surface* silinder sirkular terhadap karakteristik penurunan *drag* jika dibandingkan dengan *smooth* silinder. Penelitian dilakukan secara simulasi numerik dan eksperimen. Simulasi numerik berfokus pada variasi *pressure coefficient, skin friction coefficient, dan vortex shedding strength.*

Simulasi numerik yang dilakukan adalah simulasi 2D dengan ukuran domain simulasi 30D X 10D. Jarak dari titik pusat silinder hingga *outlet* sebesar 25D. Hal ini mengacu pada studi yang dilakukan oleh Sarker (Sarker, 1998). Menurut Sarker (Sarker, 1998) jarak dari titik pusat silinder hingga ke *outlet* harus \geq 12D. Tujuan nya untuk memastikan aliran sudah tidak terpengaruh lagi oleh silinder. Sedangkan jarak antara titik pusat dengan *inlet* dan *wall* sebesar 5D.

Gambar 2.13 The schematic diagrams of the computational domain and the cylinder: (a) Computational domain; (b) The distribution of four columns of dimples on the surface of the cylinder Sumber: Fei Yan (2021)

Kondisi batas dalam simulasi ini, untuk *inlet* menggunakan *velocity inlet boundary* sedangkan *outlet* menggunakan *pressure outlet boundary*. *No slip wall* pada sisi atas dan bawah silinder. Silinder diasumsikan *fixed wall*. Dimensi dari *dimple* silinder sebgai berikut, untuk diameter silinder adalah 20 mm, diameter *dimple* 2 mm dan kedalaman *dimple* 0.1 mm. *Dimple* didistribusikan secara merata di permukaan selimut silinder dengan variasi penambahan jumlah *dimple*. Variasi kecepatan yang digunakan ada dua yaitu 0.2 m/s dan 0.4 m/s dan jika di konversi dalam *Reynolds Number*. Re₁ = 1 x 10⁵ dan Re₂ = 2 x 10⁵.

Mesh	Descript	tion	Number of Cells	Time-Averaged Drag Coefficient (\overline{Cd})	Root Mean Square of Lift Coefficient (Cl _{rms})	Strouhal Number (St)
M1′		Mesh expansion ratio of 1.3	96,988	1.3412	0.7115	0.2214
M2′	the first layer height 0.00005Ddensify	Mesh expansion ratio of 1.2	105,462	1.2584	0.7073	0.2206
M3′	40 layers mesh for the location with dimples	Mesh expansion ratio of 1.1	110,302	1.0060	0.6131	0.2010
M4′		Mesh expansion	131,214	1.0052	0.6114	0.2005

Gambar 2.14 *Grid independence verification for the dimple cylinder at* $Re = 1 \times 10^5$ Sumber: Fei Yan (2021)

Mesh	Dese	cription	Number of Cells	Time-Averaged Drag Coefficient (Cd)	Root Mean Square of Lift Coefficient (Cl _{rms})	Strouhal Number (St)
M1		Mesh expansion ratio of 1.3	72,936	1.4001	0.7492	0.2337
M2	The first layer	Mesh expansion ratio of 1.2	89,476	1.3129	0.6391	0.2212
M3	height 0.00005D	Mesh expansion ratio of 1.1	107,116	1.2424	0.6217	0.2137
M4		Mesh expansion ratio of 1.05	125,856	1.2418	0.6214	0.2130

Gambar 2.15 *Grid independence verification for the smooth cylinder at* $Re = 1 \times 10^5$ Sumber: Fei Yan (2021)

Number of Columns	$Re_1 = 1 imes 10^5$	$Re_2 = 2 \times 10^5$
0 column	Case 1-1	Case 2-1
4 columns	Case 1-2	Case 2-2
8 columns	Case 1-3	Case 2-3
12 columns	Case 1-4	Case 2-4

Gambar 2.16 Included cases of the numerical simulation Sumber: Fei Yan (2021)

Untuk hasil simulasi yang akurat Fei Yan (Yan, Yang, & Wang, 2021) mempertimbangkan ketinggian dari *first layer mesh* dimana daerah tersebut adalah daerah kritis yang sangat dekat dengan permukaan. Dengan nilai $y+\approx 1$ ditentukan ketinggian *mesh* pada *first layer* sebesar 0.001 mm. Selanjutnya dilakukan uji *grid independence* untuk masing masing variasi (*smooth* dan *dimple*). Tujuannya untuk memastikan hasil simulasi tersebut tidak terpengaruh oleh banyak nya jumlah *mesh*.

Jika dilihat dari gambar 2.15, terdapat 4 model *mesh* berdasarkan banyaknya jumlah cell. Untuk *smooth* silinder, selisih nilai $(\overline{C_D})$ antara M3 dan M4 tidak berbeda jauh. Artinya tidak ada pengaruh signifikan antara M3 M4 terhadap hasil simulasi, Sama hal nya dengan *dimple* silinder selisih nilai $(\overline{C_D})$ antara M3' dan M4' tidak berbeda jauh. Maka dalam simulasi ini model *mesh* yang digunakan adalah M3 untuk *smooth* dan M3' untuk *dimple*. Pengaturan *grid expansion ratio* diatur di bawah 1.1 dan *time step size* diatur di bawah 4 x 10⁻⁴ s.

Gambar 2.17 Schematic diagrams of the mesh: (a) Computational grid; (b) Close-up of the grid around the cylinder Sumber: Fei Yan (2021)

Dalam memvalidasi *turbulence* model yang akan disimulasikan. Fei Yan (Yan, Yang, & Wang, 2021) membandingkan parameter ($\overline{C_D}$) dan *Strouhal Number* terhadap hasil eksperimen Schewe (Schewe, 1983) dan Zdravkovich (Zdravkovich, 1981) sebagai dasaran validitas. Variasi yang dibandingkan adalah *smooth* silinder pada Re = 1 x 10⁵.

Source of Literature	Cd	St	Note
Schewe	1.18	0.21	experiment
Zdravkovich	1.2	0.20	experiment
This paper	1.24	0.22	simulation

Gambar 2.18 Comparison of related parameters Sumber: Fei Yan (2021)

Pada Gambar 2.18 dapat dilihat selisih ($\overline{C_D}$) dan *Strouhal Number* dari masing masing literatur tidak berbeda jauh. Hal ini menunjukan hasil simulasi akan *reliable*. *Input* pengaturan parameter simulasi ditunjukan pada gambar di bawah.

The Parameters	Choices	Notes
Solver	Pressure-Based, Transient	
The fluid medium	Water liquid (20°)	$\rho = 998.2 \text{ kg/m}^3$
The houndary conditions	Valocity-Inlet & Pressure-Outlet	$\mu = 0.001003 \text{ kg}/(\text{m}\cdot\text{-s})$
Pressure-Velocity Coupling Scheme	SIMPLEC	
Spatial Discretization	Second Order Upwind	

Gambar 2.19 *The input parameters* Sumber: Fei Yan (2021)

Untuk menghitung laju penurunan drag dapat digunakan rumus sebagai berikut

$$\eta = \frac{\overline{C_D}smooth - \overline{C_D}dimple}{\overline{C_D}smooth} \times 100\%$$
(2.7)

Dimana, η adalah laju penurunan drag. $\overline{C_D}$ smooth adalah rata - rata drag coefficient smooth silinder terhadap fungsi waktu. $\overline{C_D}$ dimple adalah rata - rata drag coefficient dimple silinder. Jika nilai η positif (+) artinya terjadi penurunan drag, namun jika nilai η negatif (-) artinya terjadi peningkatan drag. Pada gambar di bawah ditunjukan laju penurunan drag pada setiap kasus. Untuk Re = 1 x 10⁵, nilai $\overline{C_D}$ pada case 1-2, case 1-3, case 1-4 lebih kecil jika dibandingkan case 1-1. Namun pada Re = 2 x 10⁵ nilai $\overline{C_D}$ justru semakin meningkat dengan bertambahnya jumlah dimple. Hasil ini dapat disimpulkan bahwa dimple surface dapat menurunkan drag pada silinder tetapi dipengaruhi oleh banyak dimple di permukaan dan hanya berlaku untuk rentang Reynolds number tertentu.

Serial Number	Remark	Cd	η
1	Case 1-1	1.242	
2	Case 1-2	1.006	+19.00%
3	Case 1-3	1.088	+12.40%
4	Case 1-4	1.091	+12.16%
5	Case 2-1	0.898	
6	Case 2-2	0.931	-3.67%
7	Case 2-3	1.060	-18.04%
8	Case 2-4	1.080	-20.27%

Gambar 2.20 *The drag reduction rates of included cases* Sumber: Fei Yan (2021)

Gambar 2.21 Experimental setup in the water tank Sumber: Fei Yan (2021)

Pada studi eksperimental Fei Yan (Yan, Yang, & Wang, 2021) menggunakan metode *particle image velocimetry* (PIV). Tujuannya untuk melihat aliran di sekitar silinder dengan atau tanpa *dimple* pada area *backflow* silinder. Bentuk *circulating water tank* yang digunakan adalah persegi panjang dengan panjang 4 m, lebar 0.3 m dan tinggi 0.25 m. Diagram di atas menjelaskan skema dari studi eksperimental yang dilakukan. Silinder yang digunakan dalam eksperimen ini berdiameter 20 mm dan panjang 302 mm. Untuk ukuran *dimple* memiliki diameter (d) 2 mm, kedalaman (h) 0.1 mm dan jarak antar *dimple* 4 mm. Perbandingan antara panjang *circulating water tank* dan diameter silinder adalah 15.1 dimana hal ini sesuai dengan acuan studi Sarker (Sarker, 1998). Kecepatan aliran diatur 0.204 m/s dan 0.407 m/s sesuai pada gambar di bawah.

