

TUGAS AKHIR - TM 184835

STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM

"Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D: 1,5"

FADHIL ABDILLAH FAIRA NRP 02111840000140

Dosen Pembimbing Dr. Wawan Aries Widodo, S.T., M.T. NIP 19710405 199702 1 001

Program Studi Sarjana Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

TUGAS AKHIR – TM 184835

STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM

"Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D: 1,5"

FADHIL ABDILLAH FAIRA

NRP 02111840000140

Dosen Pembimbing

Dr. Wawan Aries Widodo, S.T., M.T.

NIP 19710405 199702 1 001

Program Studi Sarjana

Departemen Teknik Mesin Fakultas Teknologi Industri dan Rekayasa Sistem Institut Teknologi Sepuluh Nopember Surabaya 2022

FINAL PROJECT – TM 184835

EXPERIMENT STUDY OF THE EFFECT OF ADDITIONAL DISTURBANCEBODY ON THE DRAG FORCE OF TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT

"Case study of variations in the angle of disturbance 20°, 30°, 40°, dan 60° at the distance between cylinders L/D: 1,5"

FADHIL ABDILLAH FAIRA

NRP 02111840000140

Advisor Lecturer

Dr. Wawan Aries Widodo, S.T., M.T.

NIP 19710405 199702 1 001

Undergraduate Study Program of Mechanical Engineering

Mechanical Ebgineeering Departement

Faculty of Industrial Technology and Systems Engineering

Sepuluh Nopember Institute of Technology

Surabaya

2022

LEMBAR PENGESAHAN

STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM

"Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D: 1,5"

TUGAS AKHIR

Diajukan untuk memenuhi salah satu syarat

memperoleh gelar Sarjana Teknik pada

Program Studi S-1 Teknik Mesin

Departemen Teknik Mesin

Fakultas Teknologi Industri dan Rekayasa Sistem

Institut Teknologi Sepuluh Nopember

Oleh: FADHIL ABDILLAH FAIRA

NRP. 02111840000140

Disetujui oleh Tim Penguji Proposal Tugas Akhir:

- 1. Dr. Wawan Aries Widodo, S.T., M.T.
- 2. Prof. Dr. Ir. Tri Yogi Yuwono, DEA
- 3. Nur Ikhwan, S.T., M.Eng.
- 4. Vivien Suphandani Djanali, S.T., M.E., Ph.D.

SURABAYA JULI, 2022

APPROVAL SHEET

EXPERIMENT STUDY OF THE EFFECT OF ADDITIONAL DISTURBANCE BODY ON THE DRAG FORCE OF TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT

"Case study of variations in the angle of disturbance 20°, 30°, 40°, dan 60° at the distance between cylinders L/D: 1,5"

FINAL PROJECT

Submitted to fulfill one of the requirements

for obtaining a bachelor's degree at

Undergraduate Study Program of Mechanical Engineering

Department of Mechanical Engineering

Faculty of Industrial Technology and Systems Engineering

Institut Teknologi Sepuluh Nopember

By: FADHIL ABDILLAH FAIRA

NRP. 02111840000140

Approved by Final Project Examiner Team :

- 1. Dr. Wawan Aries Widodo, S.T., M.T.
- 2. Prof. Dr. Ir. Tri Yogi Yuwono, DEA
- 3. Nur Ikhwan, S.T., M.Eng.
- 4. Vivien Suphandani Djanali, S.T., M.E., Ph.D.

SURABAYA

July, 2022

PERNYATAAN ORISINALITAS

Yang bertanda tangan di bawah ini:

Nama mahasiswa / NRP	:	Fadhil Abdillah Faira / 02111840000140
Departemen	:	Teknik Mesin FTIRS-ITS
Dosen Pembimbing / NIP	:	Dr. Wawan Aries Widodo, S.T., M.T. / 197104051977021001

Dengan ini menyatakan bahwa Tugas Akhir dengan judul STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM "Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D: 1,5" adalah hasil karya sendiri, bersifat orisinal, dan ditulis dengan mengikuti kaidah penulisan ilmiah.

Bila mana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia menerima sanksi sesuai dengan ketentuan yang berlaku di Institut Teknologi Sepuluh Nopember.

Mengetahui Dosen Pembimbing Dr. Wawan Aries Wh NIP. 197104051997024

Surabaya, 03 Agustus 2022

Mahasiswa

Fadhil Abdillah Faira NRP. 02111840000077

STATEMENT OF ORIGINALITY

The undersigned below:

Name of student / NRP	:	Fadhil Abdillah Faira / 02111840000140
Department	:	Mechanical Engineering INDSYS-ITS
Advisor / NIP	:	Dr. Wawan Aries Widodo, S.T., M.T. / 197104051977021001

Hereby declare that the Final Project with the title of EXPERIMENT STUDY OF THE EFFECT OF ADDITIONAL DISTURBANCEBODY ON THE DRAG FORCE OF TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT "Case study of variations in the angle of disturbance 20°, 30°, 40°, dan 60° at the distance between cylinders L/D: 1,5"the result of my own work, is original, and is written by following the rules of scientific writing.

If in the future there is a discrepancy with this statement, then I am willing to accept sanctions in accordance with the provisions that apply at Institut Teknologi Sepuluh Nopember.

Acknowledged Advisor Dr. Wawan Aries Widodo, S NIP. 197104051997021001

Surabaya, 03 August 2022

Student

Fadhil Abdillah Faira NRP. 02111840000140

ABSTRAK

STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM

"Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D : 1,5"

Nama Mahasiswa / NRP	:	Fadhil Abdillah Faira / 02111840000140
Departemen	:	Teknik Mesin FTIRS - ITS
Dosen Pembimbing	:	Dr. Wawan Aries Widodo, S.T., M.T.

Abstrak

Fenomena aliran fluida ketika melewati suatu benda berupa *streamline body* dan *bluff body* sering dijumpai penggunaanya dalam bidang industri. *Bluff body* yang dilingkupi fluida akan mengalami gaya akibat interaksi dengan fluida, salah satunya gaya *drag*, dimana umumnya gaya *drag* tidak diinginkan. Untuk mereduksi gaya hambat dapat dilakukan dengan cara penambahan bodi pengganggu di daerah *upstream*. Penelitian ini membahas mengenai pengaruh penambahan bodi pengganggu pada dua silinder sirkular tersusun tandem.

Penelitian ini dilakukan pada susunan dua silinder sirkular secara tandem dengan penambahan *inlet disturbance body* yang ditempatkan di depan *upsteream cylinder* dengan variasi sudut $\theta = 20^{\circ}$, 30° , 40° , dan 60° serta menggunakan bilangan Reynolds $4,76 \times 10^4 - 1,33 \times 10^5$. Dua buah silinder sirkular utama dengan diameter (D) 25 mm dengan penambahan *Inlet Disturbance Body* (IDB) menggunakan diameter kedua bodi pengganggu berukuran sama yaitu, d = 5 mm (d/D = 0,2). Jarak antara silinder utama dengan bodi pengganggu tetap yaitu 0,4 mm (g/D = 0,016). Sedangkan perbandingan jarak antar silinder utama L = 37,5 mm tetap yaitu, (L/D = 1,5). *Pressure drop* diukur menggunakan *wall pressure taps* dipasang pada dinding saluran. Tekanan diukur menggunakan *pressure taps* yang dipasang pada permukaan dua silinder sirkular. Profil kecepatan diukur menggunakan *pitot static tube* yang dipasang dibelakang silinder sirkular. Hasil yang akan diperoleh dari penelitian ini adalah *pressure drop*, distribusi koefisien tekanan (C_P), dan koefisien *drag pressure* (C_{DP}).

Hasil yang diperoleh menunjukkan reduksi *pressure drop* efektif pada konfigurasi tandem dengan *IDB* 20° dan 30° dibanding konfigurasi tandem tanpa *IDB* pada bilangan Reynolds 9,7 x $10^4 - 1,33 \times 10^5$. Reduksi koefisien *pressure drag* maksimum untuk silinder *upstream* terjadi pada konfigurasi tandem dengan *IDB* 30° sebesar 51% dan konfigurasi tandem dengan *IDB* 20° dan 40° reduksi sebesar 22 - 24%. Sedangkan untuk silinder *downstream* nilai koefisien *pressure drag* meningkat untuk setiap konfigurasi tandem dengan *IDB*

Kata kunci: Bluff body, Inlet Disturbance Body (IDB), silinder sirkular, tandem.

ABSTRACT

EXPERIMENTAL STUDY OF THE EFFECT OF ADDITIONAL DISTURBANCEBODY ON THE DRAG FORCE OF TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT

"Case study of variations in the angle of disturbance 20°, 30°, 40°, dan 60° at the distance between cylinders L/D: 1.5"

Student Name / NRP	:	Fadhil Abdillah Faira / 02111840000140
Department	:	Teknik Mesin FTIRS - ITS
Advisor	:	Dr. Wawan Aries Widodo, S.T., M.T.

Abstract

The phenomenon of fluid flow when passing through an object in the form of a streamlined body and a bluff body is often used in the industrial sector. The bluff body which is surrounded by fluid will experience a force due to interaction with the fluid, one of which is the drag force, where generally the drag force is not desired. To reduce drag, it can be done by adding a inlet disturbance body in the upstream area. This study discusses the effect of adding a nuisance body to two circular cylinders arranged in tandem.

This research was conducted in a tandem arrangement of two circular cylinders with the addition of an inlet disturbance body placed in front of the upsteream cylinder with a variation of angle = 20° , 30° , 40° , and 60° and using Reynolds number 4,76 x $10^{4} - 1,33 \times 10^{5}$. Two main circular cylinders with a diameter (D) of 25 mm with the addition of an Inlet Disturbance Body (IDB) using the diameter of the two disturbing bodies of the same size, namely, d = 5 mm (d/D = 0,2). The distance between the main cylinder and the interfering body remains 0,4 mm (g/D = 0,016). While the ratio of the distance between the main cylinders L = 37,5 mm remains, that is, (L/D = 1,5). Pressure drop is measured using wall pressure taps mounted on the channel wall. Pressure is measured using pressure taps mounted on the surface of two circular cylinders. The velocity profile was measured using a pitot static tube mounted behind a circular cylinder. The results to be obtained from this research are pressure drop, distribution of pressure coefficient (C_P), and coefficient of drag pressure (C_{DP}).

The resulting results show a reduction in the effective pressure in the tandem configuration with IDB 20° and 30° compared to the tandem configuration without IDB at the Reynolds number 9,7 x $10^4 - 133$ x 10^5 . The maximum drag coefficient reduction for the upstream cylinder occurs in the tandem configuration with IDB 30° is 51% and tandem configuration with IDB 20° and 40° is reduced by 22 - 24%. While for the downstream cylinder the pressure coefficient value increases for each configuration with IDB.

Keywords: Bluff body, Inlet Disturbance Body (IDB), circular cylinder, tandem.

KATA PENGANTAR

Segala puja dan puji syukur penulis panjatkan kepada Allah SWT atas segala limpahan rahmat-Nya, sehingga penulisan Tugas Akhir dengan judul:

STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM

"Studi kasus variasi sudut pengganggu 20°, 30°, 40°, dan 60° pada jarak antar silinder L/D: 1,5"

dapat terselesaikan. Ucapan terima kasih yang sebesar-besarnya juga penulis sampaikan kepada seluruh pihak yang telah membimbing, membantu, dan mendukung penulis dalam proses penyelesaian tugas akhir ini. Beberapa pihak tersebut antara lain:

- 1. Kedua orang tua penulis, Muhammad Rifai dan Tjatur Rahmawati yang telah memberikan dukungan dan doanya kepada penulis sepanjang masa.
- 2. Bapak Dr. Wawan Aries Widodo, S.T., M.T. selaku dosen wali dan pembimbing Tugas Akhir yang senantiasa memberikan bimbingan dan motivasi sehingga Tugas Akhir dapat diselesaikan.
- Bapak Prof. Dr. Ir. Tri Yogi Yuwono, DEA, Ibu Vivien Suphandani Djanali, S.T., M.E., Ph.D., dan Bapak Nur Ikhwan, S.T., M.Eng, dan selaku dosen penguji Tugas Akhir yang telah berkenan memberi masukan dan kritik yang sangat membangun.
- 4. Teman-teman kelompok bimbingan Denyta, Kanda, Tata, dan Yafi yang saling mendukung, membantu, dan memberikan semangat untuk bersama-sama menuntaskan kewajiban akademik selama setahun terakhir.
- 5. Teman-teman Lab Mekanika dan Mesin-mesin Fluida yang selalu bersedia memberikan ilmu dan fasilitas untuk mendukung pengerjaan Tugas Akhir.
- 6. Lingga Marwani yang senantiasa menemani dan mendukung penulis dari semester 2 hingga meneyelesaikan Tugas Akhir ini. Tetap semangat Adinda, jangan mudah menyerah
- 7. Bapak Tris yang sudah memberikan wejangan yang bermanfaat.
- 8. Keluarga besar M61 yang telah memberikan banyak pengalaman dan kenangan berharga selama penulis menjalani pendidikan di Departemen Teknik Mesin ITS.
- 9. Semua pihak yang telah membantu dalam proses penyelesaian Tugas Akhir ini yang tidak bisa disebutkan satu per satu.

Perlu disadari bahwa Tugas Akhir ini masih memiliki banyak kekurangan, baik dari segi penulisan maupun analisis yang dilakukan oleh penulis. Oleh karena itu, penulis mengharapkan segala jenis masukan dan saran dari semua pihak guna perbaikan kualitas Tugas Akhir serupa di kemudian hari. Tidak lupa juga penulis berharap Tugas Akhir ini dapat memberi manfaat, baik untuk pembaca maupun khalayak umum.

Surabaya, Juli 2022

Penulis

LEMBAR PENGESAHAN	iii
APPROVAL SHEET	iv
PERNYATAAN ORISINALITAS	v
STATEMENT OF ORIGINALITY	vi
ABSTRAK	vii
ABSTRACT	.viii
DAFTAR ISI	X
DAFTAR GAMBAR	xii
DAFTAR TABEL	.xiv
DAFTAR SIMBOL	xv
BAB I PENDAHULUAN	16
1.1 Latar Belakang	16
1.2 Perumusan Masalah	17
1.3 Batasan Masalah	17
1.4 Tujuan	18
1.5 Manfaat	18
BAB II TINJAUAN PUSTAKA	19
2.1 Aliran yang Melintasi Saluran Udara	19
2.2 Konsep Boundary Layer	19
2.3 Bilangan Reynolds	20
2.4 Aliran yang Melintasi Silinder	22
2.5 Tekanan Statis, Tekanan Stagnasi dan Tekanan Dinamis	23
2.6 Pressure Coefficient	24
2.7 Drag Coefficient	24
2.8 Pressure Drag Coefficient	25
 2.9 Penelitian Terdahulu 2.9.1 Pengurangan Gaya Drag Pada Silinder Sirkular Tunggal 2.9.2 Pengaruh Variasi Sudut Bodi Pengganggu terhadap Reduksi Pressure Drophysical Pressure Droph	25 25 op
 2.9.3 Penelitian Eksperimental Silinder Siruklar Tersusun Tandem 2.9.4 Penelitian Eksperimental dan Numerik Penambahan Inlet Disturbance Bo Terhadap Karakteristik Aliran Melintasi Silinder Sirkular Tersusun Tandem 	28 29 ody 31
BAB III METODOLOGI	34

DAFTAR ISI

3.1	Skema Penelitian
3.2 3.2	Analisa Parameter yang diukur
3.3 3.3 3.3 3.3	Peralatan363.1Terowongan Angin (wind tunnel)363.2Benda Uji373.3Alat Ukur38
3.4	Prosedur Pengambilan Data
3.5	Hasil Percobaan
3.6	Urutan Langkah Penelitian
3.7	Flowchart Penelitian
BAB IV	/ HASIL DAN PEMBAHASAN
4.1	Distribusi Koefisien Tekanan (Cp) Silinder Sirkular Tunggal tanpa IDB45
4.2	Distribusi Koefisien Tekanan (Cp) Silinder Sirkular Tandem tanpa IDB46
4.3 sudut IDI	Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi B $\theta = 20^{\circ}$
4.4 sudut IDI	Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi B $\theta = 30^{\circ}$
4.5 sudut IDI	Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi B $\theta = 40^{\circ}$
4.6 sudut IDI	Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi B $\theta = 60^{\circ}$
4.7 belakang	Perbandingan Distribusi Koefisien Tekanan Silinder serta Profil Kecepatan di Konfigurasi Tandem pada Berbagai Sudut Variasi IDB ($Re = 1,33 \times 10^5$)
4.8 IDB	Distribusi Koefisien Drag Pressure Silinder (Cdp) pada Berbagai Variasi Sudut
4.9	Pressure Drop untuk Konfigurasi Silinder Sirkular Tandem61
4.10	Diskusi
BAB V	KESIMPULAN DAN SARAN
5.1	Kesimpulan
5.2	Saran
LAMPI	RAN69
DAFTA	AR PUSTAKA

