
i

PRACTICAL WORK – IF184801

Implementation and Evaluation of FuzzyStego Steganography
Scheme in Net Centric Computing Lab

Department of Informatics ITS
Keputih, Sukolilo, Surabaya, East Java 60117
Period: July 2024 – December 2024

By:

Mardhatillah Shevy Ananti 5025211070

Department Advisor
Hudan Studiawan, S.Kom., M.Kom., Ph.D.
Field Supervisor
Prof. Tohari Ahmad, S.Kom., MIT., Ph.D.

DEPARTMENT OF INFORMATICS
Faculty of Intelligent Electrical and Informatics Technology
Institut Teknologi Sepuluh Nopember
Surabaya 2025

ii

[Halaman ini sengaja dikosongkan]

iii

LIST OF CONTENTS
LIST OF CONTENTS ..iii
LIST OF FIGURES ... vii
LIST OF TABLES ... ix
VALIDITY SHEET ... xi
FOREWORD... xv
CHAPTER 1 INTRODUCTION ... 1

1.1. Background .. 1
1.2. Objective .. 1
1.3. Benefit .. 2
1.4. Formulation of the problem ... 2
1.5. Location and Time of Internship 2
1.6. Practical Work Methodology 3

1.6.1. Literature Study ... 3
1.6.2. Algoritm Implementation .. 3
1.6.3. Performance Testing .. 4
1.6.4. Results Analysis .. 4

1.7. Report Systematics ... 5
1.7.1. Chapter I Introduction ... 5
1.7.2. Chapter II Company Profile..................................... 5
1.7.3. Chapter III Literature Review 5
1.7.4. Chapter IV System Implementation 5
1.7.5. Chapter V Testing and Analysis of Results 5

iv

1.7.6. Chapter VI Conclusions and Suggestions 5
CHAPTER 2 LABORATORY PROFILE 7

2.1. Net Centric Computing Laboratory Profile.................. 7
2.2. Location ... 7

CHAPTER 3 LITERATURE REVIEW .. 9
3.1. Steganograghy .. 9
3.2. Fuzzy Logic in Steganography 9
3.3. Relevant Steganography Methods 10

3.3.1. Least Significant Bit (LSB) 10
3.3.2. Pixel Value Differentiation (PVD) 10
3.3.3. Transform Domain Techniques 11

3.4. Steganography Quality Evaluation Parameters 11
3.4.1. Peak Signal-to-Noise Ratio (PSNR) 11
3.4.2. Structural Similarity Index Measure (SSIM) 12

CHAPTER 4 SYSTEM IMPLEMENTATION 15
4.1. Data Preparation ... 15
4.2. Implementation of FuzzyStego Algorithm................. 15

4.2.1. Embedding Algorithm ... 16
4.2.2. Extracting Algorithm ... 17

4.3. Performance Testing and Evaluation 18
4.3.1. Testing Methods .. 18
4.3.2. Pseudocodes of Matlab Functions 18

CHAPTER 5 TESTING AND ANALYSIS OF RESULTS 26

v

5.1. Experimental Results ... 26
5.2. Comparative Analysis with Previous Methods 28

CHAPTER 6 CONCLUSION AND SUGGESTIONS 35
7.1. Conclusion ... 35
7.2. Suggestion .. 36

BIBLIOGRAPHY ... 38
ATTACHMENT ... 42
AUTHOR BIOGRAPHY .. 55

vi

[Halaman ini sengaja dikosongkan]

vii

LIST OF FIGURES

Figure 1. Methodology Flowchart of FuzzyStego Method 16
Figure 2. PSNR Results of FuzzyStego and Existing Algorithms
 ... 29
Figure 3. EC Results of FuzzyStego and Existing Algorithms ... 30
Figure 4. Cover and Stego Images using FuzzyStego Histogram31
Figure 5. Ablation Experiments Results through PSNR Results . 33
Figure 6. Ablation Experiments Results through SSIM Results . 33
Figure 7. Embedding and Calculating PSNR 45
Figure 8. Extracting and Calculating PSNR 49
Figure 9. Compression and Calculating PSNR 52
Figure 10. No Fuzzy Logic and Calculating Evaluation Metrics 54

viii

[Halaman ini sengaja dikosongkan]

ix

LIST OF TABLES

Table 1. PSNR and SSIM Results of FuzzyStego 26
Table 2. Huffman Compression PSNR and SSIM Results. 27

x

[Halaman ini sengaja dikosongkan]

xi

VALIDITY SHEET
PRACTICAL WORK

Implementation and Evaluation of FuzzyStego

Steganography Scheme in Net Centric Computing Lab

By:

Mardhatillah Shevy Ananti 5025211070

Approved by the Internship Supervisor:

1. Hudan Studiawan, S.Kom.,
M.Kom., Ph.D.
NIP.

(Department Supervisor)

2. Prof. Tohari Ahmad, S.Kom.,
MIT., Ph.D.
NIP.

(Field Supervisor)

xii

[Halaman ini sengaja dikosongkan]

xiii

Implementation and Evaluation of FuzzyStego
Steganography Scheme in Net Centric Computing Lab

Student Name : Mardhatillah Shevy Ananti
NRP : 5025211070
Department : FTEIC-ITS Informatics
Department Supervisor : Hudan Studiawan, S.Kom., M.Kom.,

Ph.D.
Field Supervisor : Prof. Tohari Ahmad, S.Kom.,

MIT.,Ph.D.

ABSTRACT
 Steganography is a technique in Information Security that
works by hiding confidential data in digital media without causing
any noticeable changes, this include images, audios or text. One of
the main challenges in steganography is to keep a balance between
data embedding capacity and quality of the embedded image (stego
image). In this study, the focus will be on the development and
evaluation of an image steganography method called FuzzyStego.
An adaptive steganography scheme based on fuzzy logic, this
method aims to optimize the data embedding area in the spatial
domain of images.
To help the implementation of the FuzzyStego algorithm, the whole
process was carried out in the Net Centric Computing Lab,
applying a fuzzy logic approach that classifies pixels in the image
into five intensity levels: Low (L), Medium-Low (ML), Medium (M),
Medium-High (MH), and High (H). Based on these intensity levels,
the number of bits that can be inserted in each pixel is determined
adaptively to minimize visual distortion.
Keywords: Steganography, fuzzy logic, information security, data
hiding, image quality

xiv

[Halaman ini sengaja dikosongkan]

xv

FOREWORD
 Praise be to Allah SWT for His grace and blessings to carry
out one of the obligations as students of the Informatics
Department, namely Practical Work (KP).
 The author understands that this report still has
shortcomings, therefore constructive criticism and suggestions are
appreciated. Hopefully, this report can be useful for readers and
become a valuable reference in the field of information security.
Also, the author hopes that this report can increase the reader's
insight and knowledge into the topic of Steganography.
 Through this report book, the author would also like to
express her gratitude to the people who have helped throughout the
internship period and provide guidance to compile the internship
report, both directly and indirectly, including:

1. Hudan Studiawan, S.Kom., M.Kom., Ph.D. as the
supervisor and coordinator of the internship.

2. Prof. Tohari Ahmad, S.Kom., MIT., Ph.D. as field
supervisor during the internship.

3. All senior colleagues in the Network-Based Computing
Lab for their assistance and discussions during the
implementation of the KP.

Surabaya, 19 Maret 2025

Mardhatillah Shevy Ananti

xvi

[Halaman ini sengaja dikosongkan]

1

CHAPTER 1
INTRODUCTION

1.1. Background
In today’s digital era, information security is one of the

important aspects to protect data from the threat of theft or
wiretapping. Steganography is one of the security techniques used
to hide confidential information in digital media, such as audio [1],
video [2], and images [3]. By aiming to maintain the confidentiality
of data without attracting the attention of unauthorized parties, this
technique is widely used in various fields, including confidential
communications, copyright protection, and digital forensics. By
hiding secret data in ordinary files to keep it invisible to
unauthorized people, the steganography technique ensures that it
remains hidden and provide security [4]. Image steganography
requires a cover image, which is the starting image that is used as
the host to store the secret data [5]. Additionally, a stego image is
involved as the image containing the secret data that has been
altered [6].

