ANALISIS STRUKTUR HASIL PELAPISAN Fe₃O₄ PADA SUBSTRAT LOGAM TEMBAGA DENGAN METODA SPIN-COATING Machida Nurul K.*, Darminto**

*Program Sarjana Jurusan Fisika FMIPA-ITS, machida.nurul@mhs.physics.its.ac.id **Jurusan Fisika FMIPA-ITS, darminto@physics.its.ac.id

Abstrak

Partikel nano magnetit (Fe_3O_4) telah berhasil disintesis dengan metode kopresipitasi menggunakan pasir besi sebagai prekursor ferit alami dan Polietilena Glikol (PEG) - 1000 sebagai *template*. Partikel yang dihasilkan kemudian digunakan sebagai fasa terdispersi dalam cairan koloid menggunakan TMAH sebagai surfaktan. Ferofluida Fe_3O_4 ini selanjutnya dilapiskan ke logam tembaga menggunakan metode *spin-coating* dan diikuti dengan proses pengeringan. Menurut spektrum XRD dan analisis EDX, lapisan yang terbentuk pada permukaan Cu mengandung partikel Fe_3O_4 dengan distribusi yang homogen dalam skala mikrometer. Pengamatan menggunakan SEM dan AFM mengungkapkan bahwa partikelpartikel Fe_3O_4 berkumpul membentuk *cluster-cluster* di butir maupun batas butir substrat Cu.

Kata kunci: Pasir Besi, Ferofluida Fe₃O₄, PEG – 1000, Spin-Coating.

I. PENDAHULUAN

Negara Indonesia dikaruniai sumber daya alam yang melimpah. Salah satunya adalah pasir yang memiliki kandungan 64,15 % fasa magnetit (Fe₃O₄) [1]. Hal ini dapat dimanfaatkan sebagai bahan prekursor ferofluida Fe₃O₄ yang banyak digunakan dalam berbagai bidang antara lain aplikasi dari segi termal dalam *loudspeaker* [2], dari segi mekanik sebagai ferofluida *seal* [3] ataupun sebagai *shock absorber* [4] serta aplikasi dalam dunia obat-obatan [5] dan juga sebagai *drug targeting* [6] serta MRI (*Magnetic Resonance Imaging*) [7] hingga penggunaan sebagai tinta magnetik dalam pencetakan uang kertas dolar USA [8].

Dalam penelitian ini, ferofluida Fe₃O₄ disintesis dari bahan dasar pasir besi yang berasal dari Kecamatan Pasirian Lumajang. Metoda kopresipitasi digunakan untuk menghasilkan partikel Fe₃O₄ yang mempunyai ukuran kristal kurang dari 100 nm yaitu salah satu teknik presipitasi secara kimia yang memungkinkan zat melarut dan mengendap disertai dengan penambahan polietilena glikol (PEG)-1000 sebagai *template*. Ferofluida Fe₃O₄ yang terbentuk kemudian dilapiskan pada logam tembaga menggunakan metoda *spin-coating*.

II. EKSPERIMEN

Partikel nano Fe₃O₄ sebagai prekursor ferofluida Fe₃O₄ pada penelitian ini disintesis dari 20 g pasir besi yang dilarutkan dalam 38 mL HCl 12 M dan diaduk pada temperatur ~70°C selama 15 menit dengan magnetic stirrer di atas hot plate. Larutan yang terbentuk kemudian disaring menggunakan kertas saring. Setelah itu larutan NH₄OH 6,5 M sebanyak 70 mL ditambahkan dalam larutan hasil penyaringan ini sambil diaduk dengan magnetik stirrer dan dipanaskan dengan hot plate pada temperatur ~70° C selama 15 m enit. Endapan hasil reaksi yang terbentuk lalu dicuci 10 k ali dengan akuades sampai pH larutan netral dan bersih dari sisa-sisa basa hasil reaksi. Sebanyak 15 g endapan tersebut ditambahkan TMAH sebanyak 3.6 mL sehingga diperoleh ferofluida Fe_3O_4 tanpa penambahan polietilena glikol (PEG)-1000. Sedangkan ferofluida Fe₃O₄ dengan penambahan PEG-1000 disintensis dengan mengacu pada prosedur yang telah dilakukan [9]. Ferofluida ini kemudian sebelumnva dilapiskan pada permukaan logam tembaga yang memiliki diameter 16 mm dan telah diberi perlakuan grinding dan polishing mengunakan serbuk alumina. Substrat yang telah halus dan mengkilap permukaannya kemudian dietsa menggunakan *potassium dichromate*. Proses pelapisan menggunakan metoda spin-coating hingga diperoleh 2 variasi sampel yaitu logam

