

TUGAS AKHIR - TM184835

PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU

Abdillah Ramadian Putra Iryadi NRP 02111840000097

Dosen Pembimbing Bambang Arip Dwiyantoro S.T., M.Sc.Eng., Ph.D. NIP 197804012002121001

Program Studi S-1 Teknik Mesin Departemen Teknik Mesin Fakultas Teknologi Industri Dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

TUGAS AKHIR - TM184835

PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU

ABDILLAH RAMADIAN PUTRA IRYADI NRP 02111840000097

Dosen Pembimbing Bambang Arip Dwiyantoro, ST. MSc. PhD. NIP 197804012002121001

PROGRAM STUDI S-1 TENIK MESIN DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNOLOGI INDUSTRI DAN REKAYASA SISTEM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2022

FINAL PROJECT - TM184835

DESIGN OF ORGANIC RANKINE CYCLE AS OPTIMIZATION OF GEOTHERMAL POWER PLANT IN PLTP ULUMBU

ABDILLAH RAMADIAN PUTRA IRYADI NRP 02111840000097

Advisor Bambang Arip Dwiyantoro, ST. MSc. PhD. NIP 197804012002121001

Undergraduate Study Program of Mechanical Engineering Departement of Mechanical Engineering Faculty of Industrial Technology and System Engineering Intitut Teknologi Sepuluh Nopember Surabaya 2022

LEMBAR PENGESAHAN

PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat memperoleh gelar Sarjana Teknik pada Program Studi S-1 Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember

> Oleh: <u>Abdillah Ramadian Putra Iryadi</u> NRP. 02111840000097

Disetujui oleh Tim Penguji Tugas Akhir:

- 1. Bambang Arip Dwiyantoro, ST. MSc. PhD
- 2. Ary Bachtiar Krishna Putra S.T., M.T., Ph.D.
- 3. Tri Vicca Kusumadewi S.T., M.Sc.
- 4. Dr. Is Bunyamin Suryo S.T., M.Sc.

SURABAYA Juli, 2022

APPROVAL SHEET

DESIGN OF ORGANIC RANKINE CYCLE AS OPTIMIZATION OF GEOTHERMAL POWER PLANT IN PLTP ULUMBU

FINAL PROJECT

Submitted to fulfill one of the requirements For obtaining a degree Bachelor of Engineering at Undergraduate Study Program of Mechanical Engineering Departement of Mechanical Engineering Faculty of Industrial Technology and System Engineering Institut Teknologi Sepuluh Nopember

> By: <u>Abdillah Ramadian Putra Iryadi</u> NRP. 02111840000097

Approved by Final Project Examiner Team:

- 1. Bambang Arip Dwiyantoro, ST. MSc. PhD
- 2. Ary Bachtiar Krishna Putra S.T., M.T., Ph.D.
- 3. Tri Vicca Kusumadewi S.T., M.Sc.
- 4. Dr. Is Bunyamin Suryo S.T., M.Sc.

SURABAYA July, 2022

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa/ NRP	: Abdillah Ramadian Putra Iryadi / 02111840000097		
Departemen	: Departemen Teknik Mesin FTI-RS ITS		
Dosen Pembimbing / NIP 197804012002121001	: Bambang Arip Dwiyantoro, ST. MSc. PhD /		

dengan ini menyatakan bahwa Tugas Akhir dengan judul "PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Surabaya, 29 Juni 2022

Mengetahui

Dosen Pembimbing

(Bambang Arip Dwiyantoro, ST. MSc. PhD) NIP. 197804012002121001 Mahasiswa,

(Abdillah Ramadian Putra Iryadi) NRP. 02111840000097

STATEMENT OF ORIGINALITY

The undersigned below:

Name of Student / NRP	: Abdillah Ramadian Putra Iryadi / 02111840000097	
Departement	: Departement of Mechanical Engineering INDSYS ITS	
Advisor / NIP 197804012002121001	: Bambang Arip Dwiyantoro, ST. MSc. PhD /	

hereby declare that the Final Project with the title of "DESIGN OF ORGANIC RANKINE CYCLE AS OPTIMIZATION OF GEOTHERMAL POWER PLANT IN PLTP ULUMBU" is the result of my own work, is original, and is written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with the provisions that apply at Institut Teknologi Sepuluh Nopember.

Surabaya, 29 June 2022

Acknowledged

Advisor

(Bambang Arip Dwiyantoro, ST. MSc. PhD) NIP. 197804012002121001 Student

(Abdillah Ramadian Putra Iryadi) NRP. 02111840000097

PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU

Nama Mahasiswa / NRP	: Abdillah Ramadian Putra Iryadi / 02111840000097
Jurusan	: Teknik Mesin FTIRS-ITS
Dosen Pembimbing	: Bambang Arip Dwiyantoro, ST. MSc. PhD

Abstrak

Di Indonesia, rata-rata kebutuhan listrik pada tahun 2011 sampai 2020 meningkat 8.5% tiap tahun. Produksi energi primer pada tahun 2018 menunjukan bahwa batubara memberikan kontribusi terbesar yaitu 56,4%, sedangkan panas bumi hanya 5%. Penerapan teknologi yang tepat dapat membuat panas bumi menjadi sumber energi alternatif untuk memenuhi kebutuhan listrik di Indonesia. Pembangkit Listrik Tenaga Panas Bumi (PLTP) Ulumbu milik PT Perusahaan Listrik Negara (PLN) memiliki empat unit pembangkit, yaitu unit I, II, III dan IV yang memanfaatkan uap yang dihasilkan oleh sumur ULB-02. Pada pembangkit unit I dan II dipakai tipe *back pressure turbine*. Turbin jenis ini merupakan turbin tanpa kondensor, dimana uap yang dibuang langsung menuju *exhaust steam* dapat dimanfaatkan kembali sebagai fluida pemanas refrigerant dalam *Organic Rankine Cycle* karena memiliki temperatur hingga 99.06°C.

Penelitian ini dilakukan untuk menghasilkan pemodelan sistem pembangkit siklus rankine organik (ORC). Untuk membantu perhitungan dan analisisnya, penelitian ini menggunakan perangkat lunak Cycle-Tempo 5.0. Pemodelan terbagi dalam ORC murni dan ORC yang dikombinasikan dengan recuperator. Variasi mass flow, jenis refrigerant dan tekanan dilakukan untuk mendapat desain yang maksimal. Variasi refrigerant dilakukan dengan mengubah fluida kerja menjadi refrigerant R-134a, R-142b dan campuran R134a-R142b. Variasi tekanan dilakukan dengan mengubah tekanan turbin dengan nilai 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar dan variasi mass flow dilakukan dengan mengubah mass flow keluaran turbin dengan nilai 6.5 kg/s, 6.75 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s.

Berdasarkan hasil simulasi, didapat desain optimum sistem pembangkit siklus rankine organik dengan tekanan 20 bar, didapatkan nilai efisiensi thermal sebesar 5.17% pada fluida kerja R134a dan 5.16% pada fluida kerja R134a/R142b. Efisiensi thermal optimum yang dihasilkan oleh fluida kerja R142b bernilai 4.45% pada tekanan inlet turbin 18 bar karena saat kondisi temperatur 95 °C dan tekanan di atas 18 bar pada fluida kerja R142b membuat fluida kerja tersebut berada pada fase *subcooled* sehingga tidak dapat digunakan untuk memutar turbin.

Kata kunci: Geothermal, Organic Rankine Cycle, Cycle-Tempo.

DESIGN OF ORGANIC RANKINE CYCLE AS OPTIMIZATION OF GEOTHERMAL POWER PLANT IN PLTP ULUMBU

Student Name / NRP	: Abdillah Ramadian Putra Iryadi / 02111840000097
Departement	: Mechanical Engineering FTIRS – ITS
Advisor	: Bambang Arip Dwiyantoro, ST. MSc. PhD

Abstract

In Indonesia, the average electricity demand from 2011 to 2020 will increase by 8.5% every year. Primary energy production in 2018 showed that coal provided the largest contribution, namely 56.4%, while geothermal was only 5%. The application of the right technology can make geothermal energy into an alternative energy source to meet electricity needs in Indonesia. The Ulumbu Geothermal Power Plant (PLTP) owned by PT Perusahaan Listrik Negara (PLN) has four generating units, namely units I, II, III and IV that utilize steam generated by the ULB-02 well. In unit I and II generators, a back pressure turbine type is used. This type of turbine is a turbine without a condenser, where the steam used to drive the turbine is directly discharged into the air through the exhaust. Steam that is discharged directly to exhaust steam can be reused as refrigerant heating fluid in the Organic Rankine Cycle because it has a temperature of up to 99.06°C.

This research was conducted to produce a modeling of an organic rankine generation system (ORC). To assist the calculation and analysis, this research uses Cycle-Tempo 5.0 software. Modeling is divided into pure ORC and ORC combined with recuperator. Variations in mass flow, refrigerant type and pressure are carried out to get the maximum design. Coolant variation is done by changing the working fluid into refrigerant R-134a, R-142b and a mixture of R134a-R142b. Pressure variation is done by changing the turbine pressure with a value of 15 bar, 16 bar, 17 bar, 18 bar, 19 bar and 20 bar and mass flow variation is done by changing the mass of the turbine output flow with a value of 6.5 kg/s, 6.75 kg /s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s and 8 kg/s.

Based on the simulation results, the optimal design of the organic generation system with a pressure of 20 bar is obtained, the thermal efficiency value is 5.17% for the working fluid R134a and 5.16% for the working fluid R134a/R142b. The optimum thermal efficiency produced by the working fluid R142b is feasible at 4.45% at the turbine inlet pressure of 18 bar because when the temperature conditions are 95 °C and the pressure is above 18 bar in the working fluid R142b, the working fluid is in the subcooled phase so it cannot be used to rotate turbine.

Keywords: Geothermal, Organic Rankine Cycle, Cycle-Tempo.

KATA PENGANTAR

Segala puji dan syukur penulis panjatkan kehadirat Allah SWT karena rahmat dan hikmat-Nya sehingga penulis diberikan Kesehatan, kemudahan dan kelancaran dalam menyusun laporan tugas akhir ini dengan judul "PERANCANGAN DESAIN SIKLUS RANKINE ORGANIK SEBAGAI OPTIMALISASI PEMBANGKIT LISTRIK TENAGA PANAS BUMI DI PLTP ULUMBU" sebagai persyaratan kelulusan program studi S1 Teknik Mesin Institut Teknologi Sepuluh Nopember Surabaya.

Melalui kesempatan ini penulis ingin menyampaikan ucapan terima kasih kepada pihakpihak yang telah banyak membantu dan mendukung dari segi moril maupun materil dalam proses penyelesaian tugas akhir ini, antara lain:

- Orang tua penulis, Ibu Irna Winarni dan Bapak Agus Pancasusila, serta nenek penulis, Entin Kartini, yang telah memberikan dukungan serta doa yang tiada henti-hentinya agar segala urusan penulis dimudahkan dalam menyelesaikan tugas akhir ini,
- Bapak Bambang Arip Dwiyantoro, ST. MSc. PhD sebagai dosen pembimbing tugas akhir yang telah memberikan waktu, tenaga dan pikirannya selama penyusunan tugas akhir,
- Bapak Ary Bachtiar Krishna Putra S.T., M.T., Ph.D., Ibu Tri Vicca Kusumadewi S.T., M.Sc., dan Bapak Dr. Is Bunyamin Suryo S.T., M.Sc. selaku dosen penguji dalam siding Tugas Akhir Penulis yang telah memberikan masukan serta saran untuk Tugas Akhir ini.
- Bapak Yohanes, S.T., M.Sc., selaku dosen wali yang telah memberikan arahanarahannya kepada penulis selama masa perkuliahan tahap Sarjana,
- Seluruh dosen dan karyawan Jurusan Teknik Mesin ITS yang telah memberikan banyak bantuan dalam proses perkuliahan penulis, baik akademis maupun non akademis,
- Saudari kandung penulis, Suci Indraswari Putri Iryadi yang selalu mendoakan dan memberi semangat untuk segera menyelesaikan studinya,
- Hazkia Kaikiba yang telah membantu penulis dan memberi semangat positif selama pengerjaan tugas akhir,
- Rekan pengerjaan tugas akhir, Van Otniel Ryan Maulana Safkaur yang bersedia berjuang bersama menyelesaikan Tugas Akhir,
- Teman-teman M61, Hubungan Luar HMM Periode 2020/2021, Iprique dan Cakradewa ITS Team atas motivasi selama perkuliahan,
- Semua pihak yang tidak mungkin penulis sebutkan satu persatu yang telah banyak memberikan bantuan sehingga tugas akhir ini dapat diselesaikan

Penulisan Tugas Akhir ini jauh dari kata sempurna karena keterbatasan kemampuan dan pengetahuan penulis. Penulis sangat terbuka terhadap saran dan kritik yang membangun demi perbaikan tulisan ini. Akhir kata, semoga penulisan Tugas Akhir ini dapat bermanfaat bagi semua pihak.

Surabaya, 21 Juni 2022

Penulis

DAFTAR ISI

LEMB	AR PENGESAHAN	i
APPRO	OVAL SHEET	i
Abstra	k	i
Abstrac	et	ii
KATA	PENGANTAR	iii
DAFTA	AR ISI	iv
DAFTA	AR GAMBAR	vii
DAFTA	AR TABEL	ix
BABI	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Permasalahan	1
1.3	Batasan Masalah	2
1.4	Tujuan	2
1.5	Manfaat	2
BAB II	I TINJAUAN PUSTAKA	3
2.1 P	Penelitian Terdahulu	3
2.1 Po	1.1 Organic Cycle Design as Optimization of Dry-Stream System Cowerplant	Geothermal
2.1 Inc	1.2 Perancangan Siklus Rankine Organik untuk Pemanfaatan Gas Buang pad donesia	a PLTU di 4
2.1	1.3 Design and Testing of the Organic Rankine Cycle	5
2.2 S	Sistem Pembangkit Listrik Tenaga Panas Bumi	6
2.2	2.1 Vapor-Dominated System	6
2.2	2.2 Liquid-Dominated System	7
2.3 P	Proses Produksi Energi Listrik PLTP Ulumbu	7
2.4 S	Siklus Rankine Organik	8
2.5 F	Fluida Kerja	9
2.6 K	Komponen Siklus Rankine Organik	9
2.7 A	Analisa Termodinamika	10
2.8 P	Perangkat Lunak Cycle Tempo 5.0	12
2.8	8.1 Boiler	12
2.8	8.2 Turbin	13

2.8.3 Condenser	13
2.8.4 Feed Waterheater	14
2.8.5 Dearator	14
2.8.6 Pompa	15
2.9 Perhitungan Energi pada Cycle Tempo 5.0	15
2.9.1 Kesetimbangan Energi pada Heat Exchanger	15
2.9.2 Kesetimbangan Energi pada Kondensor	16
2.9.3 Kesetimbangan Energi pada Turbin	16
2.9.4 Kesetimbangan Energi pada Pompa	17
2.9.5 Efisiensi Energi Sistem	18
BAB III METODOLOGI	19
3.1 Metodologi Penelitian	. 19
3.2 Studi Literatur	19
3.3 Pengumpulan dan Pengolahan Data	. 19
3.4 Perancangan Siklus Rankine Organik	21
3.5 Pemilihan Fluida Kerja	22
3.6 Hasil yang Diharapkan	22
3.7 Flowchart Penelitian	26
BAB IV HASIL DAN PEMBAHASAN	28
4.1 Analisis Fluktuasi Besar Aliran Sumber Energi	28
4.2 Membangun dan Analisa Pemodelan Sistem Sisklus Rankine Organik	29
4.3 Hasil Permodelan dan Simulasi Sistem Siklus Rankine Organik pada Cycle-Tempo	31
4.4 Validasi Data Hasil Simulasi	33
4.4.1 Analisa Thermodinamika pada Evaporator	33
4.4.2 Analisa Thermodinamika pada Turbin dan Generator	33
4.4.3 Analisa Thermodinamika pada Kondenser	34
4.4.4 Analisa Thermodinamika pada Pompa	35
4.4.5 Analisa Thermodinamika pada Nilai Efisiensi Thermal Sistem	35
4.4.6 Perbandingan Hasil Perhitungan dengan Hasil Simulasi Cycle-Tempo	35
4.5 Analisis Variasi Fluida Kerja dan Mass flow	36
4.5.1 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R-134a	36
4.5.2 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R-142b	37
4.5.2 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R134a-R142b	38
4.5.4 Perbandingan Hasil Analisa Variasi Mass flow dan Fluida Kerja dalam Sistem	39

4.6 Analisis Variasi Fluida Kerja dan Tekanan Inlet Turbin41
4.6.1 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-134a41
4.6.2 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-142b43
 4.6.3 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-134a – R- 142b 45
 4.6.4 Perbandingan Hasil Analisa Variasi Mass flow dan Fluida Kerja dalam Sistem 48
4.7 Analisis Pressure Drop pada Heat Exchanger terhadap Daya Pompa Sistem
4.7.1 Simulasi Sistem ORC tanpa recuperator dengan asumsi pressure drop 0.5 di setiap Heat Exchanger
4.7.2 Simulasi Sistem ORC dengan recuperator dengan asumsi pressure drop 0.5 di setiap Heat Exchanger
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan53
5.2 Saran
DAFTAR PUSTAKA
LAMPIRAN

DAFTAR GAMBAR

Gambar 2.1 Organic Rankine Cycle Flow	3
Gambar 2.2 Grafik Massa vs Thermal Efficiency	4
Gambar 2.3 (a) Temperature, (b) volume flow rate, dan (c) nilai tekanan di inlet dan ou turbin	tlet 6
Gambar 2.4 Skema dan Diagram T-s proses pembangkit tenaga vapor-dominated	7
Gambar 2.5 Siklus PLTP Ulumbu	7
Gambar 2.6 T-s Diagram untuk air dan fluida organik lainnya	8
Gambar 2.7 Komponen dan Siklus Rankine Organik	9
Gambar 2.8 Ilustrasi Control Volume	.11
Gambar 2.9 Skematik boiler pada Cycle-Tempo 5.0	.12
Gambar 2.10 Skematik Turbin pada Cycle-Tempo 5.0	.13
Gambar 2.11 Skematik Kondenser pada Cycle-Tempo 5.0	.13
Gambar 2.12 Skematik Feed-waterheater pada Cycle-Tempo 5.0	.14
Gambar 2.13 Skematik Deaerator pada Cycle-Tempo 5.0	.14
Gambar 2.14 Skematik Pompa pada Cycle-Tempo 5.0	.15
Gambar 2.15 Skematik Heat Exchanger pada Cycle Tempo 5.0	.15
Gambar 2.16 Skematik Kondensor pada Cycle Tempo 5.0	.16
Gambar 2.17 Skematik Turbin pada Cycle Tempo 5.0	.16
Gambar 2.18 Skematik Pompa pada Cycle Tempo 5.0	.17
Gambar 2.19 Proses penaikan tekanan cairan pada pompa	.17
Gambar 3.1 Skema proses PLTP Ulumbu ditambah siklus rankine organic	.19
Gambar 3.2 Rancangan Sistem Siklus Rankine Organik	.21
Gambar 3.3 Rancangan Sistem Siklus Rankine Organik Menggunakan Recuperator	.21
Gambar 3.4 Flowchart Penelitian	.27
Gambar 4.1 skematik proses aliran uap keluaran turbin menuju evaporator	.28
Gambar 4.2 Pemodelan sistem ORC dengan fluida kerja R134a dengan tekanan inlet turbin bar	. 16 . 31
Gambar 4.3 Grafik T-s Diagram dari Siklus Rankine Organik hasil simulasi	.32
Gambar 4.4 Gambar Proses pada Evaporator	.33
Gambar 4.5 Gambar Proses pada Turbin dan Generator	.33
Gambar 4.6 Gambar Proses pada Kondensor	.34
Gambar 4.7 Gambar Proses pada Pompa	.35