Although image steganography provides a solution in data
protection, there is a major challenge in its implementation,
specifically in balancing the capacity of data insertion (payload)
and the quality of the stego image [7], [8]. The quality of the stego
image tends to decrease when the amount of data inserted is
increased. This can be detected through steganalysis [9], [10].
Therefore, an adaptive steganography method is needed to
optimize data insertion without sacrificing image quality.

1.2. Objective
The aim of this internship is to help in the implementation of

an image steganography method called FuzzyStego, utilizing fuzzy
logic to optimize the data embedding area in digital images. During
this internship, I contributed in the implementation of the

2

algorithm, performance testing, and analysis of the results using
evaluation parameters such as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index Measure (SSIM). The outcome of
this method is to increase the data embedding capacity without
lowering the image quality, as well as contributing to the
development of more adaptive and secure steganography
techniques.

1.3. Benefit
The benefits of this research are both academic and practical.

Academically, this research contributes to the development of a
more adaptive steganography method by utilizing fuzzy logic to
improve the balance between the amount of data inserted and the
quality of the image. Practically, the results of this study can be
applied in information security, particularly in protecting digital
data to make it more difficult to detect by unauthorized parties.

1.4. Formulation of the problem
The problem formulation of this practical work is as follows:

1. How can the quality of the stego images be developed using fuzzy
logic?

2. How does FuzzyStego affect PSNR and SSIM compared to
traditional steganography methods?

3. How effective is the FuzzyStego method, using fuzzy logic, in
adjusting the number of hidden bits?

1.5. Location and Time of Internship
This internship was conducted online as, during that time, the

author was undergoing a double degree program at The University
of Queensland, Australia. All internship activities, including
discussions and guidance, were conducted via Zoom Meeting with

3

the supervisor and research team at the Net Centric Computing
Lab. This internship took place from July 2024 to December 2024.

1.6. Practical Work Methodology
The methodology for creating the research paper includes:

1.6.1. Literature Study

This stage examines previous research on steganography,
fuzzy logic and optimization techniques for data insertion in digital
images. By analyzing fundamental principles, strengths and
limitations, this literature study establishes an understanding of
current methods developed in the field. The research evaluates
three steganography embedding methods: Transform Domain
Methods, Least Significant Bit (LSB) insertion and Pixel Value
Differencing (PVD) to assess their payload capacity and image
quality performance. Research on fuzzy logic applications in
information security demonstrates its capability to improve
adaptability and minimize data hiding scheme distortion. Through
this literature study, weaknesses including the balance between
embedding capacity and imperceptibility, vulnerability to
steganalysis attacks and traditional methods to adapt across
different types of images, are discussed. FuzzyStego uses fuzzy
logic-based adaptive embedding mechanism to enhance both stego
image quality and security, which seeks to find weaknesses and to
serve in its development.

1.6.2. Algoritm Implementation

After the literature study, the following stage involves the
development of FuzzyStego algorithm which uses fuzzy logic to
enhance adaptive data embedding in digital images. The algorithm
uses a fuzzy system to sort the pixels in the image into five intensity
levels which include L, ML, M, MH and H. The classification
process determines the number of secret bits that can be embedded
into each pixel without causing major changes in the quality of the

4

image. Pixels with lower intensity values can accommodate more
embedded bits without noticeable changes in the image quality,
while pixels with higher intensity values are assigned fewer bits to
preserve the visual imperceptibility of changes. Both Python and
Matlab are utilized for the implementation of the algorithm. The
embedding and extraction processes uses Python programming,
whereas Matlab was used for data preprocessing and image quality
evaluation using PSNR and SSIM metrics.

1.6.3. Performance Testing

At this stage, testing of the implemented algorithm are carried
out through images obtained from the SIPI Image Database, a
standard research benchmark for steganography and image
processing studies. The testing images consisted of grayscale 512
× 512 pixel images, offering an appropriate combination of
computational efficiency and image complexity. To evaluate the
performance, experiments were carried out where secret data are
embedded into these images using adaptive fuzzy logic-based
embedding strategies and then assessed by calculating the PSNR
and the SSIM. The PSNR measurement evaluated the embedding
distortion by comparing the stego images with the original cover
images and the SSIM evaluated structural and perceptual image
quality.

1.6.4. Results Analysis

From the previous stage, experimental results were obtained
which were evaluated against traditional steganography
approaches including LSB insertion and PVD. LSB and PVD are
two widely used baseline techniques in image steganography, LSB
provides high capacity but suffers from visual distortion while
PVD adapts to pixel differences for data embedding. The proposed
FuzzyStego method was evaluated through comparative analysis to
determine its effectiveness in increasing data insertion capacity
while preserving high visual and structural quality of stego images.
The evaluation used PSNR and SSIM as performance metrics. This

5

result analysis shows that FuzzyStego achieves higher embedding
capacity and imperceptibility through the integration of fuzzy logic
compared to traditional methods.

1.7. Report Systematics

1.7.1. Chapter I Introduction
This chapter contains the background, objectives, benefits,

problem formulation, location and time of the practical work,
methodology, and systematics of the report.

1.7.2. Chapter II Company Profile

This chapter describes the Net Centric Computing Lab, where
the practical work is carried out, including the vision and mission,
as well as the research areas carried out in the laboratory.

1.7.3. Chapter III Literature Review

This chapter contains the theoretical basis that supports the
research, including the concept of steganography.

1.7.4. Chapter IV System Implementation

This chapter contains a description of the stages carried
out for the implementation process of the FuzzyStego
algorithm.

1.7.5. Chapter V Testing and Analysis of Results

This chapter contains the results of testing the FuzzyStego
method using image datasets, as well as comparative analysis that
has been developed during the implementation of the practical
work.

1.7.6. Chapter VI Conclusions and Suggestions

This chapter contains conclusions and suggestions obtained
from the process of implementing the practical work.

6

[Halaman ini sengaja dikosongkan]

7

CHAPTER 2
LABORATORY PROFILE

2.1. Net Centric Computing Laboratory Profile
The Net Centric Computing Lab is one of the research

laboratories in the Department of Informatics, Institut Teknologi
Sepuluh Nopember (ITS) which focuses on the fields of
information security, computer networks, distributed computing,
and digital image processing. This laboratory is a research center
for various technologies, including steganography, cryptography,
and artificial intelligence-based system optimization.

2.2. Location
Department of Informatics Engineering, ITS, Keputih,

Sukolilo, Surabaya, East Java 60117

8

[Halaman ini sengaja dikosongkan]

9

CHAPTER 3
LITERATURE REVIEW

3.1. Steganograghy
Steganography is a technique for hiding information in a digital

medium, such as images, audio, or video, with the aim of
maintaining the confidentiality of the data without attracting the
attention of unauthorized parties. Unlike cryptography which
encrypts messages so that they cannot be read without a certain
key, steganography attempts to hide the existence of the message
itself. In the field of digital image processing, steganography is
often applied using methods such as LSB, PVD, and Transform
Domain Techniques. However, the main challenge in
steganography is maintaining a balance between data insertion
capacity (payload) and image quality (stego image), because the
more data is inserted, the greater the possibility of visual distortion.

3.2. Fuzzy Logic in Steganography
Fuzzy logic is a computational approach that mimics the way

humans make decisions based on uncertain or ambiguous
information. In the context of steganography, classification of
image pixels are utilized with the use of fuzzy logic based on their
intensity levels, allowing adaptation of the number of bits inserted
according to the visual characteristics of the image. In the
FuzzyStego method, pixels are grouped into L, ML, M, MH, and
H based on their intensity values. Pixels with low intensity have a
higher tolerance for changes, so they can insert more bits without
causing visible distortion. In contrast, pixels with high intensity are
given only a small amount of data to maintain image quality.