Gambar 2.22 Experimental setup in the water tank Sumber: Fei Yan (2021)

Number of Columns	$Re_1 = 4.08 \times 10^3$	$Re_2 = 8.14 \times 10^3$
0 column	Case a-1	Case b-1
4 columns	Case a-2	Case b-2
8 columns	Case a-3	Case b-3
12 columns	Case a-4	Case b-4

Gambar 2.23 *Experimental setup in the water tank* Sumber: Fei Yan (2021)

Q (m ³ /h)	S (m ²)	V_{∞} (m/s)	Re
55	0.075	0.204	4.08×10^{3}
110		0.407	8.14×10^{3}

Gambar 2.24 Covered experimental conditions Sumber: Fei Yan (2021)

Kesimpulan dari penelitian oleh Fei Yan (Yan, Yang, & Wang, 2021) adalah *dimple surface* dapat secara efektif menurunkan *drag* dari silinder sirkular namun pada rentang *Reynolds Number* tertentu. *Maximum* laju *drag reduction* mencapai 19% dan *minimum* nya adalah 12.16% sehubungan dengan meningkatnya jumlah *dimple* di permukaan. Pada *Reynolds Number* yang sama, saat *drag* menurun maka kekuatan *vortex shedding* pun ikut menurun. Dalam hal lainnya drag pada silinder sirkular dapat meningkat saat melewati nilai kritis kecepatan aliran. Saat *drag* menurun sedangkan parameter *recirculation zone* meningkat. Hal ini mengindikasikan fenomena pembentukan *vortex* yang terhambat.

2.7.3 Experimental Study of Dynamic Drag and Lift Characteristics of Dimpled Cylinder

Bo Zhou (Zhou, Li, Wang, Guo, & Tan, 2016) melakukan eksperimen untuk memahami hubungan antara *drag reduction* pada silinder sirkular dengan kekasaran permukaan dalam bentuk *dimple*. Eksperimen dilakukan di *towing tank* pada rentang $20000 \le \text{Re} \le 80000$ dengan sembilan tipe kekasaran permukaan. *Towing tank* berbentuk segi empat dengan dimensi

4000 x 1500 mm (lebar x kedalaman). Spesimen uji dibuat dari pipa PVC dengan diameter 100 mm. Pola *dimple* dalam eksperimen ini dibedakan menjadi dua, yaitu *sparse* dan *dense*. *Sparse* memiliki 16 buah *dimples* pada permukaan selimut silinder. *Dense* memiliki 32 *dimples* pada permukaan selimut silinder. Diameter (D1) dan kedalaman (k) adalah 10 mm dan 2.5 mm. Kode diberikan untuk masing masing tipe kekasaran dan pengujian ini juga mengamati apabila *half dimple* dihadapkan pada arah yang berbeda beda (*forward, side, backward*). Sembilan tipe tersebut adalah *smooth*, DF (*full sparse dimpled*), DDF (*full dense dimpled*), DHF (*half sparse forward dimpled*), DHS (*half sparse side dimpled*), DHB (*half sparse backward dimpled*), DDHF (*half dense forward dimpled*), DDHS (*half dense side dimpled*), DDHB (*half dense backward dimpled*).

Gambar 2.25 *Towing Tank* untuk Eksperimen Sumber: Bo Zhou (2016)

Gambar 2.26 Silinder Model dan Penjelasan Kode Kasus Sumber: Bo Zhou (2016)

Gambar 2.27 Silinder (a) Smooth, (b) Full-Sparse Dimpled, (c) Full-Dense Dimpled, (d) Half-Sparse Dimpled, (e) Half-Dense Dimpled Surfaces Sumber: Bo Zhou (2016)

Gambar 2.28 Drag dan Lift Coefficient untuk (a) Smooth Cylinder, (b) Full-Sparse Dimpled Cylinder, (c) Full-Dense Dimpled Cylinder pada Re = 8 x 10⁴ Sumber: Bo Zhou (2016)

Gambar 2.28 menunjukan perbandingan drag atau *lift coefficient* dalam rentang waktu tertentu. Pada Re = 8 x 10⁴ untuk tipe *smooth*, *full-sparse dimpled* dan *full-dense dimpled* didapatkan nilai atau *mean drag value*. Silinder *smooth* berkisar 1.1 namun untuk *full-sparse dimpled* dan *full-dense dimpled* memiliki kisaran nilai yang sama yaitu 0.8. Dapat dilihat juga bahwa fluktuasi dari masing-masing silinder bervariasi. Fluktuasi ini terjadi akibat adanya perbandingan antara *drag* atau *lift coefficient* dalam rentang waktu tertentu. Silinder *smooth*

memiliki pola fluktuasi yang tinggi jika dibanding *full-sparse* dan *full-dense*. Hal ini meyimpulkan bahwa amplitudo dan percepatan getaran yang akan dihasilkan oleh silinder *smooth* lebih tinggi jika dibandingkan dengan *full-sparse* dan *full-dense* silinder.

Gambar 2.29 Grafik Variasi *Mean Drag Coefficient* untuk Silinder *Smooth* dan *Dimple* pada Rentang *Reynolds Number* Tertentu Sumber: Bo Zhou (2016)

Gambar 2.29 merupakan grafik fluktuasi dari $\overline{C_D}$ pada rentang *Reynolds Number* tertentu. Peneliti melakukan validasi hasil eksperimen dengan membandingkan data *smooth* silinder yang didapatkan dengan penelitian. (M & J, 2006) Selisih dari Fluktuasi data kedua nya tidak signifikan yang dimana hal ini membuktikan bahwa hasil yang didapatkan dari eksperimen adalah valid. Nilai $\overline{C_D}$ pada setiap tipe silinder berbeda beda dan dipengaruhi oleh *Reynolds Number*. Terjadi penurunan nilai $\overline{C_D}$ yang signifikan untuk beberapa tipe silinder yaitu, DHS, DDHS, DDHB terutama pada rentang $20000 \le \text{Re} \le 40000$ dan terjadi peningkatan nilai $\overline{C_D}$ yang signifikan pada silinder tipe DDHS untuk rentang $40000 \le \text{Re} \le 60000$. Nilai $\overline{C_D}$ terendah dihasilkan oleh silinder tipe DHF dan yang tertinggi dihasilkan oleh silinder *smooth*.

Gambar 2.30 Grafik Variasi RMS *Lift Coefficient* (C_L') untuk Silinder *Smooth* dan *Dimple* pada Rentang *Reynolds Number* Tertentu Sumber: Bo Zhou (2016)

Grafik 2.30 merupakan fluktuasi dari nilai C_L ' (*RMS Value of the lift coefficient*) pada rentang *Reynolds Number* tertentu. Berdasarkan grafik nilai C_L ' dari silinder tipe DF, DHF, DDF dan DDHF lebih rendah jika dibanding *smooth* silinder. Pada rentang 20000 $\leq \text{Re} \leq 40000$ hanya dua tipe silinder yang mengalami peningkatan nilai C_L ' yaitu tipe DDHB dan DDHS. Nilai C_L ' terendah dihasilkan oleh silinder tipe DHF.

Kesimpulan dari studi eksperimental ini adalah untuk mengetahui efek dari *dimpled* surface terhadap dynamic drag dan lift force pada single silinder. Hasil yang didapatkan bahwa pada rentang 20000 \leq Re \leq 80000, half dimpled silinder menghasilkan nilai $\overline{C_D}$ dan C_L' yang bervariasi. Hal ini dipengaruhi oleh orientasi permukaan kasar silinder terhadap arah datang nya aliran. Nilai $\overline{C_D}$ terendah dihasilkan oleh silinder dengan variasi half dimpled dengan orientasi kekasaran permukaan menghadap ke arah datangnya aliran.

BAB III METODE PENELITIAN

3.1 Tahapan Penelitian

Penelitian ini dilakukan dengan simulasi numerik menggunakan *software* ANSYS 2020 R2. Terdapat tiga tahapan dalam melakukan simulasi ini, yaitu *Pre-processing*, *Processing* dan *Post-processing*. *Pre-processing* adalah tahap pemodelan masalah. *Processing* adalah tahap perhitungan melalui iterasi untuk menyelesaikan masalah. *Post-processing* adalah tahap pengambilan data hasil penyelesaian berupa data kuantitatif dan kualitatif.

Tahapan *pre-processing* terdiri dari pembuatan domain simulasi dengan menggunakan *software* SpaceClaim. Hasil pembuatan domain dibuat dalam format (.scdoc) selanjutnya dilakukan *meshing* dan penetapan *boundary condition* pada domain simulasi yang telah dibuat menggunakan *software* ICEM CFD dengan format (.uns). Hasil *mesh* kemudian diolah pada tahap *processing* menggunakan *software* ANSYS FLUENT 2020 R2. Tahap terakhir yaitu *post-processing* dilakukan pengambilan data kuantitatif hasil penyelesaian seperti C_D, C_L', C_L'/C_D, St dan diolah menggunakan *software* Excel 2016 serta data kualitatif seperti kontur distribusi tekanan dan kontur kecepatan diolah menggunakan *software* Tecplot 350 EX 2021 R2.

3.2 Pre-processing

3.2.1 Pembuatan Domain Simulasi dan Variasi Penelitian

Untuk menganalisis karakteristik aliran yang melewati silinder sirkular dilakukan pembuatan domain simulasi seperti pada Gambar 3.5. Domain disederhanakan secara 2D menggunakan *software* SpaceClaim. Hasil domain disimpan dalam format (.scdoc). Domain simulasi terdiri dari 2D silinder sirkular dengan variasi *smooth* dan *dimple surface*. Dalam penelitian ini menggunakan diameter silinder utama (D) = 80 mm. Variasi *dimple* ($\frac{d}{D}$) adalah 0.00625, 0.0375 dan 0.0625 dengan kedalaman *dimple* yang sama sebesar 0.25 mm dan variasi *Reynolds Number*.