Gambar 4.8 Grafik pengaruh mass flow terhadap nilai power output sistem siklus rankine organik dengan tekanan inlet turbin 16 bar
Gambar 4.9 Grafik pengaruh mass flow terhadap nilai efisiensi thermal sistem rankine organik dengan tekanan inlet turbin 16 bar
Gambar 4.10 Grafik pengaruh tekanan dan penggunaan recuperator terhadap efisiensi siklus rankine organic menggunakan fluida kerja R-134a
Gambar 4.11 Grafik pengaruh tekanan dan penggunaan recuperator terhadap daya yang dihasilkan siklus rankine organic menggunakan fluida kerja R-142b44
Gambar 4.12 Grafik pengaruh tekanan dan penggunaan recuperator terhadap daya yang dihasilkan siklus rankine organic menggunakan fluida kerja R-134a/ R-142b47
Gambar 4.13 Grafik pengaruh tekanan inlet turbin terhadap power output pada sistem pembangkit siklus rankine organic dengan mass flow rate 81.16 kg/s
Gambar 4.14 Grafik pengaruh tekanan inlet turbin terhadap efisiensi thermal sistem pembangkit siklus rankine organic tanpa pengunaan recuperator dengan mass flow rate 81.16 kg/s
Gambar 4.15 Grafik pengaruh tekanan inlet turbin terhadap efisiensi thermal sistem pembangkit siklus rankine organic ditambah pengunaan recuperator dengan mass flow rate 81.16 kg/s49
Gambar 4.16 Output Simulasi ORC tanpa recuperator dengan pressure drop 0.550
Gambar 4.17 Output Efisiensi Sistem ORC tanpa recuperator dengan pressure drop 0.5 50
Gambar 4.18 Output Simulasi ORC ditambah recuperator dengan pressure drop 0.551
Gambar 4.19 Output Efisiensi Sistem ORC ditambah recuperator dengan pressure drop 0.5.51

DAFTAR TABEL

Tabel 2.1 Data Fluida Kerja
Tabel 2.2 Analisa Potensi Daya Fluida Kerja3
Tabel 2.3 Sifat fluida kerja organic4
Tabel 2.4 Parameter perancangan sistem rankine organik 5
Tabel 2.5 Parameter hasil perancangan
Tabel 2.6 Thermal properties of working fluids 5
Tabel 2.7 Pemilihan Fluida Kerja Sistem ORC9
Tabel 3.1 Total Steam Flow keluaran turbin PLTP Ulumbu19
Tabel 3.2 Parameter yang ditetapkan
Tabel 3.3 Spesifikasi Komponen
Tabel 3.4 Pemilihan Fluida Kerja Sistem ORC
Tabel 3.5 Variasi Fluida Kerja dan Mass Flow Tanpa Recuperator
Tabel 3.6 Variasi Fluida Kerja dan Mass Flow Dengan Recuperator 23
Tabel 3.7 Variasi Fluida Kerja dan Tekanan Tanpa Recuperator 24
Tabel 3.8 Variasi Fluida Kerja dan Tekanan dengan Recuperator
Tabel 4.1 hasil perhitungan variasi mass flow sistem ORC dengan nilai tekanan inlet turbinsebesar 16 bar
Tabel 4.2 Data input pada software cycle tempo 5.0
Tabel 4.3 Data hasil simulasi siklus rankine organic 31
Tabel 4.4 Data energy balance dan system efficiency hasil simulasi cycle tempo32
Tabel 4.5 Perbandingan Hasil Perhitungan dengan Hasil Simulasi Cycle-Tempo35
Tabel 4.6 Data hasil simulasi siklus rankine organik fluida R134a
Tabel 4.7 Data hasil simulasi siklus rankine organik fluida R134a menggunakan Recuperator
Tabel 4.8 Data hasil simulasi siklus rankine organik fluida R142b 37
Tabel 4.9 Data hasil simulasi siklus rankine organik fluida R142b menggunakan Recuperator
Tabel 4.10 Data basil simulasi siklus rankina organik fluida P134a P142b 38
Tabel 4.11 Data hasil simulasi siklus rankine organik fluida R154a-R1420
Recuperator
Tabel 4.12 Hasil perhitungan ORC dengan fluida kerja R-134a tanpa Recuperator41
Tabel 4.13 Hasil perhitungan ORC dengan fluida kerja R-134a dengan Recuperator41
Tabel 4.14 Hasil perhitungan ORC dengan fluida kerja R-142b tanpa Recuperator43

Tabel 4.15 Hasil perhitungan ORC dengan fluida kerja R-142b dengan Recuperator
Tabel 4.16 Hasil perhitungan ORC dengan fluida kerja R-134a – R-142b tanpa Recuperator45
Tabel 4.17 Hasil perhitungan ORC dengan fluida kerja R-134a – R-142b dengan Recuperator 46
Tabel 4.18 Data Perbandingan Nilai Output Sistem ORC tanpa Recuperator
Tabel 4.19 Data Perbandingan Nilai Output Sistem ORC dengan Recuperator

BAB I PENDAHULUAN

1.1 Latar Belakang

Salah satu faktor penting yang menentukan kualitas negara dalam perkembangan ekonomi dan sosial adalah ketersediaan listrik. Semakin besar tingkat ketersediaan listrik suatu negara akan mempengaruhi tingkat kualitas hidup, ekonomis dan pertumbuhan penduduk suatu negara. Menurut International Energy Agency (IEA), kebutuhan listrik di dunia meningkat dengan laju 1,6% per tahun di 2030. Sedangkan di Indonesia, rata-rata kebutuhan listrik pada tahun 2011 sampai 2020 meningkat 8.5% tiap tahun. Untuk memenuhi kebutuhan listrik yang meningkat setiap tahun, Indonesia tidak dapat selamanya bergantung hanya pada sumber energi konvensional seperti batubara dan bahan bakar minyak lainnya sebagai sumber energi untuk jangka panjang. Terlebih lagi didukung dengan hasil Konferensi Tingkat Tinggi Conference of the Parties ke-26 di Glasgow yang menyatakan bahwa negara-negara di dunia sepakat untuk mengurangi penggunaan batu bara dan bahan bakar fosil sebagai upaya mengurangi efek perubahan iklim ini mendesak manusia untuk mencari sumber energi alternatif yang lebih ramah lingkungan sebagai penunjang kebutuhan energi di masa depan.

Indonesia memiliki banyak potensi energi baru terbarukan, seperti energi hidro, energi angin, energi surya, energi gelombang, biomassa, dan energi panas bumi (geothermal). Bila dibandingkan dengan pembangkit listrik bahan bakar konvensional, pembangkit listrik tenaga panas bumi tergolong ramah lingkungan karena tidak terjadi proses pembakaran di dalamnya. Potensi energi panas bumi di Indonesia mencapai 28.617 MW dan hanya 1.343,5 MW energi panas bumi yang telah dimanfaatkan. Produksi energi primer pada tahun 2018 menunjukan bahwa batubara memberikan kontribusi terbesar yaitu 56,4%, sedangkan panas bumi hanya 5%. Penerapan teknologi yang tepat dapat membuat panas bumi menjadi sumber energi alternatif untuk memenuhi kebutuhan hidup manusia.

Pembangkit Listrik Tenaga Panas Bumi (PLTP) Ulumbu milik PT Perusahaan Listrik Negara (PLN) menggunakan uap yang dihasilkan oleh sumur ULB-02. Uap tersebut akan dialirkan melalui pipa dua fasa. Setelah itu uap akan menuju demister untuk memisahkan steam dan brine. Steam yang sudah bersih akan masuk ke turbin untuk menggerakan generator. Di PLTP Ulumbu terdapat empat pembangkit, yaitu pembangkit unit I, II, III dan IV. Masing-masing pembangkit berkapasitas 2,5 MW. Pada pembangkit unit I dan II dipakai tipe *back pressure turbine*. Turbin jenis ini merupakan turbin tanpa kondensor, dimana uap yang digunakan untuk menggerakan turbin langsung dibuang ke udara melalui *exhaust*.

Steam yang dibuang langsung menuju *exhaust steam* memiliki temperatur hingga 100.3°C. Dengan temperatur tersebut, steam berpotensi untuk dijadikan sumber energi pembangkitan skala kecil. Steam dapat digunakan dengan menguapkan fluida kerja refrigerant melalui mekanisme pertukaran panas dengan menggunakan Siklus Rankine Organik. Siklus Rankine Organik (*Organic Rankine Cycle*) dapat digunakan untuk menghasilkan tenaga listrik tambahan dengan memanfaatkan aliran steam yang terdapat di PLTP Ulumbu. Siklus Rankine Organik memiliki keuntungan antara lain tidak membutuhkan sumber panas yang tinggi dan tidak menghasilkan polusi hasil pembakaran sehingga ramah terhadap lingkungan.

1.2 Rumusan Permasalahan

Berdasarkan latar belakang di atas, dibutuhkan pengembangan teknologi di bidang panas bumi. Rumusan masalah dari penelitian ini adalah sebagai berikut:

- 1. Bagaimana pengaruh fluida kerja R-134a, R-142b dan campuran R134a-R142b terhadap efisiensi sistem pembangkit?
- 2. Bagaimana pengaruh recuperator pada siklus rankine organic terhadap efisiensi sistem pembangkit?
- 3. Berapa besar daya yang dapat dihasilkan dengan mass flowrate dari exhaust steam?

1.3 Batasan Masalah

Proses analisa pada tugas akhir ini menggunakan beberapa batasan masalah dan asumsi untuk membantu proses analisa. Berikut batasan masalah dan asumsi yang digunakan:

- 1. Sistem dalam kondisi tunak (*steady state*).
- 2. Kondisi operasi adalah tunak (*steady state*).
- 3. Perubahan energi kinetik dan potensial diabaikan.
- 4. Fluida kerja yang digunakan adalah R-134a, R-142b dan campuran R134a/R142b.
- 5. *Heat loss* pada sistem perpipaan diabaikan.
- 6. Kebocoran pada sistem diasumsikan tidak ada, sehingga diasumsikan tidak ada *pressure drop*.
- 7. Analisa menggunakan tinjauan termodinamika
- 8. Simulasi dilakukan dengan menggunakan perangkat lunak Cycle-Tempo 5.0.
- 9. Penelitian ini tidak melibatkan analisis ekonomi, metalurgi dan manufaktur.

1.4 Tujuan

Berdasarkan latar belakang dan rumusan masalah di atas maka tujuan penelitian ini adalah:

- 1. Mendapatkan rancangan siklus rankine organik yang dapat mengoptimalkan PLTP Ulumbu
- 2. Mengetahui pengaruh fluida kerja R-134a, R-142b dan campuran R134a/R142b terhadap efisiensi sistem pembangkit.
- 3. Mengetahui pengaruh recuperator pada siklus rankine organik terhadap efisiensi sistem pembangkit.
- 4. Mengetahui besar daya yang dapat dihasilkan dengan mass flowrate dari *exhaust steam*.

1.5 Manfaat

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

- 1. Memberikan pengetahuan mengenai aplikasi Siklus Rankine Organik pada pembangkit listrik tenaga panas bumi.
- 2. Sebagai referensi dalam upaya menghasilkan energi listrik tambahan pada proses bangkitan PLTP Ulumbu.

BAB II TINJAUAN PUSTAKA

2.1 Penelitian Terdahulu

2.1.1 Organic Cycle Design as Optimization of Dry-Stream System Geothermal Powerplant

(M.N. Hidayat, 2020) melakukan penelitian optimasi sistem *dry-stream* Pembangkit Listrik Tenaga Panas Bumi (PLTP) dengan penambahan siklus rankine organik atau *organic rankine cycle* (ORC). Optimisasi sistem *dry-stream* PLTP Patuha ini dilakukan dengan cara mendesain ulang *High Pressure Turbine* (HPT) untuk meningkatkan nilai entalpi water vapor sebagai fluida panas ORC, kemudian menggunakan perangkat lunak DWSIM Simulator untuk mendesain siklus rankine organik. Setelah itu, melakukan pemilihan fluida kerja yang akan divariasikan kemudian dihitung energi potensial yang dapat diproduksi menggunakan hukum termodinamika 1 dan 2. Hasil dari perhitungan fluida kerja akan digunakan untuk menghitung daya yang dihasilkan oleh turbin.

Gambar 2.1 Organic Rankine Cycle Flow

Penelitian ini menggunakan fluida kerja dengan spesifikasi sebagai berikut:

1 aber 2.1 1	R134a	R290	R600a	R600	R152a	
T _{critical}	101.06	96.85	151.9	151.9	112.85	°C
Pcritical	40.59	42.3	37.96	37.96	45.2	Bar
ODP	0	0	0	0	0	
GWP	1430	3	3	3	124	

Tabel 2.2 Analisa Potensi Daya Fluida Kerja								
WF	Tactual	Wfout	WF	WPotential	WPotential			
	WF	Evaporator	Flow	KW	\mathbf{W}			
	°C	°C	Kg/s					
R134a	-26.7	40	255.085	9348.888	9.348			
R290	-42	40	183.032	14567.575	14.567			
R600	-0.49	40	105.783	11885.873	11.885			
R600a	-11.75	40	105.818	11340.557	11.340			

R152a	-24	40	201.611	8719.677	8.719

Berdasarkan Tabel 2.2 dapat dilihat bahwa fluida kerja R290 memiliki nilai W_{potential} yang lebih tinggi dibanding fluida kerja lain. Oleh karena itu, analisa daya yang diproduksi turbin dan efisiensi termah dapat dilakukan untuk mendapatkan nilai sebagai berikut:

Gambar 2.2 Grafik Massa vs Thermal Efficiency

Dari beberapa variabel massa yang dihitung, fluida kerja R290 dengan mass flow 120 kg/s memproduksi daya 11.8 MW dan thermal efficiency paling optimal dengan nilai 17.3% seperti Gambar 2.2.

2.1.2 Perancangan Siklus Rankine Organik untuk Pemanfaatan Gas Buang pada PLTU di Indonesia

(M.A. Mahardika, 2017) melakukan penelitian mengenai perancangan siklus rankine organic untuk pemanfaatan gas buang pada PLTU di Indonesia. Proses perancangan dimulai dari menentukan parameter desain dari data-data yang diperoleh dari literatur dan lapangan kemudian menggunakan perangkat lunak REFPROP untuk memperoleh sifat-sifat termodinamika dari fluida kerja organik.

Pada proses ini fluida organik yang digunakan adalah R142b, R123, dan Iso-pentane. Sifat dari fluida kerja ditunjukan pada tabel 2.3.

Fluida	Formula	T kritik	Pkritik	ODP	GWP	Karakteristik
		(K)	(atm)			
R142b	$C_2ClF_2H_3$	410.26	40.59	0.07	2130	Kering
R123	CHCl ₂ CF ₃	456.83	36.61	0.06	77	Isentropic
Isopentane	(CH ₃) ₂ CHCH ₂ CH ₃	460.35	33.78	0	4.6	Kering

Tabel 2.3 Sifat fluida kerja organic

Tingkat keadaan dan parameter perancangan siklus rankine organic ditampilkan pada Tabel 2.4.

Parameter	Nilai	Satuan
Temperatur gas buang	423	Κ
Temperatur pinch	5	Κ
Tekanan evaporator	0.8-2.8	MPa
Temperatur air pendingin	298	Κ
Efisiensi isentropic turbin	60	%
Efisiensi isentropic pompa	60	%
Laju massa gas buang	277.77	Kg/s

Tabel 2.4 Parameter perancangan sistem rankine organik

Hasil perancangan untuk masing-masing fluida kerja ditunjukkan pada tabel 2.5.

Parameter	Satuan	R142b	R123	Isopentane
Massa fluegas	Kg/s	277.77	277.77	277.77
Massa fluida	Kg/s	126.7	138.7	64.6
organic	_			
WTurbin	kW	6053	5705	5502
WPompa	kW	399	96	94
Qevaporator	kW	30498	30296	30294.9
Qkondensor	kW	24844	24687.4	24887.3
Efisiensi	%	18.54	18.51	17.85

Tabel 2.5 Parameter hasil perancangan

Hasil perancangan sistem siklus rankine organik mampu menghasilkan daya sebesar 6053 kW (R142b), 5705 kW (R123), dan 5502 (Isopentane) serta efisiensi sebesar 18.54%, 18.51%, dan 17.85% untuk fluida kerja R142b, R123, dan Isopentane.

2.1.3 Design and Testing of the Organic Rankine Cycle

(T. Yamamoto, 2001) melakukan penelitian simulasi numerical model menggunakan HYSYS simulator dan eksperimen pemanfaatan fluida kerja dengan kualitas sumber panas yang rendah untuk mendapatkan daya keluaran turbin yang lebih baik. Dalam penelitiannya, fluida kerja yang digunakan adalah HCFC-123 dan air. Tabel 2.6 Menunjukan sifat dari fluida kerja tersebut.

Working Fluid	Molecular weight	Boiling point [K]	Liquid density [kg/m^3]	Latent heat [kJ/kg]	Specific heat ratio
Water	18.0	373.15	997.0	2257.00	1.33
HCFC-123	152.9	300.85	1462.0	168.41	1.11

Tabel 2.6 Thermal properties of working fluids

Berdasarkan simulasi dan eksperimen yang telah dilakukan, nilai efisiensi siklus maksimum adalah 1.25% dengan fluida kerja HCFC-123. Pada gambar 2.3, untuk fluida kerja HCFC-123 dan air, temperature, tekanan dan volume flow rate di turbin mengalami kenaikan nilai. HCFC dapat mengoperasikan sistem dibawah kondisi *low evaporator*, dan juga mendapatkan performa lebih baik dibandingkan dengan air.

Gambar 2.3 (a) Temperature, (b) volume flow rate, dan (c) nilai tekanan di inlet dan outlet turbin

Berdasarkan hal tersebut, didapat kesimpulan bahwa ORC dapat diaplikasikan untuk *low-grade heat source* dan fluida kerja HCFC-123 dapat meningkatkan performa ORC secara signifikan.

2.2 Sistem Pembangkit Listrik Tenaga Panas Bumi

Energi geothermal adalah energi panas yang diambil dari dalam bumi. Energi ini diperoleh dalam bentuk uap atau air panas. Penggunaan uap geothermal sebagai pembangkit tenaga listrik dimulai tahun 1904 di Larderello. Baru pada tahun 1912, dengan kondensasi turbin, dan pada tahun 1914, dapat membangkitkan 8,5 MW. Pada tahun 1944 Larderello memproduksi 127 MW.

Terdapat dua jenis uap geothermal, yaitu yang berasal dari magma, yang disebut uap magmatic, dan yang berasal dari air tanah yang dipanasi magma, disebut uap meteorik. Uap meteoric merupakan sumber terbesar uap geothermal. Tidak semua sumber geothermal menghasilkan uap. Beberapa diantaranya bertemperatur rendah sehingga hanya berupa air panas. Beberapa tidak menerima air tanah dan hanya mengandung batu panas. Sumber geothermal dapat dibedakan menjadi tiga jenis yaitu hidrotermal, geopressured, dan petrotermal.

Sistem Geopressured menggunakan air yang dipanaskan didalam bumi pada kedalaman 8.000 – 30.000 ft. Sistem Petrohermal menggunakan energi termal dari hot dry rock (HDR) diambil dengan memompakan air melalui sumur yang dilubangi ke bagian bawah HDR kemudian air bergerak melalui retakan, mengambil panas, dan dinaikkan melalui sumur lainnya yang telah dibuat ke atas bagian HDR hingga akhirnya kembali ke permukaan. Sedangkan Sistem Hidrotermal dibedakan menjadi vapordominated dan liquid-dominated system.