10

3.3. Relevant Steganography Methods
Several steganography methods that have been developed

previously and are the basis for this research include:

3.3.1. Least Significant Bit (LSB)
LSB stands as one of the fundamental and commonly used

methods in image steganography. The method operates through
substituting the least significant bit of pixel binary values with the
bits from secret data. The replacement of least significant bits
results in such small pixel intensity changes that human observers
cannot detect them thus making LSB an effective yet basic
steganographic method. The LSB method provides both high
embedding capacity and simple operation yet it suffers from major
security weaknesses. The hidden data in LSB becomes highly
susceptible to destruction through common image processing
operations including compression and noise addition. LSB
remains vulnerable to statistical detection through chi-square tests
and other analysis techniques which reduces its security value for
sensitive applications. The identified limitations in LSB
steganography create a need for developing more adaptive and
robust steganographic methods including FuzzyStego.

3.3.2. Pixel Value Differentiation (PVD)

PVD is a steganographic technique that operates by splitting
images into small pixel blocks to determine data embedding
capacity based on pixel value differences between blocks. The
image smoothness determines data insertion capacity because
small pixel differences result in limited embedding capacity to
prevent noticeable distortion. The embedding capacity for data
increases when pixel differences become larger because it allows
for additional data concealment without detection. The adaptive
nature of PVD exceeds traditional methods like LSB insertion
because it modifies its approach based on image content to achieve
better data hiding efficiency. The quality of images remains a
challenge for PVD because excessive data embedding in high-

11

difference areas produces visible distortions and compression
artifacts thus requiring careful balancing of hidden data with image
perceptibility.

3.3.3. Transform Domain Techniques

Transform domain techniques embed data into image
frequency domains through Discrete Cosine Transform (DCT) and
Discrete Wavelet Transform (DWT). These methods operate on
image frequency coefficients to modify spatial frequencies instead
of working directly with pixel values. The technique provides
superior protection than LSB and PVD spatial domain methods
because it embeds data in frequency coefficients. The frequency
domain data remains resistant to lossy compression algorithms
such as JPEG because these algorithms primarily affect pixel-based
steganographic techniques. The frequency domain modifications
make the technique less detectable through steganalysis methods
and less noticeable to human observers. The main disadvantage of
transform domain techniques is their increased computational
complexity when compared to basic spatial domain methods. The
image transformation process into frequency space for data
embedding followed by the reverse process to generate the stego-
image requires additional processing power and time which
reduces efficiency in real-time and resource-constrained
applications. Transform domain methods remain popular because
they provide enhanced security features and strong resistance
against typical image processing methods..

3.4. Steganography Quality Evaluation Parameters
To measure the quality of the steganography image, two main

parameters are used, namely the PSNR and the SSIM.

3.4.1. Peak Signal-to-Noise Ratio (PSNR)
PSNR is one of the most widely used metrics to measure the

quality difference between the cover image (original image) and

12

the stego image (image after data embedding). It measures the
amount of distortion or noise that is introduced during the
embedding process and higher values indicate less distortion and
better image quality. PSNR is stated in decibels (dB) and is
calculated using the formula below:

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔ଵ଴(
𝑀𝐴𝑋ூ

ଶ

𝑀𝑆𝐸
)

In this formula, 𝑀𝐴𝑋ூ

ଶ is the maximum possible pixel value of
the image (usually 255 for an 8-bit image) and MSE (Mean
Squared Error) is the average of the squared differences between
corresponding pixels in the cover image and the stego image. The
MSE is a measure of the total error or deviation that is caused by
the data embedding process. Since the PSNR value is inversely
proportional to MSE, a lower MSE will result in a higher PSNR
value which means that the stego image is closer to the original
cover image in terms of quality. A higher PSNR is generally
preferred since it means that the changes made by the embedding
process are less noticeable to the human eye. However, PSNR is a
useful indicator of image quality, but it does not always correspond
to the visual perception, since it does not take into account the
perceptual factors such as contrast or texture. Thus, PSNR should
be considered together with other quality metrics in order to
evaluate the effectiveness of steganography techniques.

3.4.2. Structural Similarity Index Measure (SSIM)

The SSIM is a perceptual metric that is used to measure the
structural similarity between the cover image and the stego image.
Unlike PSNR, which only considers pixel-wise differences, SSIM
evaluates the image quality by considering three key components:
luminance, contrast, and structure, which are crucial for human
visual perception. These components allow SSIM to provide a
more accurate representation of perceived image quality, as it
models the way the human eye perceives changes in images. The
SSIM value ranges from 0 to 1, where a value of 1 indicates that

13

the two images are identical in terms of structure and quality, while
a value closer to 0 indicates significant differences between the
images. SSIM is calculated using the following formula:

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇௫𝜇௬ + 𝐶ଵ)(2𝜎௫௬ + 𝐶ଶ)

(𝜇௫
ଶ + 𝜇௬

ଶ + 𝐶ଵ)(𝜎௫
ଶ + 𝜎௬

ଶ + 𝐶ଶ)

In this formula, 𝜇 represents the mean pixel intensity of

the image, σ represents the variance, and 𝜎𝑥𝑦 denotes the
covariance between the two images. 𝐶ଵ and 𝐶ଶ are small constants
used to avoid division by zero and ensure numerical stability. The
SSIM index evaluates the structural similarity by comparing local
patterns of pixel intensities in the image, which are correlated with
perceptual image quality. Compared to PSNR, SSIM is generally
regarded as more reliable because it better reflects human visual
perception, taking into account not just pixel differences but also
structural and textural features that are important for the human
eye. Therefore, SSIM is particularly useful in image processing
tasks like steganography, where maintaining visual quality is
important, and provides a more holistic evaluation of the stego
image's perceptual fidelity.

14

[Halaman ini sengaja dikosongkan]

15

CHAPTER 4
SYSTEM IMPLEMENTATION

4.1. Data Preparation
This chapter explains the stages in implementing the

FuzzyStego algorithm. The initial stage is data preparation, which
includes dataset selection, preprocessing, and image parameter
adjustment for steganography testing.

In this study, an image dataset from the SIPI Image Database
was used, which is one of the standard datasets in steganography
and image processing research. This dataset consists of various
types of grayscale images measuring 512 × 512 pixels, which were
chosen because they provide a balance between visual quality and
complexity of image structure in testing steganography algorithms.

4.2. Implementation of FuzzyStego Algorithm
The implementation phase includes the development of the

FuzzyStego algorithm, which aims to optimize the data embedding
area in digital images using fuzzy logic. This process consists of
several main steps, all of which had been compiled into a
Methodology Flowchart, in Figure 1. The steps includes the
following:

16

4.2.1. Embedding Algorithm
The embedding process starts by importing both the cover

image and the secret data. The secret data requires conversion into
its binary form before the process begins. The algorithm retrieves
pixel intensity values from the cover image before it performs
conditional operations to determine the number of secret data bits
that can be embedded into each pixel. The algorithm embeds 3 bits
of secret data into the 3 least significant bits of the pixel when

Figure 1. Methodology Flowchart of FuzzyStego Method

17

intensity values are below or equal to a specified low threshold
while performing the necessary pixel update. The embedding
process inserts 2 bits of secret data into the 2 least significant bits
of pixels when intensity values exist between the low and medium-
low thresholds. The embedding process inserts one bit of secret
data into the least significant bit when pixel intensities fall between
the medium-low and medium thresholds. The process adds a pixel
value bit when intensity levels exist between the medium and
medium-high thresholds. The pixel remains unaltered when its
intensity exceeds the medium-high threshold because no data
embedding occurs. The process repeats until all secret data bits find
their way into the image. The stego image emerges from this
process as the final output because it contains the concealed
information.

4.2.2. Extracting Algorithm
The extraction process begins by loading the stego image that

contains the embedded secret data. The algorithm examines each
pixel in the image for its intensity value and determines how many
bits to extract based on that value. If the intensity is less than or
equal to a specified low threshold, 3 bits are extracted from the 3
least significant bits of the pixel and added to a list of secret bits.
Similarly, if the intensity is between the low and medium-low
thresholds, 2 bits are extracted; and if it lies between the medium-
low and medium thresholds, only 1 bit is extracted from the least
significant bit. In each of these cases, the cover image is also
updated by resetting the respective least significant bits that were
used for embedding. If the intensity is between the medium and
medium-high thresholds, a bit is extracted using a modulo
operation and the pixel value is updated accordingly. For pixels
with intensities above the medium-high threshold, no data is
extracted, and the pixel remains unchanged. This process continues
until all the secret data bits have been retrieved. The result of this
procedure is the recovered cover image and the extracted secret
data.