Cu yang dilapisi Fe_3O_4 dengan dan tanpa penggunaan PEG. Kecepatan perputaran pelapisannya sebesar 3000 rpm selama 30 detik sehingga diperoleh lapisan yang cukup tipis. Karakterisasi hasil pelapisan menggunakan XRD, AFM dan SEM-EDX.

III. HASIL DAN PEMBAHASAN

Partikel nano Fe_3O_4 yang digunakan sebagai bahan prekursor ferofluida Fe_3O_4 dihasilkan dari pasir besi yang telah memiliki fasa Fe_3O_4 dengan cara kopresipitasi. Pasir besi yang telah diekstrak kemudian dilarutkan dalam larutan HCl sehingga menghasilkan senyawasenyawa menurut reaksi berikut:

 $\begin{array}{l} \mathbf{3Fe_3O_{4(s)}} + \mathbf{8HCl}_{(aq)} \rightarrow \mathbf{2FeCl}_{\mathbf{3}(aq)} + \mathbf{FeCl}_{\mathbf{2}(aq)} + \\ \mathbf{3Fe_2O_{3(aq)}} + \mathbf{3H_2O_{(l)}} + \mathbf{H_{2(g)}} \end{array} \tag{1}$

Dari larutan hasil reaksi tersebut, terdapat baik ion Fe^{2+} dan ion Fe^{3+} sekaligus yang menjadi dasar sintesis Fe_3O_4 yang mengandung ion Fe^{2+} dan juga ion Fe^{3+} dalam satu struktur kristalnya. Penambahan NH₄OH dengan cara titrasi merupakan proses yang membuat Fe^{2+} dan Fe^{3+} yang direaksikan mengkristal atau mengendap. Seiring proses pengendapan, terjadi pengintian yaitu pertumbuhan butir namun tidak sampai membesar karena terjadi dengan cepat dan pengontrolan pada suhu dan waktu. Proses yang seperti ini menjadikan partikel Fe_3O_4 berukuran nano yang dihasilkan sesuai reaksi berikut:

 $2FeCl_{3(aq)} + FeCl_{2(aq)} + 3H_2O_{(l)} + 8NH_4OH_{(aq)}$ $\rightarrow Fe_3O_{4(s)} + 8NH_4Cl_{(aq)} + 7H_2O_{(l)}$ (2)

Endapan Fe_3O_4 berwarna hitam akan terbentuk dengan segera saat larutan hasil reaksi pertama yang mengandung ion Fe^{2+} dan ion Fe^{3+} dicampur dengan larutan basa [10]. Pola difraksi partikel nano Fe_3O_4 yang disintesis dengan metode kopresipitasi pada penelitian ini tampak pada Gambar 1.

Analisis menggunakan program X'Pert HighScore untuk semua sampel menghasilkan pola difraksi yang sama dengan pola difraksi magnetit (Fe₃O₄) dengan reference Code no. 00-019-0629. Hasil analisis ini menunjukkan bahwa serbuk Fe₃O₄ yang berasal dari pasir besi adalah murni fasa Fe₃O₄ dan tidak ada fasa lain karena tidak ditemukan puncak-puncak dari impuritas seperti goethit yang memiliki rumus kimia α -FeOOH ataupun maghemit (γ -Fe₂O₃) yang

