

TUGASAKHIR - TL091584

Analisa Pengaruh Konsentrasi NH₄Br pada Proses Sintesa Anoda MnO<sub>2</sub> Terhadap Morfologi dan Performa Elektrokimia Baterai Lithium Ion

GEDE ADIYAKSA PERMANA NRP. 2712100004

Dosen Pembimbing Lukman Noerochim, S.T., M.Sc.Eng., Ph.D Hariyati Purwaningsih, S.Si, M.Si

JURUSAN TEKNIK MATERIAL & METALURGI FAKULTAS TEKNOLOGI INDUSTRI INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2016 (Halaman ini sengaja dikosongkan)



# FINAL PROJECT -TL091584 Analysis of The Effect of NH4Br Concentration on The MnO<sub>2</sub> Anode Synthesize Process Against Morphology And Electrochemical Performance of Lithium Ion Battery

GEDE ADIYAKSA PERMANA NRP. 2712100004

Advisor: Lukman Noerochim, S.T., M.Sc.Eng., Ph.D Hariyati Purwaningsih, S.Si ,. M.Si

MATERIALS & METALLURGICAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGIES SEPULUH NOPEMBER INSTITUTE OF TECHNOLOGY SURABAYA 2016 (This page left intentionally blank)

### Analisa Pengaruh Konsentrasi NH4Br pada Proses Sintesa Anoda MnO2 Terhadap Morfologi dan Performa Elektrokimia Baterai Lithium Ion

| Nama             | : Gede Adiyaksa Permana                 |
|------------------|-----------------------------------------|
| NRP              | : 2712100004                            |
| Jurusan          | : Teknik Material dan Metalurgi FTI-ITS |
| Dosen Pembimbing | : Dr. Lukman N., S.T., M.Sc.Eng         |
| Co-Pembimbing    | : Hariyati Purwaningsih, S.Si ,. M.Si   |

#### ABSTRAK

Alfa-mangan dioksida ( $\alpha$ -MnO<sub>2</sub>) merupakan salah satu morfologi kristal dari mangan dioksida yang memiliki potensi sebagai anoda baterai ion-lithium. Tersusun atas MnO<sub>6</sub> oktahedral dengan *sharing edge* yang membentuk tunnel, memiliki *tunnel* paling besar jika dibandingkan dengan struktur – $\beta$  dan – $\gamma$ .

Penelitian ini bertujuan untuk mensintesis α-MnO<sub>2</sub> menggunakan prekursor KMnO<sub>4</sub> dengan variasi konsentrasi NH<sub>4</sub>Br 1 mmol, 3 mmol dan 5 mmol, melalui proses *hydrothermal* pada temperature 160°C selama 24 jam. Hasil dari proses hydrothermal kemudian di endapkan dan dicuci menggunakan air suling. Untuk proses pengeringannya dilakukan pada *muffle furnace* pada temperature 80°C selama 24 jam. Selanjutnya dilakukan kalsinasi pada temperature 400°C untuk menghilangkan gugus hidroksilnya sehingga diperoleh MnO<sub>2</sub>. Untuk mengetahui fasa yang terbentuk maka dilakukan pengujian XRD dengan JCPDS No. 44-0141. Untuk memperoleh informasi morfologi secara mikro maka dilakukan pengujian SEM. Kemudian serbuk MnO<sub>2</sub> yang telah didapatkan disassembly kedalam baterai koin tipe CR2032 untuk kemudian di uji performa elektrokimianya.

Berdasarkan hasil XRD konsentrasi NH<sub>4</sub>Br 3 mmol menghasilkan difraksi dengan puncak-puncak yang tajam dan intensitas yang tinggi yang mengindikasikan fasa paling kristalin diantara ketiga sampel. SEM menunjukan terbentukanya morfologi nanowire dengan dimensi panjang 3000-5.200 nm dan diameter 58-62nm. Memiliki kapasitas spesifik 139.5 mAh/gram dan mengalami *capacity fading* hanya 33 % pada siklus ke 100. Impedansi dari anoda diukur menggunakan EIS dengan R<sub>et</sub> sebesar 265  $\Omega$ 

Kata kunci : *Hydrothermal*, alpha-mangan dioksida , nanowire, kapasitas spesifik



## Analysis of The Effect of NH4Br Concentration on The MnO2 Anode Synthesize Process, Against Morphology And Electrochemical Performance of Lithium Ion Battery

| : Gede Adiyaksa Permana                  |
|------------------------------------------|
| : 2712100004                             |
| : Materials and Metallurgical Enginering |
| FTI-ITS                                  |
| : Dr. Lukman N., S.T., M.Sc.Eng          |
| : Hariyati Purwaningsih, S.Si , M.Si     |
|                                          |

#### ABSTRACT

Alpha-manganese dioxide ( $\alpha$ -MnO<sub>2</sub>) is one of the crystal morphology of manganese dioxide which has potential as a lithium-ion battery anode. Composed of MnO<sub>6</sub> octahedral sharing edges to form a tunnel, has the biggest tunnel in comparison with the structure - $\beta$  and - $\gamma$ .

This research aims to synthesize  $\alpha$ -MnO<sub>2</sub> using KMnO<sub>4</sub> precursors with various concentrations NH<sub>4</sub>Br 1 mmol, 3 mmol and 5 mmol, through a hydrothermal process at 160°C temperature for 24 hours. Results of hydrothermal process later in endapkan and washed using distilled water. For the drying process carried out in muffle furnace at temperatures 80°C for 24 hours. Furthermore, the calcination at temperatures 400°C to remove the hydroxyl groups to obtain MnO2. To determine the phase formed then tested by XRD JCPDS No.00-044-0141. To obtain information about the morphology powder was then tested using SEM. Then MnO<sub>2</sub> powder which has been obtained disassembly into the CR2032-type coin battery for later in the electrochemical performance testing.

Based on the results of XRD NH<sub>4</sub>Br concentration of 3 mmol generates diffraction with sharp peaks and a high intensity which indicates the most crystalline phase among the three

samples. SEM showed the growt of nanowire morphology with dimension of 3000-5200 nm long and 58-62nm long. Has a specific capacity of 139.5 mAh / g and experienced capacity fading only 33% in 100<sup>th</sup> cycle. The impedance of the anode is measured using EIS with  $R_{et}$  of 265  $\Omega$ 

Keywords : Hydrothermal, alpha-manganese dioxide , nanowire, specific capacity



Analisa Pengaruh Konsentrasi NH4Br pada Proses Sintesa Anoda MnO2 Terhadap Morfologi dan Performa Elektrokimia Baterai Lithium Ion

#### **TUGAS AKHIR**

Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Teknik pada

Bidang Studi Material Inovatif Program Studi S-1 Jurusan Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember

> Oleh : GEDE ADIYAKSA PERMANA NRP 2712100004

Disetujui oleh Tim Penguji Tugas Akhir :

1. Lukman Noerochim, S.T., M.Sc.Eng., Ph.D. Pembimbing 1)

KNOLO

Surabaya, Januari 2016

#### KATA PENGANTAR

Puji syukur penulis panjatkan kepada Tuhan Yang Maha Esa yang telah memberikan limpahan karunia sehingga penulis dapat menyelesaikan seluruh rangkaian penyusunan laporan Tugas Akhir dengan judul "Analisa Pengaruh Konsentrasi NH4Br pada Proses Sintesa Anoda MnO2 Terhadap Morfologi dan Performa Elektrokimia Baterai Lithium Ion".

Terima kasih kepada semua pihak yang berperan pada penulisan tugas akhir ini. Penulis mengucapkan terima kasih kepada:

- 1. Bapak Made Sutarjana, S.Pd selaku donatur pada penelitian ini yang lumayan memakan banyak biaya.
- 2. Ibu Putu Ayu Reno selaku ibu kandung saya yang selalu mensuport dengan doa
- 3. Bapak Dr. Lukman Noerochim,S.T,M.Sc.Eng.,Ph.D selaku pembimbing sekaligus pengagas ide penelitian ini yang selalu mengarahkan dan memberikan bimbingan selama 1 semester ini.
- 4. Bu Hariyati Purwaningsih, S.Si, M.Si, selaku pembimbing terutama masalah karakterisasi material nya
- 5. Bu Diah Susanti, ST.,MT. yang telah memberikan ijin untuk menggunakan Laboratorium Kimia Teknik Materia dan Metalurgi selama melakukan sintesis anoda.
- 6. Bu russalia Istiani, A.Md yang telah membantu saya dalam proses pengujian XRD dan SEM di Jurusan Teknik Material dan Metalrgi FTI-ITS
- 7. Bapak Achmad Subhan MT dan Pak Slamat Priyono ST.,MT selaku pembimbing dalam pengujian anoda baterai ion lithium di Pusat Studi Fisika Lipi, Serpong yang sudah meluangkan waktunya untuk membantu kami dalam pengerjaan prasyarat kelulusan ini
- 8. Nyoman Suprayojana T.A dan M. Ainun Taimiyah Indara selaku partner terbaik dalam susah senang mengerjakan tugas akhir ini dan tidak lupa juga Mas Ahmad Fikrie dan

Bli Dwista Prayukti yang sudah banyak membantu khususnya saat rebutan jadwal SEM

- 9. Kadek Weda Noveadjani Tista selaku partner hidup yang lagi sakit, semoga cepat sembuh
- 10. Seluruh MT 14 yang selalu saling menguatkan dalam usaha dan doa untuk kesuksesan.
- 11. Seluruh pihak yang telah memberikan kontribusi atas penulisan Tugas Akhir ini.