DAFTAR GAMBAR

Gambar 2. 1 Internal flow pada pipa (Incopera, 2011)19
Gambar 2. 2 Sketsa Boundary Layer pada Plat Datar (Munson, et al., 2009)20
Gambar 2. 3 Regime aliran melalui Silinder Sirkular (Lienhard, 1996)21
Gambar 2. 4 Ilustrasi aliran (a) viscous dan (b) inviscid (Fox, et al., 2011)
Gambar 2. 5 Pengukuran Tekanan Stagnasi dan Tekanan Statis (Fox dan Mc. Donald, 2011)
Gambar 2. 6 Skema penelitian (Lee, et al., 2004)
Gambar 2. 7 Grafik hubungan koefisien <i>drag</i> dengan perbandingan jarak silinder \blacksquare , $d/D = 0,133$; o, 0,167; \blacktriangle , 0,2; \triangle , 0,233; \blacktriangleright , 0,267; \blacklozenge , 0,25 (Tsutsui dan Igarashi, 1995); •, 0,3 (Tsutsui dan Igarashi, 1995) (Lee, et al., 2004)
Gambar 2. 8 Pengaruh variasi batang pengganggu terhadap koefisien drag pada silinder sirkular, L/D : \blacksquare 1.5; \bullet 1.83; \blacktriangle 2.0; ; \blacktriangledown 2.08; \Box 2.33; \blacktriangleleft 3.0; \blacktriangleright 4.0
Gambar 2. 9 <i>Flow visualization</i> untuk rasio silinder pengganggu $d/D = 0,233$ (a) $L/D = 2,0$, (b) 2,08, (c) 2,5, (d) 3,027
Gambar 2. 10 Pressure Drop silinder sirkular tunggal dan saluran kosong (Hidayat, 2014)28
Gambar 2. 11 Nilai <i>Pressure Drop</i> silinder sirkular tunggal dengan dan tanpa bodi pengganggu (Hidayat, 2014)
Gambar 2. 12 Susunan silinder sirkular secara tandem (Alam, et al., 2003)
Gambar 2. 13 Grafik hubungan antara koefisien <i>drag</i> dengan perbandingan jarak antar diameter silinder (Alam, et al., 2003)
Gambar 2. 14 Grafik distribusi koefisien tekanan silinder (a) upstream, (b) downstream31
Gambar 2. 15 Grafik distribusi tekanan silinder (a) <i>upstream</i> , (b) <i>downstream</i> pada konfigurasi tandem dengan IDB 30°; L/D 4; L/D 2.5; L/D 1.5 (Daman, 2014)
Gambar 2. 16 Velo`city pathline susunan silinder secara tandem dengan IDB 30° pada : a) L/D 1.5, b) L/D 2.5, c) L/D 4; (St:stagnasi, Sp:separasi, Ra:re-attachment, BSp:backward separasi, FSp:forward separasi) (numerik, ReDh 1.56x105)
Gambar 2. 17 Detail A
Gambar 3. 1 Skema Penelitian
Gambar 3. 2 Susunan Wind Tunnel
Gambar 3. 3 Silinder sirkular
Gambar 3. 4 Bodi pengganggu
Gambar 3. 5 <i>Pitot Tube</i>

Gambar 3. 6 Wall-Pressure Tap
Gambar 3. 7 <i>Inverter</i>
Gambar 3. 8 Centrifugal Fan40
Gambar 3. 9 Inclimed Manometer (Manometer V)40
Gambar 3. 11 Flowchart penelitian
Gambar 4. 1 Perbandingan Distribusi Koefisien Tekanan Silinder Tunggal Penelitian inidengan (Hidayat, 2014)
Gambar 4. 2 Grafik distribusi koefisien tekanan silinder (a) <i>upstream</i> ; (b) <i>downstream</i> pada konfigurasi tandem tanpa <i>IDB</i>
Gambar 4. 3 Grafik distribusi koefisien tekanan silinder (a) <i>upstream</i> ; (b) <i>downstream</i> pada konfigurasi tandem dengan <i>IDB</i> 20°
Gambar 4. 4 Grafik distribusi koefisien tekanan silinder (a) <i>upstream</i> ; (b) <i>downstream</i> pada konfigurasi tandem dengan <i>IDB</i> 30°
Gambar 4. 5 Grafik distribusi koefisien tekanan silinder (a) <i>upstream</i> ; (b) <i>downstream</i> pada konfigurasi tandem dengan <i>IDB</i> 40°
Gambar 4. 6 Grafik distribusi koefisien tekanan silinder (a) <i>upstream</i> ; (b) <i>downstream</i> pada konfigurasi tandem dengan <i>IDB</i> 60°
Gambar 4. 7 Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular <i>upstream</i> dengan berbagai variasi sudut <i>IDB</i> dan tanpa <i>IDB</i> (a) Silinder Tandem dengan variasi sudut <i>IDB</i> 20° dan 30° (b) Silinder Tandem dengan variasi sudut <i>IDB</i> 40° dan 60°
Gambar 4. 8 Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular <i>downstream</i> dengan berbagai variasi sudut <i>IDB</i> dan tanpa <i>IDB</i> (a) Silinder Tandem dengan variasi sudut <i>IDB</i> 20° dan 30° (b) Silinder Tandem dengan variasi sudut <i>IDB</i> 40° dan 60°57
Gambar 4. 9 Grafik distribusi profil kecepatan di belakang konfigurasi susunan silinder sirkular tandem dengan <i>IDB</i> dan tanpa <i>IDB</i> (a) Silinder Tandem dengan variasi sudut <i>IDB</i> 20° dan 30° (b) Silinder Tandem dengan variasi sudut <i>IDB</i> 40° dan 60°
Gambar 4. 10 Grafik <i>pressure drop</i> silinder tandem tanpa <i>IDB</i> dan silinder tandem dengan <i>IDB</i> (a) Silinder Tandem dengan variasi sudut <i>IDB</i> 20° dan 30° (b) Silinder Tandem dengan variasi sudut <i>IDB</i> 40° dan 60°
Gambar 4. 11 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem tanpa <i>IDB</i> (Cp) penelitian dengan Daman (2014) (a) silinder <i>upstream</i> (b) silinder <i>downstream</i>
Gambar 4. 12 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem <i>IDB</i> 30° (Cp) penelitian dengan Daman (2014) (a) silinder <i>upstream</i> (b) silinder <i>downstream</i>
Gambar 4. 13 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem <i>IDB</i> 60° (Cp) penelitian dengan Daman (2014) (a) silinder <i>upstream</i> (b) silinder <i>downstream</i>

DAFTAR TABEL

Tabel 4. 1 Sudut separasi silinder downstream pada variasi susunan silinder sirkular t	andem
dengan IDB dan susunan silinder tandem tanpa IDB	58
Tabel 4. 2 Nilai koefisien drag pressure (Cdp) pada berbagai variasi IDB	60

DAFTAR SIMBOL

А	Luasan tekan (m ²)
CP	Koefisien pressure
C_{DP}	Koefisien pressure drag
d	Diameter disturbance body (mm)
D	Diameter silinder utama (mm)
d/D	rasio diameter bodi pengganggu dengan diamter silinder
F_d	Drag force
g	Gravitasi (m/s ²)
L/D	Rasio jarak longitudinal
Re _D	Reynolds number
T/D	Rasio jarak transversal
U	Kecepatan lokal aliran (m/s)
U∞	Kecepatan <i>freestream</i> (m/s)
Х	Panjang silinder (mm)
δ	Boundary layer thickness
θ	Sudut kontur silinder (deg)
μ	Viskositas udara (N.s/m ²)
ρ	Massa jenis udara (kg.m ³)

BAB I PENDAHULUAN

1.1 Latar Belakang

Fenomena yang sering terjadi pada suatu fluida adalah ketika melintasi suatu aliran atau benda. Dalam dunia teknik terdapat dua benda yang sering di temukan penggunaannya yaitu *streamline body* dan *bluff body*, dimana banyak mengalami perkembangan setelah konsep *boundary layer* dikemukakan. *Bluff body* sendiri berbentuk sirkular atau elips banyak kita lihat penerapannya dalam bidang industri pada struktur bangunan yang menerapkan geometri dasar seperti jembatan, kontruksi gedung, cerobong asap, struktur penyangga anjungan lepas pantai,, *heat exchanger*, dan lain sebagainya.

Saat aliran melintasi *bluff body* akan membentuk suatu pola aliran tertentu berdasarkan dengan geometri kontur bodi pengganggu dan menyebabkan gaya-gaya aerodinamik. Untuk aliran dua dimensi gaya yang sejajar terhadap arah aliran dinamakan dengan gaya *drag* yang erat kaitannya dengan perlambatan momentum aliran tersebut. Sedangkan, gaya yang tegak lurus dengan arah aliran disebut gaya *lift* yang dapat mengakibatkan efek getaran atau vibrasi terhadap struktur sehingga dapat mengurangi kekuatan dari material tersebut.

Penambahan bodi penganggu menjadi salat satu pengendalian yang cukup baik untuk memberikan pengaruh terhadap gaya *drag* agar lebih kecil. Dengan penambahan bodi pengganggu tersebut menyebabkan penundaan posisi titik separasi pada silinder sirkular utama. Hal ini menyebabkan separasi aliran lebih ke belakang dan mengurangi daerah *wake* yang lebar, sehingga gaya *drag* yang dihasilkan menjadi berkurang.

Hasil penelitian yang dilakukan secara eksperimen oleh (Lee et al., 2004) membahas tentang pengurangan gaya *drag* pada silinder sirkular tunggal dengan penambahan kawat pengganggu pada daerah *upstream*. Kecepatan yang digunakan Uo = 10 m/s dengan bilangan Reynolds 2 x 10^4 . Dengan dimensi diameter silinder utama, D = 30 mm. Bodi pengganggu, dengan variasi d/D = 0,1333 -0,267 (d = 4 - 8 mm). Koefsien *drag* mengalami penurunan sampai dengan 29% ketika menggunakan bodi pengganggu d = 7 mm (d/D = 0,2333) dengan gap antara keduanya L/D = 2.

Penelitian secara eksperimental juga dilakukan oleh (**Hidayat,2014**) mengenai reduksi gaya hambat pada silinder sirkular pada saluran sempit dengan menggunakan dua buah bodi pengganggu. Variasi pada penelitian ini adalah konfigurasi rasio diameter antara bodi pengganggu dengan silinder sirkular, (D = 25 dan 37,5 mm) d/D = 0,016 dan 0,107. Sedangkan diameter bodi pengganggu yang digunakan adalah d = 4 mm dengan penempatan variasi sudut = $20^{\circ} - 60^{\circ}$. Bilangan Reynolds yang digunakan pada rentang, Re = $5,21 \times 10^{4}$ sampai 15,6 x 10^{4} . Hasil yang diperoleh menunjukkan pengaruh bodi pengganggu pada silinder sirkular terhadap karakteristik aliran yang terjadi. Pada silinder sirkular dengan diameter D = 25 mm penempatan bodi pengganggu silinder dapat efektif dalam mereduksi penurunan tekanan terjadi pada posisi 20° dan 30° . Sedangkan utuk silinder sirkular diameter D = 37.5 mm, bodi pengganggu efektif menekan nilai gaya hambat pada sudut $\theta = 20^{\circ}$, 30° dan 40° .

(Alam et al., 2003) telah melakukan penelitian lainnya yaitu mengenai nilai koefisien gaya hambat (C_D) yang terjadi pada silinder sirkular dengan susunan tandem. Adapun variasi yang digunakan pada penelitian ini adalah jarak antar silinder *upstream* dan silinder

downstream (L/D = 1,0 – 8,0). Blockage ratio dari test section yaitu 8,1%. Hasil dari penelitian ini ialah memperlihatkan kondisi ekstrim pada L/D sekitar 3,0, yaitu pada *upstream* cylinder diperoleh nilai C_D terkecil dan sekaligus terbesar. Hal yang sama pada *downstream* cylinder untuk L/D sekitar 3,0 juga mengalami kondisi ekstrim, namun nilai C_D terkecil pada L/D = 1

Penelitian eksperimental untuk mengetahui pengaruh *inlet disturbance body* terhadap karakteristik aliran melintasi dua silinder sirkular yang tersusun secara tandem pada saluran sempit dilakukan (**Daman, 2014**). Diameter kedua silinder sirkular D = 25 mm yang disusun secara tandem. Variasi pada penelitian ini meliputi jarak antar silinder (L/D = 1,5 - 4) dan sudut bodi pengganggu (θ) 30° dan. 60°. Hasil penelitian yang dilakukan menunjukkan penambahan IDB pada sudut 30° di depan silinder *upstream*, dapat menunda separasi aliran disebabkan terjadinya bubble separation pada silinder *upstream*. Hal ini juga mengakibatkan nilai koefisien drag silinder *upstream* pada konfigurasi ini rendah yaitu 0.41.

Dari beberapa penelitian tersebut, muncul pemikiran peneliti untuk melakukan penelitian tentang mereduksi gaya fluida pada silinder sirkular dalam susunan tandem dengan memasang dua bodi pengganggu (BP) di sekitar *upstream* silinder sirkular. Dari penelitian ini dapat dilihat hasil dari pengaruh beberapa variasi susunan terhadap *pressure drop*, distribusi koefisien tekanan (C_P), koefisien *drag* (C_D), dan koefisien drag pressure (C_{DP}) pada saluran.

1.2 Perumusan Masalah

Bodi pengganggu merupakan salah satu cara yang digunakan untuk mereduksi gaya *drag* pada silinder sirkular dan penempatan bodi pengganggu di bagian *upstream* silinder sirkular telah banyak dilakukan oleh para peneliti sebelumnya (Alam et al., 2003) dan (Daman, 2014). Pada penerapannya dalam dunia teknik penempatan susunan silinder sirkular bukan secara tunggal, akan tetapi berkelompok seperti tandem, sideby-side dan staggered.

Dengan adanya tambahan bodi pengganggu akan mengakibatkan aliran fluida akan menjadi lebih cepat turbulen sehingga diharapkan dapat melawan *adverse pressure gradient* yang terjadi. Aliran turbulen memiliki momentum kecepatan yang cukup besar, sehingga akan terjadi penundaan titik separasi dan daerah wake semakin sempit menyebabkan gaya hambat yang semakin kecil.

Penelitian ini akan dikembangkan untuk melihat perilaku aliran yang terjadi pada susunan dua silinder sirkular secara tandem dengan penambahan *inlet disturbance body* yang ditempatkan di depan *upsteream cylinder* dengan variasi sudut $\theta = 20^{\circ}$, 30° , 40° , dan 60° dengan tujuan untuk membedakan karakteristik *free shear layer* yang dihasilkan dari keempat penempatan sudut yang berbeda. Jarak *gap* antar dua silinder sirkular yaitu L/D = 1,5. Pengambilan rasio L/D = 1,5 dengan pertimbangan bahwa pada penelitian terdahulu diperoleh efek wake silinder *upstream* terhadap silinder *downstream* lebih kuat dibanding dengan rasio jarak yang lain. Penelitian ini akan dilakukan secara eksperimental pada *open circuit subsonic wind tunnel*. Bilangan Reynolds yang digunakan berdasarkan silinder sirkular adalah sebesar 4,76 x $10^4 - 1,33 \times 10^5$.

1.3 Batasan Masalah

Dalam penelitian ini ada beberapa batasan masalah yang ditetapkan, agar penelitian dapat lebih fokus.

Batasan masalah pada penelitian ini antara lain:

- 1. Fenomena perpindahan panas yang ditimbulkan akibat gesekan antara aliran dengan benda uji maupun dinding dari terowongan angin (*wind tunnel*) diabaikan.
- 2. Fluida kerja adalah udara dengan kondisi aliran *freestream* pada sisi inlet *steady flow* dan *uniform flow* pada sisi *upstream, incompressible flow,* dan *uniform* di dalam terowongan
- 3. Bilangan Reynolds yang digunakan untuk penelitian ini adalah 4,76 x $10^4 1,33 x 10^5$.
- 4. Benda kerja berupa dua silinder sirkular dengan dua *inlet disturbance body* berupa silinder sirkular dengan kondisi permukan polos.
- 5. Temperatur fluida diasumsikan konstan

1.4 Tujuan

Penelitian ini bertujuan untuk menjelaskan fenomena yang terjadi akibat adanya bodi pengganggu pada silinder sirkular dengan susunan tandem yang ditempatkan di daerah *upstream* silinder utama.

Maka tujuan dari penelitian ini antara lain:

- 1. Untuk mendapatkan posisi sudut bodi penganggu optimum yang menghasilkan gaya drag terkecil pada dua silinder sirkular tersusun tandem dilihat dari distribusi koefisien tekanan (C_P) dan koefisien drag pressure (C_{DP}).
- 2. Menganalisa visualisasi profil kecepatan aliran di belakang silinder sirkular tersusun tandem dengan penambahan variasi sudut bodi pengganggu.
- 3. Menganalisa pengaruh posisi sudut antara bodi penganggu dengan susunan dua silinder sirkular tersususn tandem terhadap *pressure drop*.

1.5 Manfaat

Adapun manfaat dari penelitian ini antara lain:

- 1. Memberikan pengetahuan secara kualitatif dan kuantitatif mengenai karakteristik aliran fluida yang mengalir melalui dua silinder sirkular tersusun tandem dengan penambahan *inlet disturbance body* yang diletakkan pada daerah *upstream* silinder sirkular utama.
- 2. Memberikan penjelasan tentang adanya pengaruh penempatan sudut bodi pengganggu terhadap penurunan, kofisien *pressure*, koefisien *drag pressure*, dan *pressure drop* pada saluran sempit berpenampang bujur sangkar.
- 3. Memberikan gambaran distribusi profil kecepatan aliran di belakang susunan silinder sirkular tersusun tandem yang diberi *inlet disturbance body* dengan variasi sudut.