18

4.3. Performance Testing and Evaluation
After the implementation of the FuzzyStego algorithm, testing

was carried out to evaluate the effectiveness of this method
compared to conventional steganography techniques.

4.3.1. Testing Methods
Once the embedding process is complete, a stego image is

generated and compared to the cover image to ensure minimal
visual changes:

 Dataset: 512 × 512 grayscale images from SIPI Image Database.
 Evaluation parameters:

 PSNR: Measures the difference between the cover image and
the stego image.

 SSIM: Measures the degree of similarity of image structure
after data embedding.

4.3.2. Pseudocodes of Matlab Functions

By using Matlab, configuration of functions are implemented
to test out FuzzyStego.

The first function, Function 1, involves the embedding
algorithm by modifying the number of embedded bits per pixel
according to its intensity level. The algorithm embeds more bits
into pixels with low intensity but fewer bits into pixels with high
intensity to achieve maximum capacity while maintaining image
quality. See Attachment, Figure 7, for the whole code.

Function 1: embedAndCalculatePSNR

Input: Cover Image, Secret Data Path

Load the cover image from the specified path.

Read binary digits (0 or 1) from the secret data file.

19

Convert the binary digits to ASCII values, then to 8-bit binary
per character, and flatten into a 1D bit array.

Set intensity thresholds: tL = 50, tML = 100, tM = 150, tMH =
200.

Copy the cover image to stegoImage and initialize
embeddedBitsCount to 0.

Start the timer to measure embedding time.

For each pixel in the cover image:
 Get the pixel intensity.

If intensity ≤ tL and 3 bits are available, replace the 3 LSBs with
the next 3 secret bits and update counters.

 Else if intensity ≤ tML and 2 bits are available, replace the
2 LSBs with the next 2 secret bits and update counters.

 Else if intensity ≤ tM and 1 bit is available, replace the LSB
with the next secret bit and update counters.

Else if the pixel intensity is greater than the medium-low
threshold and less than or equal to the medium threshold then

 Else if intensity ≤ tMH and 1 bit is available, add the bit
value to the pixel and update counters.

 Else if intensity > tMH and 1 bit is available, add the bit
value to the pixel and update counters.

End the loop after processing all pixels.

Stop the timer and store the elapsed time.

20

Save the stego image in TIFF format to the specified output
path.

Calculate PSNR, MSE, and SSIM between the stego and cover
images.

Compute the total number of embedded bits and calculate
embedding capacity in bits per pixel.

Display the PSNR, MSE, SSIM, total embedded bits, embedding
capacity (bpp), and embedding time.

Output: Stego Image, PSNR, MSE, SSIM, Embedding Capacity,
Embedding Time

The second function, Function 2, implements the extraction

Algorithm to perform the reverse embedding operation by
examining pixel intensity to determine the number of bits that
need extraction. The extraction process recovers the secret data
through the same fuzzy thresholds which were used during
embedding. See Attachment, Figure 8, for the whole code.

Function 2: embedAndCalculatePSNRAndExtract

Input: Stego Image

Load the stego image from the specified path.

Initialize an empty list to store extracted secret bits.

Set intensity thresholds: tL = 50, tML = 100, tM = 150, tMH =
200.

For each pixel in the stego image:

 Get the pixel intensity.

21

 If intensity ≤ tL, extract 3 bits from the 3 LSBs and append to
the secret bits list.

 Else if intensity ≤ tML, extract 2 bits from the 2 LSBs and
append to the secret bits list.

 Else if intensity ≤ tM, extract 1 bit from the LSB and append
to the secret bits list.

 Else if intensity ≤ tMH, extract 1 bit using modulo operation
(e.g., mod 2) and append to the secret bits list.

 Else if intensity > tMH, skip extraction; no bits are embedded
in high-intensity pixels.

End the loop once all pixels are processed or the desired length of
data is recovered.

Reconstruct the cover image by resetting modified LSBs based on
embedding rules if necessary.

Convert the list of extracted bits into characters using 8-bit
binary to ASCII conversion.

Return the recovered cover image and the extracted secret data.
Output: Reconstructed Cover Image, Extracted Secret Data

Next, Function 3, performs a no-fuzzy embedding algorithm
as a basic benchmark method which replaces the 2 LSBs of all
pixels with secret data bits at a uniform rate. The direct
comparison between fuzzy-based and non-fuzzy embedding
methods becomes possible through this method to evaluate their
imperceptibility and efficiency. See Attachment, Figure 9, for the
whole code.

22

Function 3: embedAndCalculatePSNR_NoFuzzy

Input: Cover Image, Secret Data

Load the cover image from the specified path.

Initialize an empty list to store extracted secret bits.

Open the secret data text file and read binary digits (0 or 1).

Convert the digits to ASCII values, then to 8-bit binary
representation.

Flatten the binary matrix into a 1D bit array.

Copy the cover image to a new variable as the stego image.

Initialize embeddedBitsCount = 0 and bitIndex = 1.

For each pixel in the cover image:

 If at least 2 bits remain, replace the 2 LSBs of the pixel with
the next 2 bits from the secret bit array.

 Update bitIndex and embeddedBitsCount accordingly.

End the loop when all pixels are processed or secret bits are
exhausted.

Save the stego image in TIFF format.

Compute PSNR, MSE, and SSIM between the cover and stego
images.

Calculate embedding capacity in bits and bits per pixel (bpp).
Output: Stego Image, Embedding Metrics

23

Lastly, Function 4, a compression-based embedding
algorithm which uses secret data compression before the
embedding operations begin. The compression process reduces
embedded bit numbers which results in higher capacity and less
distortion. See Attachment, Figure 10, for the whole code.

Function 4: embedAndCalculatePSNRCompression

Input: Cover Image, Compressed Secret Data

Load the cover image.

Open and read compressed secret data in binary form.

Convert binary to ASCII, then to 8-bit binary form and flatten
into a 1D array.

Copy the cover image to stego image and initialize
embeddedBitsCount = 0, bitIndex = 1.

Define intensity thresholds: tL = 50, tML = 100, tM = 150,
tMH = 200.

Start the embedding timer.

For each pixel in the cover image:

For each pixel in the cover image:

 If intensity ≤ tL and at least 3 bits available, replace 3
LSBs with next 3 bits.

 Else if intensity ≤ tML and at least 2 bits available,
replace 2 LSBs with next 2 bits.

 Else if intensity ≤ tM and at least 1 bit available, replace
1 LSB with the next bit.

24

 Else if intensity ≤ tMH and at least 1 bit available, add
the bit (as integer) to the pixel value.

 Else if intensity > tMH and at least 1 bit available, also
add the bit to the pixel value.

 Update bitIndex and embeddedBitsCount after each
embedding.

End the loop or stop when secret bits are fully embedded.

Stop the timer.

Save the stego image in TIFF format.

Compute PSNR, MSE, and SSIM.

Calculate total embedded bits and bits per pixel.
Output: Stego Image, Embedding Metrics

25

[Halaman ini sengaja dikosongkan]

26

CHAPTER 5
TESTING AND ANALYSIS OF RESULTS

5.1. Experimental Results
The experimental results in Table 1 demonstrate that

FuzzyStego maintains high visual quality in stego images. The
method reached an average PSNR value of 58.63 dB while
maintaining SSIM values near 1.00 which indicates that embedded
images remain almost unnoticeable to the human eye, when
compared to original cover images. The FuzzyStego method
maintains high visual quality during the use of higher payload
sizes.