Penulis menyadari bahwa dalam penulisan Tugas Akhir ini masih terdapat kekurangan, dibalik itu terdapat niat tulus untuk berbagi pengetahuan bagi sesama.Penulis berharap bahwa laporan ini dapat bermanfaat bagi penulis sendiri dan pembaca.



| HALAMAN JUDUL                                          | i                        |
|--------------------------------------------------------|--------------------------|
| LEMBAR PENGESAHAN                                      | v                        |
| ABSTRAK                                                | vii                      |
| ABSTRACT                                               | ix                       |
| KATA PENGANTAR                                         | xi                       |
| DAFTAR ISI                                             | xiii                     |
| DAFTAR GAMBAR                                          |                          |
| DAFTAR TABEL                                           | xix                      |
| BAB I PENDAHULUAN                                      | 1                        |
| 1.1 Latar Belakang                                     | 1                        |
| 1.2 Rumusan Masalah                                    | 2                        |
| 1.3 Batasan Masalah                                    | 3                        |
| 1.4 Tujuan Penelitian                                  | 3                        |
| 1.5 Manfaat Penelitian                                 | 3                        |
| BAB II TINJAUAN PUSTAKA                                | 5                        |
| 2.1 Baterai                                            | 5                        |
| 2.2 Jenis-jenis Baterai                                | 6                        |
| 2.1.1 Baterai Primer(non-rechargeable)                 | 7                        |
| 2.1.2 Baterai Sekunder (rechargeable)                  |                          |
| 2.3 Bentuk Baterai sell sekunder                       | 9                        |
| 2.4 Berbagai Istilah dalam baterai                     |                          |
| 2.5 Anoda MnO <sub>2</sub>                             |                          |
| 2.5.1 Oksida MnO <sub>2</sub>                          |                          |
| 2.5.2 Stoikiometri dalam Fase MnO <sub>2</sub>         |                          |
| 2.5.3 Metode Sintesis MnO <sub>2</sub>                 |                          |
| 2.5.4 Mekanisme interkalasi Li <sup>+</sup> pada tunne | el α-MnO <sub>2</sub> 19 |
| 2.6 Proses Kalsinasi                                   |                          |
| 2.7 Hasil Penelitian Sebelumnya                        | 21                       |
| BAB III METODOLOGI                                     | 23                       |
| 3.1 Alat dan Bahan penelitian                          |                          |
| 3.1.1 Bahan Penelitian                                 |                          |
| 3.1.2 Peralatan Pengujian                              | 23                       |
| 3.2 Diagram Alir                                       | 25                       |
| 3.3 Metode Penelitian                                  |                          |

## DAFTAR ISI

| 3.3.1 Preparasi Prekursor                         | 27 |
|---------------------------------------------------|----|
| 3.3.2 Proses Hydrothermal                         | 28 |
| 3.3.3 Proses Kalsinasi                            | 29 |
| 3.3.4 Pembuatan Slurry                            | 30 |
| 3.3.5 Assembly Baterai Ion Lithium                | 30 |
| 3.4 Pengujian Karakterisasi Material              | 31 |
| 3.4.1 X-ray Diffraction (XRD)                     | 31 |
| 3.4.2 Scanning Electron Microscope (SEM)          | 34 |
| 3.5 Pengujian Performa Elektrokimia               | 35 |
| 3.5.1 Galvanostatic charge/discharge              | 35 |
| 3.5.2 Electrochemical impedance spectroscopy      | 37 |
| 3.5.3 Cyclic Voltametry                           | 39 |
| BAB IV HASIL DAN PEMBAHASAN                       | 41 |
| 4.1 Hasil Sintesa α-MnO <sub>2</sub>              | 41 |
| 4.2 Karakterisasi α-MnO <sub>2</sub>              | 43 |
| 4.2.1 Analisa Hasil Karakterisasi XRD             | 43 |
| 4.2.2 Analisa Hasil pengujian SEM                 | 46 |
| 4.3 Analisa Hasil Pengujian Performa Elektrokimia | 49 |
| 4.3.1 Analisa Hasil pengujian Cyclic Voltametry   | 49 |
| 4.3.2 Pengujian Galvanostatic charge/discharge    | 53 |
| 4.3.3 Hasil Pengujian EIS                         | 57 |
| BAB V KESIMPULAN DAN SARAN                        | 61 |
| 5.1 Kesimpulan                                    | 61 |
| 5.2 Saran                                         | 61 |
| DAFTAR PUSTAKA                                    |    |
| LAMPIRAN                                          |    |

## DAFTAR GAMBAR

| Gambar 2.1 Komponen pembentuk sel baterai                                                |  |  |  |  |
|------------------------------------------------------------------------------------------|--|--|--|--|
| Gambar 2.2 Prinsip operasi dari baterai lithium-ion                                      |  |  |  |  |
| Gambar 2.3 Desain baterai sekunder                                                       |  |  |  |  |
| Gambar 2.4 Ilustrasi desain baterai kancing11                                            |  |  |  |  |
| Gambar 2.5 Penampang baterai prismatic11                                                 |  |  |  |  |
| Gambar 2.6 Desain baterai kantung12                                                      |  |  |  |  |
| Gambar 2.7 struktur kristal α-MnO <sub>2</sub> 18                                        |  |  |  |  |
| Gambar 3.1 Diagram Alir Penelitian                                                       |  |  |  |  |
| Gambar 3.2 Gambar prekursor                                                              |  |  |  |  |
| Gambar 3.3 Proses sintesis MnO2                                                          |  |  |  |  |
| Gambar 3.4 Bahan Utama pembuatan <i>slurry</i>                                           |  |  |  |  |
| Gambar 3.5 Tabung Sinar X32                                                              |  |  |  |  |
| Gambar 3.6 Prinsip kerja XRD32                                                           |  |  |  |  |
| Gambar 3.7 Efek Ukuran Kristal pada difraksi sinar x33                                   |  |  |  |  |
| Gambar 3.8 Komponen Alat XRD                                                             |  |  |  |  |
| Gambar 3.9 Contoh grafik charge/discharge MnO <sub>2</sub>                               |  |  |  |  |
| Gambar 3.10 Mesin Pengujian charge discharge37                                           |  |  |  |  |
| Gambar 3.11 Pengujian EIS                                                                |  |  |  |  |
| Gambar 3.12 Hubungan Aarus terhadap potensial                                            |  |  |  |  |
| Gambar 3.13 Alat cyclic voltammetry40                                                    |  |  |  |  |
| Gambar 4.1 Hasil Pengamatan visual serbuk setelah proses                                 |  |  |  |  |
| kalsinasi dengan variasi penambahan NH <sub>4</sub> Br (a)                               |  |  |  |  |
| 1mmol (b) 3mmol (c) 5mmol42                                                              |  |  |  |  |
| <b>Gambar 4.2</b> Pola difraksi serbuk $\alpha$ -MnO <sub>2</sub> dengan acuan (a) JCPDS |  |  |  |  |
| No.44-0141 dan variasi konsentrasi $NH_4Br$ (b)                                          |  |  |  |  |
| 1mmol (c) 3mmol dan (d) 5 mmol43                                                         |  |  |  |  |
| Gambar 4.3 Pola difraksi sudut pendek dengan acuan (a) JCPDS                             |  |  |  |  |
| No.44-0141 dengan variasi penambahan konsentrasi                                         |  |  |  |  |
| NH4Br (b) 1mmol, (c) 3mmol dan (d) 5mmol44                                               |  |  |  |  |
| Gambar 4.4 Hasil uji SEM sampel dengan variasi konsentrasi                               |  |  |  |  |
| NH4Br (a) 1 mmol (b) 3mmol dan (c) 5mmol                                                 |  |  |  |  |
| Perbesaran 5.000x dan 25.000x                                                            |  |  |  |  |
| Gambar 4.5 Mekanisme pertumbuhan nanowire pada proses                                    |  |  |  |  |
| nydrothermal (Lill Feng et al, 2014) 48                                                  |  |  |  |  |

| Gambar 4.6 Hasil pengujian cyclic voltammetry (cv) dengan     |
|---------------------------------------------------------------|
| variasi konsentrasi NH4Br (a) 1mmol, (b) 3mmol                |
| dan (c) 5mmol50                                               |
| Gambar 4.7 Grafik Charge-Discharge terhadap anoda α-MnO2      |
| nanowire dengan variasi NH4Br (a) 1mmol (b)                   |
| 2mmol (c) 3mmol                                               |
| Gambar 4.8 Kurva efisiensi columbic terhadap jumlah siklus CD |
| pada sampel dengan konsentrasi NH4Br (a) 1mmol,               |
| (b) 3mmol dan (c) 5mmol                                       |
| Gambar 4.9 Grafik EIS Nyquist plot dari sampel baterai dengan |
| variasi konsentrasi NH4Br 1mmol, 3mmol, 5 mmol                |
| 58                                                            |



### DAFTAR TABEL

| Tabel 4.1 Hasil perhitungan ukuran kristal (D) dan Microstrain                               |
|----------------------------------------------------------------------------------------------|
| Broadening powder MnO <sub>2</sub> terhadap penambahan                                       |
| konsentrasi NH4Br45                                                                          |
| Table 4.2 Pengaruh konsentrasi NH4Br terhadap parameter kisi α                               |
| MnO <sub>2</sub> hasil sintesis                                                              |
| Table 4.3 Distribusi ukuran Partikel berdasarkan hasil SEM                                   |
|                                                                                              |
| <b>Table 4.4</b> Nilai R <sub>s</sub> dan R <sub>ct</sub> material anoda MnO2 dengan variasi |
| konsenterasi NH4Br 1, 2,5 mmol58                                                             |





#### BAB I PENDAHULUAN

#### **1.1** Latar Belakang Masalah

Penelitian mengenai baterai ion lithium yang dapat di isi mulai meningkat pesat sejak ulang Sony pertamakali mengkomersialkan produk baterai ion lithium dengan anoda graphite yang berkapasitas 372 mAhg<sup>-1</sup>. Tetapi graphite dikatakan memiliki beberapa kelemahan ketika digunakan sebagai anoda, dalam penelitian Aojin Bai dkk, dikatakan graphite mengalami penurunan umur pakai ketika terjadi over-charging/ over*discharging*, kemudian dalam penelitian Hyungkyu Han dikatakan graphite memiliki performa cycle yang sangat buruk akibat terjadinya ekspansi volume berlebihan pada proses interkalasi/deinterkalasi. Sebagai host ion lithium, pemilihan material anoda yang tepat akan berpengaruh terhadap umur dan kapasitas baterai lithium. Telah banyak dilakukan penelitian tentang material yang tepat sebagai anoda dari baterai ion lithium. Mangan Dioksida (MnO<sub>2</sub>) adalah salah satu oksida mangan yang paling stabil dengan property fisik dan kimia yang sangat baik pada temperatur lingkungan. Telah banyak penelitian yang dilakukan untuk meningkatkan kinerja dari MnO2 salah satunya adalah dengan metode modifikasi morfologi.

Hingga saat ini beberapa morfologi  $MnO_2$  sudah di sintesis, seperti nanosphere, nanorod, nanowire, nanotube dan yang lainnya. Untuk struktur 1-dimensi nanowire yang di aplikasikan pada elektroda baterai ion lithium memberikan banyak keuntungan diantaranya, memfasilitasi jalan langsung transfer electron menuju elektroda dan jarak difusi Li<sup>+</sup> yang lebih pendek ( Chan dkk, 2007), mengakomodasi peningkatan volume dan menahan degradasi mekanik ( Szczech dan Jin, 2011). MnO<sub>2</sub> memiliki beberapa bentuk polimorfik seperti tipe  $\alpha$ -,  $\beta$ - dan  $\gamma$ - yang banyak menarik perhatian peneliti oleh sifat khusus yang dimilikinya. Struktur  $\alpha$ -MnO<sub>2</sub> cenderung lebih diminati dalam penggunaan anoda baterai ion lithium dikarenakan struktur kristal  $\alpha$  ini memiliki tunel yang lebih



besar ( hollandite 2x2) dibandingkan dengan struktur  $\beta$ -  $\gamma$ -.