Gambar 3.1 Geometri Smooth Cylinder

Gambar 3. 3 Geometri *Dimple* $\left(\frac{d}{D}\right) = 0.0375$

Gambar 3. 4 Geometri *Dimple* $\left(\frac{d}{D}\right) = 0.0625$

Dimensi domain pada simulasi ini dapat dilihat pada gambar di bawah. Jarak diukur dari titik pusat silinder sirkular. *Boundary condition* diberikan pada domain aliran agar *software* mampu mengenali elemen yang berkaitan dengan *boundary condition* tertentu. Penetapan ini menggunakan ICEM CFD.

Gambar 3. 5 Domain Simulasi

Variasi dalam penelitian ini dapat dilihat pada Tabel 3.1.

Tabel 3.1VariasiVariasiPenelitian						
Variasi Penelitian						
Reynolds Number	<i>Reynolds Number</i> 6000, 20000, 40000					
$(\frac{d}{D})$ 0.00625, 0.0375, dan 0.0625						

3.2.2 Meshing

Domain aliran yang telah dibuat diekspor data geometri domain dalam format (.scdoc) ke ICEM CFD untuk proses *meshing*. *Meshing* adalah tahapan mempartisi domain menjadi bagian-bagian yang lebih kecil. *Meshing* berfungsi sebagai *control volume* domain simulasi yang akan di proses lebih lanjut pada *software* ANSYS FLUENT 2020 R2. *Boundary condition* yang diberikan dalam penelitian ini sebagai berikut.

- a. Inlet : Velocity inlet
- b. *Outlet* : *Pressure outlet*
- c. Wall : Symmetry
- d. Silinder : Wall

Bentuk mesh yang digunakan adalah Structured Mesh Hexahedral untuk silinder smooth surface dan silinder dimple surface. File meshing disimpan dalam format (.uns).

(b)

Gambar 3. 6 Meshing Smooth Cylinder

(b)

Gambar 3.7 Meshing Dimple $\left(\frac{d}{D}\right) = 0.0625$

3.3 **Processing**

Pemodelan Simulasi 3.3.1

Pemodelan yang digunakan pada penelitian ini yaitu pressure-based solver, transient dan viscous model K-E Realizable Input. Parameter pemodelan dapat dilihat pada tabel di bawah.

Input Parameter				
$ Solver Fressure based, K - \varepsilon Realizable $				
Near Wall treatment	Menter - Lechner			
Jenis aliran	Udara			
Pressure-velocity coupling scheme	Simplec			
Spatial discretization	Second Order Upwind			
Residual Monitor	10-5			

Tabal 3 7 Innut Daramatar Simulasi

3.3.2 Iterasi

Pada simulasi unsteady diperlukan nilai timestep size dalam melakukan proses iterasi dimana semakin kecil nilai timestep size maka semakin bagus untuk menangkap fenomena vortex shedding. Nilai timestep size diperoleh dari perhitungan Strouhal Number. Untuk aliran yang melewati silinder memiliki nilai Strouhal Number sebesar 0.2. (Williamson, 1995)

Persamaan timestep size berdasarkan Strouhal Number

$$St = 0.2 = \frac{f \times D}{U} \tag{3.1}$$

Untuk penelitian ini silinder sirkular memiliki diameter (D) 80 mm dan kecepatan aliran udara bervariasi bergantung *Reynolds Number*. Jika mengambil salah satu variasi yaitu Re = 40000 maka dapat peroleh nilai U sebesar 7.4 m/s sehingga besaran nilai frekuensi dapat di tentukan.

Persamaan waktu siklus (t)

$$t = \frac{1}{f} \tag{3.2}$$

Dari persamaan 3.2 didapatkan waktu siklus untuk mendapatkan nilai *timestep size*. Direkomendasikan bahwa untuk mendapatkan fenomena *vortex shedding* dapat menggunakan paling sedikit 20-25 *timestep* dalam satu siklus *shedding* atau dengan nilai *timestep size* ≈ 0 .

3.4 Post-Processing

3.4.1 *Grid Independency*

Grid independency test dilakukan untuk mengetahui pengaruh kualitas dan jumlah *meshing* terhadap hasil data simulasi numerik yang didapatkan. Cara yang dilakukan adalah memperbanyak jumlah *mesh* dan membandingkan antara satu dengan lainnya. Perbandingan dilakukan mulai dari jumlah *mesh* dengan terendah kemudian jumlah dinaikkan secara bertahap minimal 1.5 kali dari jumlah *mesh* sebelum nya. Nilai yang dibandingkan pada *grid independency test* adalah *mean drag coefficient* dan Y⁺ *average. Grid independency* dilakukan dalam kondisi *steady* dengan benda uji *smooth cylinder*.

Mesh	Jumlah Mesh	$\overline{C_D}$	<u> </u>	Error (%)
M1	28956	1.2041	1.0463	-
M2	65854	1.2097	1.0247	1.0642
M3	155168	1.1945	1.0684	0.1924
M4	226126	1.1937	1.0869	0.0670

Tabel 3.3 Grid Independency Smooth Cylinder

3.5 Diagram Alir

Berikut adalah diagram alir penelitian yang dilakukan.

Gambar 3. 8 Diagram Alir Penelitian

Halaman ini sengaja dikosongkan

BAB IV ANALISIS DAN PEMBAHASAN

4.1 Validasi Simulasi

Simulasi numerik yang telah dilakukan perlu divalidasi. Validasi dilakukan untuk memastikan bahwa hasil simulasi yang diperoleh sudah cukup akurat. Data yang divalidasikan dengan penelitian terdahulu adalah *drag coefficient*.

Gambar 4. 1 Perbandingan nilai drag coefficient dengan penelitian terdahulu

Gambar 4.1 menunjukan grafik perbandingan nilai *drag coefficient* dengan beberapa penelitian eksperimen dan simulasi. Terlihat pada grafik tersebut terdapat beberapa perbedaan nilai *drag coefficient* dari setiap penelitian pada *Reynolds Number* yang sama. Hal ini disebabkan salah satunya karena ukuran diameter *smooth cylinder* yang digunakan berbedabeda pada setiap penelitian. Jika dibandingkan dengan penelitian simulasi saat ini, rata-rata *drag coefficient smooth cylinder* berada diantara *drag coefficient* dari beberapa penelitian lainnya.

4.2 Perbandingan *Drag Coefficient Smooth Cylinder* dengan *Dimple Cylinder* terhadap *Reynolds Number*

Pada sub bab ini ditampilkan hasil simulasi berupa *drag coefficient* dan dibandingkan antara masing-masing geometri terhadap *Reynolds Number*. Data ini perlu diambil guna mengetahui seberapa besar *drag* yang terjadi akibat interaksi fluida dengan pengaruh perbedaan permukaan geometri uji. Data diambil secara rata-rata dari minimal fluktuatif satu gelombang yang terjadi.

		Ср		
Reynolds Number	$(\frac{d}{D})$ 0.0625	$(\frac{d}{D})$ 0.0375	$(\frac{d}{D})$ 0.00625	Smooth
6000	1,0451	1,0518	1,0499	1,2116
20000	0,9832	0,9856	0,9820	1,1038
40000	0,9058	0,9061	0,8995	0,9778

Tabel 4.1 Perbandingan drag coefficient pada setiap geometri terhadap Reynolds Number

Gambar 4.2 Grafik perbandingan *drag coefficient* variasi geometri terhadap *Reynolds* Number

Gambar 4.2 menampilkan trendline grafik drag coefficient dimple cylinder terhadap smooth cylinder pada setiap Reynolds Number. Secara umum nilai C_D smooth cylinder lebih besar jika dibandingkan dengan dimple cylinder. Gradien garis C_D smooth cylinder lebih besar jika dibandingkan dengan dimple cylinder. Perbedaan nilai C_D terbesar antara variasi smooth dengan *dimple* terjadi pada Re = 6000 dan turun mendekati grafik *dimple cylinder* pada Re = 40.000. Hal ini diperkuat dengan data nilai C_D untuk setiap variasi terhadap Reynolds Number yang disajikan pada Tabel 4.1. Untuk Re = 6.000 variasi $\left(\frac{d}{p}\right)$ 0.0625 *dimple cylinder* memiliki nilai C_D paling rendah jika dibandingkan variasi dimple cylinder yang lainnya. Persentase penurunan C_D yang terjadi yaitu sebesar 13.7 %, sedangkan untuk Re = 20.000 dan Re = 40.000nilai C_D terendah terjadi pada variasi $\left(\frac{d}{D}\right)$ 0.00625 *dimple cylinder* dengan persentase penurunan sebesar 11.03 % untuk Re = 20.000 dan 8 % untuk Re = 40.000. Variasi dimple cylinder yang kurang efektif dalam menurunkan nilai C_D terjadi pada variasi $\left(\frac{d}{D}\right)$ 0.0375 *dimple cylinder*. Nilai C_D variasi ini memiliki nilai terbesar pada setiap Reynolds Number jika dibandingkan dengan variasi dimple cylinder lainnya. Hal ini menunjukan bahwa dimple pada permukaan silinder efektif untuk menurunkan nilai C_D silinder. Namun tingkat efektifitasnya tergantung dari ukuran geometri dimple dan rentang Reynolds Number yang digunakan.