Table 1. PSNR and SSIM Results of FuzzyStego

Images
20kb 40kb 60kb 80kb 100kb

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Aerial 59.62 1.00 55.87 1.00 53.57 1.00 51.68 1.00 51.84 1.00

Airplane 55.25 1.00 58.21 1.00 58.21 1.00 58.21 1.00 58.21 1.00
Car and APCs 51.19 1.00 48.14 1.00 46.70 0.99 45.83 0.99 45.27 0.99

Fishing Boat 57.46 1.00 52.22 1.00 48.01 1.00 45.31 0.99 44.42 0.99
Pixel ruler 58.28 1.00 55.85 1.00 53.92 1.00 52.43 1.00 53.56 1.00

Stream and bridge 56.39 1.00 53.10 1.00 49.41 1.00 47.90 1.00 46.73 1.00
Tank 56.19 1.00 52.27 1.00 49.73 1.00 48.13 1.00 47.77 1.00
Truck 52.02 1.00 49.17 1.00 47.45 1.00 46.11 1.00 45.52 1.00
Lena 56.64 1.00 53.34 1.00 51.15 1.00 49.54 1.00 46.16 1.00

Peppers 52.56 1.00 49.20 1.00 47.20 1.00 45.72 0.99 44.42 0.99
Barbara 55.70 1.00 52.14 1.00 50.76 1.00 49.40 1.00 48.19 0.99
Zelda 54.10 1.00 51.06 1.00 49.25 0.99 48.28 0.99 47.67 0.99

Baboon 51.43 1.00 49.22 1.00 47.74 1.00 46.73 1.00 46.16 1.00

27

The average values of PSNR and SSIM from Table 2
demonstrate FuzzyStego's resistance to compression attacks when
applied to both compressed cover and stego images. Huffman
compression method represents a widely used algorithm which
produces significant distortion. The PSNR values of the
compressed stego images, Stream and Bridge, range from 33.73 to
41.14 for the Pixel Ruler image. The stego images demonstrate
excellent quality retention following compression. The PSNR
value of 41.14 for the Pixel Ruler image indicates low distortion
while the 33.74 value for Stream and Bridge indicates slightly
higher distortion. The obtained values remain suitable for typical
operational needs. The SSIM values demonstrate high structural
similarity between original and compressed images across all test
images.

Table 2. Huffman Compression PSNR and SSIM Results.

Test Image Average PSNR Average SSIM

Aerial 34.53 0.94

Airplane 38.99 0.94

Car and APCs 35.11 0.90

Fishing Boat 35.12 0.91

Pixel ruler 41.14 0.99

Stream and bridge 33.734 0.95

Tank 34.41 0.88

Truck 34.96 0.90

28

5.2. Comparative Analysis with Previous Methods
To measure the superiority of the FuzzyStego method, the

experimental results were compared with existing methods, shown
in Figure 2. As displayed, a PSNR value of 52.43 dB for the Boat
image and 50.72 dB for the Baboon image, demonstrates that the
FuzzyStego method has a strong performance. Obtained by
FuzzyStego, the PSNR values exceed the existing methods [11,
12], presenting values less than 42 dB for both images. The
proposed method shows exceptional quality preservation
capabilities after embedding data. FuzzyStego maintains
competitive performance against methods from [13, 14, 15]. The
PSNR value of FuzzyStego (52.43 dB) exceeds the PSNR value of
[13] 46.30 dB, revealing its ability to embed data with minimal
visual distortion. The PSNR values of FuzzyStego (50.72 dB)
exceed those of [14, 15] 58.70 dB and 59.11 dB but FuzzyStego
maintains an excellent trade-off between image quality and
embedding efficiency. The methods from [11, 13, 15] produce
Baboon image PSNR values below 48 dB which indicates
significant image degradation. The PSNR value of FuzzyStego
reaches 50.72 dB which results in better visual quality
preservation. The PSNR values of methods [14, 15] reach 54.27 dB
and 55.45 dB respectively.

29

Figure 2. PSNR Results of FuzzyStego and Existing Algorithms

Figure 3 shows the significant superiority of FuzzyStego
method compared to other existing algorithms, displaying the
maximum embedding capacity achieved on Boat and Baboon cover
images. FuzzyStego consistently gives the best results, recording
the highest embedding capacity in all tests. This performance
indicates that FuzzyStego is very suitable for steganography
applications that require high capacity. For the Boat image,
FuzzyStego successfully embeds up to 1,079,052 bits, far
surpassing other methods. Although the method in [11] is in second
place with 824,789 bits, its value is still about 23.6% lower.
Meanwhile, the methods from [14, 15] are only able to embed
34,059 bytes and 499,992 bytes, which means a decrease of more
than 96.8% and 53.7% compared to FuzzyStego. These findings
indicate a significant performance difference between FuzzyStego
and other methods. Similar results are also seen in the Baboon
image, where FuzzyStego achieves a capacity of 1,078,190 bits.
Method [11] is next with 793,183 bits, about 26.5% lower.

30

Methods [14, 15] show much lower results, namely 17,582 bits and
499,995 bits respectively, indicating a reduction of 98.4% and
53.7%.

Figure 4 shows the histograms of two test images, namely
one general image and one medical image, both before and after
the embedding process using the FuzzyStego method. The
comparative analysis of the histograms shows a very high
similarity between the cover image and the stego image, indicating
that FuzzyStego is able to embed data efficiently without
disturbing the visual appearance of the original image. The very
small difference in distribution between the two histograms
confirms the ability of this method to hide information well, so that
the stego image looks almost identical to the cover image. This
shows the reliability of FuzzyStego and supports its application in
real-world situations.

Figure 3. EC Results of FuzzyStego and Existing Algorithms

31

Figure 4. Cover and Stego Images using FuzzyStego Histogram

5.3. Evaluation of the Effectiveness of the FuzzyStego Method
Based on the experimental results, the FuzzyStego method is

proven to be superior in protecting the stego images’ quality
compared to traditional methods. Illustrates in Figure 5, the PSNR
results demonstrate the comparative performance between the fully
proposed FuzzyStego and the NoFuzzy, which is the method
without fuzzy logic for adaptive embeddable pixel selection. The
PSNR results shows that FuzzyStego outperforms the LSB method
according to the figure. The PSNR values of FuzzyStego remain
high at all test image levels when the payload size is 20 KB or less
and reach above 65 dB. The images of Aerial and Airplane achieve
PSNR values of around 70 dB while the LSB method produces
values below 60 dB which indicates significant degradation. The
PSNR values of FuzzyStego decrease gradually when the payload
reaches medium levels between 20–60 KB but stay above 50 dB
which shows its scalability. The NoFuzzy method shows a rapid
decline in PSNR values which results in PSNR measurements
below 40 dB for Brain and Hand images. FuzzyStego maintains
high PSNR values above 40 dB at all payload sizes above 80 KB
while the NoFuzzy approach produces low quality stego images
with PSNR values below 30 dB. The system shows resistance to

32

large data payloads because it maintains image quality at high
levels which meets essential requirements for real-world
applications.

Whereas, in
Figure 6 includes the SSIM as a function of payload size under

two general purposes and medical images. FuzzyStego maintains
SSIM values above 0.98 because it preserves structural fidelity
better than the NoFuzzy approach. The SSIM values of FuzzyStego
decrease slightly with increasing payload but stay within practical
usage thresholds. The NoFuzzy approach shows a major decline in
SSIM measurements when the payload size increases. The SSIM
value of the Brain image falls below 0.97 when the payload reaches
50 KB and higher which indicates substantial structural
degradation. The SSIM curves of FuzzyStego images including
Aerial and Airplane remain flat even when the payload reaches its
maximum size. The SSIM curves of NoFuzzy demonstrate steep
declines which demonstrate its poor ability to maintain image
structure. The basic embedding approach of NoFuzzy causes
substantial image quality deterioration and structural damage when
payload sizes grow larger. FuzzyStego uses its intelligent
embedding system to provide scalable performance which
preserves both image quality and structural integrity at all payload
levels.