2.2.1 Vapor-Dominated System

Vapor dominated system adalah energi panas bumi yang menghasilkan uap kering sebagai fluida kerja. Sistem jenis ini jarang ditemukan, namun merupakan jenis yang sangat sesuai untuk dimanfaatkan sebagai pembangkit listrik. Kendala dari sistem ini yaitu seringnya mengalami masalah seperti adanya gas bersifat korosif yang dibawa oleh uap kering tersebut.

Gambar 2.4 Skema dan Diagram T-s proses pembangkit tenaga vapor-dominated

Pada gambar 2.4 terdapat skema pembangkit listrik panas bumi dengan sistem Vapor dominated dan diagram T – s dari siklus tersebut. Uap kering dari sumur panas bumi (1) pada tingkat keadaan Superheated pada kepala sumur (2). Tekanan pada titik ini tidak melebihi 100 psi atau sekitar 7 bar. Kemudian uap dilewatkan *Centrifugal Separator* untuk mengambil partikel partikel tertentu khususnya yang bersifat korosif yang selanjutnya memasuki turbin (3). Proses 1-2 dan 2-3 adalah proses *throtling* dengan entalpi konstan. Kemudian uap berekspansi didalam turbin dan masuk ke kondensor

Karena aliran turbin tidak dikembalikan dalam siklus, maka dipergunakan *direct contanct* kondenser. Pertimbangan lain, *direct contact* condensor lebih efisien. Uap keluar dari turbin (4) bercampur dengan air pendingin yang diperoleh dari Cooling tower (7), pencampuran (4) dan (7) dipompakan kembali ke Cooling tower. Bagian terbesar dari air cooling tower disirkulasikan ke condensor, sedang kelebihannya di injeksinya kembali ke dalam tanah.

2.2.2 Liquid-Dominated System

Pada *liquid-dominated system*, fluida keluar dari sumur dengan tingkat kekeringan rendah, air lebih dominan atau berupa campuran dua phase (two phase mixture), dengan temperatur yang bervariasi dari 150 °C sampai dengan 315 °C. Sistem untuk pengelolaan, liquid-dominated menjadi kerja dibagi menjadi beberapa cara diantaranya ialah Flash-steam system dan Binary-cycle system. (Pudjarsono, 2008)

2.3 Proses Produksi Energi Listrik PLTP Ulumbu

Gambar 2.5 Siklus PLTP Ulumbu

PLTP Ulumbu memiliki empat unit pembangkit, yaitu pembangkit unit I, II, III dan IV. Masing-masing pembangkit berkapasitas 2,5 MW. Pada pembangkit unit I dan II dipakai tipe *back pressure turbine*. Turbin jenis ini merupakan turbin tanpa kondensor, dimana uap yang digunakan untuk menggerakan turbin langsung dibuang ke udara melalui exhaust.

Proses pembangkit listrik tenaga panas bumi yang ada di PLTP Ulumbu berawal dari uap yang dihasilkan oleh sumur ULB-02. Pada tahun 2017, sumur ULB-02 mampu men-*supply* flow steam sebesar 50-90 Ton/jam dan WHP sekitar 20-17 barg. Uap tersebut akan dialirkan melalui pipa dua fasa. Setelah itu uap akan menuju demister yang berfungsi sebagai pemisah antara steam dan brine. Brine akan diinjeksikan ke sumur injeksi dan steam dari demister akan masuk ke turbin yang telah dirangkaikan dengan generator. Steam yang masuk ke turbin tersebut digunakan untuk menggerakkan turbin yang kemudian akan menggerakkan generator. Generator menghasilkan energi listrik yang akan di salurkan ke gardu induk yang ada di PLN.

2.4 Siklus Rankine Organik

Siklus Rankine Organik (Organic Rankine Cycle) menggunakan zat organic sebagai fluida kerja, umumnya menggunakan refrigerant, ammonia, dan silicon oil. Fluida kerja organik biasanya dipilih untuk memenuhi persyaratan aplikasi tertentu. Misalnya, titik didih yang relatif rendah dari zat-zat ini memungkinkan siklus Rankine menghasilkan daya dari sumber bersuhu rendah, termasuk panas limbah industri dan air panas geothermal. (Michael J. Moran, 2011)

Gambar 2.6 T-s Diagram untuk air dan fluida organik lainnya

Selain penggunaan fluida kerja, perbedaan ORC dengan siklus rankine terletak pada mesin penambah panasnya. Siklus Rankine menggunakan boiler sebagai komponen penambah panas pada siklusnya, sedangkan pada ORC menggunakan evaporator sebagai penukar kalor pengganti boiler pada siklus rankine. Sehingga pada sistem siklus rankine organik tidak menggunakan komponen untuk proses pembakaran bahan bakar maka tidak ada pembuangan emisi akibat bahan bakar pada sistem ORC.

2.5 Fluida Kerja

Fluida kerja sangat menentukan hasil kerja suatu sistem pembangkit. Fluida kerja yang dipilih harus memenuhi sifat-sifat yang sesuai dengan batasan fisik dan lingkungan yang ada. Pada penelitian ini akan digunakan beberapa refrigerant, seperti R-134a dan R-141b sebagai fluida kerja utama pada sistem rankine organic.

Fluida Kerja	Tc [°C]	Pc [bar]	GWP	ODP	
R-142b	136.45	41.50	0.36	0.06	
R-134a	101.06	40.59	1430	0	

Tabel 2.7 Pemilihan Fluida Kerja Sistem ORC

2.6 Komponen Siklus Rankine Organik

Siklus ORC merupakan siklus sedehana yang terdiri dari empat komponen utama, diantaranya yaitu evaporator, recuperator, turbin, kondensor, dan pompa.

Gambar 2.7 Komponen dan Siklus Rankine Organik

Evaporator berfungsi untuk mengevaporasi fluida kerja dari liquid menjadi uap superheated sebelum masuk kedalam turbin.

Recuperator ialah heat exchanger tipe direct contact, fluida kerja mengalir secara terusmenerus dan saling bertukar panas dari fluida panas ke fluida yang lebih dingin dengan melewati dinding pemisah tanpa diikuti perubahan fase.

Turbin berfungsi untuk mengekspansi atau menurunkan tekanan dari fluida organik dan yang akan menghasilkan energi listrik bila disambungkan ke generator. Cara kerja pada turbin uap ini yaitu fluida kerja berupa uap yang mempunyai massa dan tekanan dinaikkan temperaturnya hingga berubah fase uap panas lanjut (superheat). Energi dalam uap panas lanjut ini diekspansikan secara adiabatik (isentropik) sehingga menjadi kerja. Setelah diekspansikan

oleh turbin, tekanan dan temperatur uap akan mengalami penurunan karena energinya digunakan untuk menggerakkan sudu-sudu turbin

Kondensor berfungsi untuk mengkondensasikan uap dari fluida kerja organik menjadi cairan dimana pada proses ini berlangsung pada tekanan dan temperatur konstan. Kondensor merupakan komponen yang sangat penting yang berfungsi untuk meningkatkan efisiensi pada turbin dengan cara menciptakaan tekanan keluaran turbin yang rendah

Pompa berfungsi untuk menaikkan tekanan fluida kerja sesuai tekanan yang diperlukan evaporator. Pompa beroperasi dengan prinsip membuat perbedaan tekanan antara bagian masuk (*suction*) dengan bagian keluar (*discharge*).

2.7 Analisa Termodinamika

Sistem terbuka merupakan sistem yang mengakibatkan terjadinya pertukaran energi (panas dan kerja) dan benda (materi) dengan lingkungannya. Sistem terbuka ini meliputi peralatan yang melibatkan adanya aliran massa kedalam atau keluar sistem. Peralatan-peralatan seperti turbin, pompa, kompresor, dan heat exchanger merupakan peralatan dengan sistem terbuka. Pada sistem terbuka ini, baik massa maupun energi dapat melintasi batas sistem yang bersifat permeabel. Dengan demikian, pada sistem ini volume dari sistem tidak berubah sehingga disebut juga dengan *control volume*. *Control volume* merupakan pembatasan daerah tinjauan pada suatu komponen untuk memudahkan perhitungan secara lebih detail. Perpindahan energi pada batas control volume terjadi dalam bentuk kerja dan panas. Pada Gambar 2.7 dapat dilihat bahwa pada inlet (i) adalah aliran massa masuk ke dalam control volume dan *exit* (e) adalah aliran massa keluar dari *control volume*.

Pada *control volume* berlaku dua hukum yaitu konservasi massa dan konservasi energi. Berdasarkan Gambar 2.7, persamaan konservasi massa ditunjukkan persamaan 2.1 dan persamaan konservasi energi ditunjukkan persamaan 2.2.

$$\frac{dm_{cv}}{dt} = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e} \qquad (2.1)$$

$$\frac{dm_{cv}}{dt} = \dot{Q} - \dot{W} + \dot{m}_{i} \left(u_{i} + \frac{v_{i}^{2}}{2} + gz_{i} \right) - \dot{m}_{e} \left(u_{e} + \frac{v_{e}^{2}}{2} + gz_{e} \right) \qquad (2.2)$$

dengan asumsi:

- Kerja fluida masuk bernilai negatif

- Kerja fluida keluar bernilai positif

Notasi \dot{W} pada persamaan 2.2 merupakan daya yang dipengaruhi oleh kerja fluida masuk (\dot{W}_i) serta fluida keluar (\dot{W}_e) yang melewati *control volume*. \dot{W} juga merupakan hasil perkalian antara gaya (F) dan kecepatan (V). Gaya adalah hasil dari perkalian antara tekanan (p) dan luas permukaan yang menerima tekanan (A). Selain itu \dot{W} dipengaruhi oleh keadaan-keadaan disekitar *control volume* seperti perputaran poros, perpindahan massa dan energi dari batas *control volume*, serta *electrical effect*. Keadaan tersebut dilambangkan \dot{W}_{cv} . Oleh karena itu \dot{W} dapat dirumuskan pada persamaan 2.3.

$$\dot{W} = \dot{W}_{cv} + \dot{W}_{e} - \dot{W}_{i}$$

$$\dot{W} = \dot{W}_{cv} + (p_{e}A_{e})V_{e} - (p_{i}A_{i})V_{i} \dots (2.3)$$

Dengan AV = $\dot{m}v$, maka persamaan 2.3 menjadi persamaan 2.4.

$$W = W_{cv} + \dot{m}_e(p_e v_e) - \dot{m}_i(p_i v_i) \dots (2.4)$$

Persamaan 2.4 disubstitusikan pada persamaan 2.2 sehingga menjadi persamaan 2.5.

Subscript "cv" ditambahkan pada Q untuk menekankan bahwa laju perpindahan panas terjadi pada boundary dari control volume.

Persamaan 2.5 dapat ditulis dengan menggunakan specific enthalphy (h) dimana h=u+pv. Maka persamaan 2.5 menjadi persamaan 2.6.

$$\frac{dE_{cv}}{dt} = \dot{Q}_{cv} - \dot{W}_{cv} + \dot{m}_i \left(h_i + \frac{v_i^2}{2} + gz_i \right) + \dot{m}_e \left(h_e + \frac{v_e^2}{2} + gz_e \right).....(2.6)$$

Dalam keadaan aktual mungkin terdapat beberapa lokasi disekitar *boundary* yang dilalui oleh aliran massa yang masuk atau keluar, dengan demikian persamaan 2.6 menjadi persamaan 2.7.

Kondisi *control volume* diasumsikan *steady state* agar mempermudah proses perhitungan. *Steady state* merupakan keadaan ideal yang berarti semua sifat tidak berubah seiring dengan berubahnya waktu. Begitu juga dengan laju aliran massa, laju perpindahan energi termal, dan kerja juga tidak berubah terhadap waktu. Maka dari itu, dalam prinsip hukum konservasi massa pada persamaan 2.1 dapat menjadi persamaan 2.8

$$\frac{dm_{cv}}{dt} = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e}$$
$$0 = \sum_{i} \dot{m}_{i} - \sum_{e} \dot{m}_{e}$$

Gambar 2.8 Ilustrasi Control Volume

Serta pada prinsip konservasi energi dalam *steady state*, persamaan 2.2 dapat menjadi persamaan 2.9.

2.8 Perangkat Lunak Cycle Tempo 5.0

Cycle-Tempo 5.0 adalah suatu program perangkat lunak yang digunakan untuk analisis termodinamika dan optimasi sistem konversi energi (*power, refrigeration, heating, etc*). Perangkat lunak cycle-tempo dikembangkan untuk menghitung laju aliran massa, variabel termodinamika, kesetimbangan kimia, dan komposisi dari laju aliran campuran dari suatu proses atau kombinasi sebagai berikut:

- Steam turbine power plants
- Gas turbines
- Combined cycle plants
- Combustion and gasification systems
- Heat transfer systems
- Fuel cell systems
- Organic Rankine Cycle (ORC) power plants
- Refrigeration systems
- Heat pumps

2.8.1 Boiler

Gambar 2.9 Skematik boiler pada Cycle-Tempo 5.0

Pada boiler terdapat economizer, evaporator, dan superheater dalam satu bagian boiler.

2.8.2 Turbin

Gambar 2.10 Skematik Turbin pada Cycle-Tempo 5.0

Pada cycle tempo terdapat 2 jenis turbin yang berbeda, yaitu turbin dengan *small symbol* dan *large symbol*. Perbedaanya terdapat pada jumlah ekstraksi yang ada. Sehingga jenis turbin yang digunakan dapat disesuaikan dengan jumlah ekstraksi yang ada.

2.8.3 Condenser

Gambar 2.11 Skematik Kondenser pada Cycle-Tempo 5.0

Pada *Condenser* ini terdapat dua kondisi berdasarkan *Energi Equation CODe* (EEQCOD):

EEQCOD = 1: Energy equation dari apparatus digunakan untuk menghitung laju aliran massa

EEQCOD = 2: Energy equation dari apparatus digunakan untuk menghitung enthalpy dari inlet atau outlet condenser.

2.8.4 Feed Waterheater

Gambar 2.12 Skematik Feed-waterheater pada Cycle-Tempo 5.0

Pada Feedwater heater digunakan uap ekstraksi dari turbin. Secondary inlet pada Feed Water Heater ini ditujukan sebagai ekstraksi uap dari turbin

2.8.5 Dearator

Gambar 2.13 Skematik Deaerator pada Cycle-Tempo 5.0

Deaerator digunakan sebagai kontak heater pada umumnya, yang diasumsikan pada keadaan cair jenuh saat di outlet.

2.8.6 Pompa

Gambar 2.14 Skematik Pompa pada Cycle-Tempo 5.0

Pompa pada cycle tempo memiliki 1 inlet dan 1 outlet dalam penggunaannya.

2.9 Perhitungan Energi pada Cycle Tempo 5.0

Proses perhitungan energi melibatkan proses perhitungan energi masuk, perhitungan energi keluar, perhitungan konsumsi energi, dan perhitungan efisiensi sistem.

2.9.1 Kesetimbangan Energi pada Heat Exchanger

Persamaan energi atau heat transmit yang digunakan pada cycle tempo adalah

Gambar 2.15 Skematik Heat Exchanger pada Cycle Tempo 5.0

2.9.2 Kesetimbangan Energi pada Kondensor

Gambar 2.16 Skematik Kondensor pada Cycle Tempo 5.0

$$\dot{m}3 = \dot{m}12 = \dot{m}h , \dot{m}2 = \dot{m}1 = \dot{m}c$$

$$Qdeliver = Qabsorb$$

$$\dot{m}12.h12 - \dot{m}3.h3 = \dot{m}2.h2 - \dot{m}1.h1$$

$$\dot{m}h (h12 - h3) = \dot{m}c (h2 - h1).....(2.11)$$

2.9.3 Kesetimbangan Energi pada Turbin

 $h_6(T_6, P_6), \dot{m}_6$

Gambar 2.17 Skematik Turbin pada Cycle Tempo 5.0

 $P_{turbine} = \eta_m \, \dot{\mathrm{m}} \, (h_{10} - h_6)$

 $P_{generator} = \eta_{m,e} P_{turbine} \qquad (2.12)$

Dimana:

 $\eta_m = efisiensi mekanisme turbine$

 $\eta^{m,e} = efisiensi mekanikal elektrikal generator$

2.9.4 Kesetimbangan Energi pada Pompa

Gambar 2.18 Skematik Pompa pada Cycle Tempo 5.0

Perhitungan energi pada pompa selalu memperhatikan nilai efisiensi mekanikal dan efisiensi isentropik.

$$\dot{m}1 = \dot{m}2 = \dot{m}$$

 $P_{pump} = \frac{m(h_4 - h_3)}{\eta_{m,e}}.$ (2.13)

Gambar 2.19 Proses penaikan tekanan cairan pada pompa

$$s_3 = s_{3s}$$

 $\eta_i = \frac{h_{3s} - h_3}{h_4 - h_3}....(2.14)$

Dimana:

 $\eta_{m,e} = efisiensi mekanikal elektrikal pompa$ $\eta_i = efisiensi isentropis$

 $h_{3s} = entalpi \ proses \ isentropik$

2.9.5 Efisiensi Energi Sistem

Gross thermal offisioncy -	total produce electric / mechanical power	(2.15)
(1033 thermal efficiency -	Total energy input	(2.15)
Nett thermal efficiency $-\frac{1}{2}$	total produce electric / mechanical power) –total own consumption
Nett ther mat effisiency =	Total energy inpu	t
Total produced electric / mechan	nical power = $P_{generator}$	
Total own consumption = Jumla	h total energi yang digunakan	
untuk menjalankan pompa = To	tal P _{pump}	
Total energi input = total heat al	osorbed pada evaporator	

BAB III METODOLOGI

3.1 Metodologi Penelitian

Metodologi penelitian merupakan upaya sistematis yang dilakukan dalam memecahkan masalah yang sedang diteliti. Skema yang dilakukan pada penelitian ini dapat dilihat pada gambar 3.1.

Gambar 3.1 Skema proses PLTP Ulumbu ditambah siklus rankine organic

3.2 Studi Literatur

Studi literatur dilakukan untuk mendapatkan informasi yang lebih mendalam dan menunjang penelitian yang akan dilakukan. Studi literatur yang pertama kali dilakukan adalah membaca jurnal penelitian terdahulu yang meneliti Perancangan Siklus Rankine Organik untuk Pemanfaatan Gas Buang pada PLTU di Indonesia, *Organic Cycle Design as Optimization of Dry-Stream System Geothermal Powerplant* dan *Design and Testing of the Organic Rankine Cycle*.

3.3 Pengumpulan dan Pengolahan Data

Pada tahap persiapan dilakukan pengambilan data yang nantinya berguna dalam pemecahan masalah yang menjadi topik tugas akhir. Data yang diperoleh dari hasil observasi merupakan besar aliran steam keluaran turbin dengan interval satu jam. Berikut tabel data total steam flow dari keluaran turbin sistem PLTP Ulumbu.