BAB II TINJAUAN PUSTAKA

Pada bab ini akan dijelaskan mengenai teori-teori yang berkaitan dengan penelitian ini. Beberapa penelitian yang telah dilakukan tentang aliran melintasi silinder sirkular dengan berbagai susunan menggunakan silinder pengganggu untuk mereduksi *drag* pada silinder sirkular. Penelitian terdahulu secara eksperimen menjadi refrensi pada penelitian ini.

2.1 Aliran yang Melintasi Saluran Udara

Aliran yang melintas di dalam saluran udara dikatakan aliran internal karena dibatasi oleh permukaan solid, sebagai contoh aliran fluida dalam *ducting*, pipa, dan lain-lain sehingga hanya mengalir tanpa melewati dinding. Pada gambar 2.1, aliran yang masuk ke dalam pipa adalah aliran uniform pada bagian (1). Karena aliran tersebut viscous maka terjadi tegangan geser pada dinding-dinding pipa, maka terjadilah lapisan batas atau *boundary layer* dimana efek viskos menjadi penting dihasilkan di sepanjang dinding pipa. Sehingga profil kecepatan awal berubah menurut jarak x sepanjang pipa, sampai fluidanya mencapai ujung akhir dari panjang daerah masuk, bagian (2), dimana setelah di luar itu profil kecepatan tidak berubah lagi menurut x.

Gambar 2. 1 Internal flow pada pipa (Incopera, 2011)

Perubahan profil kecepatan dalam aliran ini memiliki batas tertentu. Apabila boundary layer tersebut bertemu pada satu titik, maka profil kecepatannya akan tetap. Aliran yang telah berkembang penuh ini dinamakan aliran *fully developed*. Panjang pipa antara awal dan titik di mana aliran mulai berkembang penuh disebut Entrance Length. Dilambangkan oleh Le, *Entrance Length* merupakan merupakan fungsi bilangan *Reynolds* dari aliran tersebut. Secara umum,

Untuk aliran laminar Re < 2300 maka Le = 138 D

Untuk aliran turulen Re > 4000 maka Le = 25 sampai 40 D

2.2 Konsep Boundary Layer

Pada tahun 1904 Prandtl mengembangkan konsep lapisan batas (*boundary layer*). Lapisan batas adalah lapisan tipis yang melingkupi permukaan padat dimana efek viskos sangat berpengaruh. Aliran yang berada di dalam lapisan batas dipengaruhi viskositas dan gradien

tekanan sehingga distribusi kecepatannya menjadi beragam disebut sebagai *viscous flow*. Aliran *viscous* yang mengalir tepat di atas permukaan plat datar mempunyai kecepatan relatif nol, fenemena tersebut dikenal sebagai *no slip condition*. Hingga batas ketebalan tertentu dari permukaan dimana kecepatannya sama dengan kecepatan aliran bebas. Sedangkan aliran di luar lapis batas tidak ada pengaruh viskositas dan gradien tekanan sehingga dianggap sebagai *inviscid flow*. Aliran *inviscid* ini tidak mengalami gesekan, konduktivitas termal dan difusi massa.

Boundary layer seperti pada gambar 2.2 dibagi menjadi dua bagian, yakni turbulen atau laminar yang tergantung pada besarnya bilangan Reynolds untuk aliran *incompressible*. Proses peralihan dari laminar ke turbulen disebut transisi. Faktor yang memengaruhi lamanya proses transisi adalah gradien tekanan, kekasaran permuakaan, gaya bodi dan gangguan aliran bebas. Lapis batas sendiri dimulai dari laminar yang terjadi dari *leading edge* diikuti transisi dan menjadi turbulen.

Gambar 2. 2 Sketsa *Boundary Layer* pada Plat Datar (Munson, et al., 2009)

2.3 Bilangan Reynolds

Jenis lapisan batas pada aliran udara yang melintasi obyek padat juga sangat ditenukan bilangan *Reynolds* (*Re*). Hal ini disebabkan bahwa dalam *boundary layer* gaya geser dan gaya inersia sangat berpengaruh, sedangkan bilangan *Reynolds* sendiri perbandingan antara gaya inersia dengan gaya geser.

$$Re = \frac{gaya \ inersia}{gaya \ geser} \tag{2.1}$$

dimana :

Gaya Inersia =
$$p x A = \rho . U\infty^2 . L^2$$

Gaya Geser =
$$\tau x A = \left(\frac{\mu. U\infty}{L}\right). L^2$$

Sehingga,

$$\operatorname{Re}_{\mathrm{D}} = \frac{\rho.Uref.D}{\mu}$$
(2.2)

Dimana:

Re_D= bilangan *Reynolds*

U_{ref} = kecepatan aliran fluida (m/s)

D = diameter silinder sirkular (m)

 μ = viskositas dinamik fluida (Nm/s²)

Gambar 2. 3 Regime aliran melalui Silinder Sirkular (Lienhard, 1996)

Gambar 2.3 menunjukkan pengaruh bilangan *Reynolds* terhadap *regime* aliran disekeliling silinder sirkular tunggal menurut *Lienhard* (1996), sebagai berikut :

- 1. Pada Bilangan Reynolds yang sangat kecil, (Re < 5) aliran tidak terseparasi. Seiring dengan peningkatan Bilangan Reynolds, aliran terseparasi membentuk sepasang resirkulasi eddy pada tiap sisi dari silinder
- Pada Bilangan Reynolds yang semkain meningkat, *shedding edding* menjadi semakin panjang searah aliran, panjangnya meningkat secara linier terhadap Bilangan Reynolds sampai aliran stabil pada Re ~ 40, *vortices* kemudian terpecah, konsekuensinya periodek *staggered vortex street* terbentuk.
- 3. Pada bilangan Reynolds, Re ~ $1,5 \ge 10^2$, *vortex street* bertambah lebar yang terbentuk ke arah belakang. Peningkatan pertama kali dari *wake* yang berkembang menjadi dua

baris sejajar *staggered vortices*. Teori *inviscid Von Karman* menunjukkan *vortex street* akan stabil saat rasio lebar dengan jarak *streamwise* adalah 0,28. Pada daerah ini, *vortex street* adalah laminar.

- 4. Pada bilangan Reynolds, $\text{Re} = 3 \times 10^2$, memunculkan lapisan batas laminar yang melalui bagian depan silinder, lapisan terseparasi dan memecah menjadi turbulent *wake*. Dengan meningkatnya bilangan Reynolds ($3 \times 10^2 \le \text{Re} < 3 \times 10^5$) titik separasi akan bergerak ke depan.
- 5. Pada Bilangan Reynolds sekitar 3 x 10⁵, titik separasi akan bergerak ke belakang hal ini dipengaruhi oleh turbulrnsi aliran bebas (*free stream*) dan kekasaran permukaan benda, yang ini akan menyebabkan *drag* semakin turun dengan tajam dan *vortex shedding* menjadi tidak beraturan.
- 6. Pada Bilangan Reynolds yang lebih tinggi lagi vortex street muncul lagi.

2.4 Aliran yang Melintasi Silinder

Pada subbab sebelumnya dijelaskan bahwa aliran yang melintasi silinder sirkular senantiasa berubah dan kompleks berdasarkan bilangan *Reynolds*. Gaya *drag* yang terjadi akibat adanya efek *viscous*. Gaya hambat yang muncul akibat perbedaan tekanan pada arah normal terhadap permukaan terebut disebut *pressure drag* dan pada arah tangensial disebut *skin friction drag*.

Gambar 2.4 menunjukkan ilustrasi aliran *viscous* yang melewati permukaan silinder. Poin A dan C menunjukkan titik stagnasi, dimana kecepatan di titik itu adalah 0 dan tekanan terbesar juga terjadi pada titik tersebut. Pada titik B *streamline* mengalami penyempitan penampang karena kenaikan kecepatan yang mengakibatkan penurunan tekanan. Sedangkan aliran inviscid digambarkan suatu aliran fluida tanpa dipengaruhi gesekan terhadap dinding permukaan bola sehingga profil kecepatan aliran akan menyatu kembali setelah melewati titik B, berbeda pada aliran *viscous* terdapat titik separasi pada titik D diakibatkan momentum aliran tidak mampu melawan tegangan geser dan tekanan balik (*adverse pressure gradient*) akibat perluasan penampang *streamline*, maka kecenderungan aliran akan terseparasi dan menyebabkan aliran fluida berbalik arah dari arah utamanya (backflow), sehingga memicu terjadinya *wake* pada daerah dibelakang silinder sirkular. Perlu upaya untuk menunda terjadinya titik separasi sehingga daerah *wake* yang terbentuk akan semakin kecil dan berakibat *drag* juga berkurang.

Gambar 2. 4 Ilustrasi aliran (a) viscous dan (b) inviscid (Fox, et al., 2011)

2.5 Tekanan Statis, Tekanan Stagnasi dan Tekanan Dinamis

Tekanan statis adalah tekanan yang diukur melalui suatu alat pengukur bergerak bersama aliran dengan kecepatan relatif alat ukur terhadap aliran . Pengukuran tekanan statis biasanya menggunakan *wall pressure tap* yang tegak lurus dengan dinding aliran , kecepatan aliran fluida pada permukaan dinding akan bernilai nol karena tidak ada fluida yang ideal (*non viscous*). Pengukuran tekanan statis seperti pada gambar 2.5 (b) pada pitot static tube dengan lubang C yang tegak lurus dengan arah aliran.

Gambar 2. 5 Pengukuran Tekanan Stagnasi dan Tekanan Statis (Fox dan Mc. Donald, 2011)

Tekanan stagnasi merupakan tekanan yang diukur pada daerah dimana aliran fluida diperlambat sampai kecepatan nol tanpa gesekan. Pengukuran tekanan stagnasi seperti pada gambar 2.5 (b) pada pitot static tube dengan lubang B. Pada lubang B lurus dengan arah aliran sehingga aliran tak mampu mampat dan dapat ditentukan dengan persamaan Bernoulli pada kondisi tanpa perubahan ketinggian. Tekanan dinamis merupakan tekanan fluida akibat kecepatan aliran, yaitu selisih antara tekanan stagnasi dan statis. Untuk menghitung tekanan yang terjadi dapat menggunakan persamaan Bernoulli pada persamaan 2.3 sebagai berikut:

$$\frac{P}{\rho} + \frac{U^2}{2} + gz = konstan \tag{2.3}$$

Pengukuran tekanan stagnasi (Po) dimana kecepatannya (Uo) adalah nol dan zo = z maka persamaan Bernoulli di atas menjadi :

$$P_o = P + \frac{U^2}{2}\rho \tag{2.4}$$

Tekanan dinamis merupakan selisih antara tekanan stagnasi dengan tekanan statis.

$$P_o - P = \frac{1}{2}\rho U^2$$
 (2.5)

Dimana :

P = Tekanan statis

 P_o = Tekanan stagnasi

g = Percepatan gravitasi bumi

z = Ketinggian

 ρ = Densitas fluida

U = Kecepatan aliran fluida

 U_o = Kecepatan stagnasi

2.6 Pressure Coefficient

Distribusi tekanan yang terjadi pada permukaan benda uji dapat dilakukan perhitungan nilai koefisien tekanan (Cp). Distribusi tekanan pada model dapat menggambarkan seberapa besar pengaruh gaya-gaya aerodinamika yang bekerja pada setiap sisi dari model atau benda uji itu sendiri. Dalam pengujian suatu model, *pressure coefficient* secara tidak langsung digunakan untuk menyatakan besarnya *pressure drop*. Parameter ini merupakan selisih antara tekanan statis lokal dengan tekanan aliran bebas dibagi dengan tekanan dinamis atau dapat didefinisikan sebagai berikut :

$$C_p = \frac{P_s - P_{\infty}}{\frac{1}{2}\rho U_{\infty}^2}$$
(2.6)

Dimana :

 C_p = Koefisien tekanan pada kontur

 P_s = Tekanan statis pada kontur lokal

 P_{∞} = Tekanan statis aliran bebas

 $\frac{1}{2}\rho U_{\infty}^2$ = Tekanan dinamis aliran bebas

 ρ = Densitas fluida

2.7 Drag Coefficient

Gaya hambat (drag force) adalah gaya dari sebuah fluida mengalir yang mendesak sebuah benda dalam arah alirannya. Gaya hambat atau drag merupakan efek kombinasi dari dua jenis gaya, yaitu:

- 1. Pressure Drag, adalah gaya hambat yang berkaitan dengan tekanan, dan sangat bergantung pada bentuk bendanya. Pressure drag sebanding dengan luas frontal (luas yang diproyeksikan pada sebuah bidang dengan arah normal terhadap arah aliran fluida) dan selisih antara tekanan yang bekerja pada bagian depan dan belakang benda yang terkena fluida tersebut.
- 2. Friction Drag, adalah gaya hambat yang berkaitan dengan tegangan geser pada dinding sebuah benda. Friction drag sebanding dengan luas permukaan benda.

Karakteristik hambatan dari benda direpresentasikan dalam sebuah angka tak berdimensi yang disebut dengan koefisien hamba Koefisien hambatan atau juga disebut *drag coefficient* (Cd) yang merupakan total dari koefisien hambat tekanan dan koefisien hambat friksi seperti berikut:

$$Cd = Cd_{tekanan} + Cd_{gesekan}$$

Untuk Cd_{gesekan} biasanya nilainya sangat kecil maka dapat diabaikan, sehingga persamaan CD menjadi:

$$C_D = \frac{FD}{\frac{1}{2}\rho U^2 A} \tag{2.7}$$

Dimana:

 C_D : Koefisien drag

FD : Gaya drag

 ρ : Massa jenis fluida

U: Kecepatan aliran udara

A: Reference Area

2.8 Pressure Drag Coefficient

Drag salah satunya disebabkan oleh tekanan aliran pada permukaan silinder. *Drag* akibat tekanan dapat diketahui melalui nilai koefisien *drag pressure* (Cdp), dituliskan dalam persamaan sebagai berikut:

$$C_{DP} = \frac{D_P}{\frac{1}{2}\rho U_{\infty}^2 A}$$
(2.8)

Dimana:

C_{DP}: Koefisien drag pressure

 D_P : Pressure drag

 ρ : Massa jenis fluida

 $\frac{1}{2}\rho U_{\infty}^2$: Tekanan dinamis aliran bebas

A: Reference Area

2.9 Penelitian Terdahulu

2.9.1 Pengurangan Gaya Drag Pada Silinder Sirkular Tunggal

(Lee, et al.,2004) telah melakukan penelitian tentang pengurangan gaya drag dengan penambahan bodi pengganggu pada sisi *upstream* sebuah silinder sirkular dengan diameter (D) = 30mm. Bodi pengganggu yang digunakan berupa batang silinder sirkular polos pada berbagai varisai diameter (d) antara 4 - 8 mm (d/D = 0,133 - 0,267) dan penempatan jarak dengan silinder utama (L/D) divariasikan 1,5 hingga 4,0.. Percobaan ini dilakukan dengan menggunakan sebuah *subsonic wind tunnel* dengan tipe *close-return* yang memiliki area test section 720 mm x 60 mm x 6000 mm. Kecepatan yang digunakan sebesar Uo = 10 m/s dengan tingkat turbulensi berkisar pada 0,08 % dan Re 2 x 10^4 . Skema penelitian dapat dilihat pada gambar 2.6.

Gambar 2. 6 Skema penelitian (Lee, et al., 2004).

Gambar 2.7 dan 2.8 memperlihatkan hasil koefisien *drag* pada variasi diameter pengganggu terendah terjadi ketika menggunakan diameter kawat pengganggu d = 7 mm (d/D = 0,233) dimana *drag* silinder sirkular utama berkurang 29% dan rasio jarak yang digunakan secara optimum menurunkan koefisien *drag* pada L/D = 2.

Gambar 2. 7 Grafik hubungan koefisien *drag* dengan perbandingan jarak silinder ■, d/D = 0,133; o, 0,167; ▲, 0,2; △, 0,233; ►, 0,267; ◆, 0,25 (Tsutsui dan Igarashi, 1995); •, 0,3 (Tsutsui dan Igarashi, 1995) (Lee, et al., 2004).

Gambar 2. 8 Pengaruh variasi batang pengganggu terhadap koefisien drag pada silinder sirkular, L/D : \blacksquare 1.5; \bullet 1.83; \blacktriangle 2.0; ; \blacktriangledown 2.08; \bullet 2.33; \blacktriangleleft 3.0; \blacktriangleright 4.0

Dapat dilihat pada gambar 2.9 menunjukkan visualisasi aliran saat melintasi silinder utama pada beberapa variasi jarak L/D = 2,0 hingga 3,0. Terlihat untuk rasio L/D 2,0 dan 2,08 dapat diamati pada gambar 2.9 (a) dan (b) bahwa tidak adanya *vortex shedding* dari aliran belakang silinder pengganggu (*control rod*), karena adanya interfensi kedua silinder yang berdekatan. *Shear layer* yang terlepas dari silinder pengganggu *re-attach* pada sisi *upper* dan sisi *lower* silinder utama pada sudut $\pm 40^{\circ}$. Sedangkan seiring dengan bertambahnya jarak antara kedua silinder, maka akan terbentuk *vortex shedding* dibelakang silinder pengganggu dan mengenai sisi *upstream* silinder utama, hal ini dapat dilihat pada gambar 2.9 (c) dan (d) pada rasio jarak 2,5 dan 3,0.