Penelitian sebelumnya yang dilakukan oleh Y. Gao dkk. pada tahun 2005 dengan pengaruh konsentrasi NH<sub>4</sub>Cl (1 mmol, 3mmol dan 5mmol) didapatkan morfologi  $\alpha$ -MnO2 nanowire yang ukurannya semakin pendek dan lebar dengan bertambahnya konsentrasi NH<sub>4</sub>Cl. Puncak difraksi hasil analisis XRD sesuai dengan refrensi (JCPDS No. 00-044-0141), panjang nanowire yang diperoleh adalah 6000 hingga 10000 nm dan diameter bervarisasi dari 10 hingga 30 nm. NH<sub>4</sub>Cl sendiri diketahui adalah garam yang bersifat sebagai pereduksi ringan yang berasal dari kation basa lemah NH<sub>4</sub><sup>+</sup> dan anion asam kuat Cl<sup>-</sup> golongan halogen (VIIA)

Sedangkan pada penelititan ini akan dilakukan analisa pengaruh konsentrasi NH<sub>4</sub>Br yang diduga dapat membentuk MnO<sub>2</sub> nanowire. Hal ini karena NH<sub>4</sub>Br memiliki kesamaan dengan NH<sub>4</sub>Cl, dimana NH<sub>4</sub>+ menjadi faktor utama dalam kestabilan fasa MnO<sub>2</sub> nanowire dan anion Cl- dan Br- merupakan anion dari golongan VIIA yang reakif dengan elektronegativitas masingmasing 2.8 dan 2.74 (D.F Shriver.1990). Selain pengaruh terhadap morfologi, dianalisis juga performa elktrokimianya dengan pengujian *cyclic voltametri, charge/discharge* dan *electrochemical impedance spectroscopy* 

#### 1.2 Perumusan Masalah

Masalah pada penelitian ini yaitu

- 1. Bagaimana pengaruh konsentrasi NH<sub>4</sub>Br terhadap morfologi MnO<sub>2</sub>
- 2. Bagaimana pengaruh konsentrasi NH<sub>4</sub>Br terhadap performa elektrokimia baterai ion lithium



### 1.3 Batasan Masalah

Batasan masalah yang digunakan dalam penelitian ini agar penelitian yang dilakukan menjadi lebih terarah adalah sebagai berikut

- 1. Selama proses *hydrothermal*, Temperatur dianggap konstan
- 2. *Precursor* yang digunakan dianggap murni tanpa pengotor

### 1.4 Tujuan Penelitian

- 1. Menganalisis pengaruh konsentrasi NH<sub>4</sub>Br terhadap morfologi MnO<sub>2</sub>
- 2. Menganalisis pengaruh konsentrasi NH<sub>4</sub>Br performa elektrokimia baterai ion lithium

### 1.5 Manfaat Penelitian

Manfaat dari penelitian ini diharapkan diperoleh anoda yang mampu memberikan kinerja yang baik terhadap performa baterai ion lithium dalam skala laboratorium hingga mampu dimanfaatkan dan dikembangkan untuk pengaplikasian yang lebih luas kedepannya sehingga dapat membantu dalam mengatasi masalah krisis energy.







### BAB II TINJAUAN PUSTAKA

#### 2.1 Baterai

Baterai didefinisikan sebagai suatu alat yang dapat mengubah langsung energi kimia menjadi energi listrik melalui proses elektro kimia (David, 2002). Pengertian baterai yang saat ini umum digunakan sesungguhnya mencakup satu atau beberapa sel baterai yang digabungkan secara seri atau parallel sesuai dengan tegangan dan kapasitas listrik yang diinginkan. Sel baterai adalah unit terkecil dari suatu sistem proses elektrokimia yang terdiri dari elektroda, elektrolit, separator, wadah dan terminal/ *current collector*. Pembagian komponen sel baterai terlihat dalam Gambar 2.1. Komponen terpenting dari sel baterai adalah (David, 2002):

- 1. Elektroda negatif/ anoda, yaitu elektroda yang melepaskan elektron ke rangkaian luar serta mengalami proses oksidasi pada proses elektrokimia.
- 2. Elektroda positif/ kathoda, yaitu elektroda yang menerima elektron dari rangkaian luar serta mengalami proses reduksi pada proses elektrokimia.
- **3.** Penghantar ion/ elekrolit, yaitu media transfer ion yang bergerak dari anoda ke kathoda dalam sel baterai saat penggunaan. Fisik elektrolit umumnya berupa cairan/ larutan dimana molekul garam larut didalamnya.





Gambar 2.1. Komponen pembentuk sel baterai (David, 2002).

Pemilihan kombinasi material katoda dan anoda dilakukan sedemikian rupa hingga didapatkan beda potensial yang tinggi. Pemilihan material elektroda dengan kapasitas listrik yang besar sangat diperlukan untuk dapat menghasilkan sel baterai dengan power yang memadai. Mengingat elektron akan dilepaskan/ terima oleh elektroda saat pengoperasian baterai, maka material kathoda dan anoda juga harus bersifat elektron konduktif. Berbeda dengan material elektrolit yang merupakan media transfer ion, material ini harus bersifat ion konduktif semata. Sifat terakhir ini diperlukan agar tidak terjadi hubungan pendek antara katoda dan anoda yang menyebabkan terbuangnya energi listrik yang tersimpan berupa panas.

#### 2.2 Jenis-Jenis Baterai

Berdasarkan kemampuan pakainya, baterai dapat dibedakan kedalam dua kategori yaitu:



### 2.2.1 Baterai Primer (non-rechargeable)

Baterai primer hanya digunakan dalam pemakaian sekali saja. Pada waktu baterai dipakai, material dari salah satu elektroda mejadai larut dalam elektrolit dan tidak dapat dikembalikan dalam keadaan semula. Sehiga ketika keadaan baterai habis (*fully discharge*), baterai tidak dapat dipakai kembali. Beberapa contoh baterai jenis ini adalah baterai Seng-Karbon (baterai kering), baterai Alkalin dan baterai Merkuri

### 2.2.2 Baterai Sekunder (rechargeable)

Baterai sekunder adalah baterai yang dapat digunakan kembali dan kembali dimuati. Kemampuan diisi ulang baterai sekunder bervariasi antara 100-500 kali (Satu siklus adalah satu kali *Charging* dan *Discharging*). Beberapa Contoh Baterai sekunder adalah baterai Litium – ion , baterai Ni-Cd.

### a. Baterai Ion Litium

Susunan struktur dari baterai ion litium dapat dilihat di Gambar 2.2. Baterai ion lithium terdiri atas anoda, separator, elektrolit, dan katoda. Pada katoda dan anoda umumnya terdiri atas 2 bagian, yaitu bagian material aktif (tempat masuk-keluarnya ion litihum) dan bagian pengumpul elektron (*collector current*). Proses penghasilan listrik pada baterai ion litium sebagai berikut: Jika anoda dan katoda dihubungkan, maka elektron mengalir dari anoda menuju katoda, bersamaan dengan itu listrik pun mengalir. Pada bagian dalam baterai, terjadi proses pelepasan ion litium pada anoda, kemudian ion tersebut berpindah menuju katoda melalui elektrolit. Pada katoda bilangan oksidasi kobalt berubah dari 4 menjadi 3 karena masuknya elektron dan ion litium dari anoda. Dari berbagai jenis logam, litium adalah logam yang sangat menjanjikan untuk menjadi anoda. Litium memiliki nilai potensial



standar paling negatif yaitu -3.0 V, paling ringan dengan berat atom 6.94 g, sehingga bila dipakai untuk anoda dapat menghasilkan



kapasitas energi yang tinggi (Armstrong, 2005). Gambar 2.2. Prinsip operasi dari baterai lithium-ion saat pengisian dan pemakaian (Wakihara, 2001; Nazri et al, 2009).

Elektroda harus memungkinkan kedua aliran ion lithium dan elektron, dengan demikian, elektroda harus memiliki konduktivitas ionik yang baik dan konduktivitas elektronik yang baik. Sederhananya, ion lithium (Li<sup>+</sup>) bergerak bolak-balik antara katoda dan anoda pada pengisian dan pemakaian, yang menimbulkan perbedaan potensial sekitar 4 V antara kedua elektroda, sedangkan kapasitas baterai tergantung pada jumlah ion lithium yang dapat diekstraksi dari bahan katoda. Nama "lithium ion" untuk baterai ini berasal dari mekanisme yang sederhana,



yaitu, transfer ion lithium antara anoda dan katoda. Proses generasi lithium ion dan elektron terjadi secara simultan dari reaksi,

Li  $\rightarrow$  Li<sup>+</sup> + e<sup>-</sup>, di mana elektroda katoda dioksidasi dan elektroda anoda direduksi selama charge, masing-masing. reaksi yang terlibat dalam proses pengisian dan pengosongan dijelaskan di bawah (Nishi, 2001; Wakihara, 2001):

| Pada | electrode | positif: |
|------|-----------|----------|
|      |           |          |

| $LiMO_2 \iff Li_{1-x}MO_2 + x Li^+ + x e^{-1}$           | (2.1) |
|----------------------------------------------------------|-------|
| Pada electrode negatif:                                  |       |
| $\frac{6C + x Li^+ + x e^-}{4} \leftrightarrow Li_x C_6$ | (2.2) |
| Reaksi keseluruhan:                                      |       |
| $6C + LiMO_2 \iff Li_{1-x}MO_2 + Li_xC_6$                | (2.3) |

Namun, elektroda harus memungkinkan kedua aliran ion lithium dan elektron, dengan demikian, elektroda harus memiliki kedua konduktivitas ionik yang baik dan konduktivitas elektronik yang baik. Sederhananya, ion lithium (Li<sup>+</sup>) bergerak bolak-balik antara katoda dan anoda pada pengisian dan pemakaian, yang menimbulkan perbedaan potensial sekitar 4 V antara kedua elektroda, sedangkan kapasitas baterai tergantung pada jumlah ion lithium yang dapat diekstraksi dari bahan katoda. Nama "lithium ion" untuk baterai ini berasal dari mekanisme yang sederhana, yaitu, transfer ion lithium antara anoda dan katoda.



### 2.3 Bentuk Baterai sell sekunder

Berdasarkan bentuknya baterai baterai sell sekunder dapat di bedakakan menjadi beberapa bentuk sebagai berikut.