Waktu	Total Steam Flow (O-FI-105)					
	Hari ke- 1	Hari ke- 2	Hari ke- 3	Hari ke- 4	Hari ke- 5	Hari ke- 6
	t/h	t/h	t/h	t/h	t/h	t/h
Alarm	-	-	-	-	-	-
Trip	-	-	-	-	-	-
Normal	-	-	-	-	-	-
01:00	27.69	25.47	25.30	25.23	25.23	25.68
02:00	27.97	25.39	25.26	25.18	25.28	25.81

Tabel 3.1 Total Steam Flow keluaran turbin PLTP Ulumbu
Waktu	Total Steam Flow (O-FI-105)							
	Hari ke- 1	Hari ke- 2	Hari ke- 3	Hari ke- 4	Hari ke- 5	Hari ke- 6		
	t/h	t/h	t/h	t/h	t/h	t/h		
Alarm	-	-	-	-	-	-		
Trip	-	-	-	-	-	-		
Normal	-	-	-	-	-	-		
03:00	27.97	25.55	25.20	25.20	25.43	25.81		
04:00	25.99	25.43	25.05	25.20	25.38	25.81		
05:00	26.09	25.46	25.31	25.26	25.52	25.51		
06:00	26.27	25.46	25.10	25.40	25.29	25.71		
07:00	26.17	25.39	25.03	25.29	25.44	25.74		
08:00	25.96	25.57	25.37	25.41	25.56	25.80		
09:00	26.11	25.83	25.40	27.01	25.92	25.63		
10:00	26.50	27.22	25.51	26.64	25.87	24.31		
11:00	26.48	27.34	25.50	2667	25.93	25.32		
12:00	25.65	27.31	27.71	26.54	26.86	25.31		
13:00	25.68	27.52	27.15	26.69	26.85	25.61		
14:00	25.49	27.56	26.96	26.21	26.49	25.31		
15:00	25.57	27.53	26.95	26.37	28.72	25.32		
16:00	25.60	27.58	26.77	26.31	26.44	25.36		
17:00	25.61	27.52	26.76	25.01	26.50	25.55		
18:00	26.01	25.93	25.61	25.06	25.53	25.37		
19:00	25.80	25.27	25.26	25.51	25.62	25.45		
20:00	25.99	25.09	25.20	25.31	25.62	25.41		
21:00	25.89	24.88	25.17	25.96	25.67	25.43		
22:00	25.34	24.86	25.09	26.87	25.71	25.42		
23:00	25.53	24.86	25.10	25.23	25.61	25.11		
24:00	25.57	24.29	25.21	25.21	25.62	25.63		
Rata-rata	25.97	26.07	25.75	25.79	25.98	25.45		
Minimal	25.34	24.29	25.03	25.01	25.29	24.31		
Maksimal	27.97	27.58	27.71	27.01	28.72	25.81		

Dari data yang telah didapatkan seperti di atas, Langkah selanjutnya adalah melakukan pengolahan data dan melakukan pemodelan dengan referensi pembangkit yang diinginkan. Besar laju aliran massa yang akan digunakan adalah 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s. Kemudian variasi dari teknana dan fluida kerja disimulasikan.

3.4 Perancangan Siklus Rankine Organik

Pada tahap perancangan digunakan desain sistem siklus rankine organic (ORC). Pada awal perancangan digunakan beberapa referensi sistem rankine organic yang sudah ada. Perancangan pembangkit yang dibuat terdiri dari beberapa komponen wajib dari pembangkit, seperti turbin, kondenser, pompa, dan evaporator. Rancangan pembangkit siklus rankine organic ditunjukan pada gambar 3.1 dan gambar 3.2.

Gambar 3.2 Rancangan Sistem Siklus Rankine Organik

Gambar 3.3 Rancangan Sistem Siklus Rankine Organik Menggunakan Recuperator

Tabel 3.2 Parameter yang ditetapkan

Parameter yang ditetapkan	Besar	Satuan
Temperatur uap keluaran turbin	99.06	°C
utama		
Tekanan uap keluaran turbin	0.98	bar
utama		
Mass flow uap keluaran turbin	6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18	kg/s
utama	kg/s, 7.5 kg/s, 7.98 kg/s dan 8	
	kg/s	
Temperatur outlet Evaporator	95	°C
DLTH pada evaporator	10	°C
Temperatur outlet kondensor	35	°C
Tekanan pompa kondensor	9	bar

Tabel 3.3 Spesifikasi Komponen

Komponen	Efisiensi (%)
Turbin	75
Generator	98
Working fluid pump	75

3.5 Pemilihan Fluida Kerja

Pada tahap pemilihan fluida kerja, terdapat beberapa pertimbangan yang harus diperhatikan dalam pemilihan fluida kerja yang akan digunakan dalam sistem Siklus Rankine Organik yang meliputi sifat termodinamika fluida kerja serta aspek kemanan dan aspek lingkungan fluida kerja. Berikut merupakan tabel perbandingan beberapa fluida kerja.

Fluida Kerja	Tc [°C]	Pc [bar]	GWP	ODP
Propane	96	41.8	0.02	0
R-12	111	39.5	1430	1
R-142b	136.45	41.50	0.36	0.06
R-134a	101.06	40.59	1430	0

Tabel 3.4 Pemilihan Fluida Kerja Sistem ORC

Parameter temperature dan tekanan kritis yang sesuai dengan aplikasi perancangan siklus rankine organik dalam penelitian ini dipenuhi oleh fluida kerja propane, R-12, R142b dan juga R134a. Temperatur kritis keempat fluida kerja ini cukup tinggi sehingga dapat terjadi evaporasi pada temperatur yang diinginkan.

Berdasarkan dengan aspek keamanan, penggunaan propane sebagai fluida kerja memerlukan penanganan yang lebih kompleks dibandingan dengan ketiga fluida kerja lainnya karena fluida kerja propane bersifat mudah terbakar sehingga membutuhkan biaya investasi yang lebih besar, oleh karena itu fluida kerja propane tidak digunakan dalam perancangan ini.

Berdasarkan aspek lingkungan, nilai *ozone depleting potential* (ODP) dan *global warming potential* (GWP) merupakan pertimbangan lanjutan dari pemilihan fluida kerja ORC, karena dalam penggunaan sistemnya, diharapkan siklus rankine organik ini menjadi siklus pembangkit yang ramah lingkungan. Oleh karena itu, fluida kerja R-12 tidak digunakan dalam perencanaan ini.

3.6 Hasil yang Diharapkan

Data yang diharapkan adalah data hasil variasi jenis fluida kerja menggunakan variasi tekanan dan data hasil variasi recuperator yang memiliki daya dan efisiensi yang baik. Pada penelitian ini dipilih tiga variasi fluida kerja yang akan digunakan dengan enam variasi tekanan turbin, tujuh variasi mass flow rate dan variasi penggunaan recuperator pada siklus rankine organik. Berikut adalah tabel variasi fluida kerja, tekanan, mass flow dan penggunaan recuperator.

Jenis Fluida Kerja	Mass flow keluaran turbin utama (kg/s)	Mass flow dalam sistem ORC (kg/s)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
	6.5					
	6.75					
	7					
R-134a	7.18					
	7.5					
	7.98					
	8					
	6.5					
	6.75					
	7					
R-142b	7.18					
	7.5					
	7.98					
	8					
	6.5					
	6.75					
D 124 (500()	7					
R-134a(50%)- R-142b(50%)	7.18					
	7.5					
	7.98					
	8					

Tabel 3.5 Variasi Fluida Kerja dan Mass Flow Tanpa Recuperator

Tabel 3.6 Variasi Fluida Kerja dan Mass Flow Dengan Recuperator

Jenis Fluida Kerja	Mass flow keluaran turbin utama (kg/s)	Mass flow dalam sistem ORC (kg/s)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
	6.5					
	6.75					
	7					
R-134a	7.18					
	7.5					
	7.98					
	8					
	6.5					
	6.75					
R-142b	7					
	7.18					
	7.5					
	7.98					
	8					

Jenis Fluida Kerja	Mass flow keluaran turbin utama (kg/s)	Mass flow dalam sistem ORC (kg/s)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
	6.5					
	6.75					
D 124 (500()	7					
R-134a(50%)- R-142b(50%)	7.18					
	7.5					
	7.98					
	8					

Tabel 3.7 Variasi Fluida Kerja dan Tekanan Tanpa Recuperator

Jenis Fluida Kerja	Tekanan Turbin (bar)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
	15				
	16				
D 124a	17				
K-134a	18				
	19				
	20				
	15				
	16				
D 142h	17				
K-1420	18				
	19				
	20				
	15				
R-134a(50%)- R-142b(50%)	16				
	17				
	18				
	19				
	20				

Tabel 3.8 Variasi Fluida Kerja dan Tekanan dengan Recuperator

Jenis Fluida Kerja	Tekanan Turbin (bar)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
R-134a	15				
	16				
	17				
	18				
	19				
	20				

Jenis Fluida Kerja	Tekanan Turbin (bar)	Daya (kW)	Power Consumption (kW)	Nett Power (kW)	Efisiensi Thermal (%)
	15				
	16				
	17				
R-142b	18				
	19				
	20				
	15				
	16				
R-134a(50%)-	17				
R-142b(50%)	18				
	19				
	20				

3.7 Flowchart Penelitian

Gambar 3.4 Flowchart Penelitian

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini akan dibahas mengenai hasil simulasi numerik tentang pengaruh fluida kerja dan tekanan fluida terhadap daya yang dihasilkan dan kualitas uap air keluaran turbin. Simulasi telah dikakukan dengan menggunakan Cycle-Tempo 5.0 kemudian akan ditampilkan dalam bentuk kuantitatif. Data kuantitatif akan disajikan dalam bentuk grafik dan tabel.

4.1 Analisis Fluktuasi Besar Aliran Sumber Energi

Tabel 3.1 menjelaskan mengenai aliran uap yang dibuang dari keluaran turbin per hari. Data tersebut didapatkan pada saat operasi pabrik pada 1 Oktober 2021 hingga 6 Oktober 2021. Dari tabel tersebut, didapatkan variasi mass flow rate yang akan digunakan adalah 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s.

Potensi panas dari uap keluaran exhaust vent yang dapat dimanfaatkan dalam membangun pemodelan sistem siklus rankine organic dapat dihitung dengan persamaan 2.6, laju aliran massa dikali perbedaan enthalphy.

Gambar 4.1 skematik proses aliran uap keluaran turbin menuju evaporator

Dengan data aliran keluaran turbin PLTP sebagai berikut:

ṁ	:	8	kg/s
Tin	:	99.06	°Č
\mathbf{h}_{in}	:	2430	kJ/kg
Tout	:	45.35	°C
hout	:	189.9	kJ/kg

Sehingga besar potensi yang dimanfaatkan oleh siklus kalina sebesar:

$$\dot{Q}_t = \dot{m}(h_{in} - h_{out})$$

 $\dot{Q}_t = 8 \frac{kg}{s} \times \frac{(2430 - 189.9)kJ}{kg}$
 $\dot{Q}_t = 17,920.8 \, kW$

Data pada evaporator:

Pipa	4		
\mathbf{P}_4	:	16	bar
T_4	:	35.39	°C
h_4	:	249.5	kJ/kg
Pipa	5		
P_5	:	16	bar
T_5	:	95	°C
h5	:	470.3	kJ/kg

Mass flow dalam sistem:

$$\dot{Q}_{t} = \dot{Q}_{a} = \dot{m} (h_{5} - h_{4})$$
$$\dot{m} = \frac{\dot{Q}_{a}}{(h_{5} - h_{4})}$$
$$\dot{m} = \frac{17,920.8}{(470.3 - 249.5)}$$
$$\dot{m} = 81.16 \, kg/s$$

Berdasarkan perhitungan manual yang telah dilakukan, selanjutnya dilakukan perhitungan kembali dengan variasi fluida kerja dan *mass flow source* yang telah ditentukan. Nilai variasi mass flow didapatkan dari nilai mass flow tertinggi dan terendah kemudian juga nilai rata-rata dari data mass flow yang terbaca di PLTP Ulumbu Unit I.

Tabel 4.1 hasil perhitungan variasi mass flow sistem ORC dengan nilai tekanan inlet turbin sebesar 16 bar

No	m _{source}	ṁ _{R134a}	ṁ _{R142b}	ṁ R134a/R142b
INU	kg/s	kg/s	kg/s	kg/s
1	6.5	65.94	62.57	64.44
2	6.75	68.48	64.97	66.92
3	7	71.02	67.38	69.40
4	7.18	72.84	69.11	71.19
5	7.5	76.09	72.19	74.36
6	7.98	80.96	76.81	79.12
7	8	81.16	77.01	79.32

4.2 Membangun dan Analisa Pemodelan Sistem Sisklus Rankine Organik

Pemodelan pembangkit dilakukan dalam cyle tempo berdasarkan sistem siklus rankine organik. Pada penelitian ini akan divariasikan fluida kerja terhadap tekanan inlet turbin. Hal ini akan mengakibatkan adanya perbedaan teknanan kerja pada evaporator dan condenser untuk setiap variasi yang dilakukan. Hal ini akan berdampak pada performa dari sistem pembangkit tersebut, antara lain daya turbin yang dihasilkan, kerja pompa dari fluida kerja, kerja netto, serta effisiensi thermal sistem. Analisa perhitungan akan dilakukan menggunakan perangkat lunak

cycle tempo, namun untuk mengetahui keakurasian pada perhitungan software tersebut, akan dilakukan perhitungan manual sebagai pembanding.

Setelah pemodelan sistem siklus rankine organic berhasil dibentuk dengan data inputan seperti pada tabel 4.2 kemudian dilakukan pengecekan. Pengecekan dilakukan terhadap jumlah pipa dengan jumlah perhitungan. Hal ini diperlukan agar keduanya dapat konvergen sehingga running berhasil dilakukan. Simulasi dapat berjalan dengan baik atau konvergen ketika tidak ada error ataupun warning setelah proses running.

No	Komponen	Parameter Input	Data Input	Satuan
1	Source 1	DELM	0	kg/s
1	Source 1	ESTMAS	8	kg/s
2	Source 2	-	-	-
2	Tuchin	ETHAI	0.75	-
3	Turbin	ETHAM	0.99	-
		EEQCOD	1	
		PIN1	3	bar
		DELP1	0	bar
4	Condonson	TIN1	23	°C
4	Condenser	TOUT1	30	°C
		DELP2	0	bar
		POUT2	9	bar
		TOUT2	35	°C
		POUT	16	bar
5	Pump	ETHAI	0.75	-
		ETHAM	0.99	-
		EEQCOD	1	-
		DELP1	0	bar
		TOUT1	95	°C
6	Heat	PIN2	0.98	bar
0	Exchanger	DELP2	0	bar
		TIN2	99.09	°C
		TOUT2	45.35	°C
		DELTH	10	°C
7	Source 3	-	-	-
8	Source 4	-	-	-
		Pipe to specify flow for	5	-
10	Valve	Absolute flow	v	
		Mass flow	v	
		Flow	81.16	kg/s
11	Generator	ETAGEN	0.98	-
12	Medium data	Stanmix	R134a	

Tabel 4.2 Data input pada software cycle tempo 5.0

Fluida kerja cycle tempo dimasukkan dalam apparatus pipa pada nomor 10. Fluida kerja yang digunakan pada simulasi tersebut adalah *refrigerant* R-134a.

4.3 Hasil Permodelan dan Simulasi Sistem Siklus Rankine Organik pada Cycle-Tempo

Setelah permodelan dengan cycle tempo telah berhasil disimulasikan dengan tidak ada *error* dan *warning* seperti pada gambar 4.2 di bawah, maka hasil simulasi dari permodelan dapat digunakan.

Gambar 4.2 Pemodelan sistem ORC dengan fluida kerja R134a dengan tekanan inlet turbin 16 bar

Pipa aparatus	Komponen	Tekanan (bar)	Temperatur (°C)	Enthalphy (kJ/kg)	ṁ (kg/s)	Fluida Kerja
7	Sumber Uap	0.98	99.06	2674.09	8.212	Water
10	Masuk Turbin	16	95	79.92	81.16	R-134a
6	Keluar Turbin	9	82.86	68.99	81.16	R-134a
6	Masuk Condenser	9	82.86	68.99	81.16	R-134a
3	Masuk Pompa	9	35	-172.27	81.16	R-134a
4	Masuk HE	16	35.55	-171.44	81.16	R-134a

Tabel 4.3 Data hasil simulasi siklus rankine organic

Berdasarkan tabel 4.4 didapat perbandingan antara energi yang dihasilkan dengan sumber energi yang digunakan. Besar energi yang dihasilkan oleh sistem siklus rankine organik

sebesar 861.00 kW, sedangkan daya yang dapat dimanfaatkan oleh sistem siklus rankine organic sebesar 786.54 kW.

No.	Name	Туре	Energy loss (enthalpy)	Energy loss (HHV)	Energy loss (LHV)
			[kW]	[kW]	[kW]
3	Turbine	3	887.45	887.45	887.45
4	Condenser	4	0.00	0.00	0.00
5	Pump	8	-67.02	-67.02	-67.02
2	Sink/Source	10	1560.17	698.45	-19353.86
1	Sink/Source	10	-21960.78	-21099.06	-1046.75
7	Sink/Source	10	84311.40	14107.53	-1619537.25
8	Sink/Source	10	-64731.21	5472.66	1639117.38
6	Heat Exchgr.	12	0.00	0.00	0.00
10	Valve	14	0.00	0.00	0.00
7	Pipe		0.00	0.00	0.00
	Total:		0.00	0.00	0.00

Tabel 4.4 Data energy balance dan system efficiency hasil simulasi cycle tempo

delivered	No.	Apparatus	Туре	Energy	Totals
				[kW]	[kW]
Delivered	1	Generator	G	861.00	
gross power					861.00
Aux. power	5	Pump	8	74.47	
consumption					74.47
Delivered					
net power					786.54

Energy balance dan system efficiency dari siklus rankine organic dapat dilihat dari perangkat lunak cycle tempo seletah simulasi dilakukan, seperti yang ditunjukkan pada tabel 4.4. Tingkat keadaan dari siklus rankine organic tersebut dapat diketahui dengan grafik T-s diagram. T-s diagram hasil simulasi didapat seperti pada gambar berikut. Angka pada gambar 4.2 tersebut menunjukkan tingkat keadaan aliran fluida pada masing-masing pipa dalam cycle tempo.

Gambar 4.3 Grafik T-s Diagram dari Siklus Rankine Organik hasil simulasi

4.4 Validasi Data Hasil Simulasi

Pada subbab ini akan dibahas mengenai validasi data hasil simulasi yang akan dibandingkan dengan perhitungan manual pada sistem. Validasi data hasil simulasi yang digunakan mengunakan analisa termodinamika dan data inputan yang digunakan sama dengan aplikasi cycle-tempo. Berikut merupakan contoh perhitungan nilai power output dan sistem efisiensi pada sistem siklus rankine organik

4.4.1 Analisa Thermodinamika pada Evaporator

Setelah dilakukan perhitungan perhitungan komponen evaporator pada sisi hot pada subbab 4.1, dilakukan juga perhitungan evaporator pada sisi cold untuk menghitung nilai $Q_{evaporator}$.

Gambar 4.4 Gambar Proses pada Evaporator

$$Q_{evaporator} = \dot{m}(h_{out} - h_{in})$$

 $\dot{Q}_t = 81.16 \frac{kg}{s} \times \frac{(470.3 - 249.7)kJ}{kg}$
 $\dot{Q}_t = 17,903.89 \, kW$

4.4.2 Analisa Thermodinamika pada Turbin dan Generator

Setelah perhitungan evaporator, dilakukan perhitungan energi yang dihasilkan pada turbin dan generator.

Gambar 4.5 Gambar Proses pada Turbin dan Generator

1. Menghitung nilai daya output pada turbin

$$\dot{w}_t = \eta_{turbin} \, \dot{m} (h_{in} - h_{out})$$
$$\dot{w}_t = (0.99)(81.16)(470.3 - 459.5)$$
$$\dot{w}_t = 867.76 \, \text{kW}$$

2. Menghitung nilai daya output pada generator

$$\dot{w}_{generator} = \dot{w}_t \eta_{generator}$$

 $\dot{w}_g = 867.76 (0.98)$
 $\dot{w}_g = 850.40 \text{ kW}$

4.4.3 Analisa Thermodinamika pada Kondenser

Setelah perhitungan pada turbin dan generator, dilakukan perhitungan energi yang dihasilkan pada Kondenser.

$$Q_{kondenser} = \dot{m}(h_{out} - h_{in})$$

 $\dot{Q}_k = 81.16 \frac{kg}{s} \times \frac{(249 - 459.5)kJ}{kg}$
 $\dot{Q}_k = -17,084.18 \, kW$

4.4.4 Analisa Thermodinamika pada Pompa

Setelah perhitungan pada kondensor, dilakukan perhitungan energi yang dihasilkan pada Pompa.