Gambar 2. 9 *Flow visualization* untuk rasio silinder pengganggu d/D = 0,233 (a) L/D = 2,0, (b) 2,08, (c) 2,5, (d) 3,0

2.9.2 Pengaruh Variasi Sudut Bodi Pengganggu terhadap Reduksi Pressure Drop

Pengaruh penambahan bodi pengganggu terhadap reduksi *pressure drop* telah dilakukan oleh (**Hidayat,2014**). Secara sistematis, penelitian dilakukan dengan konfigurasi rasio diameter antara bodi pengganggu dengan silinder sirkular, d/D = 0,016 dan 0,107, Bilangan Reynolds berada pada rentang, Re = 5,21 x 10⁴ hingga 15,6 x 10⁴ dengan variasi sudut bodi pengganggu diletakkan pada sudut $\theta = 20^{0}$ hingga $\theta = 60^{0}$.

Gambar 2. 10 Pressure Drop silinder sirkular tunggal dan saluran kosong (Hidayat, 2014)

Gambar 2.10 menunjukkan data pressure drop diambil untuk saluran kosong dan saluran dengan silinder tunggal dengan D = 25 mm dan 37.5 mm pada rentang, Re = $5,21 \times 10^4$ hingga 15,6 x 10^4 . Dapat dilhat pada grafik bahwa nilai *pressure drop* semakin tinggi seiring bertambahnya bilangan *Reynolds*. Meningkatnya nilai *pressure drop* dipengaruhi oleh komponen kecepatan yang ada pada bilangan *Reynolds*. Faktor lain yang dapat meningkatkan nilai *pressure drop* adalah dengan meningkatkan nilai *blockage ratio*, dimana pada D=37,5 mm memiliki *blockage ratio* 36,4% mengalami nilai penurunan tekanan yang lebih tinggi daripada silinder melingkar D= 25 mm dengan *blockage ratio* 26,4%. Hal ini sesuai dengan penelitian yang dilakukan oleh Weidman dan Bell bahwa adanya efek penyumbatan membuat kecepatan aliran bebas lebih cepat (pada titik *blockage ratio* tertinggi) dari kecepatan sebenarnya karena penyempitan luas penampang area yang dilalui fluida.

Nilai penurunan tekanan disebabkan oleh kerugian *head mayor* yang dihasilkan oleh saluran dan kerugian *head minor* yang dihasilkan oleh konfigurasi silinder sirkular. Karena kondisi saluran yang konstan *head loss* yang dihasilkan mayor juga konstan dalam hal ini akan terlihat pada *minor head loss* batang silinder sirkular yang berubah akibat penggunaan bodi pengganggu.

Gambar 2. 11 Nilai *Pressure Drop* silinder sirkular tunggal dengan dan tanpa bodi pengganggu (Hidayat, 2014)

Pada Gambar 2.11 (a) (D=25 mm) dan (b) (D=37,5 mm) informasi yang diperoleh dengan meningkatnya *pressure drop*, bilangan Reynolds juga akan meningkat. Penurunan tekanan yang dihasilkan oleh silinder melingkar dengan D= 37,5 mm lebih besar dari silinder sirkular dengan D= 25 mm, disebabkan oleh pengaruh *blockage ratio*. Namun pada Gambar 2.11 (a) penggunaan badan pengganggu silinder dapat efektif dalam mereduksi penurunan tekanan terjadi pada posisi 20° dan 30°. Pada posisi 40°, 50° dan 60°, masing-masing, posisi bodi pengganggu silinder meningkatkan *pressure drop* jika dibandingkan dengan yang silinder tunggal. Pada Gambar 2.11 (b) penggunaan bodi pengganggu silinder efektif pada posisi 20°,30°, dan 40°, sedangkan pada posisi 50° dan 60° pengunaan bodi pengganggu silinder peningkatan penurunan tekanan dibandingkan dengan silinder sirkular tunggal.

2.9.3 Penelitian Eksperimental Silinder Siruklar Tersusun Tandem

Penelitian ini dilakukan oleh (**Alam et al., 2003**) yang membahas mengenai nilai koefisien gaya hambat (C_D) yang terjadi pada silinder sirkular dengan susunan tandem. Penelitian dilakukan menggunakan low speed, closed circuit wind tunnel berdimensi panjang 5,4 m, lebar 0,4 m, dan tinggi 0,6 m, diameter silinder sirkular utama (D = 49mm). Blockage ratio dari test section yaitu 8,1%. Pengaturan susunan silinder sirkular dijelaskan pada gambar 2.12. Bilangan *Reynolds* yang digunakan yaitu 6,5 x 10⁴

Gambar 2. 12 Susunan silinder sirkular secara tandem (Alam, et al., 2003).

Hasil penelitian dapat dilihat pada gambar 2.13 memperlihatkan kondisi ekstrim pada L/D sekitar 3,0, yaitu pada upstream cylinder diperoleh nilai C_D terkecil dan sekaligus terbesar. Hal yang sama pada dowenstream cylinder untuk L/D sekitar 3,0 juga mengalami kondisi ekstrim,

atau dikenal sebagai *bistable flow* ditandai dengan adanya dua nilai koefisien *drag* pada rasio jarak tersebut. Untuk rasio jarak L/D < 3,0 pada silinder *upstream* nilai koefisien *drag* menurun seiring bertambahnya jarak. Sedangkan pada silinder *downstream*, koefisien *drag* bernilai negatif dan terdapat *peak* pada rasio jarak 1 < L/D < 2.

Gambar 2. 13 Grafik hubungan antara koefisien *drag* dengan perbandingan jarak antar diameter silinder (Alam, et al., 2003)

Gambar 2.14(a) menunjukkan distribusi koefisien tekanan silinder *upstream*. Distribusi tekanan silinder *upstream* memiliki tren yang sama dengan distribusi tekanan silinder tunggal. Pada L/D 3,5 distribusi tekanan silinder upstream mendekati nilai distribusi tekanan silinder tunggal. Hal ini menunjukkan bahwa pada rasio jarak tersebut, interaksi aliran antara silinder *upstream* dan silinder *downstream* mulai berkurang.

Gambar 2.14(b) menunjukkan distribusi koefisien tekanan silinder downstream. Dari grafik terlihat bahwa untuk $L/D \leq 3,5$ distribusi koefisien tekanan bernilai negatif. Hal ini menunjukkan bahwa silinder downstream dilingkupi oleh wake yang terbentuk dari silinder upstream. Adanya peak pada grafik menandakan adanya re-attachment pada silinder downstream. Untuk L/D = 6, tren grafik mulai mendekati tren grafik slinder tunggal namun nilai titik stagnasi masih kurang dari 1. Hal ini menandakan bahwa interaksi aliran dari silinder upstream masih mempengaruhi silinder downstream namun sudah berkurang.

Gambar 2. 14 Grafik distribusi koefisien tekanan silinder (a) upstream, (b) downstream

2.9.4 Penelitian Eksperimental dan Numerik Penambahan Inlet Disturbance Body Terhadap Karakteristik Aliran Melintasi Silinder Sirkular Tersusun Tandem

Penelitian secara eksperimen dan numerik dilakukan (**Daman, 2014**) untuk mengetahui pengaruh *inlet disturbance body* terhadap karakteristik aliran melintasi dua silinder sirkular yang tersusun secara tandem pada saluran sempit. Benda uji yang digunakan berupa dua silinder sirkular dengan D = 25 mm yang disusun secara tandem dan diameter bodi pengganggu d = 4 mm. Variasi pada penelitian ini meliputi rasio jarak antar silinder L/D = 1,5 - 4 dan sudut bodi pengganggu θ = 30° dan 60°. Penelitian dilakukan pada *windtunnel* dengan dimensi 125 mm x 125 mm x 1800 mm dan pada bilangan Reynolds 1,56 x 10⁵.

Gambar 2. 15 Grafik distribusi tekanan silinder (a) *upstream*, (b) *downstream* pada konfigurasi tandem dengan IDB 30°; <u>L/D 4; L/D 2.5; - - - - L/D 1.5</u> (Daman, 2014)

Hasil penelitian yang dilakukan menunjukkan pada gambar 2.15 Titik stagnasi pada koefisien tekanan silinder upstream pada konfigurasi tandem dengan IDB 30° (gambar 2.15 a) tepat pada sudut 0°, setelah titik stagnasi aliran mengalami percepatan yang tidak terlalu signifikan. Hal ini disebabkan adanya celah antara IDB dan permukaan silinder, sehingga aliran mengalami hambatan. Kemudian pada sudut 20°, aliran mulai mengalami percepatan yang signifikan hingga mencapai kecepatan maksimum pada sudut 35°-40° untuk *upper side* dan 320°-325° untuk *lower side* yaitu sekitar 5°-10° setelah celah tersempit antara permukaan

silinder *upstream* dan *IDB*. Kcepatan maksimum terjadi setelah celah tersempit akibat pengaruh *boundary layer* dari silinder utama dan *IDB*. Setalah mencapai kecepatan maksimum aliran menagalami perlambatan danterjadi separasi, namun akibat momentum aliran yang lebih besar dari momentum aliran yang terseparasi dan pengaruh *wake* dari IDB, meneyebabkan *shear layer* yang terlepas mengalami *re-attachment* pada permukaan silinder *upstream* yang ditandai dengan adanya *peak*. Kemudian aliran mengikuti kontur permukaan silinder Kembali yang ditandai penurunan tekanan dan separasi pada sudut $115^{\circ}-120^{\circ}$ pada *upper side* dan sudut $235^{\circ}-240^{\circ}$ untuk *lower side*. Sedangkan untuk distribusi koefisien tekanan pada kontur permukaan silinder downstream untuk susunan silinder $1.5 \le L/D \le 3.5$. Hal ini menunjukkan bahwa silinder downstream masih terlingkupi wake silinder upstream. Adanya peak pada grafik menandakan bahwa *shear layer* yang terpisah dari silinder upstream mengalami *re-attachment* pada permukaan silinder *downstream*.

(b)

Gambar 2. 16 Velocity pathline susunan silinder secara tandem dengan IDB 30° pada : a) L/D 1.5, b) L/D 2.5, c) L/D 4; (St:stagnasi, Sp:separasi, Ra:re-attachment, BSp:backward separasi, FSp:forward separasi) (numerik, ReDh 1.56x105)

Gambar 2. 17 Detail A

Pada gambar 2. 16 menunjukkan visualisasi aliran berupa *pathline* kecepatan pada susunan silinder tandem dengan IDB 30°, untuk silinder titik stagnasi tepat pada sudut 0°. Setelah melewati celah antara *IDB* dan silinder *upstream*, aliran mengalami separasi yang kemudian kembali *attach* pada permukaan silinder *upstream* yang ditunjukkan detail A (gambar 2. 17). Kemudian akibat adanya *adverse presure gradient* positif, aliran mengalami separasi.

Detail A (gambar 2. 17) memperlihatkan adanya aliran yang terperangkap. Setelah melewati celah, aliran terseparasi namun akibat adanya *wake* dari IDB, *shear layer* yang terlepas mengalami *re-attach* ke permukaan silinder *upstream*. Sedangkan untuk silinder *downstream* dengan *L/D* 1.5 (gambar 2. 16a) dan *L/D* 2.5 (gambar 2. 16b) terdapat 2 titik *re-attachment* (Ra). Setelah mengalami *re-attachment* aliran terbagi menjadi *forward shear layer* yang kemudian terseparasi pada sisi depan silinder (*FSp*) dan *backward shear layer* yang terseparasi pada sisi belakang silinder (*BSp*). Untuk *L/D* 4 (gambar 2. 16c) terdapat 1 titik *re-attachment*. Hal ini menunjukkan bahwa semakin jauh jarak silinder *upstream* dan *dowmstream*, pengaruh *wake* dari silinder *upstream* semakin berkurang.

BAB III METODOLOGI

Pada bab ini akan dibahas metode penelitian yang digunakan, yaitu metode penelitian secara eksperimen mengenai karakteristik aliran melalui silinder sirkular dengan dua buah bodi pengganggu. Variasi yang dilakukan pada penelitian ini adalah variasi sudut bodi pengganggu depan terhadap silinder sirkular utama, yaitu $\theta = 20^{\circ}$, $\theta = 30^{\circ}$, $\theta = 40^{\circ}$ dan $\theta = 60^{\circ}$.

Studi eksperimen ini menggunakan dua buah silinder sirkular utama dengan diameter (D) 25 mm dengan penambahan *Inlet Disturbance Body* (IDB) menggunakan diameter kedua bodi pengganggu berukuran sama yaitu, d = 5 mm (d/D = 0,2). Jarak antara silinder utama dengan bodi pengganggu tetap yaitu 0,4 mm. Sedangkan perbandingan jarak antar silinder utama (37,5 mm) dengan diameter silinder utama tetap yaitu, L/D = 1,5

3.1 Skema Penelitian

Peneliatian ini dilakukan untuk mengetahui karakteristik aliran menggunakan salutran berpenampang bujur sangakar dengan skema yang dapat dilihat dari gambar 3.1. Pada gambar 3.1 ditunjukkan instalasi benda uji (test section) dan peralatan pendukung lainnya. *Cylinder Disturbance Body* (CDB) diletakkan pada sisi depan *main bluff body* dengan sudut yang sudah ditentukan

Gambar 3. 1 Skema Penelitian

3.2 Analisa Parameter yang diukur

Analisa parameter pada penelitian ini perlu dilakukan untuk mengetahui pengaruhnya terhadap eksperimen yang dilakukan. Parameter-parameter yang berpengaruh pada karakteristik aliran pada penelitian ini adalah massa jenis fluida (ρ), viskositas fluida (μ), kecepatan fluida (U_{∞}), diameter hidrolik (Dh), diameter silinder sirkular (D), diameter bodi pengganggu (d), dan jarak antara silinder sirkular dengan bodi pengganggu (g).

3.2.1 Analisa Grup tak berdimensi untuk Koefisien Pressure Drop pada Silinder

Pressure Drop pada silinder diduga dipengaruhi oleh beberapa parameter, sehingga perbedaan tekanan dapat dituliskan sebagai fungsi parameter tersebut. Secara matematik dapat dituliskan sebagai berikut:

$$\Delta P = f(\rho, \mu, U\infty, L, D, d, g, a, b)$$

Dimana ΔP adalah perbedaan tekanan (N/m²)

Dengan menggunakan *Buckingham* π *theorema* dengan parameter berulang, ρ , *V*, *D*, diperoleh 8 grup tak berdimensi yaitu:

- π₁ = Δ^p/ρ·U∞² : koefisien tekanan
 π₂ = μ/ρ·U∞² : bilangan *Reynolds* π₃ = d/D : perbandngan diameter bodi pengganggu dengan diameter silinder sirkular
- 4. $\pi_4 = \frac{a}{D}$: perbandingan tinggi *center to center* antara bodi pengganggu dengan diameter silinder sirkular
- 5. $\pi_5 = \frac{b}{D}$: perbandingan jarak *center to center* antara bodi pengganggu dengan diameter silinder sirkular
- 6. $\pi_6 = \frac{g}{D}$: perbandingan jarak bodi pengganggu dengan diameter silinder sirkular dengan diameter silinder sirkular
- 7. $\pi_7 = \frac{L}{D}$: perbandingan jarak antara titik pusat silinder utama dengan diameter silinder sirkular
- 8. $\pi_8 = \frac{\pi_4}{\pi_5} = \frac{a}{D} = \theta$: perbandingan jarak bodi pengganggu dengan tinggi bodi pengganggu, didapatkan sudut bodi pengganggu θ

Hubungan antar grup tak berdimensi adalah sebagai berikut:

$$\pi_1 = f(\pi_1 \pi_2 \pi_3 \pi_4 \pi_5 \pi_6 \pi_7)$$
$$\frac{\Delta p}{\rho U_{\infty}} = f_1(\frac{\mu}{\rho V D}, \frac{d}{D}, \frac{a}{D}, \frac{b}{D}, \frac{g}{D}, \frac{L}{D})$$

Karena nilai sudut pengganggu didapatkan dari nilai π_4 dan π_5 , maka fungsi bilangan tak berdimensi menjadi :

$$\frac{\Delta p}{\rho U_{\infty}} = f_2(\frac{\mu}{\rho VD}, \frac{d}{D}, \frac{g}{D}, \theta, \frac{L}{D})$$
Pada penelitian ini $\frac{\mu}{\rho VD}$, $\frac{d}{D}$, $\frac{g}{D}$ bernilai konstan, sedangkan untuk besar sudut antara bodi pengganggu dengan silinder sirkular utama (θ) divariasikan, untuk melihat perbandingan reduksi gaya hambat yang terjadi diantara variasi tersebut, sehingga diperoleh:

$$\frac{\Delta p}{\rho U_{\infty}} = f_3(\theta, \frac{S}{D})$$

Sehingga nilai koefisien *pressure* (*Cp*) pada silender utama adalah:

$$Cp = \frac{\Delta p}{\rho U_{\infty}} = f_3(\theta, \frac{L}{D})$$

3.3 Peralatan

3.3.1 Terowongan Angin (wind tunnel)

Eksperimen dengan menggunakan *wind tunnel* ini bertujuan agar dapat menguji benda dalam skala model. Pengukuran model sengaja dipilih untuk mempermudah pengujian dan menurunkan biaya pengerjaan. Maka dari itu, dirancanglah sebuah wind tunnel dengan kondisi yang mendekati kenyataan, sehingga hasil nya cukup akurat.

Jenis *wind tunnel* yang digunakan dalam eksperimen ini adalah *wind tunnel* jenis *open circuit wind tunnel*, dimana udara yang mengalir dalam *wind tunnel* langsung dilepaskan dengan bebas ke udara setelah melewati *work section. Wind tunnel* ini masuk ke dalam jenis *wind tunnel subsonic*.