4.3 Perbandingan Lift Coefficient Smooth Cylinder dengan Dimple Cylinder terhadap Reynolds Number

Pada sub bab ini ditampilkan hasil simulasi berupa *lift coefficient* dan dibandingkan antara masing-masing geometri terhadap *Reynolds Number*. Pengambilan data *lift coefficient* dihitung dengan rumus akar kuadrat (*root mean square*). Cara ini dipilih dibandingkan menggunakan rumus rata rata agar nilai hasil penghitungan tidak nol, karena adanya nilai negatif dari fluktuatif nilai *lift coefficient* hasil simulasi.

Tabel 4.2 Perbandingan lift coefficient pada setiap geometri terhadap Reynolds Number

Gambar 4. 3 Grafik perbandingan CL' variasi geometri terhadap Reynolds Number

Gambar 4.3 menampilkan *trendline* grafik *lift coefficient dimple cylinder* terhadap smooth cylinder pada setiap Reynolds Number. Secara umum nilai C_L ' smooth cylinder lebih besar jika dibandingkan dengan *dimple cylinder*. Gradien garis C_L ' smooth cylinder lebih besar jika dibandingkan dengan *dimple cylinder* yang cenderung mendatar. Perbedaan nilai C_L ' terbesar antara variasi smooth dengan *dimple* terjadi pada Re = 6000 dan turun mendekati grafik *dimple cylinder* pada Re = 40.000.

Data berupa nilai C_L' dari setiap geometri terhadap *Reynolds Number* dapat dilihat pada Tabel 4.2. Untuk semua variasi *Reynolds Number* nilai C_L' turun signifikan dibandingkan dengan *smooth cylinder*. Jika dilihat berdasarkan variasi geometri *dimple* dan *Reynolds Number* pada rentang Re = 6000 dan 20.000 nilai CL'terbesar terjadi pada variasi $\left(\frac{d}{D}\right)$ 0.00625 dibandingkan variasi *dimple* lainnya. Persentase penurunan dibandingkan *smooth cylinder* sebesar 48,52 % untuk Re = 6000 dan 45,76 % untuk Re = 20.000. Sedangkan pada Re = 40.000 nilai C_L' terbesar untuk variasi *dimple* terjadi pada variasi $\left(\frac{d}{D}\right)$ 0.0375. Jika dibandingkan dengan *smooth cylinder* persentase penurunan C_L' sebesar 40,73 %. Variasi *dimple* yang memiliki efektifitas yang rendah adalah variasi $\left(\frac{d}{D}\right)$ 0.0625. Hal ini dibuktikan dengan rendah nya nilai C_L' yang diperoleh pada setiap *Reynolds Number*.

Berdasarkan data yang didapatkan dari Gambar 4.3 dan Tabel 4.2 disimpulkan bahwa *dimple cylinder* dengan penempatan *dimple* dibelakang silinder dapat menurunkan nilai C_L'

dibandingkan dengan *smooth cylinder*. Persentase seberapa besar terjadi nya penurunan sangat bergantung pada geometri dari *dimple* dan *Reynolds Number*.

4.4 Perbandingan Nilai CL' / CD Smooth Cylinder dengan Dimple Cylinder terhadap Reynolds Number

Pada sub bab ini diambil data berupa rasio perbandingan C_L'/C_D masing-masing geometri terhadap *Reynolds Number*. Perbandingan ini dibutuhkan karena berpengaruh terhadap amplitudo fluktuatif silinder yang akan berdampak pada seberapa besar energi yang dihasilkan.

C _L '/C _D					
Reynolds Number	$(\frac{d}{D}) 0.0625$	$(\frac{d}{D}) 0.0375$	$(\frac{d}{D}) 0.00625$	Smooth	
6000	0.2886	0.2934	0.3005	0.5057	
20000	0.2842	0.2884	0.2935	0.4814	
40000	0.2869	0.3049	0.2971	0.4768	

Tabel 4.3 Perbandingan CL' / CD smooth cylinder dengan dimple cylinder terhadap	Reynolds
Number	

Gambar 4.4 Grafik perbandingan CL'/ CD variasi geometri terhadap Reynolds Number

Gambar 4.4 menampilkan *trendline* grafik C_L'/C_D *dimple cylinder* dan *smooth cylinder* pada setiap *Reynolds Number*. Secara umum C_L'/C_D *smooth cylinder* lebih tinggi dibandingkan variasi *dimple cylinder* untuk setiap *Reynolds Number*. Grafik *smooth cylinder* menurun seiring bertambah nya *Reynolds Number*. Hal ini berbeda dengan grafik *dimple cylinder*. Masing masing variasi *dimple* memiliki pola grafik yang sama, yaitu pada Re = 6000 hingga Re = 20.000 menurun lalu meningkat kembali pada rentang Re = 20.000 hingga Re = 40.000. Data nilai C_L'/C_D disajikan pada Tabel 4.3. Jika dibandingkan antara masing-masing variasi *dimple* terhadap *Reynolds Number*. Variasi $(\frac{d}{D})$ 0.00625 *dimple* memiliki nilai C_L'/C_D

tertinggi dibandingkan variasi *dimple* yang lainnya pada Re = 6000 hingga Re = 20.000. Namun jika dibandingkan dengan *smooth cylinder*, nilai C_L'/ C_D sangat turun signifikan. Persentase penurunan antara variasi $(\frac{d}{D})$ 0.00625 *dimple* dengan *smooth cylinder* sebesar 40,59 % pada Re = 6000 dan 39,04 % pada Re = 20.000. Variasi $(\frac{d}{D})$ 0.0375 *dimple* memiliki nilai C_L'/ C_D tertinggi jika dibanding variasi *dimple* lainnya pada Re = 40.000 dan persentase penurunan nilai C_L'/ C_D jika dibandingkan dengan *smooth cylinder* sebesar 36.05%.

Berdasarkan data dan gambar grafik yang disajikan pada Tabel 4.3 dan Gambar 4.4. Smooth cylinder secara umum memiliki rasio perbandingan C_L'/C_D yang lebih baik pada setiap variasi *Reynolds Number* dibandingkan *dimple cylinder*. Jika dilihat dari masing masing variasi *dimple*. Variasi $(\frac{d}{D})$ 0.00625 *dimple* lebih efektif pada rentang Re = 6000 hingga Re = 20.000 dan untuk variasi $(\frac{d}{D})$ 0.0375 *dimple* lebih efektif pada Re = 40.000, sedangkan $(\frac{d}{D})$ 0.0625 mm *dimple* kurang efektif pada rentang Re 6000 hingga Re = 40.000 hal ini ditunjukan dengan *plot* grafik yang datar, dan nilai yang cenderung stabil pada setiap variasi *Reynolds Number*.

4.5 Perbandingan Pressure Coefficient Smooth Cylinder dengan Dimple Cylinder terhadap Reynolds Number

4.5.1 C_p pada Re = 40.000

Pada sub sub bab ini menampilkan data kuantitatif berupa distribusi *pressure coefficient* (C_P) pada *smooth cylinder* dan *dimple cylinder* pada bilangan *Reynold Number* 40.000. Nilai *pressure coefficient* masing-masing geometri didapat dengan mengambil dua belas titik dalam satu gelombang. Distribusi *pressure coefficient* menggambarkan fluktuasi atau perubahan tekanan di sepanjang sudut azimut pada silinder sirkular

Gambar 4. 5 Grafik Cp smooth cylinder pada Re 40.000

Grafik distribusi tekanan (Cp) *smooth cylinder* untuk Re 40.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.5. Nilai Cp maksimum untuk *smooth cylinder* adalah 1 pada posisi

0.57° yang menunjukan bahwa titik stagnasi berada pada posisi tersebut, Penjelasan grafik dibagi menjadi dua bagian yaitu *upper side* dan *lower side smooth cylinder*.

Pada bagian *upper side* grafik menurun hingga titik terbawah Cp sebesar -1.77 diposisi 74.62°. Hal ini mengidikasikan kecepatan aliran meningkat mulai dari 0.57° hingga dititik maksimum kecepatan yang dapat diraih berada pada posisi 74.62°, Setelah melewati titik 74.62° grafik meningkat hingga 119° lalu melandai. Hal ini menunjukan bahwa pada titik 74.62° hingga 119° terjadi fenomena *adverse pressure gradient* hingga aliran tidak kuat menahan *adverse pressure gradient* kemudian terjadi separasi pada titik 119°. Pada bagian *lower side* memiliki nilai Cp terendah yang sama dengan *upper side* yaitu sebesar -1.77 di posisi 285.38° kemudian grafik meningkat hingga melandai pada posisi 241°.

Gambar 4. 6 Grafik Cp dimple cylinder pada Re 40.000

Grafik distribusi tekanan (Cp) *dimple cylinder* untuk Re 40.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.6. Grafik tersebut merupakan perbandingan variasi *dimple cylinder* pada *Reynolds Number* yang sama. Nilai Cp maksimum untuk *dimple* variasi $(\frac{d}{D})$ 0.0625, $(\frac{d}{D})$ 0.0375 dan $(\frac{d}{D})$ 0.00625 memiliki nilai yang sama yaitu 1 namun posisi titik stagnasi berbeda. Untuk variasi $(\frac{d}{D})$ 0.0625 *dimple* nilai Cp maksimum berada pada posisi 0°, variasi $(\frac{d}{D})$ 0.0375 *dimple* berada pada 0.5° sedangkan variasi $(\frac{d}{D})$ 0.00625 *dimple* titik stagnasi berada pada posisi 0.05°.

Secara umum pada bagian *upper side* dan *lower side* masing masing variasi mengalami penurunan nilai Cp hingga titik tertentu namun memiliki nilai Cp terendah dan posisi yang berbeda beda. Untuk *dimple* variasi $\left(\frac{d}{D}\right)$ 0.0625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang sama yaitu sebesar -1.66 pada posisi 74.27° di bagian *upper side* sedangkan di bagian *lower side* pada posisi 288.04°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $\left(\frac{d}{D}\right)$ 0.0625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 86° sampai 93.4° untuk bagian *upper side* dan 274° sampai 266.4° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 103.3° untuk bagian *upper side* dan 255.11° untuk bagian *lower side*.