merupakan senyawa impuritas yang paling umum terdapat dalam magnetit yang disintesis dengan metode kopresipitasi. Namun secara umum sangat sulit membedakan antara fasa Fe₃O₄ dengan maghemit sebab keduanya memiliki pola puncak difraksi yang sangat mirip dan struktur kristal yang serupa. Identifikasi secara pasti struktur partikel nano Fe_3O_4 atau γ -Fe₂O₃ baru bisa didapat jika menggunakan spektroskopi Mössbauer. Selain itu, pola difraksi sinar-X dari serbuk yang disintesis dengan penambahan PEG-1000 tampak mirip dengan pola difraksi sinar-X dari sampel tanpa PEG-1000. Hal ini mengindikasikan penambahan PEG-1000 tidak mempengaruhi kristalinitas dari partikel Fe₃O₄. Meskipun demikian, hasil ini belum mampu memstikan bahwa PEG-1000 tidak ikut bereaksi karena pada penelitian yang dilakukan oleh Mukhopadhyay dkk. [11] secara mengkonfirmasi adanya modifikasi jelas permukaan partikel Fe₃O₄ yang disebabkan oleh PEG. PEG dapat menempel di permukaan partikel Fe3O4 secara kovalen untuk mengurangi efek immunogenitas [12].

diketahui Setelah komposisi fasanya, dilanjutkan dengan proses refinement program menggunakan MAUD (Materials Analysis using Diffraction) untuk mendapatkan ukuran kristal dengan memperhalus (*refinement*) pola terukur dengan pola terhitung dari difraksi sinar-X data ICSD No. 84098 (a = 8,398 Å). Hasil analisis refinement ini menghasilkan ukuran kristal dari Fe₃O₄ sebesar 44,0 \pm 2,9 nm dengan parameter kisi yang didapatkan sebesar $8,3580 \pm 0,0005$ Å untuk sampel tanpa PEG-1000. Sedangkan ukuran kristal Fe₃O₄ dari sampel dengan PEG-1000 sebesar 38.9 ± 3.4 nm dengan parameter kisi yang didapat sebesar 8,3579 ± 0,0005 Å. Konstanta kisi ini sesuai dengan konstanta kisi partikel Fe₃O₄ yang disintesis dari pasir besi dalam penelitian yang dilakukan Baqiya [13] yaitu sebesar 8,360 Å dan 8.361 Å berturut-turut untuk Fe₃O₄ tanpa dan dengan penambahan PEG 400.

Foto SEM penampang melintang logam tembaga sebelum dan setelah proses pelapisan ferofluida Fe_3O_4 menggunakan metoda *spincoating* ditampilkan dalam Gambar 2. Dari gambar tersebut terlihat ferofluida Fe_3O_4 yang dilapiskan melalui teknik *spin-coating* dapat berhasil menempel pada permukaan substrat. Kesimpulan ini juga diperkuat dengan data EDX yang mendeteksi unsur Fe dan O di permukaan sampel tanpa dan dengan PEG-1000. Lapisan

yang terbentuk cukup padat dan memiliki tebal 3,7 µm dengan penyebaran partikel Fe₃O₄ yang

Gambar 1 Pola difraksi sinar-X dan distribusi ukuran kristal Fe₃O₄ yang disintesis dengan dan tanpa PEG-1000

menempel pada permukaan logam tembaga tidak merata sehingga menyerupai bukit-bukit.

Gambar 3 a) merupakan struktur mikro permukaan substrat tembaga sebelum proses pelapisan yang diuji menggunakan SEM dengan perbesaran 3500× sedangkan Gambar 3 b) memperlihatkan struktur mikro permukaan tembaga yang diuji menggunakan mikroskop optik dengan perbesaran 500× untuk melihat karakteristik dari butir logam tembaga. Pendokumentasian mikrografi permukaan substrat tembaga sebelum proses pelapisan ini penting karena dari Gambar 3 b) diperoleh informasi mengenai karakteristik permukaan logam tembaga yang meliputi bentuk butir yang menyerupai kotak (*equiaxed grain*) dan partikel tembaga oksida yang terdispersi (titik hitam yang ditunjukan oleh tanda panah berwarna hitam). Karakteristik ini sesuai dengan struktur mikro logam tembaga yang telah diberi perlakuan etsa dengan menggunakan *potassium dichromate* [14].