Spesifikasi wind tunnel:

- Jenis : subsonic, open circuit wind tunnel
- Bentuk saluran uji : penampang bujur sangkar
- Panjang : 2000 mm
- Tinggi : 125 mm
- Lebar : 125 mm

Gambar 3. 2 Susunan Wind Tunnel

Keterangan :

- 1. Honey comb, screen, nozzle
- 2. Duct
- 3. Centrifugal Fan
- 4. Inverter

3.3.2 Benda Uji

Adapun benda uji dan spesifikasi nya dijelaskan sebagai berikut :

I. Silinder sirkular

Silinder utama yang digunakan ada dua buah. Berikut spesifikasi dari masingmasing silinder sirkular:

- Diameter = 25 mm
- Panjang = 200 mm
- Pressure tap = 4 lubang
- Bahan = Pipa PVC

Gambar 3. 3 Silinder sirkular

- II. Bodi Pengganggu
 - Tipe = Polos
 - Panjang = 200 mm
 - Diameter = 5 mm

Gambar 3. 4 Bodi pengganggu

3.3.3 Alat Ukur

Untuk mendapatkan tekanan statis sekalugus tekanan stagnasi, pada penelitian ini dibutuhkan alat ukur diantaranya adalah *pitot tube, wall-pressure tap, dan manometer inclined.*

a. Pitot Tube

Alat ini berfungsi untuk mengukur besarnya tekanan statis sekaligus tekanan stagnasi aliran fluida yang terdapat pada saluran maupun yang terletak dibelakang benda uji.

Gambar 3. 5 Pitot Tube

b. Wall-Pressure Tap

Wall-pressure tap yaitu lubang–lubang kecil berdiameter 1 mm yang terhubung pada manometer tekanan serta dipasang pada dinding saluran yang searah aliran dan tegak lurus terhadap permukaan.

Gambar 3. 6 Wall-Pressure Tap

c. Inverter

Inverter digunakan untuk mengatur kecepatan putaran dari *centrifugal fan*. Dengan spesifikasi *Inverter* yang digunakan sebagai berikut:

- Model : ATV31HU15M2A
- U (V-) : input = 200/240 Ø1 output = 200/240 Ø3
- F (Hz) : input = 50/60 output = 0.5/500
- I (A) : input = 15.8 max output = 8.0

Gambar 3. 7 Inverter

d. Centrifugal Fan

Pada penelitian ini menggunakan 1 buah *centrifugal fan* dengan spesifikasi sebagai berikut:

- Merk : Elex Max Three-Phase Asynchronous Motor
- Type : 71M4 4B3
- No : 0221
- Voltage : 220 / 380 Voltage
- Frekuensi : 50 Hz
- Daya : 0,75 KW
- Putaran : 1350 RPM
- Berat : 8,7 kg

Gambar 3. 8 Centrifugal Fan

e. Inclined Manometer (Manometer V)

Alat ini berfungsi mengukur tekanan melalui wall pressure tap dan pitot tubeManometer yang digunakan mempunyai kemiringan sebesar 15° yang bertujuan untuk mempermudah pembacaan Δh .

Spesifikasi inclined manometer yang digunakan adalah sebagai berikut:

- Skala minimum: 1 mm
- Fluida kerja : (SG = 0,804)
- Kemiringan : 15°

Gambar 3. 9 Inclimed Manometer (Manometer V)

3.4 Prosedur Pengambilan Data

Langkah-langkah dalam proses pengambilan data adalah sebagai berikut:

- 1. Menletakkan peralatan dan memasang benda uji yang digunakan untuk penelitian.
- 2. Mengukur kondisi udara di dalam ruangan saat pengujian (temperatur, dan tekanan).
- 3. Memasang benda uji pada saluran wind tunnel, yaitu dua buah silinder sirkular berdiameter D = 25 mm yang disusun secara tandem dengan jarak L/D = 1.5, kemudian bodi pengganggu dengan diameter (d) = 5 mm yang di letakkan pada sudut 20°, 30°, 40 ° dan 60° pada depan *upstream cylinder*.
- 4. Mengukur kesejajaran silinder dan dinding dengan water pass.
- 5. Menghidupkan *wind tunnel* dan mengatur kecepatan secara perlahan hingga kondisi steady.
- 6. Mengkur tekanan stagnasi dan tekanan statis dibagian tengah saluran uji yang terjadi pada wall pressure tap inlet dan outlet
- 7. Mengukur tekanan yang terjadi pada *wall pressure tap inlet* dan *inlet* dengan menggunakan manometer
- 8. Mengukur tekanan pada *pressure tap* yang terdapat di permukaan silinder, dan mengukur profil kecepatan di belakang *downstream* silinder dengan menggunakan *pitot static tube* yang dihubungkan dengan manometer.

3.5 Hasil Percobaan

- a. Data hasil pengukuran:
- 1. Perbedaan tekanan pada saluran sisi inlet dan outlet dari main silinder utama.
- 2. Distribusi tekanan pada tiap silinder
- b. Data yang diolah:
- 1. Profil kecepatan di belakan susunan silinder (y/h vs u/U) pada jarak serupa
- c. Data hasil perhitungan
- 1. Pressure drop dari adanya susunan *bluff body* (ΔP) dengan menggunakan persamaan berikut :

$$Fsx = \frac{\partial}{\partial t} \int_{CV} u\rho d\forall + \int_{CS} u\rho \overline{V} dA$$
$$-Rx + P_1 A_{duct} - P_2 A_{duct} = 0$$
$$Rx = (P_1 - P_2) A_{duct}$$
$$F_{DT} = \Delta P. A_{duct}$$
(3.1)

2. Koefisien distribusi tekanan (C_p) pada permukaan silinder utama *upstream* dan *downstream* diperoleh melalui persamaan berikut:

$$C_p = \frac{P_s - P_\infty}{\frac{1}{2}\rho U_\infty^2} \tag{3.2}$$

3. Koefisien drag (C_{DP}) susunan silinder utama dengan persamaan berikut:

$$C_{D_p} = \frac{1}{2} \int_0^{2\pi} C_p(\theta) \, \cos(\theta) \, d\theta \tag{3.3}$$

Dimana:

 $C_{p}(\theta)$ = koefisien tekanan kontur pada posisi θ

 θ = sudut posisi masing – masing *pressure tap* pada kontur

dan dari persamaan tersebut diselesaikan dengan metoda numerik aturan Simpson 1/3 segmen berganda yang dirumuskan sebagai berikut :

$$I \simeq \underbrace{(b-a)}_{lebar} \underbrace{\frac{f(x_o) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}_{Tinggirata-rata}}_{(3.4)$$

Sehingga,

$$C_{D_p} = \frac{b-a}{2 x 3n} \{ y_0 + 2(y_2 + \dots + y_{n-2}) + 4(y_1 + \dots + y_{n-1}) \} + y_n$$
(3.5)

dimana:

a = sudut awal = 0 b = sudut akhir = 2π y_0 = data pertama $2(y_2 + \dots + y_{n-2})$ = jumlah data ganjil $4(y_1 + \dots + y_{n-1})$ = jumlah data genap y_n = data terakhir

3.6 Urutan Langkah Penelitian

Berikut ringkasan data yang diperoleh secara eksperimen. Untuk data *pressure drop* diperoleh melalui eksperimen dengan $Re 4,7x10^4 - 1,33 \times 10^5$ sedangkan untuk distribusi tekanan dan profil kecepatan

Variabel yang diukur	Kondisi	Re
1. △P (P inlet & P outlet)	Saluran kosong Saluran dengan silinder tunggal Saluran dengan silinder + Inlet Disturbance Body	4,7x10 ⁴ ; 5,8x10 ⁴ ; 6,9x10 ⁴ ; 8,4x10 ⁴ 9,7x10 ⁴ ;1,1x10 ⁵ ;1,23x10 ⁵ ;1,33x10 ⁵
2. Distribusi Tekanan (Cp) dan (C _{DP})	Silinder tandem Silinder tandem + Inlet Disturbance Body	9,7x10 ⁴ dan 1,33x10 ⁵
3. Profil Kecepatan	Silinder tandem Silinder tandem + Inlet Disturbance Body	

3.7 Flowchart Penelitian

Adapun langkah penelitian ini ditampilakan melalui flowchart pada gambar 3.11.

Gambar 3. 10 Flowchart penelitian

BAB IV HASIL DAN PEMBAHASAN

Pada bab ini akan menampilkan hasil dan pembahasan secara detail berdasarkan kajian eksperimen, yang meliputi data kauntitatif dan data kualitatif. Hasil pengukuran dari eksperimen yang diperoleh berupa pengukuran tekanan pada sisi inlet inlet dan outlet *wind tunnel* pada konfigurasi silinder tandem, pengukuran tekanan statis dan tekanan stagnasi *free stream*, tekanan statis permukaan silinder *upstream* maupun *downstream*, pengukuran tekanan statis dan stagnasi di belakang konfigurasi tandem. Hasil pengukuran tersebut diolah sehingga diperoleh distribusi koefisien tekanan pada permukaan silinder *upstream* maupun *downstream*, koefisien *drag* silinder *upstream* maupun *downstream*, profil kecepatan di belakang susunan silinder untuk konfigurasi tandem dan nilai *pressure drop* pada konfigurasi tandem,.

Struktur penulisan pada bab ini diawali pembahasan mengenai pengaruh peningkatan bilangan Reynolds terhadap pressure drop pada empat konfigurasi susunan tandem pada berbagai variasi sudut antara *IDB* dengan silinder utama dan tanpa *IDB*. Selanjutnya dalam bab inj juga menampilkan data kuantitatif meliputi distribusi koefisien tekanan permukaan (Cp) yang diperoleh dari pengukuran tekanan pada *pressure tap* yang ditempatkan pada kontur sudut 0° sampai 360° di bagian bentang tengah silinder secara melingkar dengan pengambilan data setiap perubahan sudut rotasi setiap 5° untuk silinder sirkular tandem tanpa *IDB* dan pada empat konfigurasi susunan tandem pada berbagai variasi sudut antara *IDB* dengan silinder utama , kemudian data yang diperoleh diolah dengan menggunakan persamaan 3.2 dan subbab ini juga menampilkan profil kecepatan di belakang konfigurasi tandem tanpa *IDB* yang diperoleh secara eksperimen.

4.1 Distribusi Koefisien Tekanan (Cp) Silinder Sirkular Tunggal tanpa IDB

Pada sub bab awal ini akan membandingkan data hasil eksperimen yang dilakukan oleh peneliti terdahulu dengan penelitian sekarang yang memiliki bahsan dan tujuan yang sama. Hasil simulasi dari pengujian akan dikomparasi dengan penelitian yang telah divalidasi. Penelitian yang telah dilakukan oleh **Hidayat (2014)** dengan bilangan Reynolds, Re = 1,56 x 10^5 sedangkan Re yang dilakukan pada penelitian sekarang adalah 1,33 x 10^5 dimana silinder utama yang digunakan sama yakni D = 25 mm, akan digunakan sebagai validasi pada penelitian ini. Gambar 4.1 menampilkan hasil komparasi grafik Cp dari data eksperimen dan data penelitian sebelumnya yang dilakukan pada silinder sirkular tunggal tanpa *IDB*.

Dapat dilihat pada kedua grafik memiliki *trend line* yang tidak jauh berbeda. Aliran dimulai pada titik stagnasi di kedua grafik tepat pada sudut 0°. Kemudian mengalami percepatan mengikuti kontur permukaan silinder sirkular hingga mencapai kecepatan maksimum pada sudut sekitar 65°. Setelah mengalami kecepatan maksimum ditandai dengan nilai Cp terendah kemudian aliran mengalami perlambatan akibat tidak mampu melawan *adverse pressure gradient* dan kemudian mengalami separasi pada sudut 90°.

Gambar 4. 1 Perbandingan Distribusi Koefisien Tekanan Silinder Tunggal Penelitian dengan (Hidayat, 2014)

4.2 Distribusi Koefisien Tekanan (Cp) Silinder Sirkular Tandem tanpa IDB

Pada gambar 4.2 (a) di bawah, distibusi koefisien tekanan permukaan silinder upstream menunjukan tren grafik yang hamper sama untuk variasi bilangan Reynolds dan titik stagnasi tepat pada sudut 0°. Setelah titik stagnasi, Cp = 1, aliran mengalami akselarasi (flow accelerated) yang diindikasikan dengan menurunnya grafik koefisien tekanan secara ekstrem hingga aliran mengalami kenaikan kecepatan akibat streamtube yang semakin menyempit (convergence streamtube) sampai mencapai kecepatan maksimum yang ditandai dengan nilai distribusi koefisien tekanan paling rendah. Pada upper side, aliran mengalami kecepatan maksimum pada sudut sekitar 60°-65°, sedangkan pada *lower side*, aliran mengalami kecepatan maksimum pada sudut 290°-295°. Setelah itu, aliran mengalami perlambatan akibat adanya adverse pressure yang ditandai dengan adanya peningkatan tekanan. Hal ini mengakibatkan partikel-partikel di dalam boundary layer silinder mengalami perlambatan. Selain itu, adanya tegangan geser pada permukaan kontur silinder juga mengakibatkan momentum fluida yang mengalirkan fluida tidak mampu lagi melawan adverse pressure dan tegangan geser yang terjadi, sehingga aliran akan mengalami separasi yang ditandai dengan nilai koefisien tekanan mulai steady pada sudut kontur 90° untuk upper side dan 270° lower side. Perbedaan dari variasi bilangan Reynolds terlihat pada base pressure. Nilai base pressure terendah pada bilangan Reynolds 1,33 x 10^5 dan tertinggi pada bilangan Reynolds 9,7 x 10^4 .

(b)

Gambar 4. 2 Grafik distribusi koefisien tekanan silinder (a) *upstream* ; (b) *downstream* pada konfigurasi tandem tanpa *IDB*

Distribusi koefisien tekanan pada kontur permukaan silinder *downstream* untuk susunan silinder tandem tanpa *IDB* gambar 4.2 (b) bernilai negatif untuk bilangan Reynolds 1,33 x 10⁵ dan sebagian bernilai negatif pada bilangan Reynolds 9,7 x 10⁴. Hal ini menunjukkan bahwa silinder *downstream* masih terlingkupi *wake* dari silinder *upstream*. Menurut Alam, et al., adanya *peak* pada *upper side* dan *lower side* menandakan bahwa *shear layer* silinder *upstream* mengalami *re-attachment* pada permukaan silinder downstream kemudian *shear layer* terbagi menjadi *backward shear layer* (*BSL*) yang mengalir ke arah *downstream* dan *forward shear layer* (*FSL*) yang mengalir ke arah *upstream*.

Untuk *upper side* kedua bilangan Reynolds, *backward shear layer* mengalami percepatan hingga sudut 90° - 100° dan mengalami perlambatan kemudian terseparasi pada sudut 130° yang disebut sebagai backward separation position (*BSp*) sedangkan *forward shear layer* mengalami percepatan hingga sudut 40° dan langsung terseparasi disebut sebagai *forward separation position (FSp)*. Sedangkan pada *lower side*, *FSL* terseparasi pada sudut 330° dan BSL terseparasi pada sudut 235°.

4.3 Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi sudut *IDB* $\theta = 20^{\circ}$

Distribusi koefisien tekanan aliran yang melintasi silinder sirkular tandem dengan penambahan *IDB* pada sudut 20° ditunjukkan pada gambar 4.2 (a) untuk silinder <u>upstream</u> di bawah menunjukkan *trend* yang hampir sama pada masing-masing bilangan Reynolds. Titik stagnasi pada silinder upstream terjadi saat nilai koefisien distribusi tertinggi yaitu Cp = 1. Setelah mengalami stagnasi, aliran mengalami akselerasi secara bertahap di kedua sisi, upperside dan lower side yang ditandai dengan penurunan nilai distribusi koefisien tekanan (Cp). Pada tahap pertama upper side aliran mengalami percepatan pada sudut 20° - 25°, sedangkan pada sisi lower side aliran mengalami percepatan tahap pertama terjadi pada sudut 330°. Kemudian karena adanya mixing shear layer antara Inlet Disturbance Body dengan kecepatan *freestream* menyebabkan aliran attach ke silinder sirkular utama, hingga aliran memiliki energi kembali melawan adverse pressure dan friksi yang terjadi, fenomena ini disebut reattachment yang ditandai dengan adanya peak (puncak). Letak peak pada bagian upper side terjadi pada sudut 40°, sedangkan letak peak pada lower side antara sudut 315° - 320°.

(a)

Gambar 4. 3 Grafik distribusi koefisien tekanan silinder (a) *upstream* ; (b) *downstream* pada konfigurasi tandem dengan *IDB* 20°

Kemudian aliran mengikuti kontur permukaan silinder kembali yang ditandai penurunan tekanan, hal ini menandakan terjadi akselerasi tahap kedua. Letak akselerasi maksimum tahap kedua pada *upper side* terjadi pada sudut 65° - 70°. Sedangkan pada bagian *lower side*, titik akselerasi maksimum terjadi pada sudut 280°-285°. Setelah itu, aliran mengalami perlambatan dan tekanan cenderung meningkat karena harus melawan *adverse pressure* dan gesekan sehingga aliran tidak mampu melawan dan terjadilah separasi aliran. Titik separasi separasi aliran pada *upper side* terjadi pada kisaran sudut 115° dan pada bagian *lowerside* separasi terjadi pada sudut 250°.