Gambar 4.7 Gambar Proses pada Pompa

$$\dot{W}_{pump} = \frac{\dot{m}(h_{out} - h_{in})}{\eta_{pump}}$$
$$\dot{W}_{pump} = \frac{81.16 \frac{kg}{s} \times \frac{(249.7 - 249)kJ}{kg}}{0.75}$$
$$\dot{W}_{pump} = 75.749 \, kW$$

4.4.5 Analisa Thermodinamika pada Nilai Efisiensi Thermal Sistem

Setelah perhitungan pada pompa, dilakukan perhitungan energi yang dihasilkan nilai efisiensi thermal sistem siklus rankine organik.

$$\eta_{ORC} = \frac{\dot{w}_{generator} - \dot{W}_{pump}}{\dot{Q}_{evaporator}} \times 100\%$$
$$\eta_{ORC} = \frac{850.40 - 75.749}{17,903.89} \times 100\%$$
$$\eta_{ORC} = 4.32\%$$

4.4.6 Perbandingan Hasil Perhitungan dengan Hasil Simulasi Cycle-Tempo

Setelah hasil perhitungan manual didapatkan, data yang diperoleh akan dibandingkan dengan hasil simulasi yang telah dilakukan pada cycle-tempo.

	8 8		1
No	Matada yang digunakan	Efisiensi	Nett power
INO	Metode yang digunakan	%	kW
1	Perangkat Lunak Cycle Tempo	3.86	786.53
2	Perhitungan Manual	4.32	774.65
	Error (%)	10.75	1.51

Tabel 4.5	Perbandingan	Hasil Perhitungan	dengan Hasil	Simulasi C	vcle-Tempo

Berdasarkan tabel di atas, dapat dilihat bahwa deviasi hasil perhitungan manual dan perangkat lunak cycle-tempo memiliki error pada nilai net power dengan nilai 1.51% dan pada nilai efisiensi sistem bernilai 10.75%. Error pada nilai efisiensi termal memiliki deviasi yang signifikan dikarenakan pada perangkat cycle tempo, nilai Q_{evaporator} yang terbaca pada sistem menggunakan perhitungan evaporator pada sisi hot dan properties pada sisi hot ini memiliki perbedaan nilai entalpi antara perangkat lunak cycle tempo dengan kondisi eksisting. Selisih yang timbul cukup kecil sehingga perhitungan pada cycle tempo dapat dikatakan cukup akurat.

4.5 Analisis Variasi Fluida Kerja dan Mass flow

Pada subbab ini akan dibahas mengenai hasil dari simulasi dengan variasi tekanan turbin dan variasi fluida kerja yang digunakan dalam siklus rankine organik. Pemodelan siklus rankine organik yang telah disimulasikan dengan tidak adanya error dan warning dilanjutkan dengan simulasi berbagai variasi. Variasi ini dilakukan pada mass flow sistem dengan nilai 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s.

4.5.1 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R-134a

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing mass flow. Berikut tabel data hasil dari variasi mass flow yang didapatkan:

	REFRIGERANT R-134A									
m orc	WgeneratorWturbinWpump1QevaporatorEfisiensiNe									
kg/s	kW	kW	kW	kW	%	kW				
65.94	699.5338	713.81	60.5	16574.9	3.85	639.03				
68.48	726.4838	741.31	62.83	17213.3	3.85	663.65				
71.02	753.4338	768.81	65.16	17851.8	3.85	688.27				
72.84	772.7398	788.51	66.83	18309.3	3.85	705.91				
76.09	807.2162	823.69	69.81	19126.2	3.85	737.41				
80.96	858.8818	876.41	74.28	20350.3	3.85	784.60				
81.16	860.9986	878.57	74.47	20400.6	3.85	786.53				

Tabel 4.6 Data hasil simulasi siklus rankine organik fluida R134a

Pada tabel 4.6 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R134a tanpa penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 639.03 kW, 663.65 kW, 688.27 kW, 705.91 kW, 737.41 kW, 787.60 kW dan 786.53 kW. Pada variasi mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s menghasilkan nilai efisiensi sama yang bernilai 3.85 %.

	REFRIGERANT R-134A + RECUPERATOR									
m orc	Wgenerator	Wturbin	W _{pump1}	Qevaporator	Efisiensi	Nett power				
kg/s	kW	kW	kW	kW	%	kW				
65.94	699.5338	713.81	60.5	15595.3	4.09	639.03				
68.48	726.4838	741.31	62.83	16196.1	4.09	663.65				
71.02	753.4338	768.81	65.16	16796.8	4.09	688.27				
72.84	772.7398	788.51	66.83	17227.3	4.09	705.91				
76.09	807.2162	823.69	69.81	17995.9	4.09	737.41				
80.96	858.8818	876.41	74.28	19147.7	4.09	784.60				
81.16	860.9986	878.57	74.47	19195	4.09	786.53				

Tabel 4.7 Data hasil simulasi siklus rankine organik fluida R134a menggunakan Recuperator

Pada tabel 4.7 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R134a dengan penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 639.03 kW, 663.65 kW, 688.27 kW, 705.91 kW, 737.41 kW, 787.60 kW dan 786.53 kW. Pada variasi mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s menghasilkan nilai efisiensi sama yang bernilai 4.09 %.

4.5.2 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R-142b

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing mass flow. Berikut tabel data hasil dari variasi tekanan yang didapatkan:

	REFRIGERANT R-142B										
m orc	Wgenerator	Nett power									
kg/s	kW	kW	kW	kW	%	kW					
62.57	628.26	641.08	54.92	15071.2	3.80	573.34					
64.97	652.36	665.67	57.03	15649.3	3.80	595.33					
67.38	676.56	690.37	59.14	16229.8	3.80	617.42					
69.11	693.93	708.09	60.66	16646.5	3.80	633.27					
72.19	724.86	739.65	63.37	17388.4	3.80	661.49					
76.81	771.24	786.98	67.42	18501.2	3.80	703.82					
77.01	773.25	789.03	67.6	18549.4	3.80	705.65					

Tabel 4.8 Data hasil simulasi siklus rankine organik fluida R142b

Pada tabel 4.8 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R142b tanpa penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 573.34 kW, 595.33 kW, 617.42 kW, 633.27 kW, 661.49 kW, 703.82 kW dan 705.65 kW. Pada variasi mass flow 6.5 kg/s, 6.75

kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s menghasilkan nilai efisiensi sama yang bernilai 3.80 %.

	REFRIGERANT R-142B + RECUPERATOR										
m orc	Wgenerator	\mathbf{W}_{turbin}	\mathbf{W}_{pump1}	Qevaporator	Efisiensi	Nett power					
kg/s	kW	kW	kW	kW	%	kW					
62.57	628.26	641.08	54.92	14410.7	3.97	573.34					
64.97	652.36	665.67	57.03	14963.4	3.97	595.33					
67.38	676.56	690.37	59.14	15518.5	3.97	617.42					
69.11	693.93	708.09	60.66	15916.9	3.97	633.27					
72.19	724.86	739.65	63.37	16626.3	3.97	661.49					
76.81	771.24	786.98	67.42	17690.3	3.97	703.82					
77.01	773.25	789.03	67.6	17736.4	3.97	705.65					

Tabel 4.9 Data hasil simulasi siklus rankine organik fluida R142b menggunakan Recuperator

Pada tabel 4.9 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R142b dengan penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 573.34 kW, 595.33 kW, 617.42 kW, 633.27 kW, 661.49 kW, 703.82 kW dan 705.65 kW. Pada variasi mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s menghasilkan nilai efisiensi sama yang bernilai 3.978 %.

4.5.2 Analisis Variasi Mass Flow Menggunakan Fluida Kerja R134a-R142b

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing mass flow. Berikut tabel data hasil dari variasi tekanan yang didapatkan:

	REFRIGERANT R-134A-R142B									
m orc	Wgenerator	W _{turbin}	W _{pump1}	Qevaporator	Efisiensi	Nett power				
kg/s	kW	kW	kW	kW	%	kW				
64.44	670.9374	684.63	58.39	15776.6	3.88	612.55				
66.92	696.7506	710.97	60.64	16383.7	3.88	636.11				
69.40	722.5736	737.32	62.89	16990.9	3.88	659.68				
71.19	741.2132	756.34	64.51	17429.1	3.88	676.70				
74.36	774.2196	790.02	67.38	18205.2	3.88	706.84				
79.12	823.7782	840.59	71.69	19370.6	3.88	752.09				
79.32	825.8656	842.72	71.88	19419.6	3.88	753.99				

Tabel 4.10 Data hasil simulasi siklus rankine organik fluida R134a-R142b

Pada tabel 4.10 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow

pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R134a/R142b tanpa penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 612.55 kW, 636.11 kW, 659.68 kW, 676.70 kW, 706.84 kW, 752.09 kW dan 753.99 kW. Pada variasi mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s menghasilkan nilai efisiensi sama yang bernilai 3.88 %.

	REF	RIGERAN [.]	T R-134A-	R142B + REC	UPERATOR	
m orc	Wgenerator	W _{turbin}	W _{pump1}	Qevaporator	Efisiensi	Nett power
kg/s	kW	kW	kW	kW	%	kW
64.44	670.9374	684.63	58.39	14955	4.09	612.55
66.92	696.7506	710.97	60.64	15531.4	4.09	636.11
69.40	722.5736	737.32	62.89	16106.9	4.09	659.68
71.19	741.2132	756.34	64.51	16522.4	4.09	676.70
74.36	774.2196	790.02	67.38	17258.1	4.09	706.84
79.12	823.7782	840.59	71.69	18362.8	4.09	752.09
79.32	825.8656	842.72	71.88	18409.3	4.09	753.99

Tabel 4.11 Data hasil simulasi siklus rankine organik fluida R134a-R142b menggunakan Recuperator

Pada tabel 4.11 terdapat tujuh variasi mass flow dengan daya yang dihahsilkan dari masing-masing variasi mass flow. Data tersebut menunjukan pengaruh perubahan mass flow pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan fluida kerja R134a/R142b dengan penggunaan recuperator. Pada mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s dan 8 kg/s daya yang dihasilkan berturut-turut sebesar 612.55 kW, 636.11 kW, 659.68 kW, 676.70 kW, 706.84 kW, 752.09 kW dan 753.99 kW. Pada variasi mass flow 6.5 kg/s, 6.75 kg/s, 7 kg/s, 7.18 kg/s, 7.5 kg/s, 7.98 kg/s menghasilkan nilai efisiensi sama yang bernilai 4.09 %.

4.5.4 Perbandingan Hasil Analisa Variasi Mass flow dan Fluida Kerja dalam Sistem

Telah didapatkan hasil perhitungan untuk setiap fluida kerja yang dilakukan dengan menggunakan cycle tempo. Hasil performa setiap fluida kerja tersebut akan dibandingkan satu dengan yang lain untuk memperoleh fluida kerja terbaik untuk digunakan dalam sistem pembangkit siklus rankine organik. Berikut akan dibandingkan *power output* dan efisiensi thermal pada setiap fluida kerja.

Gambar 4.8 Grafik pengaruh mass flow terhadap nilai power output sistem siklus rankine organik dengan tekanan inlet turbin 16 bar

Gambar 4.9 Grafik pengaruh mass flow terhadap nilai efisiensi thermal sistem rankine organik dengan tekanan inlet turbin 16 bar

Dari diagram di atas, dapat dilihat bahwa fluida kerja R134a, R142b dan R134a/R142b memiliki trendline yang linear sehingga semakin tinggi nilai mass flow, power output yang dihasilkan juga semakin besar. Daya output turbin terbesar dihasilkan oleh R-134a, yaitu sebesar 786.53 kW yang kemudian diikuti oleh R134a/R142b sebesar 753.99 kW, dan R142b sebesar 705.65 kW. Dilihat dari power output yang dihasilkan, semua fluida kerja bernilai positif dan dapat digunakan sebagai fluida kerja untuk sistem pembangkit siklus rankine organik.

Berdasarkan gambar 4.9, dapat dilihat bahwa dengan kenaikan mass flow pada sistem dengan parameter yang sama menghasilkan nilai efisiensi sistem yang konstan. Efisiensi sistem terbesar dihasilkan oleh fluida kerja R134a dengan penambahan recuperator dalam sistemnya

sebesar 4.10 %, diikuti dengan R134a/R142b dengan penambahan recuperator sebesar 4.09 %, R142b dengan penambahan recuperator sebesar 3.98 %, R134a/R142b sebesar 3.88 %, R134a sebesar 3.86 %, R142b sebesar 3.80 %.

4.6 Analisis Variasi Fluida Kerja dan Tekanan Inlet Turbin

Pada subbab ini akan dibahas mengenai hasil dari variasi tekanan turbin dan variasi fluida kerja yang digunakan dalam siklus rankine organik. Pemodelan siklus rankine organic yang telah disimulasikan dengan tidak adanya error dan warning dilanjutkan dengan simulasi berbagai variasi. Variasi ini dilakukan pada tekanan fluida inlet turbin dengan tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar. Mass flow sistem dalam siklus rankine organik diasumsikan bernilai 81.16 kg/s.

4.6.1 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-134a

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing tekanan. Berikut tabel data hasil dari variasi tekanan yang didapatkan:

Jenis	Tekanan Inlet Turbin	Wgenerator	$\mathbf{W}_{ ext{turbin}}$	W _{pump1}	Qevaporator	Efisiensi	Nett power
Fluida Kerja	bar	kW	kW	kW	kW	%	kW
	15	772.0636	787.82	63.85	20511.9	3.45	708.21
	16	860.9986	878.57	74.47	20400.6	3.85	786.53
R-	17	942.27	961.5	85.07	20286.8	4.22	857.20
134a	18	996.3366	1016.67	95.68	20170.1	4.46	900.66
	19	1084.889	1107.03	106.27	20050.5	4.88	978.62
	20	1147.482	1170.9	116.86	19927.5	5.17	1030.62

Tabel 4.12 Hasil perhitungan ORC dengan fluida kerja R-134a tanpa Recuperator

Tabel 4.13 Hasil perhitungan ORC dengan fluida kerja R-134a dengan Recuperator

Jenis	Tekanan Turbin (bar)	Wgenerator	$\mathbf{W}_{ ext{turbin}}$	\mathbf{W}_{pump1}	Qevaporator	Efisiensi	Nett power
Fluida Kerja	bar	kW	kW	kW	kW	%	kW
	15	772.0636	787.82	63.85	19292	3.67	708.21
-	16	860.9986	878.57	74.47	19195	4.09	786.53
R-	17	942.27	961.5	85.07	19095.3	4.48	857.20
134a	18	1016.672	1037.42	95.68	18992.7	4.84	920.99
	19	1084.889	1107.03	106.27	18887	5.18	978.62
	20	1147.482	1170.9	116.86	18777.9	5.48	1030.62

Tabel 4.12 dan tabel 4.13 menunjukan perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar daya yang dihasilkan berturut-turut sebesar 708.21 kW, 786.53 kW, 857.20 kW, 900.66 kW, 978.62 kW dan 1030.62 kW. Grafik tersebut juga menunjukan

perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar daya yang dihasilkan berturut-turut sebesar 708.21 kW, 786.53 kW, 857.20 kW, 900.66 kW, 978.62 kW dan 1030.62 kW.

Pada tabel 4.12 dan tabel 4.13 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R134a terhadap daya yang dihasilkan. Kenaikan tekanan inlet turbin berbanding lurus dengan daya yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 1030.62 kW.

Pada tabel 4.12 dan tabel 4.13 terdapat enam variasi tekanan dengan daya yang dihasilkan dan daya yang dibutuhkan sistem untuk mengoperasikan sistem dari masing-masing tekanan. Untuk memudahkan dalam mengambil kesimpulan, data tersebut dibentuk dalam sebuah grafik. Gambar 4.5 Merupakan tren grafik efisiensi pembangkit dengan dan tanpa penggunaan recuperator dalam sistem ORC. Variasi tekanan yang baik ialah yang menghasilkan daya yang tinggi.

Gambar 4.10 Grafik pengaruh tekanan dan penggunaan recuperator terhadap efisiensi siklus rankine organic menggunakan fluida kerja R-134a

Gambar 4.10 menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.45 %, 3.85 %, 4.22 %, 4.46 %, 4.88 % dan 5.17 %. Sehingga pada tren grafik di atas, efisiensi yang dihasilkan dari variasi tekanan paling rendah ke paling tinggi semakin meningkat. Grafik tersebut juga menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar,17 bar, 18 bar, 19 bar dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.67 %, 4.09 %, 4.48 %, 4.84 %, 5.18 % dan 5.48 %.

Pada gambar 4.10 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R134a terhadap efisiensi yang dihasilkan. Grafik tersebut menunjukan bahwa semakin besar tekanan inlet turbin maka efisiensi yang dihasilkan oleh sistem semakin besar. Kenaikan tekanan inlet turbin berbanding lurus dengan efisiensi yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, efisiensi maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 5.17 %.

Penggunaan recuperator pada sistem siklus rankine organik secara linear dapat meningkatkan efisiensi yang dihasilkan oleh sistem jika dibandingkan dengan sistem siklus rankine organic tanpa penggunaan recuperator. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 5.48 %.

Semakin besar tekanan dari variasi tersebut maka semakin besar efisiensi yang dihasilkan, namun daya konsumsi yang dibutuhkan juga semakin meningkat sehingga dapat menurunkan daya yang dapat dimanfaatkan.

4.6.2 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-142b

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing tekanan. Berikut tabel data hasil dari variasi tekanan yang didapatkan:

Jenis	Tekanan Inlet Turbin	Wgenerator	$\mathbf{W}_{ ext{turbin}}$	W _{pump1}	Qevaporator	Efisiensi	Nett power
Fluida Kerja	bar	kW	kW	kW	kW	%	kW
	15	735.8624	750.88	61.07	19692.3	3.42	674.79
	16	814.919	831.55	71.24	19549	3.80	743.68
R-	17	885.2242	903.29	81.4	19399.5	4.14	803.82
142b	18	947.5032	966.84	91.56	19242.7	4.44	855.94
	19	-	-	-	-	-	-
	20	-	-	-	-	-	-

Tabel 4.14 Hasil perhitungan ORC dengan fluida kerja R-142b tanpa Recuperator

Tabel 4.15 Hasil perhitungan ORC dengan fluida kerja R-142b dengan Recuperator

Jenis	Tekanan Turbin (bar)	Wgenerator	$\mathbf{W}_{\mathrm{turbin}}$	W _{pump1}	Qevaporator	Efisiensi	Nett power
Fluida Kerja	bar	kW	kW	kW	kW	%	kW
	15	735.8624	750.88	61.07	18826.4	3.58	674.79
	16	814.919	831.55	71.24	18692.2	3.97	743.68
R-	17	885.2242	903.29	81.4	18551.7	4.33	803.82
142b	18	947.5032	966.84	91.56	18403.9	4.65	855.94
	19	-	-	-	-	-	-
	20	-	-	-	-	-	-

Tabel 4.14 dan tabel 4.15 menunjukan perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar daya yang dihasilkan berturut-turut sebesar 674.79 kW, 743.68 kW, 803.82 kW, 855.94 kW, 0 kW dan 0 kW. Grafik tersebut juga menunjukan perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar daya yang dihasilkan berturut-turut sebesar 674.79 kW, 743.68 kW, 803.82 kW, 855.94 kW, 0 kW dan 0 kW.