## 1. Baterai Silinder

Baterai Silinder memiliki desain berbentuk silinder, memiliki stabilitas mekanik yang baik. Saat charging, baterai akan menghasilkan gas yang memberikan tekanann dalam silinder, untuk itu baterai silinder dilengkapi pula dengan ventilasi. Ventilasi diperlukan untuk mengalirkan gas bila terjadi tekanan yang berlebih. Baterai silinder ditemui dalam berbagai ukuran. Kerugian dari desain ini adalah bentuknya yang tidak ringkas saat beberapa silinder digabungkan, yaitu akan terbentuk ruang kosong diantaranya.



Gambar 2.3. Desain baterai sekunder dengan elektroda berupa lembaran (Tarascon, 2001).



### 2. Baterai Kancing

Baterai yang sering disebut baterai koin memiliki ukuran terkecil dibanding baterai lain. Disebabkan ukurannya, jenis ini tidak memiliki masalah dengan ruang yang tersedia. Karena bentuknya yang miniatur, baterai ini tidak dilengkapi dengan ventilasi. sementara proses charging yang cepat akan membuat baterai kancing hanya dapat di chargedengan kecepatan yang rendah. Pengisian baterai jenis ini memakan waktu 10-16 jam



**Gambar 2.4.** Ilustrasi desain baterai kancing tanpa ventilasi yangrentan terhadap swelling (Tarascon, 2001).

#### 3. Baterai prismatik

Baterai ini memaksimalkan penggunaan ruang yang ada dalam suatu perangkat elektrik. Oleh karenanya baterai jeni ini tidak memiliki ukuran yang standard. Ukuran senantiasa disesuaikan dengan ruang yang ada. Kapasitas listrik baterai ini umumnya dibawah baterai silinder, yaitu 400-2000mAh. Stabilitas mekanik baterai ini juga tidak sebaik dengan baterai silinder, untuk itu diperlukan material yang lebih kuat untuk kemasan baterai





Gambar 2.5. Penampang baterai prismatik yang lebih fleksibel dalam segi ukuran. Densitas energi yang lebih rendah dan biaya pembuatannya lebih mahal dari baterai silinder (Tarascon, 2001).

## 4. Baterai kantung

Jenis baterai ini adalah yang paling fleksibel dalam segi bentuk dan ukuran. Disamping itu, juga paling ringan karena tidak menggunakan pelat besi sebagai kemasan. Materail aktif yang digunakan umumnya dalam bentuk lembaran polimer, dengan demikian dapat mengurangi produksi gas saat operasional. Proses charging dan discharging harus dilakukan dengan seksama agar tidak menghasilkan gas berlebih yang dapat menekan kantung. Baterai ini terbilang ringkih terahadap tekanan dari luar, benda tajam dan pemuntiran. Oleh karenanya penggabungan jenis baterai ini tidak dapat dilakukan dengan menumpuknya, tetapi meletakannya berdampingan .





Gambar 2.6. Desain baterai kantung yang tersusun dari lembaran elektroda berbahan plastik dengan kapasitas yang terbiling kecil (Tarascon, 2001).

#### 2.4 Berbagai Istilah dalam baterai

Beberapa konsep umum diperkenalkan dibawah ini:

**1.** *Active Mass* : *Active mass* adalah material yang dapat membangkitkan arus listrik melalui reaksi kimia didalam baterai.

### 2. Open Circuit Voltage (OCV)

OCV adalah tegangan yang melewati terminal dari sel atau baterai saat tidak ada arus eksternal. Hal ini biasanya mendekati tegangan termodinamika untuk sistem tersebut.

#### 3. Potensial

Potensial sel ditentukan oleh perbedaan antara potensial kimia pada lithium didalam anoda dan katoda. Untuk sel baterai lithium ion. Istilah katoda dan anoda didefinisikan sebaga elektroda potensial tinggi dan potensial rendah. Biasanya elektrokimia dari reaksi lithium sel dapat diteliti dengan setengah sel dengan logam lithium sebagai eletrode *counter* dan *reference*. Dilambangkan sebagai vs Li<sup>+</sup>/Li untuk kemudahan penelitian. Pada umumya, material katoda menunjukan potensial vs Li<sup>+</sup>/Li lebih dari 2 V, sedangkan anoda menunjukan potensial vs Li<sup>+</sup>/Li rendah dari 2 V.



### 4. Overcharging

Usaha untuk charge sebuah baterai melebihi kapasitas listrik dapat menyebakan baterai meledak, bocor, atau kerusakan dalam elektroda baterai. Itu juga dapat menyebabkan kerusakan charger atau perangkat dalam.

### 5. Short circuit

Short circuit atau hubungan arus pendek dapat menyebabakan baterai berapi atau meledak. Hal tersebut sering terjadi ketika baterai bersentuhan antara katoda dan anoda

### 6. Memory effect

*Memory effect* dideskripsikan ketidakjelasan kapasitas yang hilang pada baterai yang mengacu pada fenomena baterai nickel/cadmium yang kehilangan kemampuan untuk memberikan kapasitas penuh jika hanya dimanfaatkan sebagian untuk jangka waktu lama.

### 7. Theoritical specific capacity

Selain potensial, kapasitas spesifik juga sebuah parameter penting untuk menilai material aktif. Kapasitas spesifik teoritis dapat dihitung dari persamaan:

 $Qrsc = \frac{n \, x \, F}{M}.....(2.4)$ 

Dimana n adalah mol dari transfer elektron didalam reaksi elekrokimia, F adalah konstanta Faraday (96485 C) dan M adalah berat molekul dari material aktif

### 8. Spesific charge capacity/Specific discharge capacity

Kapasitas *charge* spesifik (Q<sub>c</sub>) atau kapasitas *discharge* spesifik (Q<sub>d</sub>) dihitung berdasarkan jumlah dari transfer charge : Qc atau Qd =  $\frac{I \times t}{m}$ ......(2.5)

Dimana I adalah arus (mA), t adalah waktu (h) dan m adalah masa dari material aktif jadi satuan dari Qe dan Qd adalah mAh/g



### 9. Energy

Energi biasanya diinginkan agar jumlah energi yang tersimpan dalam massa atau volume tertentu setinggi-tingginya. Konsep spesifik energi (SE, Wh/kg) atau energi densitas (ED, Wh/L) memungkinkan perbandingan kandungan energi atau kepadatan energi:

| SE | $= \frac{E \times Q}{Q}$        |       |       |       |      |     | (2.6) |
|----|---------------------------------|-------|-------|-------|------|-----|-------|
| 51 | 1000                            |       |       | 1.5   |      | DIF | (2.0) |
| FD | E x Q x m                       |       |       |       |      |     | (2,7) |
| БD | $\frac{1000  x  V}{1000  x  V}$ | ••••• | ••••• | ••••• | <br> |     | (2.7) |

Dimana E adalah tegangan (V) dari sel, Q adalah kapasitas spesifik (mAh/kg), m adalah berat dari sel (kg), dah V adalah volume dari sel (L)

10. Power

Power spesifik (SP, W/kg) dan power density (PD, W/L) adalah kemampuan sel untuk mengirimkan power per unit massa dan unit volime.

| SP = | $\frac{SE}{t}$            | (2.8)                 |
|------|---------------------------|-----------------------|
| PD = | $= \frac{ED}{t} ( ( ) ) $ | <mark>))</mark> (2.9) |

Dimana t adalah waktu discharge (t)

### **11.** Rate capability

Rate capability adalah parameter lain untuk menilai performance elektroda. Istilah charge/discharge rat atau C-rate sering digunakan untuk menggambarkan bagaimana kecepatan sel dapat di charge atau discharge. C menunjukan salah satu kapasitas charge teoritis dari sel atau baterai (mAh) atau nilai kapasitas dari sel atau baterai, sebagai indikasi oleh pembuat. Sebagai contoh, sebuah baterai memiliki kapasitas 1000 mAh, jadi memiliki kemampuan 1000 mA selama 1 jam apabila dilakukan pengisian 1 C. 1 C sering diasumsikan sebagai satu jam discharge, 0.5 C akan menjadi 2 jam dan 0.1 C akan menjadi 10 jam. C- rate antara 2 dan



10 C disebut medium high rate. C-rate lebih dari 10 C disebut high rate.

# 12. Irreversible capacity loss

Hal ini juga penting untuk mendefinisikan berapa banyak kapasitas yang hilang setiap cycle. Irreversible capacity dapat digambarkan stabilitas sel saat cycling. Irreversible capacity loss dijelaskan oleh persamaan berikut:

Untuk material anoda:

*Irreversible capacity loss* =  $\frac{nth Qd - nthQc}{nthQd} \times 100\%$ ......(2.10)

Untuk material katoda:

Irreversible capacity loss =  $\frac{nth Qc - nthQd}{nthQc} \times 100\%$ ......(2.11)

## 13. Capacity retention

Capacity rention adalah perbandingan antara cycle terakhir dengan cycle pertama dan dihitung degan persentase sebagai berikut:

 $(C_{100}/C_1) \ge 100\%$ .....(2.12) Dimanba  $C_{100}$  adalah kapasitas discharge yang ke seratus kali dan  $C_1$  adalah kapasitas discharge awal.

## 14. Coulumbic efficiency

Coulumbic efficiency  $(\eta)$  dalah parameter penting lainnya untuk mewakili perbandingan dari kapasitas discharge dengan kapasitas charge.

# 2.5 Anonda MnO<sub>2</sub>

Di antara logam transisi yang umum, mangan adalah salah satu yang memiliki struktur kristal oksida, oksi-hidroksida dan hidroksida yang berbeda dalam jumlah terbesar. Untuk menjelaskan struktur mangan yang kompleks ini melibatkan dua faktor utama terkait dengan struktur elektronik ion Mn<sup>n+</sup> (efek



Jahn-Teller) dan terkait dengan banyaknya reaksi redoks yang terlibat dalam sistem Mn-O-H<sub>2</sub>O. Hal ini menimbulkan berbagai material dengan berbagai macam komposisi struktur dan valensi mangan (Bricker 1965). Mangan berada dalam bilangan oksidasi +2, +3, +4 +6 dan +7 dimana oksidasi yang paling stabil adalah antara 2 dan 4 (Li *et al*, 2010).