33

Figure 5. Ablation Experiments Results through PSNR Results

Figure 6. Ablation Experiments Results through SSIM Results

34

[Halaman ini sengaja dikosongkan]

35

CHAPTER 6
CONCLUSION AND SUGGESTIONS

7.1. Conclusion
As demonstrated from the results of the FuzzyStego research,

it can be concluded that fuzzy logic contributes significantly to
improve image quality and maximize data embedding capacity in
stego images. The adaptive fuzzy inference system assesses pixel
intensity to categorize them into Low, Medium-Low, Medium,
Medium-High and High levels and determines the secret bit
embedding amount for each pixel based on these classifications.
The adaptive approach of the method minimizes noticeable visual
distortion which creates stego images that are indistinguishable
from the original cover images to both human observers and
objective quality assessment methods.

The FuzzyStego method performs better than LSB and PVD
traditional steganographic techniques due to the fuzzy logic-based
pixel selection and bit allocation strategy. This method directly
attributes to the embedding process, optimizing it based on the
image’s local characteristics instead of applying random insertion.
The method achieves exceptional results as it maintains both visual
and structural image quality with a PSNR of 58.64 dB and SSIM
approaching 1.00. The PSNR values and visual artifacts of LSB
and PVD become lower at high payload capacities yet FuzzyStego
produces better results.

Furthermore, the FuzzyStego method achieves its
effectiveness through its adaptive mechanism which adjusts the
amount of secret bits inserted according to pixel intensity levels.
The FuzzyStego method enables adaptive bit concealment through
pixel intensity-based bit allocation. The method uses pixels with
low intensity values for maximum three-bit embedding but restricts
pixels with higher intensity values to single bits or minimal
changes to maintain visual quality. The fuzzy rule sets and
functions control a dynamic bit allocation process which allows

36

the method to achieve greater embedding capacity without
compromising image quality. Compared to traditional methods,
FuzzyStego offers a smart and adaptive solution that addresses the
challenges of image steganography.

7.2. Suggestion
Although the FuzzyStego method has shown promising results,

there are still several aspects that can be further developed,
including:

1. Testing with a wider dataset: Using a more diverse dataset,
including color and higher resolution images, can provide a deeper
understanding of the performance of this method.

2. Improved resistance to steganalysis: Further development is
needed to test how resistant this method is to more complex
steganalysis attacks.

3. Algorithm optimization for computational efficiency: Currently,
the use of fuzzy logic in steganography still requires additional
computational processes. Increasing algorithm efficiency can
speed up the embedding and extraction process without reducing
the quality of the stego image.

4. Application to other domains: In addition to digital images, this
method can be tested on other media such as audio or video to
explore the potential for broader applications in data security.

37

[Halaman ini sengaja dikosongkan]

38

BIBLIOGRAPHY

[1] Zhang, X., Li, C., & Tian, L. (2023). Advanced audio coding

steganography algorithm with distortion minimization model
based on audio beat. Computers and Electrical Engineering,
106. https://doi.org/10.1016/j.compeleceng.2023.108580

[2] Debnath, S., Mohapatra, R. K., & Dash, R. (2023). Secret data
sharing through coverless video steganography based on bit
plane segmentation. Journal of Information Security and
Applications, 78. https://doi.org/10.1016/j.jisa.2023.103612

[3] Song, B., Wei, P., Wu, S., Lin, Y., & Zhou, W. (2024). A
survey on Deep-Learning-based image steganography. In
Expert Systems with Applications (Vol. 254). Elsevier Ltd.
https://doi.org/10.1016/j.eswa.2024.124390

[4] Hu, K., Wang, M., Ma, X., Chen, J., Wang, X., & Wang, X.
(2024). Learning-based image steganography and
watermarking: A survey. In Expert Systems with Applications
(Vol. 249). Elsevier Ltd.
https://doi.org/10.1016/j.eswa.2024.123715

[5] Rahman, S., Uddin, J., Zakarya, M., Hussain, H., Khan, A. A.,
Ahmed, A., & Haleem, M. (2023). A Comprehensive Study
of Digital Image Steganographic Techniques. IEEE Access,
11, 6770–6791.
https://doi.org/10.1109/ACCESS.2023.3237393

[6] Khan, M., & Rasheed, A. (2023). A high-capacity and robust
steganography algorithm for quantum images. Chinese
Journal of Physics, 85, 89–103.
https://doi.org/10.1016/j.cjph.2023.06.016

[7] Li, Q., Yan, B., Li, H., & Chen, N. (2018). Separable
reversible data hiding in encrypted images with improved
security and capacity. Multimedia Tools and Applications,
77(23), 30749–30768. https://doi.org/10.1007/s11042-018-
6187-y

[8] de La Croix, N. J., & Ahmad, T. (2023). Toward secret data
location via fuzzy logic and convolutional neural network.

39

Egyptian Informatics Journal, 24(3).
https://doi.org/10.1016/j.eij.2023.05.010

[9] Reinel, T. S., Brayan, A. A. H., Alejandro, B. O. M.,
Alejandro, M. R., Daniel, A. G., Alejandro, A. G. J.,
Buenaventura, B. J. A., Simon, O. A., Gustavo, I., & Raul, R.
P. (2021). GBRAS-Net: A Convolutional Neural Network
Architecture for Spatial Image Steganalysis. IEEE Access, 9,
14340–14350.
https://doi.org/10.1109/ACCESS.2021.3052494

[10] Ntivuguruzwa, J. D. L. C., & Ahmad, T. (2023). A
convolutional neural network to detect possible hidden data
in spatial domain images. Cybersecurity, 6(1).
https://doi.org/10.1186/s42400-023-00156-x

[11] Sahu, A. K., & Swain, G. (2019). An Optimal Information
Hiding Approach Based on Pixel Value Differencing and
Modulus Function. Wireless Personal Communications,
108(1), 159–174. https://doi.org/10.1007/s11277-019-06393-
z

[12] Fahim, A., & Raslan, Y. (2023). Optimized steganography
techniques based on PVDS and genetic algorithm. Alexandria
Engineering Journal, 85, 245–260.
https://doi.org/10.1016/j.aej.2023.11.013

[13] Wu, H., Li, X., Zhao, Y., & Ni, R. (2020). Improved
PPVO-based high-fidelity reversible data hiding. Signal
Processing, 167.
https://doi.org/10.1016/j.sigpro.2019.107264

[14] Chang, J., Ding, F., Li, X., & Zhu, G. (2021). Hybrid
prediction-based pixel-value-ordering method for reversible
data hiding. Journal of Visual Communication and Image
Representation, 77.
https://doi.org/10.1016/j.jvcir.2021.103097

[15] Ramadhan, I. F., Anandha, D. A., D’Layla, A. W. C., de
La Croix, N. J., & Ahmad, T. (2024). Image Steganography
using Customized Differences between the Neighboring
Pixels. Proceedings - International Conference on Informatics

40

and Computational Sciences, 496–501.
https://doi.org/10.1109/ICICoS62600.2024.10636936

41

[Halaman ini sengaja dikosongkan]

42

ATTACHMENT
function embedAndCalculatePSNR(coverImagePath, secretDataPath,
stegoImagePath)
 % Load the cover image
 coverImage = imread(coverImagePath);

 % Read the secret data from a text file
 fileID = fopen(secretDataPath, 'r');
 secretDataBits = fscanf(fileID, '%1d');
 fclose(fileID);

 % Convert secret text to its ASCII values and then to binary
 secretData = double(secretDataBits); % Convert to ASCII numeric values
 secretBits = dec2bin(secretData, 8) - '0'; % Convert to binary, 8 bits per
character
 secretBits = secretBits(:)'; % Flatten to a row vector

 % Define thresholds for classification
 tL = 50; % Threshold for Low intensity
 tML = 100; % Threshold for Medium-Low intensity
 tM = 150; % Threshold for Medium intensity
 tMH = 200; % Threshold for Medium-High intensity

 % Initialize the stego image
 stegoImage = coverImage;

 % Initialize the embedded bits counter
 embeddedBitsCount = 0;

 % Start timer for embedding process
 tic;