Untuk *dimple* variasi $(\frac{d}{D})$ 0.0375 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda. Pada bagian *upper side* nilai Cp minimum sebesar -1.66 pada posisi 73.63° sedangkan bagian *lower side* nilai Cp minimum sebesar -1.68 pada posisi 287.86°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $(\frac{d}{D})$ 0.0375 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 87.85° sampai 92.15° untuk bagian *upper side* dan 272.16° sampai 267.85° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 103.1° untuk bagian *upper side* dan 252.1° untuk bagian *lower side*.

Untuk *dimple* variasi $\left(\frac{d}{D}\right)$ 0.00625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda. Pada bagian *upper side* nilai Cp minimum sebesar -1.63 pada posisi 74.12° sedangkan bagian *lower side* nilai Cp minimum sebesar -1.64 pada posisi 287.13°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $\left(\frac{d}{D}\right)$ 0.00625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 89° sampai 90.04° untuk bagian *upper side* dan 270.36° sampai 269.6° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 102° untuk bagian *upper side* dan 251° untuk bagian *lower side*.

4.5.2 C_p pada Re = 20.000

Pada sub sub bab ini menampilkan data kuantitatif berupa distribusi *pressure coefficient* (C_P) pada *smooth cylinder* dan *dimple cylinder* pada bilangan *Reynold Number* 20.000. Nilai *pressure coefficient* masing-masing geometri didapat dengan mengambil dua belas titik dalam satu gelombang.

Gambar 4. 7 Grafik Cp smooth cylinder pada Re 20.000

Grafik distribusi tekanan (Cp) *smooth cylinder* untuk Re 20.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.7. Nilai Cp maksimum untuk *smooth cylinder* adalah 1 pada posisi 0.57° yang menunjukan bahwa titik stagnasi berada pada posisi tersebut, Penjelasan grafik dibagi menjadi dua bagian yaitu *upper side* dan *lower side smooth cylinder*.

Pada bagian *upper side* grafik menurun hingga titik terbawah Cp sebesar -1.63 diposisi 72.34°. Hal ini mengidikasikan kecepatan aliran meningkat mulai dari 0.57° hingga di titik maksimum kecepatan yang dapat diraih berada pada posisi 72.34°, setelah melewati titik 72.34° grafik meningkat hingga 117° lalu melandai. Hal ini menunjukan bahwa pada titik 72.34° hingga 117° terjadi fenomena *adverse pressure gradient* hingga aliran tidak kuat menahan *adverse pressure gradient* kemudian terjadi separasi pada titik 117°. Pada bagian *lower side* memiliki nilai Cp terendah yang berbeda dengan *upper side* yaitu sebesar -1.66 di posisi 286.52° kemudian grafik meningkat hingga melandai pada posisi 243°.

Gambar 4.8 Grafik Cp dimple cylinder pada Re 20.000

Grafik distribusi tekanan (Cp) *dimple cylinder* untuk Re 20.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.8. Grafik tersebut merupakan perbandingan variasi *dimple cylinder* pada *Reynolds Number* yang sama. Nilai Cp maksimum untuk *dimple* variasi $(\frac{d}{D})$ 0.0625, $(\frac{d}{D})$ 0.0375 dan $(\frac{d}{D})$ 0.00625 memiliki nilai yang sama yaitu 1 namun posisi titik stagnasi berbeda. Untuk variasi $(\frac{d}{D})$ 0.0625 nilai Cp maksimum berada pada posisi 0°, variasi $(\frac{d}{D})$ 0.0375 berada pada 0.5° sedangkan variasi $(\frac{d}{D})$ 0.00625 titik stagnasi berada pada posisi 0.05°.

Secara umum pada bagian *upper side* dan *lower side* masing-masing variasi mengalami penurunan nilai Cp hingga titik tertentu namun memiliki nilai Cp terendah dan posisi yang berbeda-beda. Untuk *dimple* variasi $\left(\frac{d}{D}\right)$ 0.0625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda yaitu sebesar -1.41 pada posisi 69.66° di bagian *upper side* sedangkan di bagian *lower side* sebesar -1.42 pada posisi 290.34°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $\left(\frac{d}{D}\right)$ 0.0625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 85° sampai 94° untuk bagian *upper side* dan 273.60° sampai 266.41° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 101° untuk bagian *upper side* dan 252.3° untuk bagian *lower side*.

Untuk *dimple* variasi $(\frac{d}{D})$ 0.0375 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang sama sebesar -1.43. Pada bagian *upper side* nilai Cp minimum terjadi pada posisi 70.64° sedangkan bagian *lower side* nilai Cp minimum terjadi pada posisi 289.36°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $(\frac{d}{D})$ 0.0375 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 87° sampai 92° untuk bagian *upper side* dan 272.16° sampai 267.85° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan
posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 103.13° untuk bagian *upper side* dan 251.5° untuk bagian *lower side*.

Untuk *dimple* variasi $(\frac{d}{D})$ 0.00625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda. Pada bagian *upper side* nilai Cp minimum sebesar -1.45 pada posisi 71.53° sedangkan bagian *lower side* nilai Cp minimum sebesar -1.43 pada posisi 288.47°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $(\frac{d}{D})$ 0.00625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 88.63° sampai 90.4° untuk bagian *upper side* dan 270.5° sampai 269.64° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 103° untuk bagian *upper side* dan 251.8° untuk bagian *lower side*.

4.5.3 Cp pada Re = 6.000

Pada sub sub bab ini menampilkan data kuantitatif berupa distribusi *pressure coefficient* (C_P) pada *smooth cylinder* dan *dimple cylinder* pada bilangan *Reynold Number* 6.000. Nilai *pressure coefficient* masing-masing geometri didapat dengan mengambil dua belas titik dalam satu gelombang. Distribusi *pressure coefficient* menggambarkan fluktuasi atau perubahan tekanan di sepanjang sudut azimut pada silinder sirkular.

Gambar 4.9 Grafik Cp smooth cylinder pada Re 6.000

Grafik distribusi tekanan (Cp) *smooth cylinder* untuk Re 6.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.9. Nilai Cp maksimum untuk *smooth cylinder* adalah 1 pada posisi 0.57° yang menunjukan bahwa titik stagnasi berada pada posisi tersebut, Penjelasan grafik dibagi menjadi dua bagian yaitu *upper side* dan *lower side smooth cylinder*.

Pada bagian *upper side* grafik menurun hingga titik terbawah Cp sebesar -1.73 diposisi 74.62°. Hal ini mengidikasikan kecepatan aliran meningkat mulai dari 0.57° hingga dititik maksimum kecepatan yang dapat diraih berada pada posisi 74.62°, Setelah melewati titik 74.62° grafik meningkat hingga 117° lalu melandai. Hal ini menunjukan bahwa pada titik 74.62°

hingga 110° terjadi fenomena *adverse pressure gradient* hingga aliran tidak kuat menahan *adverse pressure gradient* kemudian terjadi separasi pada titik 110°, Selanjutnya setelah melewati posisi 152° aliran kemudian berbalik menuju kearah silinder ditunjukan dengan adanya daerah cekung ditengah grafik Cp. Untuk bagian *lower side* memiliki nilai Cp terendah yang berbeda dengan *upper side* yaitu sebesar -1.47 di posisi 287.66° kemudian grafik meningkat hingga melandai pada posisi 258°.

Gambar 4. 10 Grafik Cp dimple cylinder pada Re 6.000

Grafik distribusi tekanan (Cp) *dimple cylinder* untuk Re 6.000 terhadap fungsi tetha (θ) disajikan pada Gambar 4.10. Grafik tersebut merupakan perbandingan variasi *dimple cylinder* pada *Reynolds Number* yang sama. Nilai Cp maksimum untuk *dimple* variasi $(\frac{d}{D})$ 0.0625, $(\frac{d}{D})$ 0.0375, $(\frac{d}{D})$ 0.00625 memiliki nilai yang sama yaitu 1 namun posisi titik stagnasi berbeda. Untuk variasi $(\frac{d}{D})$ 0.0625 nilai Cp maksimum berada pada posisi 0°, variasi $(\frac{d}{D})$ 0.0375 berada pada 0.5° sedangkan variasi $(\frac{d}{D})$ 0.00625 titik stagnasi berada pada posisi 0.05°.

Secara umum pada bagian *upper side* dan *lower side* masing-masing variasi mengalami penurunan nilai Cp hingga titik tertentu namun memiliki nilai Cp terendah dan posisi yang berbeda-beda. Untuk *dimple* variasi $\left(\frac{d}{D}\right)$ 0.0625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda yaitu sebesar -1.36 pada posisi 71.96° di bagian *upper side* sedangkan di bagian *lower side* sebesar -1.35 pada posisi 288.04°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $\left(\frac{d}{D}\right)$ 0.0625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 85.9° sampai 93.6° untuk bagian *upper side* dan 273.60° sampai 266.5° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 101.5° untuk bagian *upper side* dan 254° untuk bagian *lower side*. Untuk *dimple* variasi $(\frac{d}{D})$ 0.0375 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda. Pada bagian *upper side* nilai Cp minimum sebesar -1.38 terjadi pada posisi 70.64° sedangkan nilai Cp minimum bagian *lower side* sebesar -1.37 terjadi pada posisi 287.86°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $(\frac{d}{D})$ 0.0375 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 87.3° sampai 92.16° untuk bagian *upper side* dan 272.2° sampai 267.9° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 99.4° untuk bagian *upper side* dan 252.1° untuk bagian *lower side*.