## 2.5.1 Oksida MnO<sub>2</sub>

Meskipun memiliki jari-jari ionik kecil diperkirakan 0,53 Å (Shannon, 1976) untuk stabilitas situs tetrahedral, Mn<sup>4+</sup> stabil pada fase oktahedral karena konfigurasi d<sup>3</sup> elektronik (Sherman, 1984). Semua struktur oksida MnO<sub>2</sub> dapat dijelaskan oleh penempatan yang berbeda dari situs oktahedral Mn<sup>4+</sup> dalam jaringan atom oksigen. Cara termudah untuk menggambarkan struktur ini adalah dengan mempertimbangkan perakitan MnO<sub>6</sub> oktahedral. Kita dapat mengklasifikasikan oksida-oksida MnO<sub>2</sub> menjadi dua kategori utama sesuai dengan kriteria dalam kristalografi dan komposisi kimia yaitu dengan mengatur stoikiometrik oksida MnO<sub>2</sub> dan dari bentuk lorongnya.

### 2.5.2 Stoikiometri dalam Fase MnO<sub>2</sub>

### 2.5.2.1 Hollandite (α-MnO2)

Struktur MnO<sub>2</sub> lain dengan ukuran rongga yang lebih besar adalah  $\alpha$ -MnO2. Mineral yang dapat ditemukan di alam adalah *hollandite* (Ba<sub>x</sub>Mn<sub>8</sub>O<sub>16</sub>) dan *cryptomelane* (K<sub>x</sub>Mn<sub>8</sub>O<sub>16</sub>). a-MnO<sub>2</sub> memiliki simetri tetragonal dengan parameter sel: a = 9,8776 Å dan c = 2,8654 Å. Penyisipan kation mendistorsi struktur, maka mineral *hollandite* biasanya memiliki simetri monoklinik. Struktur *Hollandite* terdiri dari rantai ganda *edge-sharing* MnO<sub>6</sub> oktahedral, membentuk *tunnels* 2x2 (0,46 nm x 0,46 nm) yang merambat sepanjang sumbu c tetragonal sel satuan. Struktur *tunnels* dari  $\alpha$ -MnO<sub>2</sub> dapat distabilkan oleh penyisipan dari Ba<sup>2+</sup> atau K<sup>+</sup>, atau



dengan molekul air di tengah *tunnels* 2x2, bersamaan dengan reduksi  $Mn^{4+}$  menjadi  $Mn^{3+}$  dan perubahan  $O^{2-}$  oleh OH<sup>-</sup>. *tunnels* besar MnO2 juga dapat ditemui di alam. Contoh paling terkenal adalah *romanechite* A<sub>2</sub>Mn<sub>5</sub>O<sub>10</sub>.xH<sub>2</sub>O (A = Ba<sup>2+</sup>, K<sup>+</sup>, *tunnels* 2x3) dan *todorokite* (*tunnels* 3x3).

### 2.5.2.2 β-Mn0<sub>2</sub> (pyrolusite, Polianite)

β-MnO<sub>2</sub> adalah bentuk MnO<sub>2</sub> terpadat dan paling stabil. β-MnO<sub>2</sub> mengkristal dalam bentuk tetragonal (a = 4,3983 Å dan c=2,873 Å) dengan Z = 2 dan grup ruang P4<sub>2</sub>/mnm (Baur 1976). Struktur kristal β-MnO<sub>2</sub> bertipe rutil. MnO<sub>6</sub> oktahedral tepi membentuk rantai tunggal yang tak terhingga dan sejajar dengan sumbu c. Masing-masing saluran ini terhubung dengan empat rantai oktahedral sekelilingnya untuk membentuk lorong 1x1. Struktur ini dapat dijelaskan oleh susunan heksagonal oksigen yang rapat menjadi oktahedral yang sedikit terdistorsi di mana satu dari dua situs itu ditempati oleh Mn<sup>4+</sup>.



**Gambar 2.8** (a) struktur  $\alpha$ -MnO<sub>2</sub> *Hollandite* Struktur  $\beta$ -MnO<sub>2</sub> *Pyrolusite* (b) Struktur  $\gamma$ -MnO<sub>2</sub> (*Nsutite*) (Marbug.2015)



## 2.5.2.3 γ-Mn0<sub>2</sub> (Nsutite)

Struktur fase  $\gamma$ -Mn0<sub>2</sub> dilintasi oleh lorong yang tak terbatas 2x1 dan 1x1 sepanjang sumbu c. Rumus kimia umum untuk  $\gamma$ -Mn0<sub>2</sub> adalah (Mn<sup>4+</sup><sub>1-x-y</sub>Mn<sup>3+</sup><sub>y</sub>) O<sub>2-4x-y</sub> (OH) <sub>4x+y</sub> (Ruetschi ,1984).

### 2.5.3 Mekanisme Interkalasi Li<sup>+</sup> kedalam MnO<sub>2</sub>

 $\alpha$ -MnO2 memiliki struktur kristal tetragonal, yang tersusun atas rantai MnO<sub>6</sub> oktahedral yang membentuk *tunnel* kearah kisi c oktahedral (Gambar 2.8 a ) melalui mekanisme *sharing edge*. Tunnel tersebut berfungsi sebagai active site dimana Li<sup>+</sup> dapat berikatan vander waals pada atom-atom oksigen antar sharing edge nya (Gambar 2.8 b)



**Gambar 2.8** Struktur kristal α-MnO2 yang memanjang kearah kisi c (a); Mekanisme interkalasi lithium pada tunnel α-MnO2 (b) (Tomsett.2013)

Menurut Tomsett dkk (2013) lithium akan berikatan van der waals tepat di daerah 8h (Gambar 2.9) dikarenakan energi ikatan pada daerah itu menunjukan energi yang paling rendah (Tabel 2.1) mencapai 0 meV yang berarti Li<sup>+</sup> dapat langsung masuk kedalam tunnel tanpa memerlukan energi dari luar.




Gambar 2.9 Kecendrungan daerah ikatan Van der Waals Li+ pada tunnel α-MnO2

Tabel 2.1 Energi ikatan Li+ pada tunnel α-MnO2 (Gambar 2.9)

| No Ion site |    | e $\Delta E$ (Li-ion) (meV) |  |  |
|-------------|----|-----------------------------|--|--|
| 1           | 8h | 0                           |  |  |
| 2           | 4e | 42                          |  |  |
| 3           | 2b | 95                          |  |  |

Berdasarkan Tabel 2.1 yang telah diukur oleh Tomsett dkk (2013) maka dapat diketahui kecendrungan Li+ berikatan adalah pada daerah 8h

# 2.5.4 Metode Pembuatan MnO<sub>2</sub>

Sintesis MnO<sub>2</sub> nanowire dapat dilakukan dengan cara/metode sebagai berikut :

1. Metode Hydrothermal

Metode hidrotermal merupakan salah satu metode yang paling penting untuk kemajuan dalam mengolah material, terutama karena keuntungannya dalam proses pengolahan material



nanostruktur untuk berbagai aplikasi teknologi seperti elektronik, optoelektronik, katalisis, keramik, penyimpanan data magnetik, biomedis, biophotonik, dan lain-lain. Istilah 'Hidrotermal' sendiri merupakan istilah geologi yang pertama kali digunakan oleh ahli Geologi Inggris, Sir Roderick Murchison (1792-1871) untuk mendeskripsikan aksi air pada suhu dan tekanan yang tinggi, dalam perubahan kerak bumi menuju pembentukan berbagai batuan dan mineral (Byrappa, 2001). Kata hidrotermal berasal dari bahasa Yunani yaitu 'hydros' yang berarti air dan 'termos' yang berarti panas. Tetapi Byrappa dan Yoshimura (2001) mendefinisikan hidrotermal sebagai reaksi kimia heterogen dengan adanya pelarut (baik itu aqueous maupun non-aqueous) pada suhu ruang dan pada tekanan yang lebih besar dari 1 atm dalam sistem tertutup. Tehnik ini tidak hanya membantu pada proses monodispersi dan homogenitas nanopartikel yang tinggi, tetapi juga bertindak sebagai tehnik yang paling menarik untuk pengolahan material nano-hybrid dan nanokomposit (Byrappa, 2001).

Transformasi hidrotermal selalu mempertimbangkan modifikasi dari presipitat, pembentukan gel atau flokulasi yang dipengaruhi oleh temperatur, pemeraman atau kematangan dari mother liquor (biasanya air). Transformasi ini selalu berada pada temperatur yang lebih rendah (100-300°C). Beberapa faktor yang mempengaruhi pada proses hidrotermal pada padatan ini antara lain adalah pH, temperatur, tekanan, waktu dan konsentrasi dimana transformasi pada proses hidrotermal berbeda dengan metodemetode lain. Perbedaannya yaitu selama proses hidrotermal seperti presipitasi, pencucian, pengeringan, dan tekanan (Perego, 1997). Saat ini, teknik hidrotermal telah memiliki banyak cabang dibeberapa ilmu pengetahuan dan teknologi, dan hal ini menyebabkan munculnya beberapa tehnik yang bersumber pada tehnik hidrotermal antara lain sintesis hidrotermal, metamorfosis



hidrotermal, dehidrasi hidrotermal, dekomposisi hidrotermal, hidrotermal ekstraksi, sintering hidrotermal, hidrotermal kesetimbangan fasa, dan lain-lain (Perego, 1997).



**Gambar 2.10** Gambar Autoclave (a) penampang melintang autoclave dan teflon (b) autoclave (c) teflon

2. Metoda Sol-Gel

Proses sol-gel digambarkan sebagai pembentukam jaringan oksida melalui reaksi polikondensasi dari prekursor molekul dalam bentuk cairan. Sol adalah dispersi stabil partikel koloid atau polimer dalam pelarut. Gel terdiri dari jaringan tiga dimensi yang membungkus fase cair.

Proses sol-gel untuk mendapatkan  $LiMn_2O_4$  dengan cara mencampurkan reagen-reagen pembentuk  $LiMn_2O_4$  dicampurkan dalam larutan air agar terbentuk sol. Kemudian proses kalsinasi untuk mendapatkan endapan dari sol kristal pada 600 - 900°C. Distribusi merata pada ion-ion didalam larutan akan membentuk ukuran nanometer.



Metode sol – gel yang ditunjukkan pada Gambar 2.17 ini memiliki beberapa keuntungan dari metode sintesis lainnya, antara lain :

- 1. Dapat memproduksi pelapisan dengan ikatan yang tipis untuk menyediakan gaya lekat yang baik antara substrat dan *top coat*.
- 2. Dapat menghasilkan pelapisan yang tipis untuk menyediakan kemampuan proteksi terhadap korosi.
- 3. Dapat secara mudah membentuk material menjadi geometri yang kompleks saat pada fase gel.
- 4. Dapat memproduksi produk dengan tingkat kemurnian yang tinggi.
- 5. Mempunyai temperatur yang rendah pada kalsinasi.
- 6. Mampu menyediakan metode yang simpel, ekonomis, dan efektif.