Distribusi koefisien tekanan pada kontur permukaan silinder *downstream* untuk susunan silinder tandem dengan *IDB* 20° dapat dilihat pada gambar 4.3 (b) bernilai negatif untuk bilangan Reynolds 1,33 x 10⁵ dan bernilai 0,08 – 0,0281 untuk bilangan Reynolds 9,7 x 10⁴. Hal ini menunjukkan bahwa silinder *downstream* masih terlingkupi wake silinder *upstream*. Adanya peak pada grafik menandakan bahwa *shear layer* yang terpisah dari silinder *upstream* mengalami *re-attachment* yang terjadi pada sudut kontur 70° - 75° pada permukaan silinder *downstream*. Titik *attachment* berada pada titik 0°, kemudian aliran mengalami percepatan hingga mencapai pada sudut 100° dan mengalami perlambatan kemudian terseparasi pada sudut 130° yang disebut sebagai backward separation position (*BSp*) sedangkan *forward shear layer* mengalami percepatan hingga sudut 30° dan langsung terseparasi disebut sebagai *forward separation position* (*FSp*). Sedangkan pada *lower side*, *FSL* terseparasi pada sudut 350° dan *BSL* terseparasi pada sudut 225°.

4.4 Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi sudut *IDB* $\theta = 30^{\circ}$

Gambar 4. 4 Grafik distribusi koefisien tekanan silinder (a) *upstream* ; (b) *downstream* pada konfigurasi tandem dengan *IDB* 30°

Titik stagnasi pada koefisien tekanan silinder *upstream* pada konfigurasi tandem dengan IDB 30° (gambar 4.4 (a)) tepat pada sudut 0°, setelah titik stagnasi aliran mengalami percepatan yang tidak terlalu signifikan seperti pada gambar 4.2 (a). Hal ini disebabkan adanya celah antara *IDB* dan permukaan silinder, sehingga aliran mengalami hambatan. Hampir sama dengan penambahan *IDB* sudut 20°, terdapat dua tahap terjadinya akselerasi baik di *upper side* dan *lower side*. Setelah aliran mengalami stagnasi, terjadi akselerasi tahap pertama yang terjadi pada

sudut 30° - 35° pada sisi *upper side* dan pada sudut 330° pada sisi *lower side*. Dengan adanya penambahan bodi pengganggu pada bagian *upstream* silinder sirkular, *wake* dari bodi pengganggu menyebabkan *shear layer* yang terlepas mengalami *re-attachment* pada permukaan silinder yang ditandai dengan adanya *peak*. Puncak terjadi pada sudut 60° pada *upper side* dan terjadi pada sudut 305° pada sisi *lower side*.

Setelah mengalami *peak* pada kedua sisi, aliran kemudian mengalami percepatan yang ditandai dengan penurunan koefisien tekanan yang ekstrem. Pada akselerasi tahap kedua ini, nilai percepatan maksimum terjadi pada rentang sudut 75° - 85° untuk *upper side*, dan pada *lower side* akselerasi maksimum terjadi pada rentang sudut 275° - 285°. Setelah mengalami kecepatan maksimum, tekanan cenderung meningkat lagi karena harus melawan *adverse pressure* dan gesekan sehingga aliran tidak mampu melawan dan pada kondisi ini terjadilah separasi aliran. Titik separasi aliran pada *upper side* terjadi pada kisaran sudut 120° dan pada bagian *lower side* separasi terjadi pada sudut 260°.

Nilai distribusi silinder *downstream* pada susunan silinder sirkular tendem dengan *IDB* 30° memiliki nilai negatif untuk kedua variasi bilangan Reynolds, menunjukkan bahwa silinder *downstream* masih dipengaruhi *wake* oleh silinder *upstream*. *Re-attachment* yang ditandai dengan adanya *peak* terjadi pada sudut 65°, kemudian aliran mengalami percepatan hingga pada rentang sudut 85° - 90° dan terseparasi pada sudut 135° (BSL) dan 35° (*FSL*) untuk kedua bilangan Reynolds pada sisi *upper side*. Sedangkan untuk *lower side, re-attachment* terjadi pada sudut 300° dan *BSL* pada sudut 230° serta *FSL* 325° (Re = 9,7 x 10⁴) dan 230° (Re = 1,33 x 10⁵)

(b)

Gambar 4. 5 Grafik distribusi koefisien tekanan silinder (a) *upstream* ; (b) *downstream* pada konfigurasi tandem dengan *IDB* 40°

Sama dengan distribusi koefisien yang lain, titik stagnasi koefisien tekanan silinder sirkular *upstream* dengan penambahan *Inlet Disturbance Body* pada variasi sudut 40° terjadi tepat pada sudut 0° dengan Cp maksimal yaitu Cp = 1, yang bisa dilihat pada gambar 4.5 (a) di atas. Dari gambar 4.5 (a) dapat dilihat tren grafik pada *uperside* dan *lower side* relatif sama dengan adanya satu buah peak di masing masing sisi. Setelah melewati titik stagnasi, aliran mengalamu percepatan yang tidak telalu signifikan. Hal ini disebabkan adanya celah antara *IDB* dan permukaan silinder, shingga aliran mengalami hambatan. Kemudian pada sudut (θ) = ± 35°, aliran mulai mengalami percepatan yang signifikan hingga mencapai kecepatan maksimum pada sudut 40° pada sisi *upper side* dan 315° untuk *lower side*. Pada bagian *upper side, peak* terbentuk pada sudut sudut 55° untuk bilangan Re = 9,7 x 10⁴ dan 1,33 x 10⁵ kemudian kembali mengalami percepatan pada rentang sudut 65° - 70°. Setelah itu mengalami perlambatan akibat *friction* sampai akhirnya terseparasi pada sudut 110°. Sedangkan untuk *lower side, peak* terbentuk pada sudut 295° untuk bilangan Re = 1,33 x 10⁵ dan sudut 305° untuk bilangan Re = 9,7 x 10⁴, kemudian kembali mengalami percepatan pada sudut 265°.

Sedangkan untuk nilai distribusi koefisien untuk silinder *downstream* untuk susunan silinder sirkular tendem dengan *IDB* 40° tidak memiliki perbedaan trend yang jauh dengan susunan penambahan *IDB* yang lain untuk setiap bilangan Reynolds yakni bernilai negatif, menandakan bahwa pengaruh *wake* silinder *upstream* masih melingkupi silinder *downstream*. Titik *Re-attachment* berada pada titik 75°, kemudian aliran mengalami percepatan hingga mencapai pada sudut 100° dan mengalami perlambatan kemudian terseparasi pada sudut 130° yang disebut sebagai backward separation position (*BSp*) sedangkan *forward shear layer* mengalami percepatan hingga sudut 35° (Re = 1,33 x 10⁵) dan 25° (Re = 9,7 x 10⁴) kemudian

langsung terseparasi (*forward separation position*) (*FSp*). Sedangkan pada *lower side*, *FSL* terseparasi pada sudut 325° - 330° dan BSL terseparasi pada sudut 250°.

4.6 Distribusi Koefisien Tekanan (Cp) pada Silinder Sirkular Tandem dengan variasi sudut *IDB* $\theta = 60^{\circ}$

Gambar 4. 6 Grafik distribusi koefisien tekanan silinder (a) *upstream* ; (b) *downstream* pada konfigurasi tandem dengan *IDB* 60°

Sudut Contur θ

(b)

-1,6 L

Sama seperti distribusi koefisien tekanan yang lain, berdasarkan gambar 4.6 (a), tampak bahwa transisi lapis batas laminar menjadi turbulen diindikasikan dengan titik stagnasi tepat pada sudut 0° pada Cp = 1, kemudian setelah titik stagnasi distribusi koefisien tekanan menurun

secara perlahan. Setelah penurunan Cp, terbentuk suatu small adverse pressure gradient yang disebabkan adanya *blockage effect* akibat celah yang terbentuk antara silinder sirkular dan *IDB*. Hal ini terlihat dari adanya fluktuasi yang sangat kecil sebelum sudut 60° yaitu sudut yang memiliki celah tersempit. yang terjadi pada rentang sudut 30° - 45° untuk upper side sedangkan pada lower side terjadi pada rentang sudut 315° - 330°. Akselerasi maksimum terjadi pada sudut 300° untuk sisi lower side dan pada sisi upper side akselerasi maksimum terjadi pada sudut 55°. Sesaat setelah mengalami percepatan maksimum, aliran mengalami perlambatan dan langsung terseparasi pada sudut $\pm 85^{\circ}$ pada *upper side*, dan separsi pada sudut $\pm 270^{\circ}$ pada *lower side*. Hal ini disebabkan momentum aliran freestream maupun wake dari Inlet Disturbance Body tidak mampu mendorong shear layer yang terlepas sehingga tidak dapat kembali attach pada kontur silinder. Pada grafik silinder sirkular tandem dengan variasi sudut IDB 60° terjadi akselerasi maksimum dibandingkan dengn variasi lainnya. Hal ini disebabkan karena free shear layer yang terseparasi pada IDB tidak lagi attach pada permukaan silinder, dikarenakan separation *bubble* pada permukaan *IDB* yang semakin panjang dan tebal, serta aliran cenderung untuk melewati sisi upper side IDB karena momentum dari aliran yang sudah lemah. Hal ini mengakibatkan terjadi defisit momentum pada daerah ini sehingga aliran langsung mengalami separasi massif, yang membentuk stream tube yang semakin lebar sehingga terjadi peningkatan adverse pressure. Hal ini membuat separasi massif pada silinder sirkular pada variasi sudut bodi pengganggu 60° terjadi jauh lebih awal dibandingakan silinder sirkular tandem *IDB*, yaitu terjadi pada sudut 85° bagian upperside dan separasi masif pada lowerside yaitu sudut 265°.

Sedangkan distribusi koefisien tekanan pada kontur permukaan silinder *downstream* untuk susunan silinder tandem dengan penambahan *IDB* 60° (gambar 4.6 (b)) menunjukkan tren yang tidak jauh berbeda untuk masing-masing bilangan Reynolds. Nilai koefisien tekanan pada susunan silinder ini bernilai paling rendah daripada tiga susunan silinder tandem yang lain. Hal ini menunjukkan bahwa *wake* yang terbentuk akibat penambahan *IDB* pada sudut 60° lebih lebar daripada tiga susunan yang lain. Nilai koefisien tekanan dibawah nol mengindikasikan bahwa nilai koefisien drag lebih rendah. Titik *Re-attachment* berada pada titik 80° pada sisi *upper side* dan 275° - 290° pada *lower side*, kemudian aliran terseparasi pada sudut ±105° yang disebut sebagai backward separation position (*BSp*) sedangkan *forward shear layer* mengalami percepatan hingga sudut 25° dan langsung terseparasi disebut sebagai *forward separation position* (*FSp*). Sedangkan pada *lower side*, *FSL* terseparasi pada sudut 340° dan BSL terseparasi pada sudut 225°.

4.7 Perbandingan Distribusi Koefisien Tekanan Silinder serta Profil Kecepatan di belakang Konfigurasi Tandem pada Berbagai Sudut Variasi *IDB* (Re = 1,33 x 10⁵)

Dalam subbab ini menampilkan data kuantitatif berupa perbandingan distribusi koefisien tekanan Cp variasi sudut *Inlet Disturbance Body* 20°, 30°, 40°, dan 60° (L/D = 1,5) dengan silinder sirkular tandem dengan *Inlet Disturbance Body* diameter silinder utama 25 mm dan besarnya nilai Bilangan Reynolds yang digunakan adalah 1,33 x 10⁵, agar mengetahui perbedaan distribusi koefisien tekanan yang terjadi di tiap variasi sudut *IDB*.

Pada gambar 4.7 (a) tampak bahwa aliran pada silinder sirkular tandem dengan variasi sudut *Inlet Disturbance Body* 20° dan 30° mengalami akselerasi sebanyak dua kali, berbeda dengan silinder sirkular tandem tanpa *IDB* yang langsung mengalami akselerasi maksimum pada sudut 70°. Perbedaan ini dikarenakan pada aliran pada silinder sirkular tandem dengan penambahan sudut *Inlet Disturbance Body* 20° dan 30° melewati celah sempit antara permukaan bodi pengganggu dengan silinder sirkular utama. Juga dapat dilihat dari grafik Gambar 4.7 (a),

bahwa tren grafik pada *base pressure* silinder sirkular dengan penambahan sudut *Inlet Disturbance Body* 20°dan 30° memiliki tren yang sama dan grafik yang berhimpit. Perbedaannya hanya ada pada sudut terjadinya peak pada kedua sisi *upper side* dan *lower side*. *Peak* yang terjadi mengindikasikan adanya *re-attachment*. Momentum fluida yang terdefleksi dari *Inlet Disturbance Body* berinteraksi dengan momenum fluida pada *freestream*. Hal ini mengakibatkan terjadinya penambahan momentum. Energi dari *freestream* dan *wake* di belakang *Inlet Disturbance Body* mampu mendorong aliran kembali *attach* pada permukaan silinder sirkular utama. Hal inilah yang menyebabkan *re-attachment*. Penambahan momentum pada daerah ini mampu melawan *adverse pressure* dan gesekan aliran sehingga transisi aliran terjadi lebih cepat ke turbulen sehingga terjadi separasi masif pada silinder sirkular utama dengan penambahan *Inlet Disturbance Body* 20° dan 30°.

Sedangkan untuk silinder sirkular tandem tanpa *Inlet Disturbance Body* terlihat bahwa tidak ada terjadi fenomena *peak* yang ditunjukkan pada grafiknya. Titik separasi pada silinder sirkular *upstream* dengan penambahan *IDB* pada sudut 20° dan 30° juga tidak terlalu jauh berbeda, yaitu terjadi pada sudut 115° *upper side* dan 245° *lower side* untuk variasi *Inlet Disturbance Body* 20° dan separasi yang terjadi pada variasi sudut *Inlet Disturbance Body* 30° yaitu pada sudut 120° untuk *upper side* dan 245° untuk *lower side*. Dibandingkan dengan silinder sirkular tanpa penambahan *Inlet Disturbance Body* yang memiliki titik separasi tepat pada sudut 90° untuk bagian *upper side* dan sudut 265° untuk *lower side*, terlihat bahwa penambahan *Inlet Disturbance Body* di depan silinder sirkular utama. Hal ini karena hanya pada konfigurasi tandem dengan *IDB* 20° dan 30° aliran mengalami *re-attachment* pada kontur.

(a)

(b)

Gambar 4. 7 Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular *upstream* dengan berbagai variasi sudut *IDB* dan tanpa *IDB*

- (a) Silinder Tandem dengan variasi sudut IDB 20° dan 30°
- (b) Silinder Tandem dengan variasi sudut *IDB* 40°dan 60°

Grafik perbandingan distribusi koefisien tekanan (Cp) untuk silinder sirkular *upstream* dan silinder sirkular *upstream* dengan variasi sudut *Inlet Disturbance Body* 40° dan 60° dapat dilihat dari gambar 4.7 (b). Dari gambar dapat dilihat tampak perbedaan akselerasi maksimum pada setiap variasi sudut *IDB*. Pada grafik silinder sirkular *upstream* dengan variasi sudut *IDB* 60° terjadi akselerasi maksimum dibandingkan dengn variasi lainnya, setelah titik stagnasi, aliran mengalami percepatan namun sebelum melalui sisi celah aliran mengalami perlambatan yang disebabkan adanya *blockage effect* akibat celah yang terbentuk antara silinder upstream dan *IDB*. Hal ini terlihat dari adanya fluktuasi yang sangat kecil sebelum sudut 60° yaitu sudut yang memiliki celah tersempit. Hal ini mengalami separasi massif, yang membentuk *stream tube* yang semakin lebar sehingga terjadi peningkatan *adverse pressure*. Hal ini membuat separasi massif pada silinder sirkular pada variasi sudut *IDB* 60° terjadi jauh lebih awal dibandingakan silinder sirkular tanpa *IDB* yaitu terjadi pada sudut $\pm 85^{\circ}$ bagian *upper side* dan separasi masif pada *lower side* yaitu sudut $\pm 290^{\circ}$.

Hal ini berbeda dengan grafik yang ditunjukkan oleh silinder sirkular *upstream* dengan variasi sudut *IDB* 40°. Sama halnya dengan variasi sudut *IDB* 20° dan 30°, energi dari *freestream* dan *wake* yang terbentuk di belakang *IDB* mampu mendorong aliran kembali *attach* pada permukaan silinder. Penambahan ini mampu melawan *shear stress* dan *adverse pressure* sehingga aliran transisinya lebih cepat menuju turbulen adan akhirnya terseparasi masif pada sudut 105° untuk *upper side* dan sudut 265° untuk bagian *lower side*. Dari Gambar 4.6 (b) dapat disimpulkan bahwa silinder sirkular <u>upstream</u> dengan variasi sudut *IDB* 40° efektif untuk mendorong titik separasi ke arah *downstream* dibanding silinder sirkular tanpa *Inlet*

Disturbance Body, sedangkan untuk silinder sirkular dengan variasi sudut *Inlet Disturbance Body* 60° tidak efektif untuk mendorong titik separasi ke bagian lebih belakang silinder sirkular dibandingkan dengan silinder sirkular tanpa *Inlet Disturbance Body*.