Untuk *dimple* variasi $(\frac{d}{D})$ 0.00625 di bagian *upper side* dan *lower side* memiliki nilai Cp terendah yang berbeda. Pada bagian *upper side* nilai Cp minimum sebesar -1.37 pada posisi 71.53° sedangkan bagian *lower side* nilai Cp minimum sebesar -1.39 pada posisi 288.47°. Grafik Cp kedua bagian *upper side* dan *lower side* pada variasi $(\frac{d}{D})$ 0.00625 *dimple* kemudian bergerak naik ke arah sumbu (y) positif. Pada posisi derajat 88.9° sampai 90.5° untuk bagian *upper side* dan 270.6° sampai 269.5° untuk bagian *lower side*. Rentang derajat posisi tersebut menunjukan posisi grafik Cp yang mendatar sebelum kembali naik hingga terjadi separasi pada posisi 100° untuk bagian *upper side* dan 256° untuk bagian *lower side*.

Jika dibandingkan antara grafik Cp smooth cylinder dengan dimple cylinder dari hasil simulasi dapat ditarik kesimpulan bahwa variasi *dimple* di permukaan belakang silinder memengaruhi bentuk grafik Cp yang dihasilkan. Hal yang paling jelas terlihat berbeda adalah adanya pola mendatar pada rentang derajat tertentu. Pola ini bergantung pada geometri ukuran dari *dimple* itu sendiri. *Dimple* dengan ukuran lebih besar mempunyai pola grafik datar yang lebih besar dibandingkan *dimple* dengan ukuran yang lebih kecil. Pola datar yang terjadi tidak sepenuhnya datar, namun karena perubahan kenaikan dan penurunan Cp nya tidak signifikan maka seolah-olah grafik pada rentang derajat tersebut datar. Kenaikan atau penurunan nilai Cp yang dimaksud adalah karena adanya penyempitan dan pelebaran streamline. Hal ini dipengaruhi oleh vortex yang terbentuk pada dimple. Streamline menyempit saat akan melewati dimple dan melebar setelah melewatinya. Efek ini mirip seperti nozzle dan diffuser, karena streamline menyempit tekanan turun dan meningkatkan momentum aliran namun setelah melewati jangkauan vortex, streamline melebar yang menyebabkan tekanan meningkat dan menurunkan momentum aliran sehingga aliran tidak mampu melawan adverse pressure yang terjadi. Hal ini pula yang menjadi alasan bahwa separasi dimple cylinder terjadi lebih awal dibandingkan smooth cylinder.

4.6 Perbandingan Strouhal Number Smooth Cylinder dengan dimple cylinder terhadap Reynolds Number

4.6.1 St pada Re = 40.000

Pada sub sub bab ini membahas terkait perbandingan *Strouhal Number* masingmasing geometri pada Re 40.000. Data kuantitatif *Strouhal Number* dibutuhkan guna melihat seberapa besar frekuensi yang dihasilkan oleh masing-masing variasi. Data ini diambil dari grafik *lift coefficient* saat kondisi stabil.

Gambar 4. 11 Grafik perbandingan *Strouhal Number* terhadap *lift coefficient* setiap variasi untuk Re 40.000

Gambar 4.11 menampilkan grafik perbandingan *Strouhal Number* terhadap *lift coefficient* di setiap variasi pada *Reynolds Number* 40.000. Grafik yang didapatkan berasal dari *input* data gelombang *lift coefficient* pada rentang waktu tertentu. Dalam kasus ini *peak* C_L' merupakan nilai yang diolah menggunakan metode *Fast fourier transform* dan merupakan hasil dari superposisi beberapa gelombang C_L' yang memiliki frekuensi dan *amplitude* yang berbedabeda.

Walaupun pada kondisi *Reynolds Number* yang sama, belum tentu nilai *peak* C_L' yang dihasilkan oleh setiap variasi geometri akan sama. Hal ini sangat bergantung pada gelombang yang dihasilkan oleh variasi geometri tersebut. Dalam Gambar 4.11 *peak* C_L' yang dihasilkan berbeda dan jika diurutkan dari yang terbesar, *smooth cylinder* memiliki nilai C_L' 0.75, kemudian *dimple* $(\frac{d}{D})$ 0.00625 dengan nilai C_L' 0.43, selanjutnya *dimple* $(\frac{d}{D})$ 0.0625 dengan nilai C_L' 0.44 dan yang terakhir *dimple* $(\frac{d}{D})$ 0.0375 dengan nilai 0.37. Posisi dari *peak* tersebut memiliki nilai *Strouhal Number* yang sama yaitu sebesar 0.25. Dapat diartikan bahwa pada kasus ini masing-masing variasi geometri memiliki frekuensi gelombang superposisi yang sama.

4.6.2 St pada Re = 20.000

Pada sub sub bab ini membahas terkait perbandingan *Strouhal Number* masingmasing geometri pada Re 20.000. Data kuantitatif *Strouhal Number* dibutuhkan guna melihat seberapa besar frekuensi yang dihasilkan oleh masing-masing variasi. Data ini diambil dari grafik *lift coefficient* saat kondisi stabil.

Gambar 4. 12 Grafik perbandingan *Strouhal Number* terhadap *lift coefficient* setiap variasi untuk Re 20.000

Gambar 4.12 menampilkan grafik perbandingan *Strouhal Number* terhadap *lift coefficient* di setiap variasi pada *Reynolds Number* 20.000. Grafik yang didapatkan berasal dari input data gelombang *lift coefficient* pada rentang waktu tertentu. Dalam kasus ini *peak* CL' merupakan nilai yang diolah menggunakan metode *Fast fourier transform* dan merupakan hasil dari *superposisi* beberapa gelombang CL' yang memiliki frekuensi dan *amplitude* yang berbeda-beda.

Walaupun pada kondisi *Reynolds Number* yang sama, belum tentu nilai *peak* C_L' yang dihasilkan oleh setiap variasi geometri akan sama. Hal ini sangat bergantung pada gelombang yang dihasilkan oleh variasi geometri tersebut. Dalam Gambar 4.12 *peak* C_L' yang dihasilkan berbeda dan jika diurutkan dari yang terbesar, *smooth cylinder* memiliki nilai C_L' 0.82, kemudian *dimple* $(\frac{d}{D})$ 0.0375 dengan nilai C_L 0.458, selanjutnya *dimple* $(\frac{d}{D})$ 0.00625 dengan nilai C_L' 0.457 dan yang terakhir *dimple* $(\frac{d}{D})$ 0.0625 dengan nilai 0.44. Posisi dari *peak* tersebut memiliki nilai *Strouhal Number* yang sama yaitu sebesar 0.24. Dapat diartikan bahwa pada kasus ini masing-masing variasi geometri memiliki frekuensi gelombang *superposisi* yang sama.

4.6.3 St pada Re = 6.000

Pada sub sub bab ini membahas terkait perbandingan *Strouhal Number* masingmasing geometri pada Re 6.000. Data kuantitatif *Strouhal Number* dibutuhkan guna melihat seberapa besar frekuensi yang dihasilkan oleh masing-masing variasi. Data ini diambil dari grafik *lift coefficient* saat kondisi stabil.

Gambar 4. 13 Grafik perbandingan *Strouhal Number* terhadap *lift coefficient* setiap variasi untuk Re 6.000

Gambar 4.13 menampilkan grafik perbandingan *Strouhal Number* terhadap *lift coefficient* di setiap variasi pada *Reynolds Number* 6.000. Grafik yang didapatkan berasal dari input data gelombang *lift coefficient* pada rentang waktu tertentu. Dalam kasus ini *peak* CL' merupakan nilai yang diolah menggunakan metode *Fast fourier transform* dan merupakan hasil dari *superposisi* beberapa gelombang CL' yang memiliki frekuensi dan *amplitude* yang berbeda-beda.

Walaupun pada kondisi *Reynolds Number* yang sama, belum tentu nilai *peak* C_L' yang dihasilkan oleh setiap variasi geometri akan sama. Hal ini sangat bergantung pada gelombang yang dihasilkan oleh variasi geometri tersebut. Dalam Gambar 4.13 *peak* C_L' yang dihasilkan berbeda dan jika diurutkan dari yang terbesar, *smooth cylinder* memiliki nilai C_L' 0.97, kemudian *dimple* $(\frac{d}{D})$ 0.00625 dengan nilai C_L' 0.45, selanjutnya *dimple* $(\frac{d}{D})$ 0.0375 dengan nilai C_L' 0.423 dan yang terakhir *dimple* $(\frac{d}{D})$ 0.0625 dengan nilai 0.417. Posisi dari *peak* tersebut memiliki nilai *Strouhal Number* yang sama yaitu sebesar 0.21. Dapat diartikan bahwa pada kasus ini masing-masing variasi geometri memiliki frekuensi gelombang *superposisi* yang sama.

4.7 Magnitude Velocity Smooth Cylinder dengan Dimple Cylinder terhadap Reynolds Number

4.7.1 *Magnitude Velocity* Re = 20000

Pada sub sub bab ini membahas terkait *magnitude velocity* dengan perbandingan pola *streamline* yang terjadi pada masing-masing geometri untuk Re 20.000. Data kualitatif ini dibutuhkan guna melihat pengaruh *dimple* terhadap perubahan *streamline* yang terbentuk terutama di bagian *wake region*. Kontur ini diambil saat grafik C_L' masing-masing variasi mencapai *peak* atas dalam kondisi gelombang C_L' yang stabil.