Gambar 2.11 Metode Sol – gel (Claudionico, 2013)



### 2.6 Proses Kalsinasi

Proses kalsinasi adalah proses perlakuan panas yang diterapkan pada sebuah bahan yang bertujuan untuk dekomposisi termal, transisi fasa, dan penghapusan fraksi volatile, serta berfungsi untuk mengeliminasi senyawa yang berikatan secara kimia (Husni, 2010). Proses kalsinasi terjadi pada temperatur di bawah titik lebur bahan untuk menghilangkan kandungan bahan yang dapat menguap. Kalsinasi berperan dalam proses penghilangan air, karbon dioksida atau gas lain. Kalsinasi berbeda dengan proses pemanggangan, dimana jika pada proses pemanggangan reaksi gas-solid lebih kompleks terjadi antara padatan dan atmosfer dari tungku.(Sugiono, 2002)

Produk dari proses kalsinasi biasanya disebut secara umum sebagai kalsin. Kalsinasi diproses dalam sebuah tungku atau reaktor seperti furnace, rotary kiln, dan tungku perapian ganda. Semakin tinggi temperatur kalsinasi semakin besar ukuran partikel. Ini disebabkan karena proses kalsinasi akan menyebabkan reaksi zat padat, pengkristalan dan terjadi peleburan sehingga ikatan akan terlepas. Kalsinasi dilakukan pada suatu bahan untuk memutus ikatan molekul antar senyawa pada bahan tersebut. (Wang,2003)

#### 2.7 Hasil Penelitian Sebelumnya

Berikut akan ditunjukan beberapa penelitian yang sudah dilakukan dan menjadi acuan dalam penelitian yang kami lakukan

 Pada tahun 2005 Gao dkk melakukan sintesis α-MnO<sub>2</sub> nanowire menggunakan prekursor 1mmol KMnO4 dan 1 mmol NH4Cl pada proses sintesisnya menggunakan metode hydrothermal pada temperatur 140°C selama 24 jam didapatkan α-MnO<sub>2</sub> dengan morfologi nanowire dengan panjang mencapai 6-10µm dan tebal 30nm



- 2. Yi Zhang dkk pada tahun 2013 melakukan sintesis material anoda dalam bentuk komposit yaitu graphene/α-MnO<sub>2</sub>. Prekursor yang digunakan adalah Graphene Okside dan α-MnO<sub>2</sub> di sintesis menggunakan prekursor KMnO<sub>4</sub> 0.158gram yang di larutkan kedalam 0.001 M MnSO<sub>4</sub> dalam keadaan ter aduk menggunakan magnetik stirrer. Proses sintesis menggunakan metode hydrothermal pada temperatur 150°C selama 15 jam. Pada penelitian ini dihasilkan α-MnO<sub>2</sub> nanowire yang bersesuaian dengan JCPDS 044-0141yang berdimensi panjang 5-10µm dan tebal 40-50nm dengan kapasitas discharge spesifik 998 mAh/g selama 60 siklusp
- Shu Jing Ee dkk pada tahun 2010 telah melakukan penelitian dengan menumbuhkan MnO<sub>2</sub> pada template carbon nanotube untuk menghasilkan anoda dengan kemampuan untuk menahan ekspansi volume saat reaksi redoks. Prekursor yang digunakan dalam mensintesis α-MnO2 adalah KMnO<sub>4</sub> dan NH<sub>4</sub>Cl dengan metode Hydrothermal pada temperatur 150°C selama 24 jam. Pada penelitian ini dihasilkan α-MnO<sub>2</sub> yang memiliki dimensi panjang >10 µm dan tebal mencapai 20nm dengan kapasitas spesifik 928 mAh/g dengan siklus charge discharge 50 kali
- 4. Lili Feng dkk pada tahun 2014 mensintesis MnO2 microparticle dengan morfologi urcin dan cadice-clew. Menggunakan prekursor 1.70g MnSO<sub>4</sub>.H<sub>2</sub>O yang di larutkan kedalam 15-mL air suling dan ditambahkan K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> larutan tersebut kemudian di aduk menggunakan magnetic stirrer dan untuk proses sintesisnya digunakan metode hidrothermal pada temperatur 110°C selama 6 jam. Pada penelitian ini didapatkan α-MnO<sub>2</sub> morfologi urcin dan cadice dengan ukuran diameter mencapai 2-4 µm kapasitas spesifiknya adalah 600mAh/gram
- 5. Zhang Lei-Lei dkk melakukan sintesis α-MnO<sub>2</sub> dengan morfologi hollow clew menggunakan prekursor 0.6gam



KMnO<sub>4</sub> dan 1.1g MnSO<sub>4</sub>.H<sub>2</sub>O dengan metode pencampuran biasa dan kombinasi pengaduakan menggunakan magnetic stirrer morfologi yang didapatkan adalah hollow clew dengan kapasitas spesifik 590 mAh/g



#### BAB III METODOLOGI PENELITIAN

#### 3.1 Alat dan Bahan Penelitian

### 3.1.1 Bahan Penelitian

- 1. *Potassium Permanganate* (KMnO<sub>4</sub>) Dalam bentuk serbuk
- 2. *Ammonium Bromide* (NH<sub>4</sub>Br) Dalam bentuk serbuk
- Lithium Hexaflourophosphate (LiPF<sub>6</sub>) Sebagai elektrolit pada pengujian electrochemical Performance
- 4. Lithium Metal Sebagai *counter electrode*.
- 5. Acetylene Black dalam bentuk serbuk berwarna hitam sebagai conductive agent (TOB New Energy)
- 6. Copper foil Sebagai current collector.
- 7. Carboxy methil Cellulose (CMC) dalam bentuk serbuk berwarna putih sebagai binder/pengikat (TOB New Energy)
- 8. Air Suling/Aquades (H<sub>2</sub>O)

# 3.1.2 Peralatan dan Pengujian

Peralatan yang digunakan pada percobaan ini adalah

- 1. Autoclave
  - Alat ini digunakan untuk proses hydrothermal
- 2. Neraca Analitik

Alat ini digunaka untuk menimbang massa dari bahanbahan penelitian seperti KMnO4 dan NH4Br

3. Kaca Arloji

Digunakan sebagai tempat penimbangan bahan-bahan saat proses penelitia



| 4.  | Mortar dan pestle                                         |
|-----|-----------------------------------------------------------|
|     | Digunakan sebagai penghancur dan menghaluskan serta       |
| 5.  | pencampuran dalam proses penelitian Beaker Glass          |
| D/  | Digunakan sebagai wadah untuk melarutkan bahan            |
|     | dalam proses penelitian                                   |
| 6.  | Gelas Ukur                                                |
|     | Digunakan untuk mengukur volume larutan.                  |
| 7.  | Spatulla                                                  |
|     | Digunakan sebagai pengaduk dalam proses penelitian        |
| 8.  | Hot plate with magnetic stirrer                           |
|     | Alat ini digunakan untuk mencampur dan mengaduk           |
| 0   | lautan agar menjadi homogen                               |
| 9.  | Crucible                                                  |
|     | hidrotermal dalam proses kalsinasi                        |
| 10  | Muffle furnace                                            |
| 10. | Digunakan sebagai pemanas dalam proses hidrotermal        |
|     | dan proses pengeringan                                    |
| 11. | Solder of program por por                                 |
|     | Digunakan untuk menyolder rangkain test                   |
| 12. | Kawat tembaga yang berfungsi sebagai penghubung           |
|     | antara sampel dengan penjepit kabel elektroda kerja       |
| 13. | Electrode platina sebagai counter electrode               |
| 14. | Saturated Calomel Electrode (SCE) sebagai reference       |
| -   | electrode                                                 |
| 15. | Stainless steel mesh sebagai current collector            |
| 16. | Alat uji karakterisasi mortologi dan struktur material    |
|     | a. Scanning Electron Microscope (SEM) : FEI S-50          |
| 17  | b. <i>X-Ray Diffraction</i> (XRD): X pert Pro PANalytical |
| 17. | Alat uji electrochemical performance                      |
|     | h Cyclic Voltametric (CV)                                 |
|     | c Electrochemical Impedance SpectroscopyG                 |
|     |                                                           |



# 3.2 Diagram Alir Penelitian







# 3.3 Metode Penelitian

Dalam penelitian ini dilakukan beberapa tahapan penelitian dalam mensistesis material anoda baterai ion litium berupa MnO<sub>2</sub>. Adapun tahapan-tahapan tersebut diantaranya :

### 3.3.1 Preparasi prekursor

Pada proses sintesis α-MnO2 *nanowire* digunakan dua prekursor diantaranya adalah potassium permanganate (KMnO<sub>4</sub>) dan ammonium bromide (NH<sub>4</sub>Br). Pada penelitian ini akan di analisis pengaruh konsentrasi NH<sub>4</sub>Br terhadap morfologi dan performa elektrokimia anoda MnO<sub>2</sub> yang diperoleh setelah melalui proses *hydrothermal*. Dalam hal ini digunakan variasi NH4Br yaitu 1mmol, 3mmol dan 5 mmol dengan konsentrasi KMnO<sub>4</sub> 1 mmol yang dilarutkan dalam air suling (aquades) 40ml dengan bantuan *magnetic stirrer* sebagai pengaduknya. Untuk informasi lebih jelas dapat diperhatikan gambar 3.2 berikut



Gambar 3.2 Serbuk potassium permanganate (KMnO4) serbuk & ammonium bromide (NH4Br)



# 3.3.2 Proses Hydrothermal

Proses sintesis anoda MnO<sub>2</sub> Nanowire adalah dengan mencampurkan precursor KMnO<sub>4</sub> dengan NH<sub>4</sub>Br. Tujuananya dalah mereduksi KMnO<sub>4</sub> dengan menggunakan peruduksi ringan berupa NH<sub>4</sub>Br. KMnO<sub>4</sub> dilarutkan terlebih dahulu kedalam 40 ml air suling (aquades) dalam kondisi teraduk dalam *magnetic stirrer* kemudian di masukan NH<sub>4</sub>Br dengan variasi konsentrasi : 1mmol, 3mmol dan 5mmol dan dibiarkan teraduk selama 1 jam. Hasil yang didapat kemudian dimasukan kedalam *teflon-lined autoclave* dan dipanaskan hingga temperature 160 °C dan di *holding* selama 24 jam. Kemudian di dinginkan, setelah itu dilakukan pengendapan menggunakan alat centrifuge dan di bilas menggunakan air suling. Kemudian endapan yang didapat di keringkan hingga temperature 80 °C



Gambar 3.3 proses pengadukan (a); dan proses hydrothermal (b)





**Gambar 3.4** Proses pengadukan campuran prekursor (a); memasukan autoclave kedalam furnace (b) dan hasil hidrotermal dari variasi NH<sub>4</sub>Br 1mmol, 3mmol dan 5 mmol (c)

#### 3.3.3 Proses Kalsinasi

Proses kalsinasi dilakukan dengan tujuan untuk melepaskan gugus OH, menguapkan sisa pelarut dan membentuk fasa MnO<sub>2</sub>. Proses kalsinasi dilakukan pada temperature 400 °C selama 3 jam.