Pada tabel 4.14 dan tabel 4.15 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R142b terhadap daya yang dihasilkan. Kenaikan tekanan inlet turbin berbanding lurus dengan daya yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 18 bar yang menghasilkan daya sebesar 855.94 kW. Daya yang dihasilkan pada kondisi tekanan 19 bar dan 20 bar bernilai 0 karena pada tekanan tersebut dan temperature 95 °C, fluida kerja R142b merfasa *subcooled* sehingga tidak dapat digunakan untuk memutar turbin.

Pada tabel 4.14 dan tabel 4.15 terdapat enam variasi tekanan dengan daya yang dihasilkan dan daya yang dibutuhkan sistem untuk mengoperasikan sistem dari masing-masing tekanan. Untuk memudahkan dalam mengambil kesimpulan, data tersebut dibentuk dalam sebuah grafik. Gambar 4.6 Merupakan tren grafik efisiensi pembangkit dengan dan tanpa penggunaan recuperator dalam sistem ORC. Variasi tekanan yang baik ialah yang menghasilkan daya yang tinggi.

Gambar 4.11 Grafik pengaruh tekanan dan penggunaan recuperator terhadap daya yang dihasilkan siklus rankine organic menggunakan fluida kerja R-142b

Gambar 4.11 menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.42 %, 3.80 %, 4.14 %, 4.44 %, 0 % dan 0%. Sehingga pada tren grafik di atas, efisiensi yang dihasilkan dari variasi tekanan paling rendah ke paling tinggi semakin meningkat. Grafik tersebut juga menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar,17 bar, 18 bar, 19 bar dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.58 %, 3.97 %, 4.33 %, 4.65 %, 0 % dan 0%.

Pada gambar 4.6 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R142b terhadap efisiensi yang dihasilkan. Grafik tersebut menunjukan bahwa semakin besar tekanan inlet turbin maka efisiensi yang dihasilkan oleh sistem semakin besar. Kenaikan tekanan inlet turbin berbanding lurus dengan efisiensi yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, efisiensi maksimal yang dihasilkan oleh sistem yaitu pada tekanan 18 bar yang menghasilkan daya sebesar 4.44 %.

Penggunaan recuperator pada sistem siklus rankine organik secara linear dapat meningkatkan efisiensi yang dihasilkan oleh sistem jika dibandingkan dengan sistem siklus rankine organic tanpa penggunaan recuperator. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 18 bar yang menghasilkan daya sebesar 4.65 %.

Semakin besar tekanan dari variasi tersebut maka semakin besar efisiensi yang dihasilkan, namun daya konsumsi yang dibutuhkan juga semakin meningkat sehingga dapat menurunkan daya yang dapat dimanfaatkan.

4.6.3 Analisis Variasi Tekanan pada Turbin Menggunakan Fluida Kerja R-134a – R-142b

Dari variasi tersebut dibandingkan daya yang dihasilkan oleh setiap variasi dari masingmasing tekanan. Berikut tabel data hasil dari variasi tekanan yang didapatkan:

Jenis Fluida	Tekanan Inlet Turbin	Wgenerator	$\mathbf{W}_{\mathrm{turbin}}$	W _{pump1}	Qevaporator	Efisiensi	Nett power
Kerja	bar	kW	kW	kW	kW	%	kW
	15	759.5686	775.07	63.05	19993	3.48	696.52
	16	845.0148	862.26	73.54	19870	3.88	771.47
D1240/D142b	17	922.4348	941.26	84.03	19743.3	4.24	838.40
K134a/K142b	18	992.6126	1012.87	94.51	19612.5	4.57	898.10
	19	1056.215	1077.77	104.98	19477	4.88	951.23
	20	1113.75	1136.48	115.45	19336.4	5.16	998.30

Tabel 4.16 Hasil perhitungan ORC dengan fluida kerja R-134a – R-142b tanpa Recuperator

Jenis Fluida	Tekanan Turbin (bar)	Wgenerator	$\mathbf{W}_{ ext{turbin}}$	W _{pump1}	Qevaporator	Efisiensi	Nett power
Kerja	bar	kW	kW	kW	kW	%	kW
	15	759.5686	775.07	63.05	18947.9	3.67	696.52
R134a/R142b	16	845.0148	862.26	73.54	18836.3	4.09	771.47
	17	922.4348	941.26	84.03	18720.9	4.47	838.40
	18	992.6126	1012.87	94.51	18601.2	4.82	898.10
	19	1056.215	1077.77	104.98	18477	5.14	951.23
	20	1113.75	1136.48	115.45	18347.4	5.44	998.30

Tabel 4.17 Hasil perhitungan ORC dengan fluida kerja R-134a – R-142b dengan Recuperator

Tabel 4.16 dan tabel 4.17 menunjukan perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar daya yang dihasilkan berturut-turut sebesar 696.52 kW, 771.47 kW, 838.40 kW, 898.10 kW, 951.23 kW dan 998.30 kW. Grafik tersebut juga menunjukan perubahan tekanan pada daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar daya yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar dan 20 bar daya yang dihasilkan berturut-turut sebesar 696.52 kW, 771.47 kW, 838.40 kW, 898.10 kW, 951.23 kW dan 998.30 kW.

Pada tabel 4.16 dan tabel 4.17 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R134a/R142b terhadap daya yang dihasilkan. Kenaikan tekanan inlet turbin berbanding lurus dengan daya yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 998.30 kW.

Pada tabel 4.16 dan tabel 4.17 terdapat enam variasi tekanan dengan daya yang dihasilkan dan daya yang dibutuhkan sistem untuk mengoperasikan sistem dari masing-masing tekanan. Untuk memudahkan dalam mengambil kesimpulan, data tersebut dibentuk dalam sebuah grafik. Gambar 4.7 Merupakan tren grafik efisiensi pembangkit dengan dan tanpa penggunaan recuperator dalam sistem ORC. Variasi tekanan yang baik ialah yang menghasilkan daya yang tinggi.

Gambar 4.12 Grafik pengaruh tekanan dan penggunaan recuperator terhadap daya yang dihasilkan siklus rankine organic menggunakan fluida kerja R-134a/ R-142b

Gambar 4.12 menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan dan tanpa penggunaan recuperator. Pada siklus rankine organik tanpa penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar, 17 bar, 18 bar, 19 bar, dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.48 %, 3.88 %, 4.24 %, 4.57 %, 4.88 % dan 5.16 %. Sehingga pada tren grafik di atas, efisiensi yang dihasilkan dari variasi tekanan paling rendah ke paling tinggi semakin meningkat. Grafik tersebut juga menunjukan perubahan tekanan pada efisiensi yang dihasilkan oleh Sistem Siklus Rankine Organik dengan penggunaan recuperator dengan variasi tekanan 15 bar, 16 bar,17 bar, 18 bar, 19 bar dan 20 bar efisiensi yang dihasilkan berturut-turut sebesar 3.67 %, 4.09 %, 4.47 %, 4.82 %, 5.14 % dan 5.44 %.

Pada gambar 4.12 menunjukan pengaruh tekanan dan penggunaan recuperator pada fluida kerja refrigerant R134a/R142b terhadap efisiensi yang dihasilkan. Grafik tersebut menunjukan bahwa semakin besar tekanan inlet turbin maka efisiensi yang dihasilkan oleh sistem semakin besar. Kenaikan tekanan inlet turbin berbanding lurus dengan efisiensi yang dihasilkan oleh sistem. Dari enam variasi tekanan inlet turbin, efisiensi maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 5.16 %.

Penggunaan recuperator pada sistem siklus rankine organik secara linear dapat meningkatkan efisiensi yang dihasilkan oleh sistem jika dibandingkan dengan sistem siklus rankine organic tanpa penggunaan recuperator. Dari enam variasi tekanan inlet turbin, daya maksimal yang dihasilkan oleh sistem yaitu pada tekanan 20 bar yang menghasilkan daya sebesar 5.44 %.

Semakin besar tekanan dari variasi tersebut maka semakin besar efisiensi yang dihasilkan, namun daya konsumsi yang dibutuhkan juga semakin meningkat sehingga dapat menurunkan daya yang dapat dimanfaatkan.

4.6.4 Perbandingan Hasil Analisa Variasi Mass flow dan Fluida Kerja dalam Sistem

Telah didapatkan hasil perhitungan untuk setiap fluida kerja yang dilakukan dengan menggunakan cycle tempo. Hasil performa setiap fluida kerja tersebut akan dibandingkan satu dengan yang lain untuk memperoleh fluida kerja terbaik untuk digunakan dalam sistem pembangkit siklus rankine organik. Berikut akan dibandingkan power output dan efisiensi thermal pada setiap fluida kerja.

Gambar 4.13 Grafik pengaruh tekanan inlet turbin terhadap power output pada sistem pembangkit siklus rankine organic dengan mass flow rate 81.16 kg/s

Gambar 4.14 Grafik pengaruh tekanan inlet turbin terhadap efisiensi thermal sistem pembangkit siklus rankine organic tanpa pengunaan recuperator dengan mass flow rate 81.16

kg/s

Gambar 4.15 Grafik pengaruh tekanan inlet turbin terhadap efisiensi thermal sistem pembangkit siklus rankine organic ditambah pengunaan recuperator dengan mass flow rate 81.16 kg/s

Dari diagram di atas, dapat dilihat bahwa fluida kerja R134a, R142b dan R134a/R142b memiliki trendline yang linear sehingga semakin tinggi nilai mass flow, power output yang dihasilkan juga semakin besar. Daya output turbin terbesar dihasilkan oleh R-134a, yaitu sebesar 1030.62 kW yang kemudian diikuti oleh R134a/R142b sebesar 998.30 kW pada tekanan inlet turbin 20 bar, dan R142b sebesar 855.94 kW pada tekanan 18 bar. Tekanan output R142b pada tekanan inlet turbin 19 bar dan 20 bar bernilai 0 karena pada tekanan tersebut dan temperature 95 °C, fluida kerja R142b sudah memasuki fase *subcooled* sehingga tidak dapat digunakan untuk memutar turbin. Dilihat dari power output yang dihasilkan, semua fluida kerja bernilai positif dan dapat digunakan sebagai fluida kerja untuk sistem pembangkit siklus rankine organik.

Berdasarkan gambar 4.13 dan gambar 4.14, dapat dilihat bahwa dengan kenaikan mass flow pada sistem dengan parameter yang sama menghasilkan nilai efisiensi sistem yang konstan. Efisiensi sistem terbesar dihasilkan oleh fluida kerja R134a dengan penambahan recuperator dalam sistemnya sebesar 5.49 %, diikuti dengan R134a/R142b dengan penambahan recuperator sebesar 5.44 %, R134a sebesar 5.17 %, R134a/R142b sebesar 5.16 %, R142b dengan penambahan recuperator sebesar 4.65 % dan R142b sebesar 4.45 %. Terdapat kenaikan nilai efisiensi thermal saat sistem siklus rankine organik diberi recuperator dengan rerata nilai 6.62% untuk fluida kerja R134a, 5.45% untuk fluida kerja R134a/R142b dan 4.58% untuk fluida kerja R142b.

4.7 Analisis Pressure Drop pada Heat Exchanger terhadap Daya Pompa Sistem

Pada subbab ini akan membahas mengenai pengaruh pressure drop terhadap daya pompa sistem. Simulasi dilakukan hanya pada satu kondisi dan menggunakan satu fluida kerja. Analisa ini dilakukan untuk membandingkan nilai daya pompa yang dibutuhkan pada sistem tanpa dan dengan pressure drop.

4.7.1 Simulasi Sistem ORC tanpa recuperator dengan asumsi pressure drop 0.5 di setiap Heat Exchanger.

Berdasarkan gambar 4.16, dapat dilihat bahwa nilai power output yang dihasilkan pada generator bernilai sama, yaitu 861 kW, tetapi pada komponen pompa memerlukan daya 79.77 kW untuk mengoperasikan sistem. Adanya pressure drop pada evaporator, yang diasumsikan bernilai 0.5, mengakibatkan pompa bekerja lebih dengan meningkatkan tekanan ke nilai 16.5 bar jika tekanan inlet turbin yang diharapkan bernilai 16 bar. Hal ini juga mengakibatkan nilai nett power output yang dihasilkan lebih kecil, yaitu bernilai 781.23 kW.

Gambar 4.16 Output Simulasi ORC tanpa recuperator dengan pressure drop 0.5

🎦 r134a: Sy					
delivered	No.	Apparatus	Туре	Energy	Totals
				[kW]	[kW]
Delivered	1	Generator	G	861.00	
gross power					861.00
Aux. power	5	Pump	8	79.77	
consumption					79.77
Delivered					
net power					781.23

Gambar 4.17 Output Efisiensi Sistem ORC tanpa recuperator dengan pressure drop 0.5

Dengan adanya nilai pressure drop, daya pompa yang dibutuhkan menjadi lebih besar dan hal ini mempengaruhi nilai efisiensi dan net power yang dihasilkan oleh sistem. Berdasarkan tabel 4.18, dapat dilihat bahwa nilai efisiensi turun sebesar 0.03% dan net power yang dihasilkan turun sebesar 5.3 kW.

Kondisi	Wgenerator	W _{pump1}	Qevaporator	Efisiensi	Nett power
	kW	kW	kW	%	kW
Tanpa Pressure drop	861	74.47	20400.6	3.86	786.53
Pressure drop $= 0.5$	861	79.77	20395.8	3.83	781.23

Tabel 4.18 Data Perbandingan Nilai Output Sistem ORC tanpa Recuperator

4.7.2 Simulasi Sistem ORC dengan recuperator dengan asumsi pressure drop 0.5 di setiap Heat Exchanger

Berdasarkan gambar 4.18, dapat dilihat bahwa nilai power output yang dihasilkan pada generator bernilai sama, yaitu 861 kW, tetapi pada komponen pompa memerlukan daya 85.07 kW untuk mengoperasikan sistem. Adanya pressure drop pada evaporator dan recuperator, yang diasumsikan bernilai 0.5, mengakibatkan pompa bekerja lebih dengan meningkatkan tekanan ke nilai 17 bar jika tekanan inlet turbin yang diharapkan bernilai 16 bar. Hal ini juga mengakibatkan nilai nett power output yang dihasilkan lebih kecil, yaitu bernilai 775.93 kW.

Gambar 4.18 Output Simulasi ORC ditambah recuperator dengan pressure drop 0.5

🔝 recupera	tor	+ r134a: Sys	te		
	No.	Apparatus	Туре	Energy	Totals
				[kW]	[kW]
Delivered	1	Generator	G	861.00	
gross power					861.00
Aux. power	5	Pump	8	85.07	
consumption					85.07
Delivered					
net power					775.93

Gambar 4.19 Output Efisiensi Sistem ORC ditambah recuperator dengan pressure drop 0.5

Dengan adanya nilai pressure drop, daya pompa yang dibutuhkan menjadi lebih besar dan hal ini mempengaruhi nilai efisiensi dan net power yang dihasilkan oleh sistem. Berdasarkan tabel 4.19, dapat dilihat bahwa nilai efisiensi turun sebesar 0.06% dan net power yang dihasilkan turun sebesar 10.6kW.

Jika tabel 4.18 dan 4.19 dibandingkan, nett power yang dihasilkan sistem ORC tanpa recuperator memiliki nilai yang lebih besar, yaitu bernilai 781.23 kW. Tetapi, dalam nilai efisiensi yang dihasilkan, sistem ORC dengan recuperator memiliki efisiensi yang lebih tinggi, yaitu bernilai 4.04%.

Kondisi	Wgenerator	W _{pump1}	Qevaporator	Efisiensi	Nett power
	kW	kW	kW	%	kW
Tanpa Pressure drop	861	74.47	19195	4.10	786.53
Pressure drop $= 0.5$	861	85.07	19197.3	4.04	775.93

Tabel 4.19 Data Perbandingan Nilai Output Sistem ORC dengan Recuperator

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Perancangan dan simulasi sistem siklus rankine organic telah dilakukan dengan menggunakan perangkat lunak Cycle-Tempo. Setelah dilakukan simulasi dan analisis perencanaan sistem siklus rankine organic dengan memanfaatkan exhaust steam dari exhaust vent PLTP Ulumbu Unit I dan II dengan variasi tekanan dan fluida kerja sistem maka didapatkan beberapa kesimpulan sebagai berikut:

- Rancangan optimal sistem pembangkit siklus rankine organik dengan fluida kerja R134a, R142b dan R134a/R142b adalah sebagai berikut: kondensor dengan tekanan outlet 9 bar, pompa dengan tekanan outlet 20 bar, Evaporator dengan temperature output 95 °C, turbin dengan jenis back-pressured turbine dan pipa yang dapat menahan aliran fluida dengan mass flow 81.16 kg/s.
- 2. Pada desain optimum sistem pembangkit siklus rankine organik dengan tekanan 20 bar, didapatkan nilai efisiensi thermal sebesar 5.17% pada fluida kerja R134a dan 5.16% pada fluida kerja R134a/R142b. Efisiensi thermal optimum yang dihasilkan oleh fluida kerja R142b bernilai 4.45% pada tekanan inlet turbin 18 bar karena saat kondisi temperatur 95 °C dan tekanan di atas 18 bar pada fluida kerja R142b membuat fluida kerja tersebut berada pada fase *subcooled* sehingga tidak dapat digunakan untuk memutar turbin.
- 3. Pada simulasi yang telah dilakukan, penambahan recuperator akan meningkatkan efisiensi thermal sistem pembangkit siklus rankine organik sebesar 6.62% pada fluida kerja R134a, 5.45% pada fluida kerja R134a/R142b dan 4.58% pada fluida kerja R142b jika dibandingkan dengan sistem siklus rankine organik konvensional.
- 4. Daya tertinggi pada sistem siklus rankine organik dihasilkan pada variasi fluida kerja R134a dengan tekanan inlet turbin sebesar 20 bar dan mass flow rate sebesar 81.16 kg/s. Nilai *power output* yang dihasilkan sebesar 1030.62 kW. Terdapat penambahan daya yang dihasilkan sebesar 41.22% dari daya bangkitan siklus utama.

5.2 Saran

Berikut ini adalah beberapa saran untuk penelitian berikutnya, yaitu:

- 1. Perlu digunakan perangkat lunak lain yang dapat menggunakan lebih banyak variasi fluida kerja, terutama refrigerant.
- 2. Analisa lebih lanjut diperlukan untuk menghitung nilai ekonomis antara biaya operasional dan keuntungan daya yang diperoleh.

DAFTAR PUSTAKA

Astu P, Djati Nursuhud. 2008. Mesin Konversi Energi. Yogyakarta

- Azis, M. 2017. "Perancangan Siklus Rankine Organik Untuk Pemanfaatan Gas Buang Pada PLTU di Indonesia." REKAYASA HIJAU 1.2.
- Frick, S., Kranz, S., Kupfermann, G., Saadat, A., & Huenges, E. (2019). Making use of geothermal brine in Indonesia: binary demonstration power plant Lahendong/Pangolombian. Geothermal Energy, 7(1), 1-19.
- Hidayat, Mohammad Noor, Binar Surya Gumilang, and Ferdian Ronilaya. 2020. "Organic Rankine Cycle design as optimization of dry-steam system geothermal power plant." AIP Conference Proceedings. Vol. 2228. No. 1. AIP Publishing LLC, 2020.
- Kajurek, Jakub, et al. 2019. "Selection of refrigerants for a modified organic Rankine cycle." Energy 168 (2019): 1-8.
- Moran, Michael J., et al. 2010. Fundamentals of Engineering Thermodynamics. John Wiley & Sons.
- Nasruddin, N., Sidiq, A. N., Mohamad, A., & Usvika, R. (2015). Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field. Makara Journal of Technology, 19(1), 8.
- Sohel, M. Imroz, et al. "Dynamic modelling and simulation of an organic Rankine cycle unit of a geothermal power plant." Proceedings World Geothermal Congress. 2010.
- Training Manual. 2002. Cycle-Tempo Version Release 5. Delft: Delft University of Technology.
- Vankeirsbilck, I., Vanslambrouck, B., Gusev, S., & De Paepe, M. (2011). Organic Rankine cycle as efficient alternative to steam cycle for small scale power generation. HEFAT 2011.
- Yamamoto, Takahisa, et al. 2001. "Design and testing of the organic Rankine cycle." Energy 26.3: 239-251.