Gambar 4. 14 Magnitude velocity pada Re 20.000 (a) smooth cylinder, (b) $(\frac{d}{D})$ 0.0625 dimple, (c) $(\frac{d}{D})$ 0.0375 dimple, (d) $(\frac{d}{D})$ 0.00625 dimple

Gambar 4.14 menampilkan kontur *magnitude velocity* masing-masing variasi pada *Reynolds Number* 20.000. Data kualitatif berupa *magnitude velocity* juga menampilkan bentuk dan arah *streamline* yang bertujuan untuk melihat fenomena-fenomena *fluida* yang terjadi. Pengambilan data ini bersifat *instantaneous* yang diambil pada waktu aliran melewati silinder mencapai titik puncak positif grafik C_L' dalam kondisi aliran telah stabil.

Salah satu fenomena fluida yang dapat dilihat dalam Gambar 4.14 adalah *wake. Wake* terjadi akibat adanya interaksi antara fluida dengan suatu permukaan benda. *Wake* dapat mengindikasikan besar nya nilai *drag coefficient*. Semakin besar *wake* yang terjadi di daerah *downstream* silinder, kemungkinan semakin besar juga nilai *drag coefficient* nya. Jika dibandingkan antara variasi *smooth cylinder* dengan *dimple cylinder*. *Wake* yang terbentuk berbeda. Pada variasi *smooth cylinder*, *wake* yang terbentuk cenderung membulat yang dibentuk dari kumpulan *streamline* yang lebih rapat, sedangkan *wake* pada variasi *dimple cylinder* walaupun memiliki *wake* yang lebih panjang dan ramping namun dibentuk oleh *streamline* yang tidak rapat jika dibandingkan *smooth cylinder*. Kerapatan *streamline* menunjukan bahwa pada daerah tersebut memiliki kecepatan fluida tertentu. Semakin rapat *streamline* maka semakin cepat momentum alirannya. Hal ini berkaitan dengan fenomena *vortex shedding*. *Vortex shedding* merupakan fenomena osilasi fluida akibat lepasnya *vortices* yang terbentuk di belakang suatu benda. Kekuatan *vortex shedding* dipengaruhi oleh besarnya momentum aliran yang dilepas. Jika semakin besar momentumnya maka semakin tinggi kekuatan *vortex shedding* yang dimiliki.

Berdasarkan bentuk *streamline* yang terjadi di daerah *wake*. Maka dapat disimpulkan bahwa momentum aliran yang dilepas oleh geometri *smooth cylinder* lebih tinggi jika dibanding *dimple cylinder* dan memiliki kekuatan *vortex shedding* yang lebih besar dibandingkan *dimple cylinder*.

4.8 Kontur *Pressure Coefficient Smooth Cylinder* dengan *Dimple Cylinder* terhadap Reynolds Number

4.8.1 *Pressure Coefficient* Re = 20000

Pada sub sub bab ini membahas terkait kontur *pressure coefficient* yang terjadi pada masing-masing geometri untuk Re 20.000. Data kualitatif ini dibutuhkan guna melihat pengaruh *dimple* terhadap perubahan tekanan yang terbentuk, terutama di bagian *wake region*. Kontur ini diambil saat grafik C_L' masing-masing variasi mencapai *peak* atas dalam kondisi gelombang C_L' yang stabil.

Gambar 4.15 Kontur pressure coefficient pada Re 20.000 (a) smooth cylinder, (b) $(\frac{d}{D})$ 0.0625 dimple, (c) $(\frac{d}{D})$ 0.0375 dimple, (d) $(\frac{d}{D})$ 0.00625 dimple

Gambar 4.15 menampilkan kontur *pressure coefficient* setiap variasi pada *Reynolds Number* 20.000. Data kualitatif berupa kontur Cp diambil secara *instantaneous* saat grafik C_L berada pada titik puncak positif dalam kondisi aliran stabil. Pada Gambar 4.15 poin (b), (c), dan (d) adalah kontur Cp dari masing-masing variasi *dimple*, dapat dilihat bahwa perbedaan diameter dari *dimple* tidak terlalu berpengaruh terhadap perubahan kontur Cp, namun jika dibandingkan antara *dimple cylinder* semua variasi dengan *smooth cylinder* terdapat perbedaan warna yang signifikan terutama di daerah transisi aliran dan daerah *wake*.

Pada daerah transisi, kontur *smooth cylinder* memiliki nilai Cp yang lebih rendah ditandai dengan warna biru yang lebih gelap jika dibandingkan *dimple cylinder*, yang artinya terjadi percepatan aliran udara yang lebih tinggi jika dibandingkan *dimple cylinder*. Ini merupakan salah satu alasan *smooth cylinder* memiliki titik separasi yang lebih mundur dibandingkan *dimple cylinder*.

Pada daerah *wake*, kontur *smooth cylinder* memiliki tekanan yang lebih rendah jika dibandingkan *dimple cylinder* terutama dibagian tengah *vortex* yang terbentuk. Perbedaan tekanan ini yang menyebabkan olakan aliran yang dihasilkan *smooth cylinder* lebih besar jika dibandingkan *dimple cylinder*. Dapat disimpulkan bahwa peletakan *dimple* di permukaan belakang silinder menurunkan momentum aliran di daerah transisi sehingga lebih cepat terseparasi, selain itu pengaruh *dimple* juga dapat menurunkan olakan aliran fluida yang dihasilkan atau biasa disebut kekuatan *vortex shedding*.

4.9 Diskusi

Berdasarkan data kuantitatif dan kualitatif yang telah didapatkan dapat disimpulkan bahwa *dimple* yang diletakan di permukaan belakang silinder sangat berpengaruh terhadap aliran yang terbentuk. Pengaruh ini memberikan dampak terhadap nilai C_L ' dan C_D yang dihasilkan, penurunan amplitudo gelombang yang dihasilkan, Perbedaan pola grafik C_P yang cenderung meningkat kearah sumbu Y (+) yang mengindikasikan adanya peningkatan tekanan di daerah *wake region* jika dibandingkan *smooth cylinder* serta pengaruh terhadap *power output* yang mampu dihasilkan masing-masing geometri.

Pembahasan pengaruh *dimple* diawali dengan nilai C_D yang menurun pada semua variasi *dimple cylinder* jika dibandingkan *smooth cylinder*. Bukti yang dapat dilihat adalah pada Gambar 4.15, dimana selisih tekanan yang terjadi pada sisi *upstream* dan *downstream* lebih kecil jika dibandingkan *smooth cylinder*. Pada skala yang sama, untuk *smooth cylinder* nilai terendah C_P memiliki warna biru lebih gelap sedangkan pada *dimple cylinder* nilai terendah C_P memiliki warna biru yang lebih terang. Hal ini bisa terjadi karena aliran di dekat permukaan belakang silinder mengalami fenomena *sudden expansion*, atau aliran secara tiba-tiba melewati penampang yang lebih besar bukti dapat dilihat pada Gambar 4.14. Fenomena tersebut yang mengakibatkan adanya peningkatan tekanan di *wake region* jika dibandingkan *smooth cylinder*.

Pembahasan selanjutnya adalah pengaruh *dimple* terhadap penurunan nilai C_L' yang sangat signifikan. Jika dilihat pada Gambar 4.14 yang diambil saat *peak atas* grafik C_L', ditunjukan pada *dimple cylinder* pola *streamline* cenderung menjauhi permukaan belakang silinder dan *vortex* yang terbentuk di daerah *wake region dimple cylinder* tersusun oleh *streamline* yang lebih renggang jika dibandingkan *smooth cylinder*. Pola *streamline* yang lebih renggang ini mengindikasikan bahwa *vortex* yang terlepas memiliki kecepatan aliran yang lebih rendah, hal ini berkaitan dengan *vortex shedding strength*. Variasi *dimple cylinder* memiliki *vortex shedding strength* yang lebih rendah sehingga olakan aliran yang terjadi di *wake region* lebih kecil jika dibandingkan *smooth cylinder*. Bukti lainnya yang dapat dilihat adalah pada pembahasan Sub Bab 4.6 terkait perbandingan *Strouhal Number* antara variasi *dimple cylinder* dengan *smooth cylinder* terhadap *Reynolds Number*. Nilai *magnitude* C_L' *dimple cylinder* sangat rendah dibandingkan *smooth cylinder*.

Berikutnya adalah pembahasan terkait pola grafik C_P yang terbentuk. Grafik C_P *dimple cylinder* memiliki pola hampir mendatar dengan peningkatan dan penurunan yang tidak signifikan di daerah *dimple* terutama pada posisi *dimple* 90° dan 270° yang dapat dilihat pada Gambar 4.6, Gambar 4.8 dan Gambar 4.10. Untuk daerah setelah separasi terjadi, pola grafik C_P mengalami meningkatan nilai C_P pada setiap posisi *dimple* lalu menurun kembali setelah melewati *dimple*. Hal ini terjadi akibat adanya fenomena *sudden expansion* di daerah belakang dekat permukaan silinder yang menyebabkan tekanan meningkat. Dalam penelitian ini juga dapat dilihat bahwa didaerah *dimple* terbentuk *vortex*. *Vortex* yang terbentuk lebih besar dibandingkan kedalaman *dimple* dalam penelitian ini. Hal ini menyebabkan *vortex* yang terbentuk menekan *streamline* yang akan melewati *dimple* mendekat satu sama lain. Sehingga didaerah *dimple* posisi 90° dan 270° *vortex* yang terbentuk menginisiasi fenomena *sudden enlargement* saat aliran telah melewati *dimple*

Untuk perbandingan *power output* yang mampu dihasilkan, akan dibahas pada masing masing *Reynolds Number* berdasarkan persamaan 2.7 - 2.10. Secara umum *smooth cylinder* memiliki *power output* lebih besar jika dibanding *dimple cylinder* pada semua variasi *Reynolds Number*. Hal ini berdasarkan nilai C_L' dan *magnitude lift* yang besar pada semua variasi *Reynolds Number*, sehingga jika kita masukan nilai tersebut kedalam persamaan 2.7 maka *smooth cylinder* memiliki nilai gaya lift yang tinggi. Selanjutnya, jika kita lihat berdasarkan Gambar 4.11 hingga Gambar 4.13 ditunjukkan bahwa nilai *magnitude lift* atau *amplitudo* gelombang C_L' yang telah di superposisikan memiliki nilai yang jauh lebih tinggi dibandingkan *dimple cylinder*. Dalam persamaan 2.8 jika nilai frekuensi setiap variasi adalah sama, akibat nilai *strouhal number* yang sama. Maka variabel frekuensi dapat kita kesampingkan dalam kasus ini, sehingga dapat disimpulkan bahwa nilai Y(res) *smooth cylinder* besar dalam setiap variasi *Reynolds Number* pada penelitian ini. Berikutnya, jika nilai Y(res) besar maka nilai v(t) akan besar juga dan saat nilai v(t) besar didukung dengan nilai F_L besar maka *power output* yang dihasilkan akan jauh lebih tinggi dibandingkan variasi *dimple cylinder*.