Gambar 2 Struktur mikro penampang melintang substrat tembaga menggunakan SEM dengan perbesaran 3500× a) sebelum proses pelapisan, b) setelah proses pelapisan ferofluida Fe₃O₄

Gambar 3 Morfologi permukaan substrat tembaga menggunakan SEM a) sebelum dilapisi ferofluida Fe_3O_4 dengan perbesaran 3500×, b) sebelum dilapisi ferofluida Fe_3O_4 menggunakan mikroskop optik dengan perbesaran 500×, c) hasil pelapisan ferofluida Fe_3O_4 tanpa PEG–1000, d) setelah proses pelapisan ferofluida Fe_3O_4 dengan PEG–1000

Setelah dikarakterisasi dengan mikroskop optik, permukaan logam tembaga ini kemudian diteliti lebih lanjut pada perbesaran yang lebih tinggi yaitu 3500× dengan menggunakan SEM. Dari Gambar 3 a) tidak terlihat batas-batas butir seperti pada Gambar 3 b) yang artinya hasil SEM ini menunjukkan mikrografi permukaan tembaga pada bagian butir yang cukup halus dan relatif tidak ditemukan agregat partikel tembaga oksida yang besar.

Bila kedua mikrografi sebelum pelapisan dibandingkan dengan Gambar 3 (c dan d) yang merupakan mikrografi SEM hasil pelapisan ferofluida Fe₃O₄ dengan variasi tanpa dan dengan PEG-1000, terlihat bahwa lapisan yang terbentuk pada kedua sampel sama-sama memiliki karakteristik yang cukup padat dan kualitatif tingkat kekasarannya secara cukuptinggi serta penyebaran partikel Fe₃O₄ menempel pada seluruh permukaan substrat baik pada butir maupun batas butir dari logam tembaga. Namun Gambar 3 (c dan d) masih memperlihatkan batas butir secara jelas seperti yang ditunjukkan oleh tanda panah berwarna putih. Oleh karena itu, dapat disimpulkan bahwa partikel-partikel Fe₃O₄ memiliki kecenderungan lebih menempel pada daerah butir dan hanya sedikit yang melapisi pada batas butir. Hal ini diperkuat dengan hasil pengamatan

menggunakan AFM yang berupa topografi permukaan substrat di beberapa area dari 5 µm × μm sampai dengan 20 μm × 20 μm 5 menunjukkan hal yang sama (Gambar 4). Hasil yang sama juga didapat oleh Baqiya yang karakteristik lapisan Fe₃O₄ pada meneliti substrat aluminium dengan kecenderungan Fe₃O₄ menempel pada butir-butir partikel aluminium dan hanya ada sebagian yang menempel pada batas butirnya. Sedangkan untuk perbedaan hasil pelapisan ferofluida Fe₃O₄ dengan variasi tanpa dan dengan PEG-1000, Gambar 3 (c dan d) masih belum dapat memperlihatkan secara jelas perbedaan karakteristik dari lapisan Fe₃O₄ yang dihasilkan. Oleh sebab itu, kedua sampel tersebut kemudian diteliti menggunakan AFM sehingga diperoleh topografi lapisan Fe₃O₄ di area yang ditandai dengan kotak berwarna biru pada Gambar 3 (c dan d) sehingga diperoleh topografi 2D dan 3D seperti tampak pada Gambar 4 (a dan b).

Topografi lapisan Fe_3O_4 dari kedua sampel yang diuji menggunakan AFM dengan metode non kontak menunjukkan bahwa partikel Fe_3O_4 sebagian besar menempel pada butir-butir tembaga dan hanya sebagian yang menempel di batas butirnya sehingga terbentuk parit-parit seperti tampak dalam hasil 3D AFM p ada Gambar 4 (a dan b) yang di bagian kanan atas

Gambar 4 Mikrografi 2D dan 3D permukaan tembaga yang dilapisi partikel Fe₃O₄ yang disintesis **a**) tanpa PEG–1000, b) dengan PEG–1000

masing-masing gambar dengan bagian batas butir seperti yang ditunjuk oleh tanda panah berwarna putih. Mikrografi tiga dimensi struktur permukaan logam tembaga yang dilapisi partikel nano Fe₃O₄ yang disintesis tanpa PEG-1000 memperlihatkan lapisan di bagian butir lebih tebal dibandingkan dengan lapisan di bagian batas butir dengan pola pelapisan yang cenderung padat (lebih sedikit bukit-bukit kecil yang terbentuk dari agregat partikel Fe₃O₄ baik di butir maupun batas butir). Sedangkan permukaan logam tembaga yang dilapisi partikel nano Fe_3O_4 yang disintesis dengan PEG-1000 memiliki struktur yang lebih banyak bukit-bukit runcing kecil yang terbentuk dari agregat partikel Fe₃O₄ baik di butir maupun batas butir dengan perbedaan ketebalan lapisan di kedua bagian ini tidak terlalu signifikan. Sehingga dapat disimpulkan bahwa partikel Fe₃O₄ yang disintesis dengan PEG-1000 mampu melapisi permukaan tembaga secara lebih merata antara bagian butir dan batas butir bila dibandingkan dengan sampel tanpa PEG-1000.