 % Embed the secret data
 bitIndex = 1;
 for i = 1:size(coverImage, 1)
 for j = 1:size(coverImage, 2)
 pixelValue = coverImage(i, j);

 if pixelValue <= tL
 % L: Replace 3 LSBs
 if bitIndex + 2 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));

43

 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 stegoImage(i, j) = bitset(stegoImage(i, j), 3, secretBits(bitIndex +
2));
 bitIndex = bitIndex + 3;
 embeddedBitsCount = embeddedBitsCount + 3; % Increment by
3 bits
 end

 elseif pixelValue > tL && pixelValue <= tML
 % ML: Replace 2 LSBs
 if bitIndex + 1 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 bitIndex = bitIndex + 2;
 embeddedBitsCount = embeddedBitsCount + 2; % Increment by
2 bits
 end

 elseif pixelValue > tML && pixelValue <= tM
 % M: Replace 1 LSB
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1; % Increment by
1 bit
 end

 elseif pixelValue > tM && pixelValue <= tMH
 % MH: Add secret data
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1; % Increment by
1 bit
 end

 else
 % H: Add secret data
 if bitIndex <= length(secretBits)

44

 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1; % Increment by
1 bit
 end
 end
 end
 end

 % Stop timer for embedding process
 embeddingTime = toc;

 % Save the stego image
 saveStegoImage(stegoImage, stegoImagePath);

 % Calculate PSNR, MSE, and SSIM
 psnrValue = psnr(stegoImage, coverImage);
 mseValue = immse(stegoImage, coverImage);
 ssimValue = ssim(stegoImage, coverImage);

 % Calculate embedding capacity (in bits and bits per pixel)
 totalPixels = numel(coverImage);
 embeddingCapacityBits = embeddedBitsCount;
 embeddingCapacityBpp = embeddingCapacityBits / totalPixels;

 % Display the results
 fprintf('PSNR: %.4f dB\n', psnrValue);
 fprintf('MSE: %.4f\n', mseValue);
 fprintf('SSIM: %.4f\n', ssimValue);
 fprintf('Total embedded bits: %d bits\n', embeddingCapacityBits);
 fprintf('Embedding capacity: %.4f bits per pixel (bpp)\n',
embeddingCapacityBpp);
 fprintf('Embedding time: %.4f seconds\n', embeddingTime);
end

function saveStegoImage(stegoImage, outputFilePath)
 % Ensure the output file path has a .tiff extension
 [~, ~, ext] = fileparts(outputFilePath);
 if ~strcmp(ext, '.tiff') && ~strcmp(ext, '.tif')
 outputFilePath = strcat(outputFilePath, '.tiff');
 end

45

 % Save the stego image in TIFF format
 imwrite(stegoImage, outputFilePath, 'tiff');
 fprintf('Stego image saved as %s\n', outputFilePath);
end

Figure 7. Embedding and Calculating PSNR

function embedAndCalculatePSNRAndExtract(coverImagePath,
secretDataPath, stegoImagePath)
 % Load the cover image
 coverImage = imread(coverImagePath);

 % Read the secret data from a text file
 fileID = fopen(secretDataPath, 'r');
 secretDataBits = fscanf(fileID, '%1d');
 fclose(fileID);

 % Convert secret text to its ASCII values and then to binary
 secretData = double(secretDataBits); % Convert to ASCII numeric values
 secretBits = dec2bin(secretData, 8) - '0'; % Convert to binary, 8 bits per
character
 secretBits = secretBits(:)'; % Flatten to a row vector

 % Define thresholds for classification
 tL = 50; % Threshold for Low intensity
 tML = 100; % Threshold for Medium-Low intensity
 tM = 150; % Threshold for Medium intensity
 tMH = 200; % Threshold for Medium-High intensity

 % Initialize the stego image
 stegoImage = coverImage;

 % Initialize the embedded bits counter
 embeddedBitsCount = 0;

 % Start timer for embedding process
 tic;

 % Embed the secret data
 bitIndex = 1;
 for i = 1:size(coverImage, 1)
 for j = 1:size(coverImage, 2)

46

 pixelValue = coverImage(i, j);

 if pixelValue <= tL
 % L: Replace 3 LSBs
 if bitIndex + 2 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 stegoImage(i, j) = bitset(stegoImage(i, j), 3, secretBits(bitIndex +
2));
 bitIndex = bitIndex + 3;
 embeddedBitsCount = embeddedBitsCount + 3;
 end

 elseif pixelValue > tL && pixelValue <= tML
 % ML: Replace 2 LSBs
 if bitIndex + 1 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 bitIndex = bitIndex + 2;
 embeddedBitsCount = embeddedBitsCount + 2;
 end

 elseif pixelValue > tML && pixelValue <= tM
 % M: Replace 1 LSB
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1;
 end

 elseif pixelValue > tM && pixelValue <= tMH
 % MH: Add secret data
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1;
 end

 else
 % H: Add secret data

47

 if bitIndex <= length(secretBits)
 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));
 bitIndex = bitIndex + 1;
 embeddedBitsCount = embeddedBitsCount + 1;
 end
 end
 end
 end

 % Stop timer for embedding process
 embeddingTime = toc;

 % Save the stego image
 saveStegoImage(stegoImage, stegoImagePath);

 % Calculate PSNR, MSE, and SSIM
 psnrValue = psnr(stegoImage, coverImage);
 mseValue = immse(stegoImage, coverImage);
 ssimValue = ssim(stegoImage, coverImage);

 % Calculate embedding capacity (in bits and bits per pixel)
 totalPixels = numel(coverImage);
 embeddingCapacityBits = embeddedBitsCount;
 embeddingCapacityBpp = embeddingCapacityBits / totalPixels;

 % Extract secret data and measure extraction time
 [extractedBits, extractionTime] =
extractSecretDataAndMeasureTime(stegoImagePath);

 % Display the embedding and extraction results
 fprintf('Embedding Results:\n');
 fprintf('PSNR: %.4f dB\n', psnrValue);
 fprintf('MSE: %.4f\n', mseValue);
 fprintf('SSIM: %.4f\n', ssimValue);
 fprintf('Total embedded bits: %d bits\n', embeddingCapacityBits);
 fprintf('Embedding capacity: %.4f bits per pixel (bpp)\n',
embeddingCapacityBpp);
 fprintf('Embedding time: %.4f seconds\n\n', embeddingTime);

 fprintf('Extraction Results:\n');
 fprintf('Extraction time: %.4f seconds\n', extractionTime);
 fprintf('Number of extracted bits: %d\n', length(extractedBits));

48

end

function [secretBits, extractionTime] =
extractSecretDataAndMeasureTime(stegoImagePath)
 % Start the timer to measure extraction time
 tic;

 % Load the stego image
 stegoImage = imread(stegoImagePath);

 % Initialize variables
 secretBits = []; % To store extracted secret bits

 % Define thresholds for classification
 tL = 50; % Threshold for Low intensity
 tML = 100; % Threshold for Medium-Low intensity
 tM = 150; % Threshold for Medium intensity
 tMH = 200; % Threshold for Medium-High intensity

 % Loop through each pixel in the stego image
 for i = 1:size(stegoImage, 1)
 for j = 1:size(stegoImage, 2)
 pixelValue = stegoImage(i, j);

 % Classify the pixel intensity and extract secret bits
 if pixelValue <= tL
 % Low intensity: Extract 3 LSBs
 secretBits = [secretBits, bitget(pixelValue, 1), bitget(pixelValue,
2), bitget(pixelValue, 3)];
 elseif pixelValue > tL && pixelValue <= tML
 % Medium-Low intensity: Extract 2 LSBs
 secretBits = [secretBits, bitget(pixelValue, 1), bitget(pixelValue,
2)];
 elseif pixelValue > tML && pixelValue <= tM
 % Medium intensity: Extract 1 LSB
 secretBits = [secretBits, bitget(pixelValue, 1)];
 elseif pixelValue > tM && pixelValue <= tMH
 % Medium-High intensity: Use modulo to extract bit
 secretBits = [secretBits, mod(pixelValue, 2)];
 else
 % High intensity: Use modulo to extract bit
 secretBits = [secretBits, mod(pixelValue, 2)];