LAMPIRAN

	Co	gi	n	10		LOG SHEET TURBINE & GENERATOR																			U	Ν	IT	1										
	UNIT TANGGA	PLTP		IBU ktober	2021												CDB	FR.OF	RUL-	LS.003														Rev.: 01		Berl	Berlaku: 010117	
	Hoada	r 8 Sto	am Line	ADR							TUP	RBINE									G	EARBO	x								GENER	RATOR						
	neade	r a ste		ADB	Gov	Governor Steam Inlet Steam Outlet Turbine Bearing Temp. Turbine Bearing Vib. Pinion Temp. Bullgear Tmp Vib Generator											or Bear	ing and	Stator	Windin	g Temp	b .	Vibration Air Ter															
Waktu	Steam Header Pres. (0-PI- 101)	Steam Header Temp. (0-T/- 105)	Total Steam Flow (O-FI-105)	Pressure (O-PI-105)	Main Governor (ZI-203)	Bypass Governor (ZI-204)	Turbine Speed (SI-531/SI-532/SI-533)	Temperature (T1-206)	Pressure (PI-205)	Temperature (TI-209)	Pressure (PI-208)	DE (71-523)	NDE (TI-524)	IBT (<i>T</i> 1-525)	OBT (TI-526)	DE X (VI-505)	DE Y (VI-506)	NDE X (VI-507)	NDE Y (VH-508)	DE (71-518)	NDE (71-517)	NDE (TI-520)	DE (71-519)	Pinion Vibration (VI-509)	NDE (71-521)	Stator Winding (TI-511)	Stator Winding (TI-512)	Stator Winding (TI-513)	Stator Winding (TI-514)	Stator Winding (TI-515)	Stator Winding (TI-516)	DE (71-522)	NDE X (VI-501)	NDE Y (VH502)	DE X (VI-503)	DE Y (VI-504)	Inlet (71-541)	Exhaust (71-542)
Alarm	bar	•C	th	ber	%	%	rpm 5285	.c	bar 10	<u>с</u> .	kPa	°C 90	°C 90	°C 90	°C 80	μm 50	μm 50	μm 50	μm 50	°C 90	°C 90	°C	°C 90	µm 6	°C 90	°C 120	°C 120	°C 120	°C 120	*C 120	°C 120	°C 90	μm 50	µm 50	μm 50	μm 50	*C	°C 72
Trip	•	-	•	-	-	-	5536	-	-	•	-	100	100	95	90	77	77	77	77	95	95	95	95	10	95	135	135	135	135	135	135	95	77	77	77	77	· 1	•
01:00	10.06	189	27.69	- 10.00		100	5033	181	- 7.68	- 89	93.2	- 73	- 70	51	- 60	-	- 17	7	17	- 82	- 79	- 60	- 66	50	53	- 58	- 59	- 55	- 57	- 55	- 54	50	- 10	- 10	- 53	30	34	47
02:00	10.03	189	27.97	9.83		100	5033	181	7.68	89	93.5	73	70	51	60	4	17	7	17	82	79	60	66	4.9	53	58	59	55	57	55	54	50	9	10	53	39	34	47
03:00	10.03	189	27.97	9.82		100	5035	181	7.68	89	93.4	73	70	51	60	4	17	7	17	82	79	60	66	5.1	53	58	59	55	57	55	54	50	10	10	53	39	34	47
04:00	10.02	189	25.99	9.83		100	5033	181	7.91	89	93.2	73	70	51	60	4	17	7	17	82	79	60	66	5.1	53	58	59	55	57	55	54	50	10	10	53	39	34	47
05:00	10.02	189	26.09	9.95		100	5035	181	7.91	89	93.2	73	70	51	60	4	17	7	17	82	79	60	66	4.9	53	58	59	55	57	55	54	50	10	10	53	39	34	47
06:00	10.02	189	26.27	9.95		100	5030	181	7.91	89	93.2	73	70	51	60	4	17	7	17	82	79	60	66	5.0	53	58	59	55	57	55	54	50	10	10	53	39	34	47
07:00	10.08	189	26.17	9.99		100	5031	181	7.95	89	93.3	73	71	52	61	4	17	7	17	82	80	61	66	5.0	54	60	60	56	58	56	55	51	10	10	53	40	36	49
08:00	9.98	189	25.96	9.89		100	5033	181	7.88	89	93.2	74	71	52	61	4	17	7	17	82	80	61	66	5.0	54	60	60	56	58	59	55	51	10	10	53	39	37	50
09:00	10.01	189	26.11	9.89		100	5037	181	7.90	89	93.2	74	71	53	62	4	17	7	16	83	80	62	66	4.8	55	63	63	59	62	60	58	52	9	11	52	39	39	52
10:00	10.08	189	26.50	9.96		100	5033	181	7.96	89	93.2	74	72	52	62	4	16	7	17	83	80	62	66	5.0	55	64	64	60	63	60	59	52	9	11	52	39	40	53
11:00	10.08	189	26.48	9.49		100	5033	181	7.96	89	93.3	74	72	52	62	4	16	7	17	83	80	62	66	5.1	55	64	64	60	63	60	59	52	9	10	52	39	40	53
12:00	9.91	187	25.65	9.84		100	5033	179	7.83	89	93.1	74	71	52	62	4	17	7	17	82	80	62	65	5.3	55	63	64	60	64	60	60	52	10	11	52	39	38	52
13:00	9.94	188	25.68	9.86		100	5033	179	7.84	89	93.1	74	71	52	61	4	17	7	17	82	79	61	65	4.8	54	61	62	58	60	58	56	51	10	11	52	39	36	50
14:00	9.93	188	25.49	9.88		100	5033	179	7.84	89	93.2	74	71	52	61	4	17	7	17	82	79	61	65	4.3	54	61	62	58	60	58	56	51	10	11	52	39	36	50
15:00	9.90	188	25.57	9.82		100	5030	180	7.82	89	93.1	74	71	52	61	4	17	7	17	82	80	61	65	5.2	54	61	62	57	60	58	56	51	10	10	53	40	36	50
16:00	9.92	189	25.60	9.83		100	5035	180	7.83	89	93.0	74	71	52	61	4	17	7	17	82	80	61	66	5.1	54	61	62	58	60	58	57	51	10	11	53	40	38	51
17:00	9.92	189	25.61	9.83		100	5035	180	7.83	90	93.1	74	71	52	61	4	17	7	17	82	80	61	66	5.0	54	62	63	58	61	59	57	52	10	10	53	39	37	51
18:00	10.04	189	26.01	9.96		100	5035	180	7.92	90	93.1	74	71	52	61	4	17	7	17	82	80	61	66	4.6	54	62	63	58	61	59	57	52	10	10	53	39	37	51
19:00	10.03	189	25.80	9.95		100	5037	180	7.92	90	93.2	73	71	52	61	4	17	7	17	82	80	61	65	4.9	54	61	62	58	60	58	56	51	10	10	53	40	36	50
20:00	10.06	189	25.99	9.98		100	5033	180	7.94	90	93.3	73	71	52	61	4	17	7	17	82	80	61	65	5.3	54	61	62	57	60	58	56	51	10	10	53	40	36	50
21:00	10.00	189	25.89	9.92		100	5035	180	7.92	90	93.3	73	71	52	61	4	17	7	17	82	80	61	65	5.1	54	61	62	57	60	58	56	51	10	10	53	40	36	50
22:00	10.02	189	25.34	9.94		100	5037	180	7.91	90	93.4	73	71	52	61	4	17	7	17	82	80	61	65	5.0	54	61	62	57	60	58	56	51	10	10	53	40	36	50
23:00	10.03	189	25.53	9.95		100	5033	180	7.92	90	93.4	73	70	51	60	4	17	7	17	82	79	60	65	4.7	53	59	60	56	58	56	54	50	10	10	53	39	34	48
24:00	10.03	189	25.57	9.97		100	5031	180	7.93	90	93.4	73	70	51	60	4	17	7	17	82	79	61	65	4.8	53	59	59	55	57	55	54	50	10	10	53	39	34	47
	Shift Pagi Shift Sore YESUALDUS M. J AVENTUS WAGUR FLORIANUS R KASMAN GREGORIUS UMPLING Shift Leader Group B Operator Group B Shift Leader Group B Operator Group B								Shift Malam - ELFRIDUS DENI F. Eufronius F. Darma Shift Leader Group C Operator Group B																													

1. Tabel data log sheet PLTP Ulumbu Unit I pada tanggal 01 Oktober 2021

2. Tabel Properties Refrigerant R-134a pada Temperatur 35 °C Variasi Tekanan

6: R134a: T = 35.0 °C

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)	Phase
1	35.000	1.0000	4.0550	433.14	1.9301	Superheated	Gas
2	35.000	2.0000	8.2652	431.44	1.8695	Superheated	Gas
3	35.000	3.0000	12.648	429.67	1.8323	Superheated	Gas
4	35.000	4.0000	17.225	427.83	1.8044	Superheated	Gas
5	35.000	5.0000	22.022	425.90	1.7814	Superheated	Gas
6	35.000	6.0000	27.073	423.86	1.7616	Superheated	Gas
7	35.000	7.0000	32.418	421.69	1.7436	Superheated	Gas
8	35.000	8.0000	38.115	419.37	1.7268	Superheated	Gas
9	35.000	8.8698	43.416	417.19	1.7128	1.0000	Gas
10	35.000	8.8698	1167.5	249.01	1.1670	0.00000	Liquid
11	35.000	9.0000	1167.6	249.01	1.1670	Subcooled	Liquid
12	35.000	10.000	1168.3	249.00	1.1667	Subcooled	Liquid
13	35.000	11.000	1169.1	248.99	1.1663	Subcooled	Liquid
14	35.000	12.000	1169.8	248.98	1.1660	Subcooled	Liquid
15	35.000	13.000	1170.6	248.97	1.1657	Subcooled	Liquid
16	35.000	14.000	1171.3	248.96	1.1654	Subcooled	Liquid
17	35.000	15.000	1172.0	248.95	1.1651	Subcooled	Liquid
18	35.000	16.000	1172.7	248.94	1.1648	Subcooled	Liquid
19	35.000	17.000	1173.4	248.94	1.1645	Subcooled	Liquid
20	35.000	18.000	1174.2	248.93	1.1642	Subcooled	Liquid
21	35.000	19.000	1174.9	248.92	1.1639	Subcooled	Liquid
22	35.000	20.000	1175.6	248.92	1.1636	Subcooled	Liquid
23	35.000	21.000	1176.3	248.91	1.1633	Subcooled	Liquid
24	35.000	22.000	1176.9	248.91	1.1630	Subcooled	Liquid
25	35.000	23.000	1177.6	248.90	1.1628	Subcooled	Liquid
26	35.000	24.000	1178.3	248.90	1.1625	Subcooled	Liquid
27	35.000	25.000	1179.0	248.89	1.1622	Subcooled	Liquid
28	35.000	26.000	1179.7	248.89	1.1619	Subcooled	Liquid
29	35.000	27.000	1180.3	248.89	1.1616	Subcooled	Liquid
30	35.000	28.000	1181.0	248.88	1.1613	Subcooled	Liquid
31	35.000	29.000	1181.7	248.88	1.1610	Subcooled	Liquid
32	35.000	30.000	1182.3	248.88	1.1608	Subcooled	Liquid
3. Tabel Properties Refrigerant R-142b pada Temperatur 35 °C Variasi Tekanan

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)	Phase
1	35.000	1.0000	4.0129	448.93	1.9341	Superheated	Gas
2	35.000	2.0000	8.2264	446.80	1.8717	Superheated	Gas
3	35.000	3.0000	12.676	444.51	1.8327	Superheated	Gas
4	35.000	4.0000	17.409	442.01	1.8028	Superheated	Gas
5	35.000	4.5429	20.119	440.55	1.7886	1.0000	Gas
6	35.000	4.5429	1085.3	245.42	1.1554	0.00000	Liquid
7	35.000	5.0000	1085.5	245.43	1.1553	Subcooled	Liquid
8	35.000	6.0000	1085.9	245.45	1.1551	Subcooled	Liquid
9	35.000	7.0000	1086.4	245.47	1.1548	Subcooled	Liquid
10	35.000	8.0000	1086.8	245.49	1.1546	Subcooled	Liquid
11	35.000	9.0000	1087.2	245.51	1.1544	Subcooled	Liquid
12	35.000	10.000	1087.6	245.54	1.1542	Subcooled	Liquid
13	35.000	11.000	1088.0	245.56	1.1539	Subcooled	Liquid
14	35.000	12.000	1088.4	245.58	1.1537	Subcooled	Liquid
15	35.000	13.000	1088.8	245.60	1.1535	Subcooled	Liquid
16	35.000	14.000	1089.2	245.63	1.1533	Subcooled	Liquid
17	35.000	15.000	1089.6	245.65	1.1530	Subcooled	Liquid
18	35.000	16.000	1090.0	245.67	1.1528	Subcooled	Liquid
19	35.000	17.000	1090.4	245.70	1.1526	Subcooled	Liquid
20	35.000	18.000	1090.8	245.72	1.1524	Subcooled	Liquid
21	35.000	19.000	1091.2	245.75	1.1522	Subcooled	Liquid
22	35.000	20.000	1091.6	245.77	1.1519	Subcooled	Liquid
23	35.000	21.000	1092.0	245.80	1.1517	Subcooled	Liquid
24	35.000	22.000	1092.4	245.82	1.1515	Subcooled	Liquid
25	35.000	23.000	1092.8	245.84	1.1513	Subcooled	Liquid
26	35.000	24.000	1093.2	245.87	1.1511	Subcooled	Liquid
27	35.000	25.000	1093.6	245.89	1.1509	Subcooled	Liquid
28	35.000	26.000	1094.0	245.92	1.1506	Subcooled	Liquid
29	35.000	27.000	1094.4	245.94	1.1504	Subcooled	Liquid
30	35.000	28.000	1094.7	245.97	1.1502	Subcooled	Liquid
31	35.000	29.000	1095.1	246.00	1.1500	Subcooled	Liquid

5: R142b: T = 35.0 °C

4. Tabel Properties Refrigerant R-134a/R-142b pada Temperatur 35 °C Variasi Tekanan

7: R134a/R142b: T = 35.0 °C (50/50)

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)	Phase
1	35,000	1.0000	4.0327	439.40	1,9300	Superheated	Gas
2	35.000	2.0000	8.2400	437.52	1.8687	Superheated	Gas
3	35.000	3.0000	12.646	435.55	1.8306	Superheated	Gas
4	35.000	4.0000	17.281	433.45	1.8020	Superheated	Gas
5	35.000	5.0000	22.184	431.22	1.7781	Superheated	Gas
6	35.000	6.0000	27.408	428.80	1.7571	Superheated	Gas
7	35.000	6.2707	28.886	428.11	1.7518	1.0000	Gas
8	35.000	6.9059	1121.4	247.16	1.1610	0.00000	Liquid
9	35.000	7.0000	1121.5	247.16	1.1609	Subcooled	Liquid
10	35.000	8.0000	1122.0	247.17	1.1607	Subcooled	Liquid
11	35.000	9.0000	1122.6	247.17	1.1604	Subcooled	Liquid
12	35.000	10.000	1123.1	247.18	1.1601	Subcooled	Liquid
13	35.000	11.000	1123.7	247.19	1.1599	Subcooled	Liquid
14	35.000	12.000	1124.3	247.20	1.1596	Subcooled	Liquid
15	35.000	13.000	1124.8	247.20	1.1594	Subcooled	Liquid
16	35.000	14.000	1125.4	247.21	1.1591	Subcooled	Liquid
17	35.000	15.000	1125.9	247.22	1.1588	Subcooled	Liquid
18	35.000	16.000	1126.4	247.23	1.1586	Subcooled	Liquid
19	35.000	17.000	1127.0	247.24	1.1583	Subcooled	Liquid
20	35.000	18.000	1127.5	247.25	1.1581	Subcooled	Liquid
21	35.000	19.000	1128.1	247.26	1.1578	Subcooled	Liquid
22	35.000	20.000	1128.6	247.27	1.1575	Subcooled	Liquid
23	35.000	21.000	1129.1	247.28	1.1573	Subcooled	Liquid
24	35.000	22.000	1129.6	247.29	1.1570	Subcooled	Liquid
25	35.000	23.000	1130.2	247.30	1.1568	Subcooled	Liquid
26	35.000	24.000	1130.7	247.31	1.1565	Subcooled	Liquid
27	35.000	25.000	1131.2	247.32	1.1563	Subcooled	Liquid
28	35.000	26.000	1131.7	247.33	1.1560	Subcooled	Liquid
29	35.000	27.000	1132.2	247.34	1.1558	Subcooled	Liquid
30	35.000	28.000	1132.8	247.35	1.1555	Subcooled	Liquid
31	35.000	29.000	1133.3	247.37	1.1553	Subcooled	Liquid
32	35.000	30.000	1133.8	247.38	1.1550	Subcooled	Liquid

5. Tabel Properties Refrigerant R-134a pada Temperatur 95 °C Variasi Tekanan

4: R134a: T = 95.0 °C

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)
1	95.000	1.0000	3.3647	487.92	2.0923	Superheated
2	95.000	2.0000	6.7940	486.89	2.0337	Superheated
3	95.000	3.0000	10.291	485.85	1.9986	Superheated
4	95.000	4.0000	13.860	484.78	1.9731	Superheated
5	95.000	5.0000	17.503	483.70	1.9527	Superheated
6	95.000	6.0000	21.226	482.60	1.9356	Superheated
7	95.000	7.0000	25.032	481.48	1.9208	Superheated
8	95.000	8.0000	28.926	480.34	1.9076	Superheated
9	95.000	9.0000	32.914	479,18	1.8957	Superheated
10	95.000	10.000	37.001	477.99	1.8847	Superheated
11	95.000	11.000	41.194	476.78	1.8744	Superheated
12	95.000	12.000	45,499	475.55	1.8648	Superheated
13	95.000	13.000	49,925	474.28	1.8557	Superheated
14	95.000	14.000	54,480	472.99	1.8470	Superheated
15	95.000	15.000	59,174	471.66	1.8386	Superheated
16	95.000	16.000	64.017	470.30	1.8305	Superheated
17	95.000	17.000	69.023	468.91	1.8226	Superheated
18	95.000	18.000	74.204	467.47	1.8149	Superheated
19	95.000	19.000	79.578	465.99	1.8073	Superheated
20	95.000	20.000	85,163	464.46	1,7999	Superheated
21	95.000	21.000	90,980	462.89	1,7925	Superheated
22	95.000	22.000	97.054	461.25	1,7852	Superheated
23	95.000	23.000	103.42	459.55	1,7779	Superheated
24	95.000	24.000	110.10	457.78	1.7705	Superheated
25	95.000	25.000	117.15	455.93	1.7631	Superheated
26	95.000	26.000	124.62	453,99	1.7556	Superheated
27	95.000	27.000	132.58	451.94	1,7479	Superheated
28	95.000	28.000	141.11	449.78	1,7400	Superheated
29	95.000	29.000	150.32	447.46	1.7319	Superheated
30	95.000	30.000	160.38	444.97	1.7234	Superheated
31	95.000	31.000	171.49	442.26	1.7143	Superheated
32	95.000	32,000	183.98	439.26	1,7047	Superheated
33	95.000	33.000	198.38	435.87	1.6940	Superheated
34	95.000	34,000	215.61	431.91	1.6820	Superheated
35	95.000	35.000	237.68	426.98	1.6674	Superheated
36	95.000	35.912	267.14	420.67	1.6492	1.0000
37	95.000	35.912	772.70	355.25	1.4715	0.00000
38	95.000	36.000	774.26	355.10	1.4711	Subcooled
39	95.000	37.000	789.41	353.72	1.4670	Subcooled
40	95.000	38.000	801.35	352.64	1.4637	Subcooled
41	95.000	39.000	811.36	351.74	1.4609	Subcooled
42	95.000	40.000	820.05	350.96	1.4585	Subcooled