Selain itu, untuk mengetahui tingkat kekasaran secara kualitatif lapisan Fe_3O_4 di permukaan kedua sampel maka kontur permukaan di sepanjang garis AA' untuk sampel tanpa PEG-1000 dan garis BB' untuk sampel dengan PEG-1000 diteliti lebih lanjut sehingga diperoleh grafik ketinggian seperti dapat dilihat pada Gambar 4.5 (a dan b) bagian bawah. Dari

grafik ketinggian tersebut dapat dilihat bahwa sampel dengan PEG-1000 memiliki puncakpuncak kecil yang lebih banyak bila dibandingkan dengan sampel tanpa PEG-1000 sehingga bisa dikatakan bahwa profil lapisan vang dibentuk oleh partikel-partikel Fe₃O₄ yang disintesis dengan PEG-1000 memiliki tingkat kekasaran yang lebih tinggi bila dibandingkan dengan lapisan yang dibentuk oleh partikelpartikel Fe₃O₄ vang disintesis tanpa PEG-1000. Perbedaan hasil pelapisan ini disebabkan adanya perbedaan pola penyerapan antara partikel Fe_3O_4 dengan dan tanpa PEG-1000 ke permukaan substrat tembaga seperti yang sebelumnya telah digunakan untuk menafsirkan mekanisme selfassembly partikel nano Fe₃O₄ yang dilapisi polietilena glikol (PEG-4600) dalam suspensi air pada permukaan planar Si(Ti)O₂ dengan menggunakan high-resolution optical waveguide lightmode spectroscopy (OWLS). Analisis hasil mengungkapkan bahwa partikel Fe_3O_4 yang awalnya seragam secara spontan berubah menjadi dua jenis partikel yang secara signifikan memiliki perilaku adsorpsi berbeda yaitu reversibel dan ireversibel [15]. Sedangkan penambahan partikel nano oksida besi yang tidak dilapisi PEG untuk oksida amfoter (misalnya silika) terjadi semata-mata hanya karena interaksi elektrostatik [16].

Gambar 5 Struktur permukaan tembaga pada area 10 µm x 10 µm yang dilapisi partikel Fe₃O₄ yang disintesis a) tanpa PEG-1000, b) dengan PEG-1000

Gambar 5 (a dan b) masing-masing secara tiga dimensi menunjukkan distribusi partikel nano Fe_3O_4 yang disintesis tanpa dan dengan PEG-1000 pada permukaan substrat dengan area 10 µm x 10 µm. Gambar hasil AFM kedua sampel ini secara jelas memperlihatkan partikelpartikel nano Fe_3O_4 yang menempel pada permukaan logam tembaga tersebar secara merata baik pada bagian butir maupun batas butir dalam bentuk *cluster* (kumpulan partikel). Kumpulan partikel Fe_3O_4 yang terdeteksi pada Gambar 5 memiliki ukuran 4,2 μ m untuk sampel tanpa PEG-1000 dan 1,6 μ m untuk sampel dengan PEG-1000. Hasil ini mengindikasikan pertumbuhan partikel Fe₃O₄ yang kontinu ke semua arah yang memungkinkan. Kumpulan partikel Fe₃O₄ ini terbentuk dikarenakan setelah proses *spin-coating* selesai TMAH yang berfungsi sebagai surfaktan mulai menguap sehingga partikel-partikel Fe₃O₄ yang bersifat magnetik membentuk kestabilan yang baru dengan berkumpul membentuk *cluster-cluster*.