**Gambar 3.4** Serbuk MnO<sub>2</sub> hasil sintesis *hydrotermal* setelah kalsinasi dengan variasi NH<sub>4</sub>Br (a) 1mmol; (b) 3mmol dan (c) 5mmol



### 3.3.4 Pembuatan Slurry Anoda α-MnO<sub>2</sub> nanowire

Serbuk hasil kalsinasi kemudian dipersiapkan untuk membuat *slurry* atau material aktif dalam anoda yang dakan diuji performa elektrokimianya. Adapun *slurry* yang dimaksud adalah campuran dari serbuk MnO<sub>2</sub> hasil kalsinasi sebanyak 80% dari berat total *slurry* yang ingin dibuat, 15 % carbon black sebagai conducting material dan 5 % *carboxy methyl cellulose* (CMC) sebagai binder agar *slurry* mampu menempel pada *copper foil* sebagai *current collector*. Seluruh bahan kemudian dicampurkan menggunakan mortar berbahan agate dan di tumbuk hingga homogen. Selama proses penumbukan, campuran tersebut kemudian ditetesi air suling secukupnya sebagai pelarut binder sehingga terjadi *curring*. *Slurry* tersebut kemudian di aplikasikan pada *copper foil* yang kemudian di keringkan pada furnace selama 80°C selama 12 jam.



**Gambar 3.5** Bahan utama pemubuatan *slurry*, carboxy methyl cellulose (CMC) (a); carbon black (b) dan lembaran anoda yang telah diaplikasikan pada *copper foil* (c)

# 3.3.5 Assembly Baterai Ion Lithium (half cell)

Sebelum dilakukan pengujian performa elektrokimia berupa *cyclic* voltammetry, galvanostatic charge-discharge dan electrochemical impedanece maka anoda dirangkai kedalam baterai dengan cara sebagai berikut



- 1. Mempersiapkan bahan anoda yang akan diuji dalam hal ini MnO<sub>2</sub> yang telah dioleskan pada *copper foil*. Copper foil akan berfungsi sebagai current collector
- 2. Mempersiapkan larutan LiPF<sub>6</sub>1 M sebagai elektrolit
- 3. Mempersiapkan *Casing coin cell* tipe CR2023
- 4. Proses assembly dilakukan pada glove box dengan kondisi atmosphere argon, yang bertujuan agar tidak terjadi oksidasi pada bahan yang akan di rangkai
- 5. Melakukan clamping pada baterai yang telah dirangkai menggunakan mesin hidrolik

# 3.4 Pengujian Karakterisasi Material

#### 3.4.1 X-ray Diffraction (XRD)

Pada penelitian ini unutuk mengetahui fasa yang terbentuk pada sampel maka dilakukan pengujian XRD menggunakan instrument PANAnalytical dengan range sudut  $10^{\circ}-90^{\circ}$  dan menggunakan panjang gelombang CuKa sebesar 1.54056 Å yang dilakuka di jurusan Teknik Material dan Metalurgi FTI-ITS. Sebelum dilakukan pengujian XRD dilakukan preparasi terhadap sampel berupa digerus terlebih dahulu menggunakan mortar agar didapatkan ukuran yang homogen, kemudian sampel diletakan di tengah-tengah *plate* agar tepat pada titik fokus hamburan sinar-X.

Secara umum prinsip kerja XRD ditunjuakkan oleh Gambar 3.6 pengujian XRD. Generator tegangan tinggi berfungsi sebagai catu daya sumber sinar-X

- 1. Sampel berbentuk serbuk diletakkan diatas tatakan (*palate*) yang dapat diatur.
- 2. Berkas sinar-x didifraksikan oleh sampel dan difokuskan melewati celah, kemudan masuk ke alat pencacah. Apabila sampel berputar sebesar  $2\theta$  maka alat berputar sebesar  $\theta$ .
- 3. Pola difraksi sinar-x direkam dalam bentuk kurva intensitas terhadap sudut difraksi.

Untuk menentukan fasa yang terbentuk dapat dilakukan dengan metode pencocokan terhadap difraksi acuan. Pada penelitian ini



digunakan data standar yang diperoleh melalui Joint Committee of Powder Difraction Standart (JCPDS).



Gambar 3.6 Skema kerja X-Ray Diffraction (XRD)

Melalui bantuan *software highscore plus* pertama dilakukan pencarian puncak-puncak difraksi dari sampel (search peak), kemudian dilakukan pencocokan terhadap JCPDS refrensi dalam hal ini adalaha JCPDS No. 00-044-0141. Akan terlihat puncak yang bersesuaian terhadap acuan, dan apabila ditemukan puncak lain dengan intensitas tinggi namun tidak bersesuaian dengan acuan dapat dikatakan ada suatu pengotor yang harus diidentifikasi.

### **3.4.2** Scanning Electron Microscop (SEM)

Pada penelitian ini menggunakan mesin SEM Inspect S50 menggunakan energy 20 kV dan diambil foto morfologi dengan perbesaran 5000x, 15000x dan 25000x. Preparasi specimen dilakukan dengan cara digerus menggnaka mortar. Pengujian SEM



dilakukan di laboratorium karakterisasi jurusan Teknik Material dan Metalurgi ITS.

SEM (*Scanning Electron Microscope*) adalah salah satu jenis mikroskop electron yang menghasilkan gambar dari sampel dengan menggunakan electron yang terfokuskan. Electron berinteraksi dengan electron pada smpel, menghasilkan beberapa jenis sinyal yang dapat dideteksi dan mengandung informasi tentang topografi permukaan sampel dan komposisinya. Mengamati permukaan pada dengan perbesaran M= 10-100000 X, resolusi permukaan hingga kedalaman 3-100 nm. Prinsip kerja dari SEM adalah sebagai berikut:

- 1. Sebuah pistol elektron memproduksi sinar elektron dan dipercepat dengan anoda.
- 2. Lensa magnetik memfokuskan elektron menuju ke sampel.
- 3. Sinar elektron yang terfokus memindai (scan) keseluruhan sampel dengan diarahkan oleh koil pemindai.
- 4. Ketika elektron mengenai sampel maka sampel akan mengeluarkan elektron baru yang akan diterima oleh detektor dan dikirim ke monitor (CRT).



Gambar 3.7 Alat SEM



# 3.5 Pengujian Performa Elektrokimia

# 3.5.1 Galvanostatic charge/discharge

Pengujian *charge/discharge* dilakukan di Laboratorium Baterai Lithium, Lembaga Ilmu Pengetahuan Indonesia - Fisika (LIPI – Fisika) menggunakan alat *Automatic Battery Cycler* WonATech WBCS3000. Pada penelitian ini dilakukan pengujian sebanyak 100 cycle dengan *C-rate* yaitu 0.5 C

Pengujian charge discharge digunakan untuk mengetahui kemampuan suatu material untuk menyimpan energi. Kapasitas energi atau muatan dinyatakan dalam satuan mAh/gr. Tes charge*discharge* dilakukan dengan kepadatan arus konstan. Kapasitas (Q) dapat dihitung berdasarkan waktu charge discharge menggunakan rumus Q = I x t, dimana I adalah kerapatan arus dan t adalah waktu. Pengaturan waktu dibagi menjadi 2 yaitu T1 sebagai waktu charging, dan T1 sebagai waktu discharging. Kemudian  $\Delta T$  untuk mengatur waktu jeda antara charging dan discharging. Pengaturan dari  $\Delta T$  diperlukan untuk mengamati tegangan dari baterai V<sub>OCV</sub>. Kemudian didapatkan pengamatan rekaman waktu (t / ms), arus (i / Ma), dan tegangan (V / volt). Dari grafik itu dihasilkan grafik utama yang menunjukkan hasil dari proses charge - discharge yang menampilkan hubungan potensial (V / volt) dan waktu (t / ms seperti yang terlihat pada Gambar . Pengujian charge – discharge dilakukan di Lembaga Ilmu





Gambar 3.8 Contoh grafik hasil pengujian *charge discharge* α-MnO<sub>2</sub> nanowire



Gambar 3.9 Mesin pengujian *charge – discharge* dan CV Wonatech WBCS3000

# 3.5.2 Electrochemical Impedance Spectrocospy (EIS)

Pengujian EIS pada penelitian ini dilakukan dengan mesin HIOKI resistance meter RM3544 yang dilakukan di pusat studi fisika LIPI, Serpong dengan range frekuensi 0,1 – 20000 Hz



Electrochemical Impedance Spectroscopy (EIS) adalah suatu metode untuk menganalisa suatu elektroda terhadap sinyal potensial AC pada amplitudo rendah (~10 mV) dengan frekuensi 0,1-20000 Hz dari rentang frekuensi yang sangat lebar.