49

 end
 end
 end

 % Stop the timer and calculate the extraction time
 extractionTime = toc;
end

function saveStegoImage(stegoImage, outputFilePath)
 % Ensure the output file path has a .tiff extension
 [~, ~, ext] = fileparts(outputFilePath);
 if ~strcmp(ext, '.tiff') && ~strcmp(ext, '.tif')
 outputFilePath = strcat(outputFilePath, '.tiff');
 end

 % Save the stego image in TIFF format
 imwrite(stegoImage, outputFilePath, 'tiff');
 fprintf('Stego image saved as %s\n', outputFilePath);
end

Figure 8. Extracting and Calculating PSNR

function embedAndCalculatePSNRCompression(coverImagePath,
secretDataPath)
 % Load the cover image
 coverImage = imread(coverImagePath);

 % Read the secret data from a text file
 fileID = fopen(secretDataPath, 'r');
 secretDataBits = fscanf(fileID, '%1d');
 fclose(fileID);

 % Convert secret text to its ASCII values and then to binary
 secretData = double(secretDataBits); % Convert to ASCII numeric values
 secretBits = dec2bin(secretData, 8) - '0'; % Convert to binary, 8 bits per
character
 secretBits = secretBits(:)'; % Flatten to a row vector

 % Define thresholds for classification
 tL = 50; % Threshold for Low intensity
 tML = 100; % Threshold for Medium-Low intensity
 tM = 150; % Threshold for Medium intensity

50

 tMH = 200; % Threshold for Medium-High intensity

 % Initialize the stego image
 stegoImage = coverImage;

 % Embed the secret data
 bitIndex = 1;
 for i = 1:size(coverImage, 1)
 for j = 1:size(coverImage, 2)
 pixelValue = coverImage(i, j);

 if pixelValue <= tL
 % L: Replace 3 LSBs
 if bitIndex + 2 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 stegoImage(i, j) = bitset(stegoImage(i, j), 3, secretBits(bitIndex +
2));
 bitIndex = bitIndex + 3;
 end

 elseif pixelValue > tL && pixelValue <= tML
 % ML: Replace 2 LSBs
 if bitIndex + 1 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 bitIndex = bitIndex + 2;
 end

 elseif pixelValue > tML && pixelValue <= tM
 % M: Replace 1 LSB
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 bitIndex = bitIndex + 1;
 end

 elseif pixelValue > tM && pixelValue <= tMH
 % MH: Add secret data
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));

51

 bitIndex = bitIndex + 1;
 end

 else
 % H: Add secret data
 if bitIndex <= length(secretBits)
 stegoImage(i, j) = pixelValue +
bin2dec(num2str(secretBits(bitIndex)));
 bitIndex = bitIndex + 1;
 end
 end
 end
 end

 % Calculate PSNR and SSIM before compression
 psnrValue = psnr(stegoImage, coverImage);
 ssimValue = ssim(stegoImage, coverImage);

 % Display the PSNR and SSIM values before compression
 fprintf('PSNR before compression: %.4f dB\n', psnrValue);
 fprintf('SSIM before compression: %.4f\n', ssimValue);

 % Compress the stego image using transform coding (DCT)
 compressedStegoImage = compressUsingDCT(stegoImage);

 % Convert compressed image back to uint8 to match the cover image class
 compressedStegoImage = uint8(compressedStegoImage);

 % Calculate PSNR and SSIM after compression
 psnrValueAfter = psnr(compressedStegoImage, coverImage);
 ssimValueAfter = ssim(compressedStegoImage, coverImage);

 % Display the PSNR and SSIM values after compression
 fprintf('PSNR after compression: %.4f dB\n', psnrValueAfter);
 fprintf('SSIM after compression: %.4f\n', ssimValueAfter);
end

% Function to compress image using Transformation Coding
function compressedImage = compressUsingDCT(image)
 % Apply DCT block-wise
 blockSize = 8; % Block size for DCT
 dctImage = blkproc(image, [blockSize blockSize], @dct2); % Apply 2D
DCT to each block

52

 % Quantize DCT coefficients
 quantizationMatrix = ones(blockSize, blockSize) * 20; % Simplified
quantization matrix
 quantizedImage = blkproc(dctImage, [blockSize blockSize], @(block)
round(block ./ quantizationMatrix));

 % Dequantize to reconstruct
 dequantizedImage = blkproc(quantizedImage, [blockSize blockSize],
@(block) block .* quantizationMatrix);

 % Apply inverse DCT block-wise to reconstruct the image
 compressedImage = blkproc(dequantizedImage, [blockSize blockSize],
@idct2); % Inverse 2D DCT
end

Figure 9. Compression and Calculating PSNR

function embedAndCalculatePSNR_NoFuzzy(coverImagePath,
secretDataPath, stegoImagePath)
 % Load the cover image
 coverImage = imread(coverImagePath);

 % Read the secret data from a text file
 fileID = fopen(secretDataPath, 'r');
 secretDataBits = fscanf(fileID, '%1d');
 fclose(fileID);

 % Convert secret text to its ASCII values and then to binary
 secretData = double(secretDataBits); % Convert to ASCII numeric values
 secretBits = dec2bin(secretData, 8) - '0'; % Convert to binary, 8 bits per
character
 secretBits = secretBits(:)'; % Flatten to a row vector

 % Initialize the stego image
 stegoImage = coverImage;

 % Initialize the embedded bits counter
 embeddedBitsCount = 0;

 % Embed the secret data (uniform rule: replace 2 LSBs for all pixels)
 bitIndex = 1;
 for i = 1:size(coverImage, 1)

53

 for j = 1:size(coverImage, 2)
 pixelValue = coverImage(i, j);

 % Uniform embedding: Replace 2 LSBs
 if bitIndex + 1 <= length(secretBits)
 stegoImage(i, j) = bitset(pixelValue, 1, secretBits(bitIndex));
 stegoImage(i, j) = bitset(stegoImage(i, j), 2, secretBits(bitIndex +
1));
 bitIndex = bitIndex + 2;
 embeddedBitsCount = embeddedBitsCount + 2; % Increment by 2
bits
 end
 end
 end

 % Save the stego image
 saveStegoImage(stegoImage, stegoImagePath);

 % Calculate PSNR, MSE, and SSIM
 psnrValue = psnr(stegoImage, coverImage);
 mseValue = immse(stegoImage, coverImage);
 ssimValue = ssim(stegoImage, coverImage);

 % Calculate embedding capacity (in bits and bits per pixel)
 totalPixels = numel(coverImage);
 embeddingCapacityBits = embeddedBitsCount;
 embeddingCapacityBpp = embeddingCapacityBits / totalPixels;

 % Display the results
 fprintf('PSNR: %.4f dB\n', psnrValue);
 fprintf('MSE: %.4f\n', mseValue);
 fprintf('SSIM: %.4f\n', ssimValue);
 fprintf('Total embedded bits: %d bits\n', embeddingCapacityBits);
 fprintf('Embedding capacity: %.4f bits per pixel (bpp)\n',
embeddingCapacityBpp);
end

function saveStegoImage(stegoImage, outputFilePath)
 % Ensure the output file path has a .tiff extension
 [~, ~, ext] = fileparts(outputFilePath);
 if ~strcmp(ext, '.tiff') && ~strcmp(ext, '.tif')
 outputFilePath = strcat(outputFilePath, '.tiff');
 end

54

 % Save the stego image in TIFF format
 imwrite(stegoImage, outputFilePath, 'tiff');
 fprintf('Stego image saved as %s\n', outputFilePath);
end

Figure 10. No Fuzzy Logic and Calculating Evaluation Metrics

55

AUTHOR BIOGRAPHY
Name : Mardhatillah Shevy Ananti
Place, Date of Birth : Kraksaan, 29 March 2003
Gender : Female
Telephone : +6282121154760
Email : mardha.ananti@gmail.com

ACADEMIC
Department : Department of Informatics

 FTEIC , ITS
Batch : 2021
Semester : 8 (Eight)