Gambar 6 Struktur permukaan tembaga pada area 5 μ m x 5 μ m yang dilapisi partikel Fe₃O₄ yang disintesis a) tanpa PEG-1000, b) dengan PEG-1000

Amplitude Image AFM pada Gambar 6 (a dan b) mengungkapkan bahwa lapisan Fe₃O₄ yang terbentuk di permukaan substrat berasal dari partikel nano Fe₃O₄ yang berbentuk bulat. Hasil ini sesuai dengan hasil TEM partikel nano Fe₃O₄ yang disintesis dari pasir besi menggunakan metoda kopresipitasi yang dilakukan oleh Perdana [9]. Lebih laniut topografi 2D hasil AFM pada sampel tanpa PEG-1000 di area 5 µm x 5 µm di Gambar 6 a) memperlihatkan perbedaan ketebalan lapisan yang terbentuk di daerah butir dan batas butir adalah 1,8 μ m. Sedangkan dari topografi 2D hasil AFM pada sampel dengan penambahan PEG-1000 di area 5 μ m x 5 μ m di Gambar 6 b) mengungkapkan *cluster* yang terbentuk dari partikel-partikel Fe₃O₄ memiliki ukuran 0,7 μ m. Oleh karena itu dapat disimpulkan bahwa rentang ukuran *cluster* partikel Fe₃O₄ yang terbentuk pada sampel dengan PEG-1000 antara 0,7 μ m sampai 1,6 μ m.

Gambar 7 Analisis SEM-EDX permukaan sampel a) tanpa PEG-1000 dengan perbesaran 1000×, b) dengan PEG-1000 dengan perbesaran 3500×

Gambar 7 (a dan b) memperlihatkan spektrum EDX dari sampel tanpa dan dengan PEG-1000 di area yang ditandai dengan kotak berwarna hijau pada Gambar SEM di pojok kanan atas. Grafik pada Gambar 4.8 t ersebut dengan jelas memperlihatkan puncak di daerah 0,525 keV yang merupakan energi ikat inti untuk unsur O. Sedangkan puncak yang terbentuk di 0,705 keV, 6,398 keV, dan 7,05 k eV yang merupakan energi ikat inti untuk unsur Fe serta di daerah 8,040 keV dan 0,930 keV yang merupakan energi ikat inti untuk unsur Cu. Puncak-puncak ini juga muncul pada spektrum EDX untuk sampel dengan PEG Gambar 7 b). Hal ini mengindikasikan keberadaan unsur O dan Fe di permukaan substrat tembaga pada kedua sampel. Selain itu, terdeteksi pula puncak Cu pada spektrum EDX yang berasal dari substrat dikarenakan dalamnya penetrasi dari sinar-X. Sedangkan pada sampel dengan PEG - 1000 terdapat puncak C di 0,277 k eV yang diperkirakan berasal dari PEG - 1000 yang memiliki rumus kimia HO-CH₂ - (CH₂-O-CH₂-)_n-CH₂-OH. Hasil ini dengan jelas membuktikan keberadaan PEG - 1000 di permukaan substrat tembaga yang merupakan faktor penyebab adanya perbedaan pola hasil pelapisan antara sampel dengan dan tanpa PEG - 1000. Dari grafik ini kemudian diperoleh data persentase massa (Wt. %) dan atom (At. %) dari masingmasing unsur yang terdeteksi. Unsur Cu memiliki persentase yang paling besar baik persentase massa maupun persentase atom bila dibandingkan dengan unsur-unsur yang lain. Hal ini dikarenakan Cu merupakan substrat sehingga keberadaannya terdeteksi paling banyak.

Kedua spektrum EDX tersebut di atas kemudian dibandingkan profil sebaran masingmasing unsur yang terdeteksi seperti ditampilkan pada Gambar 8. Kedua sampel baik tanpa maupun dengan PEG-1000 sama-sama memiliki sebaran partikel nano Fe₃O₄ yang merata yaitu ditandai dengan persebaran warna vang mengindikasikan unsur Fe dan O secara merata dilapisan hasil *spin-coating*. Keberadaan Fe dan O ini dipercaya merupakan partikel Fe₃O₄. Pada sampel tanpa penambahan PEG-1000 terdeteksi adanya kumpulan partikel yang ditandai dengan kotak berwarna putih. Agregat ini akan dianalisis lebih lanjut pada Gambar 9.