Gambar 4. 8 Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular *downstream* dengan berbagai variasi sudut *IDB* dan tanpa *IDB*(a) Silinder Tandem dengan variasi sudut *IDB* 20° dan 30°
(b) Silinder Tandem dengan variasi sudut *IDB* 40° dan 60°

Sedangkan untuk silinder *downstream* pada L/D = 1,5 (gambar 4.8) terlihat tren kelima grafik sama dan koefisien tekanan bernilai negatif. Hal ini menandakan bahwa silinder sirkular

downstream masih dipengaruhi *wake* oleh silinder *upstream*. Konfigurasi tandem dengan penambahan *IDB* 60° memiliki distribusi koefisien tekanan paling rendah dan titik *re-attachment* lebih kearah *downstream* yakni pada sudut 80°. Nilai distribusi koefisien tekanan yang tertinggi terjadi pada konfigurasi tandem dengan *IDB* 20°, sedangkan distribusi koefisien tekanan konfigurasi tandem tanpa *IDB* berada diantara distribusi koefisien tekanan konfigurasi tandem tanga *IDB* berada diantara distribusi koefisien tekanan konfigurasi tandem dengan *IDB* 20° dan 30°. Titik *re-attachment* pada silinder *downstream* konfigurasi tandem dengan *IDB* 20°, 30°, dan 40° berada pada rentang sudut 65°- 70°, sedangkan untuk konfigurasi dengan *IDB* 60° dan tandem tanpa *IDB* pada sudut 80°. Hal ini menunjukkan bahwa *wake* silinder *upstream* konfigurasi tandem dengan *IDB* 20°, 30°, dan 40° Ibbih sempit dibandingkan wake silinder *upstream* konfigurasi dengan *IDB*. Titik separasi dan *re-attachment* silinder *downstream* dapat dilihat pada tabel 4.1

Variasi Sudut	Upper side		Lower side			
	Re- attach	Separasi FSL	Separasi BSL	Re- attach	Separasi FSL	Separasi BSL
Tanpa <i>IDB</i>	80°	25°	130°	290°	330°	240°
20°	70°	20°	135°	300°	350°	215°
30°	65°	20°	140°	305°	330°	230°
40°	70°	20°	130°	300°	325°	260°
60°	80°	25°	125°	275°	340°	225°

Tabel 4. 1 Sudut separasi silinder downstream pada variasi susunan silinder sirkular tandem
dengan IDB dan susunan silinder tandem tanpa IDB

Selanjutnya, pembahasan mengenai distribusi profil kecepatan di belakang konfigurasi silinder sirkular tersusun tandem secara eksperimen untuk berbagai variasi sudut *Inlet Disturbance Body*. Profil kecepatan di belakang susuna silinder sirkular mengalami penurunan kecepatan yang menandakan adanya defisit momentum pada aliran tersebut. Semakin kecil nilai defisit momentum tersebut maka semakin kecil pula gaya hambat terhadap momentum aliran fluida di belakang silinder sirkular.

(a)

(b)

(a) Silinder Tandem dengan variasi sudut IDB 20° dan 30°

(b) Silinder Tandem dengan variasi sudut *IDB* 40° dan 60°

Gambar 4.9 menunjukkan hubungan antara rasio tebal lapis batas dengan ketinggian (y/h) dan rasio kecepatan yang terjadi dalam lapis batas (U/Umax) silinder sirkular tandem tanpa *Inlet Disturbance Body* dan silinder sirkular tandem dengan berbagai variasi sudut *Inlet Disturbance Body*. Dari gambar 4.9 (a) diinformasikan bahwa tren grafik yang terjadi pada silinder sirkular tandem tanpa *IDB* dan dengan penambahan *IDB* variasi sudut 20° dan 30° mempunyai nilai defisit momentum yang lebih kecil, ditandai dengan nilai U/Umax yang lebih besar dibanding dengan silinder sirkular tandem tanpa *IDB* sudut 20° memiliki lebar *wake* pada silinder sirkular tandem tanpa *IDB* dengan penambahan *IDB*. Untuk lebar *wake* pada silinder sirkular tandem tanpa *IDB* dengan penambahan *IDB*. Untuk lebar *wake* pada silinder sirkular tandem tanpa *IDB* sudut 20° memiliki lebar yang hampir sama yaitu 0,315 \leq y/h \leq 0,684, sedangkan pada konfigurasi tandem dengan *IDB* 30° memiliki lebar *wake* yang lebih sempit sekitar. 0,342 \leq y/h \leq 0,657.

Pada konfigurasi silinder sirkular tandem dengan penambahan *IDB* sudut 40° dan 60° ditunjukkan dengan gambar 4.9 (b), dapat dilihat pada silinder sirkular dengan penambahan sudut *IDB* 60° terjadi defisit momentum yang paling besar dibandingkan variasi lainnya. Hal ini menunjukkan bahwa *wake* di belakang silinder sirkular tandem dengan penambahan sudut *IDB* 60° semakin besar, sehingga gaya hambat yang terjadi juga semakin besar, hal ini juga ditandai dengan lebar *wake* berkisar $0,289 \le y/h \le 0,684$. Untuk silinder sirkular tandem dengan penambahan *IDB* sudut 40° menunjukkan tren grafik yang hampir sama dengan variasi *IDB* sudut 20° dan 30°, dimana lebar *wake* sekitar $0,263 \le y/h \le 0,736$. Pada Gambar 4.9, penambahan *IDB* sudut 30° memiliki nilai defisit momentum yang paling kecil dibandingkan dengan variasi lainnya. Hal ini disebabkan silinder sirkular tandem penambahan *IDB* sudut 30° memiliki nilai defisit momentum yang paling kecil dibandingkan dengan variasi lainnya. Hal ini disebabkan silinder sirkular tandem penambahan *IDB* sudut 30° mempercepat aliran lapis batas dari laminar ke turbulen, dengan dominasi lapis batas turbulen pada permukaan silinder sirkular, maka titik separasi pada silinder sirkular utama akan lebih tertunda ke belakang. Titik separasi yang semakin tertunda ke belakang mengindiksikan *wake* yang tercepta juga semakin kecil.

4.8 Distribusi Koefisien *Drag Pressure* Silinder (Cdp) pada Berbagai Variasi Sudut *IDB*

Data kuantitatif lainnya yang diteliti pada penelitian reduksi gaya hambat pada silinder sirkular tandem dengan berbagai variasi sudut *Inlet Disturbance Body* adalah menghitung nilai koefisien *drag pressure* yang dihasilkan. Hal ini bertujuan untuk mengetahui posisi sudut berapa *Inlet Disturbance Body* menghasilkan nilai koefisien *drag pressure* yang terkecil sehingga mampu mereduksi gaya hambat yang lebih baik dibandingkan silinder sirkular tandem tanpa *Inlet Disturbance Body*. Koefisien *pressure drag* silinder *upstream* maupun silinder *downstream* diperoleh dari persamaan 3.5. Besarnya koefisien *drag pressure* (Cdp) terhadap bilangan Reynolds ditunjukkan pada tabel 4.2. Hasil yang didapatkan pada silinder silinder sirkular yang disusun tandem berdasarkan bilangan Reynolds sebesar $1,33 \times 10^5$.

No	Variasi	Cdp		
	v ar lasi	Upstream	Downstream	
1	Tandem Tanpa IDB	0,832	-0,55	
2	$IDB(\theta) = 20^{\circ}$	0,640	-0,36	
3	$IDB(\theta) = 30^{\circ}$	0,402	-0,24	
4	$IDB(\theta) = 40^{\circ}$	0,648	-0,15	
5	$IDB(\theta) = 60^{\circ}$	1,426	-0,26	

Tabel 4. 2 Nilai koefisien drag pressure (Cdp) pada berbagai variasi IDB

Pada tabel 4.2, nilai koefisien *drag pressure* terkecil dihasilkan oleh silinder sirkular *upstream* dengan konfigurasi susunan sudut *IDB* 30°. Selain silinder sirkular dengan variasi sudut *IDB* 30°, variasi sudut *IDB* 20°dan 40° juga efektif mereduksi nilai koefisien *drag pressure* meskipun tidak sebesar nilai reduksi yang ada pada silinder sirkular dengan variasi sudut *IDB* 30°. Namun pada variasi sudut 60° nilai Cdp justru lebih besar dibandingkan silinder sirkular tandem tanpa *IDB*. Hal ini membuktikan bahwa dengan adanya penambahan *IDB* yang diletakkan di bagian *upstream* silinder sirkular mampu mereduksi nilai gaya hambat. Namun, seiring variasi *IDB* yang diletakkan semakin ke belakang silinder utama, maka gaya drag yang dihasilkan justru semakin besar. Pengaruh dari sudut *IDB* yang semakin ke belakang justru membuat separasi terjadi di awal, sehingga mengakibatkan *wake* yang tejadi di belakang silinder semakin lebar. Sedangkan untuk silinder *downstream* distribusi Cdp konfigurasi tandem dengan *IDB* 40° memiliki nilai yang paling tinggi untuk silinder *downstream*.

Penambahan *IDB* pada sudut 20°, 30°, dan 40° dapat mereduksi gaya drag silinder *upstream* secara optimal, namun gaya drag silinder *downstream* lebih tinggi daripada gaya drag silinder *downstream* pada konfigurasi tandem tanpa *IDB*. Nilai persentase untuk reduksi gaya hambat yang dihasilkan pada penelitian ini dibandingkan dengan silinder sirkular tanpa *IDB* dapat dihitung sebagai berikut:

$$\%Cdp = \frac{\text{Cdp silinder sirkular tandem} - \text{Cdp penelitian}}{\text{Cdp silinder sirkular tandem}} x 100\%$$
$$\%Cdp = \frac{(0,832 - 0,402)}{0,832} x 100\%$$
$$\%Cdp = 51,68\%$$

4.9 Pressure Drop untuk Konfigurasi Silinder Sirkular Tandem

Hasil eksperimen hubungan *pressure drop* terhadap kenaikan bilangan *Reynolds* (gambar 4.10) menunjukkan seiring bertambahnya bilangan *Reynolds*, *pressure drop* yang terjadi semakin besar pula.

Pada gambar 4.10 (a) dapat dilihat pengaruh penambahan *IDB* pada konfigurasi silinder sirkular tandem dengan konfigurasi silinder sirkular tandem tanpa *IDB* terhadap reduksi nilai *pressure drop* sudah cukup efektif dalam saluran silinder tandem pada posisi penambahan *IDB* sudut 20° dan 30° untuk Reynolds 9,7 x 10^4 sampai 1,33 x 10^5 . Pada saluran silinder tandem pada posisi penambahan *IDB* sudut 40° dan 60° mengakibatkan peningkatan nilai *pressure drop* seperti yang terlihat pada gambar 4.10 (b). Nilai *pressure drop* tertinggi terjadi pada susunan penambahan *IDB* pada sudut 40° pada setiap bilangan Reynolds. Sedangkan nilai *pressure drop* terendah terjadi pada susunan penambahan *IDB* pada sudut 30° pada setiap bilangan

⁽b)

Gambar 4. 10 Grafik *pressure drop* silinder tandem tanpa *IDB* dan silinder tandem dengan *IDB* (a) Silinder Tandem dengan variasi sudut *IDB* 20° dan 30°

(b) Silinder Tandem dengan variasi sudut $IDB = 20^{\circ}$ dan 60°

4.10 Diskusi

Pada subbab terakhir di bab IV ini akan dijelaskan tentang perbedaan hasil eksperimen dengan hasil pada penelitian terdahulu yang mempunyai topik dan tujuan yang sama dalam pelaksanaan penelitiannya. Penelitian yang akan dibandingkan adalah hasil penelitian dari (**Daman, 2014**). Penelitian eksperimen silinder sirkular tandem tanpa *Inlet Disturbance Body* dan silinder sirkular tandem dengan variasi sudut *Inlet Disturbance Body* telah dilakukan oleh

(**Daman, 2014**) dengan Bilangan Reynolds 1,56 x 10^5 , dengan benda uji berupa dua silinder sirkular berdiameter (D) 25 mm yang disusun secara tandem. Variasi jarak antar silinder L/D 1,5 ; 2 ; 2,5 ; 3; 3,5 ; 4. Pada sisi *upstream*, ditempatkan silinder pengganggu berdiameter (d) 4 mm dengan gap (δ) 0,4 mm dari permukaan silinder *upstream* dan variasi sudut (θ) 30° dan 60°. Untuk keperluan sebagai pembanding hasil dari penelitian, variasi rasio jarak antar silinder sirkular yang digunakan adlah L/D = 1,5 dan variasi sudut *IDB* adalah 30° dan 60° serta tandem tanpa *IDB* yang disesuaikan dengan penelitian saat ini.

No	Variasi	Cdp Terbaru		Cdp Daman (2014)	
		Upstream	Downstream	Upstream	Downstream
1	Tandem Tanpa IDB	0,832	-0,55	0,940	-0,433
2	$IDB(\theta) = 30^{\circ}$	0,402	-0,24	0,412	-0,104
3	$IDB(\theta) = 60^{\circ}$	1,426	-0,26	1,522	-0,324

Tabel 4. 3 Perbandingan nilai koefisien drag pressure (Cdp) penelitian terbaru dengan
penelitian eksperimen Daman (2014)

Tabel 4.3 diatas menunjukkan nilai koefisien *drag pressure* hasil penelitian terbaru dengan penelitian eksperimental **Daman (2014).** Dari hasil penelitian **Daman (2014)** yang diberikan diatas dapat diketahui bahwa nilai Cdp silinder sirkular tandem baik *upstream* dan *downstream* yang dihasilkan tidak jauh berbeda dengan Cdp silinder sirkular tandem penelitian terbaru. Dimana untuk Cdp silinder sirkular *upstream* penelitian eksperimen terbaru memiliki nilai yang lebih kecil dibandingkan dengan penelitian **Daman (2014)** untuk semua variasi konfigurasi, hal ini disebabkan *blockage ratio* yang dilakukan pada penelitian sebelumnya lebih besar dari penelitian sekarang yang menyebutkan bahwa *koefisien drag pressure* meningkat seiring bertambahnya *blockage ratio*. Sedangkan untuk silinder sirkular *downstream* terdapat perbedaan dimana nilai Cdp pada posisi sudut *IDB* 60° dari penelitian eksperimental terbaru memiliki nilai yang lebih tinggi dibandingkan dengan penelitian sebelumnya.

Selain perbandingan nilai koefisien *drag pressure* (Cdp) juga dibandingkan dengan tren grafik distribusi koefisien tekanan antara penelitian terbaru dengan penelitian eksperimental milik **Daman** (2014). Berikut merupakan perbandingan grafik distribusi koefisien tekanan (Cp)

Gambar 4. 11 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem tanpa *IDB* (Cp) penelitian dengan Daman (2014) (a) silinder *upstream* (b) silinder *downstream*

Gambar 4. 12 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem *IDB* 30° (Cp) penelitian dengan Daman (2014) (a) silinder *upstream* (b) silinder *downstream*

(b)

Gambar 4. 13 Perbandingan distribusi koefiien tekanan pada konfigurasi tandem *IDB* 60° (Cp) penelitian dengan Daman (2014) (a) silinder *upstream* (b) silinder *downstream*

Gambar 4.11 - 4.13 yang ditunjukkan di atas merupakan perbandingan distribusi koefisien tekanan (Cp) silinder sirkular *upstream* dan *downstream* antara penelitian eksperimen dengan penelitian eksperimen yang dilakukan oleh **Daman (2014)**. Namun pada penelitian ini tidak dibandingkan silinder sirkular dengan variasi *IDB* 20° dan 40° dikarenakan pada jurnal **Daman (2014)** tidak menampilkan silinder sirkular dengan variasi sudut *IDB* 20° dan 40°.

Bila dibandingkan dengan penelitian eksperimen yang dilakukan oleh **Daman (2014)**, secara keseluruhan dapat dilihat bahwa tren grafik distribusi koefisien tekanan penelitian eksperimen yang telah dilakukan sedikit lebih rendah dibandingkan penelitian eksperimen yang

dilakukan oleh **Daman (2014)**. Hal ini disebabkan karena adanya perbedaan Bilangan Reynolds yang digunakan dan juga rasio diameter yang digunakan di penelitian sebelumnya menggunakan rasio diameter d/D = 0,16. Namun demikian, tren grafik yang disajikan hampir sama. Hal ini menunjukkan bahwa percobaan yang telah dilakukan memiliki hasil yang bisa dibilang baik karena tidak jauh berbeda dengan hasil penelitian yang telah dilakukan oleh peneliti lain seperti **Daman (2014)**.

BAB V KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil penelitian mengenai pengaruh penambahan *Inlet Disturbance Body* (*IDB*) dan variasi sudut *IDB* terhadap karakteristik aliran fluida yang melintasi dua silinder sirkular tersusun tandem yang telah dilakukan baik secara eksperimen, dapat disimpulkan bahwa:

- Adanya *reattachment* pada *IDB* 30° dapat menyebabkan aliran terseparasi lebih ke belakang. Hal ini menyebabkan reduksi nilai koefisien *drag pressure* (Cdp) *upstream* sebesar 51% dan pada *IDB* 20° & 40° sebesar 22 - 24%. Sedangkan *IDB* 60° lebih tinggi 71%. Nilai koefisien *drag pressure* (Cdp) silinder *downstream* pada semua variasi konfigurasi tandem dengan *IDB* 20°- 60° lebih besar 34 - 72% dari konfigurasi tandem tanpa *IDB*.
- 2. Analisa profil kecepatan menunjukkan bahwa penambahan *IDB* sudut $20^{\circ} \le \theta \le 40^{\circ}$ *wake* yang terbentuk juga semakin sempit dibandingkan silinder sirkular tanpa *IDB*.
- Penambahan Inlet Disturbance Body efektif dapat menurunkan nilai pressure drop pada variasi konfigurasi tandem dengan IDB 20° dan 30° pada bilangan Reynolds 9,7 x 10⁴ sampai 1,33 x 10⁵

5.2 Saran

Setelah dilakukan penelitian tentang studi eksperimen pengaruh penambahan *Inlet Disturbance Body* (*IDB*) dan variasi sudut *IDB* terhadap karakteristik aliran fluida yang melintasi dua silinder sirkular tersusun tandem. Masih banyak hal lain yang bisa dikaji dan diteliti pada kasus reduksi gaya hambat silinder sirkular.