6. Tabel Properties Refrigerant R-142b pada Temperatur 95 °C Variasi Tekanan

5: R142b: T = 35.0 °C

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)	Phase
1	35.000	1.0000	4.0129	448.93	1.9341	Superheated	Gas
2	35.000	2.0000	8.2264	446.80	1.8717	Superheated	Gas
3	35.000	3.0000	12.676	444.51	1.8327	Superheated	Gas
4	35.000	4.0000	17.409	442.01	1.8028	Superheated	Gas
5	35.000	4.5429	20.119	440.55	1.7886	1.0000	Gas
6	35.000	4.5429	1085.3	245.42	1.1554	0.00000	Liquid
7	35.000	5.0000	1085.5	245.43	1.1553	Subcooled	Liquid
8	35.000	6.0000	1085.9	245.45	1.1551	Subcooled	Liquid
9	35.000	7.0000	1086.4	245.47	1.1548	Subcooled	Liquid
10	35.000	8.0000	1086.8	245.49	1.1546	Subcooled	Liquid
11	35.000	9.0000	1087.2	245.51	1.1544	Subcooled	Liquid
12	35.000	10.000	1087.6	245.54	1.1542	Subcooled	Liquid
13	35.000	11.000	1088.0	245.56	1.1539	Subcooled	Liquid
14	35.000	12.000	1088.4	245.58	1.1537	Subcooled	Liquid
15	35.000	13.000	1088.8	245.60	1.1535	Subcooled	Liquid
16	35.000	14.000	1089.2	245.63	1.1533	Subcooled	Liquid
17	35.000	15.000	1089.6	245.65	1.1530	Subcooled	Liquid
18	35.000	16.000	1090.0	245.67	1.1528	Subcooled	Liquid
19	35.000	17.000	1090.4	245.70	1.1526	Subcooled	Liquid
20	35.000	18.000	1090.8	245.72	1.1524	Subcooled	Liquid
21	35.000	19.000	1091.2	245.75	1.1522	Subcooled	Liquid
22	35.000	20.000	1091.6	245.77	1.1519	Subcooled	Liquid
23	35.000	21.000	1092.0	245.80	1.1517	Subcooled	Liquid
24	35.000	22.000	1092.4	245.82	1.1515	Subcooled	Liquid
25	35.000	23.000	1092.8	245.84	1.1513	Subcooled	Liquid
26	35.000	24.000	1093.2	245.87	1.1511	Subcooled	Liquid
27	35.000	25.000	1093.6	245.89	1.1509	Subcooled	Liquid
28	35.000	26.000	1094.0	245.92	1.1506	Subcooled	Liquid
29	35.000	27.000	1094.4	245.94	1.1504	Subcooled	Liquid
30	35.000	28.000	1094.7	245.97	1.1502	Subcooled	Liquid
31	35.000	29.000	1095.1	246.00	1.1500	Subcooled	Liquid

7. Tabel Properties Refrigerant R-134a/R-142b pada Temperatur 95 °C Variasi Tekanan

	Temperature (°C)	Pressure (bar)	Density (kg/m³)	Enthalpy (kJ/kg)	Entropy (kJ/kg-K)	Quality (kg/kg)
1	95.000	1.0000	3.3436	494.05	2.0918	Superheated
2	95.000	2.0000	6.7609	492.91	2.0327	Superheated
3	95.000	3.0000	10.256	491.75	1.9971	Superheated
4	95.000	4.0000	13.835	490.57	1.9712	Superheated
5	95.000	5.0000	17.502	489.36	1.9504	Superheated
6	95.000	6.0000	21.263	488.12	1.9330	Superheated
7	95.000	7.0000	25.124	486.85	1.9178	Superheated
8	95.000	8.0000	29.094	485.55	1.9043	Superheated
9	95.000	9.0000	33.180	484.22	1.8919	Superheated
10	95.000	10.000	37.391	482.86	1.8805	Superheated
11	95.000	11.000	41.738	481.45	1.8698	Superheated
12	95.000	12.000	46.233	480.00	1.8597	Superheated
13	95.000	13.000	50.890	478.51	1.8500	Superheated
14	95.000	14.000	55.724	476.97	1.8407	Superheated
15	95.000	15.000	60.754	475.37	1.8317	Superheated
16	95.000	16.000	66.002	473.71	1.8229	Superheated
17	95.000	17.000	71.495	471.98	1.8143	Superheated
18	95.000	18.000	77.263	470.17	1.8057	Superheated
19	95.000	19.000	83.346	468.28	1.7972	Superheated
20	95.000	20.000	89.792	466.28	1.7886	Superheated
21	95.000	21.000	96.664	464.17	1.7800	Superheated
22	95.000	22.000	104.04	461.92	1.7712	Superheated
23	95.000	23.000	112.03	459.51	1.7621	Superheated
24	95.000	24.000	120.80	456.88	1.7526	Superheated
25	95.000	25.000	130.56	453.98	1.7426	Superheated
26	95.000	25.973	141.36	450.81	1.7320	1.0000
27	95.000	26.000	143.73	448.77	1.7264	0.98222
28	95.000	27.000	358.68	372.84	1.5188	0.29680
29	95.000	27.403	859.72	341.60	1.4338	0.00000
30	95.000	28.000	861.74	341.43	1.4331	Subcooled
31	95.000	29.000	865.00	341.15	1.4320	Subcooled
32	95.000	30.000	868.12	340.88	1.4310	Subcooled
33	95.000	31.000	871.12	340.62	1.4300	Subcooled
34	95.000	32.000	874.01	340.38	1.4290	Subcooled
35	95.000	33.000	876.79	340.15	1.4281	Subcooled
36	95.000	34.000	879.48	339.92	1.4272	Subcooled
37	95.000	35.000	882.08	339.71	1.4263	Subcooled
38	95.000	36.000	884.61	339.51	1.4254	Subcooled
39	95.000	37.000	887.05	339.31	1.4246	Subcooled
40	95.000	38.000	889.43	339.12	1.4238	Subcooled
41	95.000	39.000	891.75	338.94	1.4230	Subcooled
42	95.000	40.000	894.00	338.76	1.4222	Subcooled

5: R142b/R134a: T = 95.0 °C (50/50)

8. Tabel perhitungan variasi mass flow dan hasil simulasi sistem ORC tanpa recuperator

A	В	С	D	E	F	G	н	1.1	J	К	L	М	N	0	Р	Q	R	S	Т	U	V
1																					
2										REFRIGER	ANT R-134	A				REF	RIGERANT	R-134A			
3	m	Tin	hin	Tout	hout	Q .	Dnumn	T4	P4	h ₄	T5	P5	hş	morc	Wgenerator	Wturbin	W _{pump1}	Qevaporator	Efisiensi	Nett power	
4	kg/s	°C	kJ/kg	°C	kJ/kg	kW	rpump	°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
5	6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	249.5	95	16	470.3	65.94	699.5338	713.81	60.5	16574.9	3.86	639.03	
6	6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	249.5	95	16	470.3	68.48	726.4838	741.31	62.83	17213.3	3.86	663.65	
7	7	98	2430	45.35	189.9	15680.70	16	35.39	16	249.5	95	16	470.3	71.02	753.4338	768.81	65.16	17851.8	3.86	688.27	
8	7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	249.5	95	16	470.3	72.84	772.7398	788.51	66.83	18309.3	3.86	705.91	
9	7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	249.5	95	16	470.3	76.09	807.2162	823.69	69.81	19126.2	3.86	737.41	
10	7.98	98	2430	45.35	189.9	17876.00	16	35.39	16	249.5	95	16	470.3	80.96	858.8818	876.41	74.28	20350.3	3.86	784.60	
11	8	98	2430	45.35	189.9	17920.80	16	35.39	16	249.5	95	16	470.3	81.16	860.9986	878.57	74.47	20400.6	3.86	786.53	
12																					
13																					
14																					
15																					
16										REFRIGER	ANT R-142	2B				REF	RIGERANT	R-142B			
17	m	Tin	hin	Tout	hout	Q.	Ppump	T4	P4	h4	T5	P5	h5	morc	Wgenerator	Wturbin	W _{pump1}	Qevaporator	Efisiensi	Nett power	
18	kg/s	°C	kJ/kg	°C	kJ/kg	kW		°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
19	6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	246.2	95	16	478.92	62.57	628.26	641.08	54.92	15071.2	3.80	573.34	
20	6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	246.2	95	16	478.92	64.97	652.36	665.67	57.03	15649.3	3.80	595.33	
21	7	98	2430	45.35	189.9	15680.70	16	35.39	16	246.2	95	16	478.92	67.38	676.56	690.37	59.14	16229.8	3.80	617.42	
22	7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	246.2	95	16	478.92	69.11	693.93	708.09	60.66	16646.5	3.80	633.27	
23	7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	246.2	95	16	478.92	72.19	724.86	739.65	63.37	17388.4	3.80	661.49	
24	7.98	98	2430	45.35	189.9	17876.00	16	35.39	16	246.2	95	16	478.92	76.81	771.24	786.98	67.42	18501.2	3.80	703.82	
25	8	98	2430	45.35	189.9	17920.80	16	35.39	16	246.2	95	16	478.92	77.01	773.25	789.03	67.6	18549.4	3.80	705.65	
26																					
27																					
28									_												
29									R	EFRIGERAN	T R-134A-F	142B	1			REFRIGE	RANT R-13	34A-R142B			
30	m	T _{in}	h _{in}	Tout	hout	Q.	Ppump	T ₄	P4	h ₄	T5	P5	h5	more	Wgenerator	Wturbin	W _{pump1}	Qevaporator	Efisiensi	Nett power	
31	kg/s	°C	kJ/kg	°C	kJ/kg	kW		°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
32	6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	247.77	95	16	473.71	64.44	670.9374	684.63	58.39	15776.6	3.88	612.55	
33	6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	247.77	95	16	473.71	66.92	696.7506	710.97	60.64	16383.7	3.88	636.11	
34	7	98	2430	45.35	189.9	15680.70	16	35.39	16	247.77	95	16	473.71	69.40	722.5736	737.32	62.89	16990.9	3.88	639.68	
35	7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	247.77	95	16	4/3.71	71.19	/41.2132	756.34	64.51	1/429.1	3.88	6/6.70	
36	7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	247.77	95	16	473.71	74.36	774.2196	790.02	67.38	18205.2	3.88	706.84	
37	7.98	98	2430	45.35	189.9	1/8/6.00	16	35.39	16	247.77	95	16	4/3.71	79.12	823.7782	840.59	71.69	19370.6	3.88	752.09	
38	8	98	2430	45.35	189.9	1/920.80	16	30.39	16	247.77	95	16	4/3.71	79.32	820.8656	842.72	/1.88	19419.6	5.88	/55.99	
39																					
40																					
41																					
	Perh	itungan	Massflov	v Sisten	n Va	riasi Tekan	an (+	•											E (4)		

9. Tabel perhitungan variasi mass flow dan hasil simulasi sistem ORC dengan recuperator

1	A	В	С	D	E	F	G	н	1	J.	К	L	M	N	0	P	Q	R	S	т	U	V
45																						
46																						
47										REFRIG	ERANT R-1	34A + RECU	JPERATOR			R	FRIGERAN	IT R-134A	+ RECUPERA	TOR		
48		m	Tin	hin	Tout	hout	Q.	Doumo	T4	P_4	h4	T ₅	P ₅	hş	more	Wgenerator	Wturbin	Wpumpl	Qevaporator	Efisiensi	Nett power	
49		kg/s	°C	kJ/kg	°C	kJ/kg	kW	rpump	°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
50		6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	249.5	95	16	470.3	65.94	699.5338	713.81	60.5	15595.3	4.10	639.03	
51		6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	249.5	95	16	470.3	68.48	726.4838	741.31	62.83	16196.1	4.10	663.65	
52		7	98	2430	45.35	189.9	15680.70	16	35.39	16	249.5	95	16	470.3	71.02	753.4338	768.81	65.16	16796.8	4.10	688.27	
53		7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	249.5	95	16	470.3	72.84	772.7398	788.51	66.83	17227.3	4.10	705.91	
54		7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	249.5	95	16	470.3	76.09	807.2162	823.69	69.81	17995.9	4.10	737.41	
55		7.98	98	2430	45.35	189.9	17876.00	16	35.39	16	249.5	95	16	470.3	80.96	858.8818	876.41	74.28	19147.7	4.10	784.60	
56		8	98	2430	45.35	189.9	17920.80	16	35.39	16	249.5	95	16	470.3	81.16	860.9986	878.57	74.47	19195	4.10	786.53	
57																						
58																						
59																						
60																						
61										REFRIG	ERANT R-14	2B + RECU	UPERATOR			Ri	FRIGERAN	T R-142B	+ RECUPERA	TOR		
62		'n	Tin	hin	Tout	hout	Q.	Pnumn	T4	P_4	h4	T5	P5	h5	morc	Wgenerator	Wturbin	Wpumpl	Qeraporator	Efisiensi	Nett power	
63		kg/s	°C	kJ/kg	°C	kJ/kg	kW	1 pump	°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
64		6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	246.2	95	16	478.92	62.57	628.26	641.08	54.92	14410.7	3.98	573.34	
65		6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	246.2	95	16	478.92	64.97	652.36	665.67	57.03	14963.4	3.98	595.33	
66		7	98	2430	45.35	189.9	15680.70	16	35.39	16	246.2	95	16	478.92	67.38	676.56	690.37	59.14	15518.5	3.98	617.42	
67		7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	246.2	95	16	478.92	69.11	693.93	708.09	60.66	15916.9	3.98	633.27	
68		7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	246.2	95	16	478.92	72.19	724.86	739.65	63.37	16626.3	3.98	661.49	
69		7.98	98	2430	45.35	189.9	17876.00	16	35.39	16	246.2	95	16	478.92	76.81	771.24	786.98	67.42	17690.3	3.98	703.82	
70		8	98	2430	45.35	189.9	17920.80	16	35.39	16	246.2	95	16	478.92	77.01	773.25	789.03	67.6	17736.4	3.98	705.65	
71																						
72																						
73																						
74	_								R	EFRIGERA	NT R-134A	-R142B + F	RECUPERATO	R		REFRI	GERANT R-	-134A-R14	2B + RECUP	ERATOR		
75		'n	Tin	hin	Tout	hout	Q.	Dnumn	T4	P4	h4	T5	P5	hs	morc	Wgenerator	Wturbin	W _{pump1}	Qevaporator	Efisiensi	Nett power	
76		kg/s	°C	kJ/kg	°C	kJ/kg	kW	1 pump	°C	bar	kJ/kg	°C	bar	kJ/kg	kg/s	kW	kW	kW	kW	%	kW	
77		6.5	98	2430	45.35	189.9	14560.65	16	35.39	16	247.77	95	16	473.71	64.44	670.9374	684.63	58.39	14955	4.096	612.55	
78		6.75	98	2430	45.35	189.9	15120.68	16	35.39	16	247.77	95	16	473.71	66.92	696.7506	710.97	60.64	15531.4	4.096	636.11	
79		7	98	2430	45.35	189.9	15680.70	16	35.39	16	247.77	95	16	473.71	69.40	722.5736	737.32	62.89	16106.9	4.096	659.68	
80		7.18	98	2430	45.35	189.9	16083.92	16	35.39	16	247.77	95	16	473.71	71.19	741.2132	756.34	64.51	16522.4	4.096	676.70	
81		7.5	98	2430	45.35	189.9	16800.75	16	35.39	16	247.77	95	16	473.71	74.36	774.2196	790.02	67.38	17258.1	4.096	706.84	
82		7.98	98	2430	45.35	189.9	17876.00	16	35.39	16	247.77	95	16	473.71	79.12	823.7782	840.59	71.69	18362.8	4.096	752.09	
83		8	98	2430	45.35	189.9	17920.80	16	35.39	16	247.77	95	16	473.71	79.32	825.8656	842.72	71.88	18409.3	4.096	753.99	
84									Ctrl) •													
85									Lutony													
	۶. <u></u>	Perh	itungan	Massflov	v Sisten	n Va	riasi Tekan	an 🤅 🤆	Ð											1.4		_

10. Data system efficiency dan energy balance variasi fluida kerja R134a dengan mass flow 81.16 kg/s dan tekanan inlet turbin 20 bar

No.	Name	Туре	Energy loss (enthalpy)	Energy loss (HHV)	Energy loss (LHV)
			[kW]	[kW]	[kW]
3	Turbine	3	1182.72	1182.72	1182.72
4	Condenser	4	0.00	0.00	0.00
5	Pump	8	-105.17	-105.17	-105.17
2	Sink/Source	10	1523.95	682.23	-18904.54
1	Sink/Source	10	-21451.45	-20609.73	-1022.95
7	Sink/Source	10	81167.02	13581.39	-1559136.88
8	Sink/Source	10	-62317.08	5268.56	1577986.88
6	Heat Exchgr.	12	0.00	0.00	0.00
10	Valve	14	0.00	0.00	0.00
7	Pipe		0.00	0.00	0.00
	Total:		0.00	0.00	0.00

delivered	No.	Apparatus	Туре	Energy	Totals
				[kW]	[kW]
Delivered	1	Generator	G	1147.48	
gross power					1147.48
Aux. power	5	Pump	8	116.86	
consumption					116.86
Delivered					
net power					1030.62

11. Tabel properties air menggunakan perangkat lunak CATT

BIODATA PENULIS

Penulis dilahirkan di Bandung, 22 November 2000, merupakan anak kedua dari 2 bersaudara. Penulis telah menempuh Pendidikan formal yaitu di TK Islamiyah Kab. Bandung, SDN 2 Majalaya Kab. Bandung, SMPN 13 Bandung dan SMAN 12 Bandung. Setelah lulus dari SMAN pada tahun 2018, Penulis mengikuti SBMPTN dan diterima di Departemen Teknik Mesin FTIRS-ITS pada tahun 2018 dan terdaftar dengan NRP 02111840000097.

Di Departemen Teknik Mesin, Penulis sempat aktif ikut serta dalam kegiatan-kegiatan kemahasiswaan yang dilakukan di jurusan Teknik Mesin maupun di lingkup ITS. Dalam mengikuti aktivitas kemahasiswaan tingkat kampus penulis aktif sebagai staff divisi

Battery and Electrical Engineering di Cakradewa ITS Electric Vehicle Team. Saat mengikuti kegiatan kemahasiswaan Jurusan penulis mendapatkan Amanah untuk menjadi Kepala Biro Media Kreatif, Departemen Hubungan Luar, Himpunan Mahasiswa Mesin ITS periode 2020/2021.

Apabila terdapat pesan atau informasi yang hendak disampaikan kepada penulis, dapat disampaikan melalui email berikut, abdillahrpi@gmail.com