Gambar 8 Profil sebaran partikel Fe₃O₄ pada permukaan logam tembaga a) tanpa PEG-1000, b) dengan PEG-1000

Gambar 9 memperlihatkan spektrum EDX dari agregat yang terbentuk pada permukaan sampel tanpa PEG-1000 seperti terlihat pada mikrografi SEM di pojok kanan atas Gambar 7 a). Hasil EDX ini mendeteksi persentase atom oksigen paling banyak bila dibandingkan unsur yang lain bahkan lebih besar dibanding persentase atom Cu. Hal ini disebabkan bagian yang ditembak sinar-X merupakan agregat yang padat sehingga sinar-X tidak sampai menjangkau Cu yang berada di bawah agregat tersebut. Namun meskipun At. % Cu (38,50 %) lebih kecil dari At. % O (57,06 %) tetapi Wt. % Cu (67,82 %) lebih besar daripada Wt. % O (25,30 %). Hasil ini dikarenakan Cu memiliki massa atom yg lebih besar yaitu 63.55

satuan massa atom (sma) daripada massa atom oksigen sebesar 16 sma. Sehingga Wt. % dari Cu tentu akan lebih besar dari Wt. % O meskipun At. % nya lebih kecil dari At. % O. Oleh karena itu, Gambar 9 ini mampu membuktikan bahwa agregat yang terbentuk pada permukaan sampel tanpa PEG-1000 terdiri dari atom Fe dan O yang dipercaya berasal dari partikel-partikel nano Fe₃O₄ yang beraglomerasi.

Adanya aglomerasi diperjelas lagi dengan tampilan profil penyebaran masingmasing unsur yang terdeteksi oleh EDX yaitu Fe berwarna merah, Cu berwarna hijau dan O berwarna biru seperti tampak pada Gambar 9. Dari profil penyebaran masing-masing unsur, terlihat jelas bahwa atom Fe dan O tersebar merata berbeda dengan persebaran atom Cu di bagian tengah yang ditandai dengan lingkaran berwarna biru terdapat kumpulan titik berwarna hitam yang artinya pada bagian ini merupakan partikel-partikel Fe₃O₄ yang beraglomerasi sehingga EDX tidak mendeteksi keberadaan atom Cu pada kumpulan titik berwarna hitam ini. Namun pada dasarnya EDX tidak dapat secara akurat menentukan fasa oksida ini benar Fe₃O₄ atau bentuk oksida Fe lain yang lebih stabil (Fe_2O_3) . Oleh karena itu, diperlukan analisis lebih lanjut menggunakan metode karakterisasi permukaan vang lain misalnya X-ray photoelectron spectroscopy (XPS) yang mampu menyediakan fasa oksida suatu unsur (kecuali hidrogen dan helium) di permukaan sampel.

Selain itu, dari ketiga data EDX di atas memperlihatkan perbandingan persentase atom O lebih besar daripada atom Fe yang melebihi perbandingan atom O dan Fe di semua bentuk oksida dari Fe (FeO, Fe₃O₄, maupun Fe₂O₃). Oleh karena itu, penulis menduga keberadaan atom O yang besar ini tidak hanya berasal dari partikel-partikel Fe₃O₄ yang menempel di permukaan substrat tetapi juga berasal dari produk korosi. Pada penelitian sebelumnya, Baqiya mengajukan Cu(OH)₂ sebagai produk bereaksinya korosi dari TMAH vang mengandung ion hidroksil (-OH) dengan logam tembaga. Adanya reaksi antara TMAH dengan substrat tembaga inilah yang menyebabkan partikel Fe₃O₄ berhasil menempel pada permukaan logam tembaga. Hal ini dikarenakan ketika dalam bentuk ferofluida, surfaktan TMAH yang merupakan molekul rantai pendek mampu membungkus partikel Fe₃O₄. Surfaktan ini membentuk lapisan hidrofobik dengan bagian kepala melekat pada partikel dan bagian rantai karbon kontak dengan fluida pembawanya yaitu air.