Untuk penelitian selanjutnya yang menggunakan referensi pada penelitian ini, ada beberapa hal yang perlu diperhatikan selama mengambil data secara eksperimen. Adapun hal yang perlu diperhatikan sebagai berikut:

- 1. Diperlukan adanya *maintenance* instalasi penelitian maupun kalibrasi alat ukur untuk menunjang keakuratan pengambilan data.
- 2. Pembuatan dudukan benda uji dibutuhkan pengukuran yang tepat antar jaraknya, seperti menggunakan teknologi *laser cutting* dalam pembuatannya sehingga didapatkan data yang akurat.
- 3. Pengaturan suhu, kelembapan, dan kebesihan lingkungan kerja diperlukan agar pengganggu tidak mempengaruhi proses pengambilan data, mengingat pengambilan data dilakukan selama beberapa hari
- 4. Penggunaan alat ukur dalam memutar silinder sebaiknya memiliki tingkat ketelitian tinggi agar posisi sudut *pressure tap* tepat.
- 5. Perlu melihat kembali posisi ketinggian fluida dalam *inclined manometer* 15° dan dilakukan kalibrasi Reynolds untuk setiap pengambilan data.

LAMPIRAN

a. Contoh Perhitungan

Penelitian ini menggunakan udara sebagai fluida kerja yang dengan asumsi aliran udara dalam keadaan *steady* dan *incompressible* yang memiliki nilai standar sebagai berikut.

1. Tekanan absolut udara dalam keadaan standar (P_{std}) = 1,01325 × 10⁵ N/m².

2. Temperatur udara dalam keadaan standar (T_{std}) = 288,2 K.

3. Massa jenis udara dalam keadaan standar (ρ_{std}) = 1,225 kg/m³.

4. Temperatur udara saat penelitian $(T_2) = 26^{\circ}C = 299 \text{ K}$

Properties di atas digunakan untuk pengolahan data hasil eksperimen dan perhitungan pada penelitian.

1. Perhitungan Bilangan Reynolds

Bilangan Reynolds dapat dihitung dengan rumus sebagai berikut :

$$Re_D = \frac{\rho UD}{\mu}$$

Di mana :

 Re_D = bilangan Reynolds

 ρ = densitas fluida (kg/m³)

U = kecepatan aliran fluida (m/s)

- D = Diameter silinder sirkular (m)
- μ = viskositas dinamik fluida (Ns/m²)
- a. Perhitungan densitas udara (ρ)
 Dengan persamaan Boyle-Gay Lussac tentang pemuaian gas sebagai berikut :

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \quad \dots$$

Karena $V = \frac{m}{\rho}$, maka persamaan menjadi:

$$\frac{P_1 m_1}{T_1 \rho_1} = \frac{P_2 m_2}{T_2 \rho_2} \quad \dots$$

Di mana keadaan 1 menyatakan dalam kondisi standar, sedangkan keadaan 2 dalam kondisi pengukuran. Diasumsikan keadaan 1 dan 2 memiliki ketinggian yang sama, sehingga $P_1 = P_2$ dan $m_1 = m_2$. Dengan demikian, maka dapat ditulis sebagai berikut:

$$\rho_2 = \frac{T_1 \rho_1}{T_2} \dots$$

$$\rho_2 = \frac{288,2 K \times 1,225 kg/m^3}{299 K}$$

$$\rho_2 = 1,18 \ kg/m^3$$

b. Perhitungan viskositas udara (μ)

Nilai viskositas udara dapat dicari dengan menggunakan persamaan Sutherland sebagai berikut:

$$\mu = \frac{bT^{3/2}}{S+T} \quad \dots$$

Di mana:

 $b = 1,458 \times 10^{-6} \frac{kg}{ms\kappa^{1/2}}$ S = 110,4 K T = temperatur saat penelitian = 299 K

Nilai-nilai tersebut disubstitusikan ke dalam persamaan 4.4 dan didapatkan:

$$\mu = \frac{1,458 \times 10^{-6} \frac{kg}{msK^{1/2}} \times (110,4)^{3/2}}{(110,4+299)K}$$
$$\mu = 4,13 \times 10^{-6} \frac{kg}{ms}$$

c. Menghitung bilangan Reynolds

Perhitungan bilangan Reynolds didasarkan pada diameter silinder sirkular, Dh. Persamaan untuk menghitung bilangan Reynolds sebagai berikut

$$Re_D = \frac{\rho UD}{\mu}$$

di mana:

 Re_D = bilangan Reynolds, pada penelitian ini bernilai 1,33 x 10⁵

 ρ = massa jenis udara = 1,181 kg/m³

 μ = viskositas udara = 4,13×10⁻⁶ kg/ms

Dh = Diameter silinder = 25 mm = 0,025 m

U = kecepatan *freestream* udara

Untuk mendapatkan Re sebesar 1,33 x 10^5 , kecepatan *freestream* dapat dihitung sebagai berikut:

$$U = \frac{4,13 \times 10^{-6} \times 1,33 \times 10^{5}}{1,181 \times 25 \times 10^{-3}} \approx 8,23 \text{ m/s}$$

2. Perhitungan Coefficient Pressure (Cp)

Pada contoh perhitungan ini, bilangan Reynolds yang digunakan sebesar 1,33 x 10^5 . Dari pengujian yang telah dilakukan, didapatkan data sebagai berikut:

- Cairan pengisian manometer adalah Red Oil dengan SG = 0,804
- Massa jenis air (ρ) = 999 kg/m³
- Massa jenis udara saat T = 299 K = $1,181 \text{ kg/m}^3$
- Percepatan gravitasi (g) $= 9,81 \text{ m/s}^2$
- Kecepatan *free stream* = 8,23 m/s
- a. Menghitung tekanan statis *free stream* dalam Pa Untuk menghitung tekanan statis pada *free stream*, digunakan perhitungan sebagai berikut:

$$P_{sf} = \frac{SG_{redoil} \ x \ \rho H_2 O \ x \ g \ x \ 2 \ \Delta h \ x \sin 15^\circ}{1000}$$

Dimana : $\Delta h = \Delta h_{akhir} - \Delta h_{awal}$

$$\Delta h = 165 - 185$$
$$\Delta h = 20 \ mm$$

Sehingga,

$$P_{sf} = \frac{0,804 \ x \ 999 \frac{\text{kg}}{m^3 x} 9,81 \text{m/s}^2 \text{ x } 2 \ (-20 \text{mm}) \ x \sin 15^\circ}{1000}$$
$$P_{sf} = -81,57 \text{ Pa}$$

b. Menghitung tekanan statis kontur dalam Pa Untuk menghitung tekanan statis pada kontur digunakan perhitungan sebagai berikut:

$$P_{sk} = \frac{SG_{redoil} \ x \ \rho H_2 O \ x \ g \ x \ 2 \ \Delta h \ x \sin 15^\circ}{1000}$$

Dimana : $\Delta h = \Delta h_{akhir} - \Delta h_{awal}$

 $\Delta h = 173 - 184$ $\Delta h = -11 mm$

Sehingga,

$$P_{sk} = \frac{0,804 \ x \ 999 \frac{\text{kg}}{m^3} \text{x } 9,81 \text{m/s}^2 \ x \ 2 \ (-11 \ \text{mm}) \ x \ \sin 15^\circ}{1000}$$
$$P_{sk} = -45,06 \ \text{Pa}$$

c. Menghitung tekanan dinamik *free stream* kontur dalam Pa Untuk menghitung tekanan dinamik *free stream* pada kontur digunakan perhitungan sebagai berikut:

$$P_d = p_0 - P_s$$

Dimana : $P_d = \frac{1}{2} x \rho x U^2$
Sehingga,

$$P_d = \frac{1}{2} x \rho x U^2$$
$$P_d = \frac{1}{2} x 999 \text{ kg/m}^3 x (8,23 \text{ m/s})^2$$
$$P_d = 39,9 Pa$$

d. Menghitung *Pressure Coefficient* (Cp) Untuk menghitung koefisien tekanan pada kontur digunakan perhitungan sebagai berikut:

$$C_p = \frac{P_{sk} - P_{sf}}{P_d}$$

Sehingga,

$$C_p = \frac{-45,06 \text{ Pa} - -81,57 \text{ Pa}}{39,9 \text{ Pa}}$$
$$C_p = 0,915$$

3. Perhitungan Coefficient Pressure Drag (Cdp)

Persamaan yang digunakan untuk menghitung *Coefiicient pressure drag* adalah sebagai berikut:

$$C_{D_p} = \frac{1}{2} \int_0^{2\pi} C_p(\theta) \cos(\theta) \, d\theta$$

Dimana:

 $C_{p}(\theta) =$ koefisien tekanan kontur pada posisi θ

 θ = sudut posisi masing – masing *pressure tap* pada kontur

dan dari persamaan tersebut diselesaikan dengan metoda numerik aturan Simpson 1/3 segmen berganda yang dirumuskan sebagai berikut :

$$I \simeq \underbrace{(b-a)}_{lebar} \underbrace{\frac{f(x_o) + 4\sum_{i=1,3,5}^{n-1} f(x_i) + 2\sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}_{Tinggirata-rata}}_{Tinggirata-rata}$$

Sehingga,

$$C_{D_p} = \frac{b-a}{2 x 3n} \{ y_0 + 2(y_2 + \dots + y_{n-2}) + 4(y_1 + \dots + y_{n-1}) + y_n \}$$

dimana:

a = sudut awal = 0 b = sudut akhir = 2π y_0 = data pertama $2(y_2 + \dots + y_{n-2})$ = jumlah data ganjil $4(y_1 + \dots + y_{n-1})$ = jumlah data genap y_n = data terakhir

Dimana n adalah jumlah elemen yang akan diintegralkan dan jumlahnya harus genap

teta	Cp.cos θ	4F	2F	Cdp
0	1,000			0,832
5	0,961	3,845		
10	0,911		1,821	
15	0,796	3,185		
20	0,586		1,172	
25	0,361	1,442		
30	0,192		0,385	
35	-0,023	-0,094		
40	-0,176		-0,351	
45	-0,286	-1,145		
50	-0,438		-0,875	
55	-0,448	-1,792		
60	-0,441		-0,882	
65	-0,362	-1,448		
70	-0,267		-0,534	
75	-0,189	-0,757		
80	-0,123		-0,245	
85	-0,059	-0,236		
90	0,000		0,000	
95	0,060	0,239		
100	0,119		0,238	
105	0,178	0,710		
110	0,235		0,469	
115	0,290	1,160		
120	0,343		0,686	
125	0,393	1,574		
130	0,441		0,882	
135	0,485	1,940		
140	0,525		1,051	
145	0,562	2,247		
150	0,594		1,188	
155	0,622	2,487		

160	0,645		1,289	
165	0,663	2,650		
170	0,675		1,351	
175	0,683	2,733		
180	0,676		1,352	
185	0,673	2,693		
190	0,666		1,331	
195	0,653	2,611		
200	0,635		1,270	
205	0,603	2,414		
210	0,585		1,171	
215	0,554	2,215		
220	0,518		1,035	
225	0,478	1,912		
230	0,434		0,869	
235	0,388	1,551		
240	0,338		0,676	
245	0,286	1,143		
250	0,231		0,462	
255	0,175	0,700		
260	0,117		0,235	
265	0,059	0,236		
270	0,000		0,000	
275	-0,066	-0,265		
280	-0,141		-0,282	
285	-0,223	-0,892		
290	-0,312		-0,624	
295	-0,377	-1,507		
300	-0,431		-0,862	
305	-0,437	-1,746		
310	-0,376		-0,753	
315	-0,290	-1,159		
320	-0,122		-0,244	
325	0,075	0,301		
330	0,297		0,594	
335	0,492	1,970		
340	0,680		1,361	
345	0,816	3,263		
350	0,930		1,861	
355	0,986	3,945		
360	1,000			
Total		38,122	17,098	

Tabel 1 Integrasi Cp silinder upstream tandem tanpa IDB dengan $Re = 1,33 \times 10^5$

Dengan menggunakan metoda numerik aturan Simpson 1/3 segmen berganda dan table di atas didpatkan

$$C_{D_p} = \frac{2\pi - 0}{2 x \, 3 \, x \, 72} \, \{1 \, + \, 17,098 \, + \, 38,122 + 1\}$$

$$C_{D_p} = 0,832$$

Lampiran 1. Pengaruh Penambahan *IDB* pada Berbagai Variasi Sudut (Re = 9,7 x 10⁴)

Gambar 1 Grafik Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular *upstream* dengan variasi sudut *IDB* sudut *IDB* 20°dan 30°dan tanpa *IDB*

Gambar 2 Grafik Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular *upstream* dengan variasi sudut *IDB* 40°dan 60°dan tanpa IDB

Gambar 3 Grafik Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular downstream dengan variasi sudut IDB sudut IDB 20°dan 30°dan tanpa IDB

Gambar 4 Grafik Perbandingan grafik distribusi koefisen tekanan (Cp) silinder sirkular downstream dengan variasi sudut IDB 40°dan 60°dan tanpa IDB

Gambar 5 Grafik distribusi profil kecepatan di belakang konfigurasi susunan silinder sirkular tandem dengan variasi sudut *IDB* 20° dan 30° dan tanpa *IDB*

Gambar 6 Grafik distribusi profil kecepatan di belakang konfigurasi susunan silinder sirkular tandem dengan variasi sudut *IDB* 40° dan 60° dan tanpa *IDB*

DAFTAR PUSTAKA

- Alam, M. M., Sakamoto, H., & Moriya, M. (2003b). Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number. Journal of Wind Engineering and Industrial Aerodynamics, 91(1-2), 139-154.
- Daman, A. D. (2014). Studi Eksperimen dan Numerik 2D Unsteady-Rans Pengaruh Inlet Disturbance Body Terhadap Karakteristik Aliran Melintasi Dua Silinder Sirkular yang Tersusun Secara Tandem pada Saluran Sempit (Blockage Ratio 20%). Tesis (TM 092501). Surabaya.
- Daman, A. D., & Widodo, W. (2014). Pengaruh Penambahan Inlet Disturbance Body terhadap Karakteristik Aliran Melintasi Silinder Sirkular Tersusun Tandem. Thermofluid VI, Seminar Nasional 2014, 6(1), 79-84.
- Incropera, F. P., Dewitt, D. P., Lavine, A. S., & Bergman, T. L. (2011). Heat and Mass Transfer.
- Lee, S.-J., Lee, S.-I., & Park, C.-W. (2004). Reducing the drag on a circular cylinder by upstream insallation of a samall control rod. *Fluid Dynamic Research*, *34*, 233–250. https://doi.org/10.1016/j
- Lienhard, John, H., (1966), "Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders", Bulletin 300, Technical Extension Service, Washington State University.pol
- Munson, B. R., Young, D. F., Okiishi, T. H., & Huebsch, W. W. (2009). Fundamentals of Fluid Mechanics.
- Pritchard, P. J., & Leylegian, J. C. (2011). Fox and McDonald's Introduction to Fluid Mechanics.
- Widodo, W. A., & Hidayat, N. (2014). Experimental Study of Drag Reduction on Circular Cylinder and Reduction of Pressure Drop in Narrow Channels by Using a Cylinder Disturbance Body. In Applied Mechanics and Materials (Vol. 493, pp. 198-203). Trans Tech Publications Ltd.

BIODATA PENULIS

Penulis dilahirkan di Surabaya, 17 Desember 1999, merupakan anak tunggal. Penulis telah menempuh pendidikan formal yaitu di TK Qosrul Ubudiyah Surabaya, SDN Kaliasin 3 Surabaya, SMPN 6 Surabaya dan SMAN 5 Surabaya. Setelah lulus dari SMA tahun 2018, Penulis menempuh jenjang kuliah di Departemen Teknik Mesin FTIRS - ITS pada tahun 2018 dan terdaftar dengan NRP 02111840000140 jalur SBMPTN.

Selama mengenyam pendidikan di Departemen Teknik Mesin ITS Surabaya, penulis mengambil fokus studi di bidang Konversi Energi dan tergabung dalam Laboratorium Mekanika dan Mesin-mesin Fluida. Penulis tergabung dalam organisasi LKKI Ash Shaff Teknik

Mesin periode 2020/2021 sebagai Kepala Biro Hubungan Luar dan aktif dalam event kampus seperti ITS EXPO, GERIGI, dan ILITS. Penulis pernah magang kerja PMMB di PT. Semen Indonesia Pabrik Tuban.

Penulis memiliki ketertarikan yang besar dengan aerodinamika. Oleh karena itu penulis menyusun Tugas Akhir dengan judul "STUDI EKSPERIMEN PENGARUH PENAMBAHAN BODI PENGGANGGU TERHADAP GAYA HAMBAT DUA SILINDER SIRKULAR TERSUSUN TANDEM" Penulis dapat dihubungi melalui alamat surel / telephone:

fadhilaf51@gmail.com./ 087855049962