Pembahasan *power output dimple cylinder* akan dibandingkan terhadap variasi *dimple* lainnya, hal ini karena variasi *dimple cylinder* tidak mampu menghasilkan *power output* yang lebih baik dibandingkan *smooth cylinder*. Pembahasan pertama akan dimulai pada Re = 6000, Variasi *dimple* yang mampu menghasilkan *power output* yang lebih baik adalah variasi *dimple* $\left(\frac{d}{D}\right) 0.00625$ didasari oleh nilai C_L' yang besar dan *magnitude lift* yang besar jika dibanding variasi *dimple* lainnya pada Re = 6000. Kedua adalah variasi Re = 20.000 dengan *power output* terbaik adalah variasi *dimple* $\left(\frac{d}{D}\right) = 0.00625$ dan untuk variasi Re = 40.000, masing-masing variasi *dimple* tidak memiliki perbedaan *power output* yang signifikan. Hal ini karena tidak adanya variasi *dimple* yang dominan dalam kedua parameter, yaitu parameter F_L dan *magnitude lift*.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil simulasi numerik yang telah dilakukan, didapatkan kesimpulan sebagai berikut:

- Dimple yang diletakkan di permukaan belakang silinder dapat menurunkan drag coefficient dan lift coefficient. Pada rentang Re 6.000 – 40.000, persentase penurunan nilai C_D sebesar 7.3 – 13.7 % sedangkan persentase penurunan nilai C_L' sebesar 41 – 51 %
- 2. Rasio C_L'/C_D *dimple cylinder* lebih rendah dibandingkan *smooth cylinder*, hal ini terjadi karena nilai C_L ' *dimple cylinder* turun lebih signifikan dibandingkan nilai C_D . Persentase penurunan rasio C_L'/C_D dibandingkan *smooth cylinder* pada rentang Re 6000 40.000 sebesar 36 43 %.
- 3. *Dimple* yang diletakkan di permukaan belakang silinder memberikan pengaruh terhadap grafik C_P yang dihasilkan. Jika dibandingkan *smooth cylinder* grafik Cp semua variasi *dimple* memiliki daerah separasi lokal yang terjadi di daerah *dimple* sebelum akhirnya aliran sepenuhnya terseparasi.
- 4. Pada nilai *Reynolds Number* yang sama nilai *Strouhal Number* antara variasi *smooth cylinder* dengan *dimple cylinder* memiliki nilai yang hampir sama, namun memiliki *magnitude* yang berbeda.
- 5. *Dimple* di permukaan belakang silinder memberikan pengaruh terhadap perbedaan kontur distribusi tekanan dan kecepatan jika dibandingkan dengan *smooth cylinder*. Dari kontur kecepatan didapat bahwa untuk *wake region* pada *dimple cylinder*, *vortex* tersusun dari *streamline* yang lebih renggang yang mengindikasikan bahwa momentum aliran yang terlepas lebih rendah, sehingga olakan *dimple cylinder* lebih kecil jika dibandingkan dengan *smooth cylinder*. Sedangkan dari kontur tekanan didapat bahwa terjadi penurunan tekanan yang lebih rendah pada *dimple cylinder* di daerah transisi aliran sehingga momentum aliran lebih rendah dan menyebabkan majunya titik separasi jika dibandingkan dengan *smooth cylinder*.

5.2 Saran

Adapun saran yang diberikan untuk kebaikan dan kemajuan penelitian lebih lanjut adalah sebagai berikut:

- 1. Melakukan penelitian lebih lanjut dengan variasi pertambahan panjang diameter *dimple* dengan perbandingan dengan diameter *smooth* antara $(\frac{d}{D})$ 0.00625 hingga $(\frac{d}{D})$ 0.0375 dalam jumlah tetap pada rentang *Reynolds Number* yang sama
- 2. Melakukan penelitian lebih lanjut dengan variasi jumlah *dimple* untuk rasio perbandingan diameter $(\frac{d}{D})$ 0.00625, $(\frac{d}{D})$ 0.0375 dan $(\frac{d}{D})$ 0.0625 pada rentang *Reynolds Number* yang sama
- 3. Melakukan penelitian lebih lanjut dengan variasi posisi *dimple* untuk rasio perbandingan diameter $(\frac{d}{D})$ 0.00625, $(\frac{d}{D})$ 0.0375, $(\frac{d}{D})$ 0.00625 pada rentang *Reynolds Number* yang sama

Halaman ini sengaja dikosongkan

DAFTAR PUSTAKA

- [1] IEA, "Electricity Market Report," pp. 1-103, 2020.
- [2] B. Zhou, X. Wang, W. Guo, W. M. Gho and S. K. Tan, "Experimental Study on Flow Past a Circular Cylinder with Rough Surface," *Ocean Engineering*, vol. 109, pp. 7-13, 2015.
- [3] F. Yan, H. Yang and L. Wang, "Study of the Drag Reduction Characteristics of Circular Cylinder with Dimpled Surface," *Water*, vol. 13, pp. 1-20, 2021.
- [4] M. BR, O. Theodore H, H. Wade W and R. Alric P, "Fundamental of Fluid Mechanics 7th Edition," 2013.
- [5] S. M and F. J, "Hydrodynamics Around Cylindrical Structure," 2006.
- [6] H. Drescher, "Messung der auf querangeströmte Zylinder ausgeübten zeitlich veränderten Drucke," pp. 17-21, 1956.
- [7] J. Lienhard, "Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders," *Technical Extension Service*, vol. 300, 1966.
- [8] R. Blevins, "Flow-Induced Vibration," 2001.
- [9] P. J. Pritchard and J. C. Leylegian, Fox and McDonald's Introduction to Fluid Mechanics, United States of America: Copyright Clearance Center, Inc., 222, 2010.
- [10] M. Sarker, "Flow measurement around scoured bridge piers using Acoustic-Doppler Velocimeter (ADV)," *Flow Meas*, vol. 9, pp. 217-227, 1998.
- [11] G. Schewe, "On The Force Fluctuations Acting on A Circular Cylinder in Crossflow from Subcritical Up To Transcritical *Reynolds Numbers*," J. Fluid Mech, pp. 133, 265-285, 1983.
- [12] M. Zdravkovich, "Review and Classification of Various Aerodynamic and Hydrodynamic Means For Suppressing Vortex Shedding," J. Wind Eng. Ind. Aerodyn, pp. 7, 145-189, 1981.
- [13] B. Zhou, Y. Li, Z. Wang, W. Guo and S.-K. Tan, "Experimental Study of Dynamic Drag and Lift Characteristic of Dimpled Cylinders," *Marine Technology Society Journal*, vol. 50, pp. 56-61, 2016.
- [14] C. Williamson, "Vortex Dynamics in The Wake of a Cylinder," *In Vortices, ed. S Green*, vol. 5, 1995.

Halaman ini sengaja dikosongkan

LAMPIRAN

Lampiran 1. Kontur Velocity Magnitude Re 40.000

Smooth Cylinder

 $(\frac{d}{D})$ 0.0625 Dimple Cylinder

 $(\frac{d}{D})$ 0.00625 Dimple Cylinder

Smooth Cylinder

 $(\frac{d}{D})$ 0.0375 Dimple Cylinder

 $(\frac{d}{D})$ 0.00625 Dimple Cylinder

Lampiran 3. Kontur Pressure Coefficient Re 40.000

Smooth Cylinder

 $(\frac{d}{D}) 0.00625 Dimple Cylinder$

BIODATA PENULIS

Penulis dilahirkan di Surabaya, 19 Januari 1999, merupakan anak tunggal. Penulis telah menempuh pendidikan formal yaitu di SDN Karang Tengah 7 Tangerang, SMPN 75 Jakarta dan SMAN 47 Jakarta. Setelah lulus dari SMAN tahun 2017, Penulis melanjutkan studi S-1 di Departemen Teknik Mesin FTIRS – ITS.

Di Departemen Teknik Mesin Penulis aktif di beberapa kegiatan, pada tahun 2018-2019 Penulis menjadi Staf Departemen Pengembangan Sumber Daya Mahasiswa dan pada 2019-2020 Penulis menjadi Kepala Biro Kaderisasi Himpunan Mahasiswa Mesin (HMM). Selanjutnya, Penulis aktif menjadi Wakil Menteri Kementrian Pengembangan

Sumber Daya Mahasiswa BEM ITS pada tahun 2021 – 2022. Penulis juga berkontribusi sebagai *Steering committee* dalam kegiatan Kaderisasi "PISTON" 2020. Untuk informasi lebih lanjut mengenai Tugas Akhir ini dapat menghubungi email berikut ini Joseph220512@gmail.com