Gambar 9 Analisis permukaan substrat yang telah dilapisi partikel nano Fe_3O_4 tanpa PEG-1000 menggunakan SEM-EDX dengan perbesaran 2000× serta profil persebarannya perte

IV. SIMPULAN

Berdasarkan hasil analisis data dan pembahasan, beberapa hal yang dapat disimpulkan antara lain: (1) partikel nano Fe_3O_4 yang memiliki ukuran kristal $44,0 \pm 2,9$ nm untuk sampel tanpa PEG-1000 dan $38,9 \pm 3,4$ nm untuk sampel dengan PEG-1000 telah berhasil dilapiskan pada permukaan substrat tembaga dengan karakteristik lapisan yang cukup padat dan secara kualitatif tingkat kekasarannya cukup tinggi, (2) lapisan Fe₃O₄ terbentuk di seluruh permukaan substrat baik pada butir maupun batas butir dari logam tembaga dengan kecenderungan partikel-partikel Fe_3O_4 lebih menempel pada daerah butir dan hanya sedikit yang melapisi pada batas butir sehingga terbentuk parit-parit, (3) mikrografi 3 di mensi struktur permukaan substrat yang dilapisi partikel nano Fe_3O_4 yang disintesis tanpa PEG-1000 memperlihatkan lapisan di bagian butir lebih tebal dibandingkan

- Perdana, F. A., Sintesis dan Karakterisasi Partikel Nano Fe₃O₄ dengan Template PEG-1000, Tugas Akhir, Institut Teknologi Sepuluh Nopember, Surabaya, 2010.
- [2] Odenbach, S., Colloids and Surfaces A: Physicochem. Eng. Aspects, 217, 171-178 (2003).
- [3] Sreedhar, B. K., Kumar, R. N., Sharma, P., Ruhela, S., Philip, J., Sundarraj, S. I., Chakraborty, N., Mohana, M., Sharma, V., Padmakumar, G., Nashine, B. K., Rajan, K. K., *Nuclear Engineering and Design*, 265, 1166-1174 (2013).
- [4] Milecki, A. dan Hauke, M., *Mechanical Systems and Signal Processing*, **28**, 528-541 (2012).
- [5] Aurich, K., Schwalbe, M., Clement, J. H., Weitschies, W., Buske, N., *Journal of Magnetism and Magnetic Materials*, **311**, 1-5 (2007).
- [6] Gitter, K. dan Odenbach, S., Journal of Magnetism and Magnetic Materials, 323, 1413-1416 (2011).
- [7] Ahmadi, R., Hosseini, H. R. M., Masoudi, A., Omid, H., Zangeneh, R. N., Ahmadi, M., Ahmadi, Z., Ning, G., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 424, 113-117 (2013).

dengan lapisan di bagian batas butir, (4) permukaan logam tembaga yang dilapisi partikel nano Fe_3O_4 yang disintesis dengan penambahan PEG-1000 memiliki struktur yang lebih banyak bukit-bukit runcing kecil yang terbentuk dari agregat partikel Fe_3O_4 baik di butir maupun batas butir dengan perbedaan ketebalan lapisan di kedua bagian ini tidak terlalu signifikan.

- [8] Berger, P., Adelman, N. B., Beckman, K. J., Campbel, D. J., Ellis, A. B., Lisensky, G. C., *Journal of Chemical Education*, 76, 943-948 (1999).
- [9] Perdana, F. A., Baqiya, M. A., Mashuri, Triwikantoro, Darminto, *Jurnal Material dan Energi Indonesia*, 1, 1-6 (2011).
- [10] Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J.,dan Raj, B., *Materials Chemistry and Physics*, **103**, 168-175 (2007).
- [11] Mukhopadhyay, A., Joshi, N., Chattopadhyay, K., De, G., *Appl. Mater*, 4, 142-149 (2012).
- [12] Zhang, Y., Kohler, N., Zhang, M., *Biomaterials*, 23, 1553-1561 (2002).
- Baqiya, M. A., Preparasi Partikel Nano Fe₃O₄ dan Pelapisannya Pada Logam Non Magnetik, Tesis, Institut Teknologi Sepuluh Nopember, Surabaya, 2008.
- [14] Mehl, R. F., Metals Handbook, (8th edition, Volume 7 A tlas of Microstructures of Industrial Alloys, American Society for Metals, Ohio, 1972).
- [15] Ansari, F., Kavosh, M., Horvath, R., Ramsden, J. J., J. Nanopart. Res., 13, 193-198 (2011).
- [16] Ramsden, J. J., Máté, M., J. Chem. Soc. Faraday Trans., 94, 783-788 (1998).