Prinsip kerja alat ini adalah awalnnya investigasi karakteritik listrik reaksi dalam elektrokimia menggunakan potensial DC sebagai signal pengukuran. Namun penggunan signal DC ini menyebabkan kondisi sistem elektrokimia yang teramati tidak berasa pada fasa kesetimbangan reaksi sesungguhnya akibat potensial DC telah mengubah potensial reaksi yang terjadi. Dan informasi yang terekam pun merupakan kolektifitas seluruh kontribusi individual, sehingga kontribusi dari tiap individu yang merupakan parameter internal dinamik reaksi elektrokimia tidak dapat diekstrak dari data dengan signal DC ini. Kemudian dicoba dengan menumpangkan signal AC pada tegangan DC



**Gambar 3.10** Gambar (a) Alat EIS, HIOKI RM3544 (b) Hasil kurva dari pengujian spektroskopi impedansi elektrokimia dari sistem baterai lithium (Hong - Yi Cheng, 2011)



AC impedance spectrocospy merupakan teknik yang sangat bagus untuk menentukan parameter kinetik dari proses elektroda termasuk didalam elektrolit, pasivasi layer, charge transfer, dan Li+ diffusion. Charge-transfer resistance (R<sub>ct</sub>) salah satu parameter yang penting untuk mengkarakterisasikan kuantitatif kecepatan sebuah reaksi elektroda. Pengukuran dilakukan dengan menggunakan signal pertubasi AC yang ditumpangkan pada tegangan DC bias, sehingga tidak mengganggu kesetimbangan dari reaksi elektrokimia sel. Spektrum frekuensi yang dibangkitkan akan mengidentifikasi perubahan impedansi komplek vang terkait dengan reaksi elektrokimia vang teriadi, vang menginterpretasikan gejala dinamika internal reaksi elektrokimia. Biasanya, resistansi charge-transfer yang besar menunjukan reaksi elektrokimia yang lambat. Ret dapat dihitung dari electrochemical impedance spectrocospy dengan nilai sama dengan diameter setengah lingkaran didalam region medium-frekuensi,

### 3.5.3 Cyclic Voltametry (CV)

Pengujian cyclic voltammetry dilakukan di pusat studi fisika LIPI, serpong menggunakan alat voltammetry AutoLab PGSTAT tipe 302N Metrohm. *Pure* lithium digunakan sebagai elektroda pembanding, LiPF<sub>6</sub> sebagai elektrolit dan *copper foil* sebagai elektroda pembantu. Initial voltage dan cut-off voltage dari 0.0-3.0 volt dengan *scan rate* 0.1 mV/s

Prinsip kerja adalah dengan memberikan potensial tertentu pada elektroda kerja, maka akan diketahui arus yang terjadi. Plot antara arus yang diukur dengan potensial kerja yang diberikan disebut *voltammogram*. Arus yang dihasilkan dari reaksi reduksi disebut arus katodik dan arus yang dihasilkan dari reaksi oksidasi disebut arus anodik. Berdasarkan potensialnya, CV dilakukan sapuan bolak-balik sehingga informasi reduksi dan oksidasi dapat diketahui dengan baik. Dimulai dengan tanda polaritas negatif. Pada titik B potensial menjadi semakin negatif sehingga analit pada elektroda kerja dapat diteduksi, ditandai dengan munculnya arus



katodik. Proses reduksi berlangsung hingga hampir semua analit tereduksi, ditandai dengan munculnya puncak arus katodik pada titik C. Arus akan berkurang hingga mencapai titik D, dan tanda polaritas negatifnya mulai berkurang. Arus katodik terus berkurang hingga potensial mencapai titik E, kemudian arus katodik mulai dominan. Pada titik F arus anodik akan bertambah dengan berkurangnya konsentrasi analit yang tereduksi. Arus anodik berkurang dari puncak hingga kembali kepotensial awal.



**Gambar 3.11** (a) *Voltamogram* hubungan arus terhadap potensial (b) Contoh grafik CV  $\alpha$ -MnO<sub>2</sub> *nanowire* (Yi Zang, 2013)



Gambar 3.13 Alat cyclic voltammetry AutoLab PGSTAT tipe 302N Metrohm

### BAB IV HASIL DAN PEMBAHASAN

#### 4.1 Hasil Sintesa α-MnO2

Baterai lithium-ion adalah salah satu media penyimpan energi yang masih terus berkembang hingga saat ini. Lithium sangat digemari karena memiliki propertis yang bagus. Memiliki kapasitas volumetrik dan gravimetrik yang besar, potensial kerja hingga 3.7V, tidak memiliki efek memori dan *self-discharge* yang hanya mencapai 10% per bulan.

Pada perkembangan perangkat elektronik yang semakin pesat memaksa peneliti untuk mengembangkan baterai yang mampu memenuhi kebutuhan pasar, seperti baterai yang mampu memiliki *charging rate* yang tinggi tanpa mengalami degradasi struktur kristal, maka dari itu dilakukan rekayasa terhadap bahan elektroda dari pada baterai ion lithium. MnO<sub>2</sub> adalah salah satu kandidat material yang cocok digunakan sebagai elektroda. MnO<sub>2</sub> memiliki *polymorph* yang berbeda, dan yang saat ini banyak diteliti adalah α-MnO<sub>2</sub>. α-MnO<sub>2</sub> tersusun atas MnO<sub>6</sub> oktahedral dengan *sharing edge* diantara octahedral lainnya. Sharing edge ini membentuk suatu tunnel berukuran 2x2 sharing edge oktahedral yang berfungsi sebagai *active site* bagi Li<sup>+</sup>. Kemudian peneliti juga mulai melakukan rekayasa terhadap morfologi MnO<sub>2</sub> yang bertujuan untuk memberikan *diffusion-path* yang pendek dan luas permukaan yang besar pada proses interkalasi ion lithium.

Sintesa alpha mangan dioksida (α-MnO<sub>2</sub>) menggunakan prekursor serbuk potasium permanganat (KMnO<sub>4</sub>) dan ammonium bromide (NH<sub>4</sub>Br) di campur kedalam 40ml air suling dan diaduk menggunakan *magnetic stirrer*, Setelah proses *stirring* larutan dimasukkan kedalam *teflon-lined autoclave* untuk selanjutnya dilakukan *hydrothermal*. setelah proses hydrothermal, larutan di setrifugasi untuk mendapatkan endapan yang kemudian dicuci menggunakan air suling sebanyak 2 kali



dengan tujuan melarutkan pengotor. Endapan kemudian di keringkan menggunakan muffle furnace selanjutnya dilakukan kalsinasi.

Pada penelitian ini proses hydrothermal dilakukan dalam wadah tertutup berupa autoclave, pada furnace dengan lingkungan udara pada temperature 160°C selama 24 jam. Pembentukan MnO<sub>2</sub> nanowire dapat dilakukan dengan metode *hydrothermal* yang ditunjukan pada persamaan 4.1. berdasarkan persamaan 4.1 air yang digunakan untuk melarutkan sampel tidak ikut bereaksi pada saat hydrothermal melainkan hanya bertindak sebagai medium reaksi. Hasil XRD pada sampel yang belum di kalsinasi menunjukan bahwa belum terbentuk fasa MnO<sub>2</sub>. kemudian utnuk mendapatkan fasa MnO<sub>2</sub> dilanjutkan dengan kalsinasi pada temperature 400°C selama 3 jam ditunjukan oleh persamaan 4.2.

 $KMnO_{4(s)} + NH_4Br_{(s)} \rightarrow MnOOH_{(s)} + KBr_{(l)} + NO_{2(g)} + \frac{3}{2}H_{2(g)}.(4.1)$   $MnOOH_{(s)} \xrightarrow{400^{\circ}C} MnO_{2(s)} + \frac{1}{2}H_{2(g)}.....(4.2)$ 



**Gambar 4.1** Hasil pengamatan visual serbuk setelah proses kalsinasi dengan variasi penambahan NH4Br (a) 1mmol (b) 3mmol (c) 5mmol.

Variasi yang dilakukan pada penelitian ini adalah penambahan konsentrasi NH4Br yang ditunjukan pada gambar 4.1. Pengamatan makro dilakukan pada serbuk yang sudah melalui proses kalsinasi. Tidak tampak perbedaan fisik yang jelas pada



perbesaran makro baik dari segi warna antara ketiga sampel tersebut

#### 4.2 Karakterisasi α-MnO2

### 4.2.1 Analisa Hasil Karakterisasi X-ray Diffraction (XRD)

Pengujian difraksi sinar-x dilakukan dengan mengambil serbuk MnO<sub>2</sub> hasil sintesis yang sudah dikalsinasi, kemudian diuji menggunakan alat XRD *PANanalytical* dengan range sudut 10° - 90° menggunakan panjang gelombang CuKα sebesar 1.54060 Å. Kemudian identifikasi fasa dilakukan menggunakan software *High Score Plus* untuk menentukan persentase kecocokan puncak difraksi yang muncul terhadap acuan JCPDS No. 00-044-0141, dan untuk menentukan fasa pada setiap puncak difraksi, dilakukan *matching* secara manual dengan membandingkan puncak difraksi yang muncul dengan acuan.



**Gambar 4.2** Pola difraksi serbuk  $\alpha$ -MnO<sub>2</sub> dengan acuan (a) JCPDS No.44-0141 dan variasi konsentrasi NH<sub>4</sub>Br (b) 1mmol (c) 3mmol dan (d) 5 mmol



Berdasarkan metode pencocokan manual terhadap puncak difraksi yang muncul dengan acuan dapat disimpulkan ketiga sample yang diujikan memiliki kesesuaian dengan JCPDS No. 00-044-0141 tanpa adanya puncak difraksi pengotor, yang berarti seluruh sample adalah  $\alpha$ -MnO<sub>2</sub> dengan struktur kristal tetragonal.

Untuk mendukung hipotesis bahwa penggunaan NH<sub>4</sub>Br dalam proses sintesis dapat menghasilkan fasa  $\alpha$ -MnO<sub>2</sub> maka dihitung parameter kisi sampel yang telah di uji XRD dan kemudian di bandingkan dengan parameter kisi yang tertera pada JCPDS.  $\alpha$ -MnO<sub>2</sub> memiliki struktur kristal tetragonal dengan parameter kisi a=b  $\neq$  c, setelah dihitung menggunakan persamaan 4.3 maka didapatkan nilai a,b,c untuk setiap sampel.

 $\frac{1}{d} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}.$ (4.3)

Nilai d pada persamaan 4.3 didapat dari sampel, nilai h,k,l di dapat dari JCPDS acuan dengan peak yang bersesuaian dengan sampel pengujian. Setelah dilakukan perhitungan maka didapatkan parameter kisi dari ketiga sampel yang ditunjukan pada table 4.1

**Tabel 4.1** Pengaruh konsentrasi NH4Br terhadap parameter kisi α MnO<sub>2</sub> hasil sintesa

| Parameter<br>Kisi | JCPDS<br>00-044-0141 | NH4Br<br>1mmol | NH4Br<br>3mmol | NH4Br<br>5mmol |
|-------------------|----------------------|----------------|----------------|----------------|
| a=b               | 9.7847               | 9.837          | 9.835          | 9.863          |
| с                 | 2.8630               | 2.850          | 2.850          | 2.860          |

Berdasarkan hasil yang diperoleh terlihat parameter kisi dari sampel sangat bersesuaian dengan JCPDS hanya mengalami sedikit pelebaran pada nilai a dan b.

Untuk mengetahui ukuran kristal (D), dilakukan perhitungan menggunakan data dari puncak difraksi tertinggi yang kemudian diolah menggunakan formula *Scharrer* pada Persamaan 4.4

$$\boldsymbol{D} = \frac{0.9\,\lambda}{B\,\cos\,\theta}.$$



dimana D adalah ukuran kristal (Å) ,  $\lambda$  merupakan panjang gelombang CuK $\alpha$  pada instrumen PAN*analytical* yaitu sebesar 1.54056 Å. B adalah lebar setengah puncak dari puncak difraksi tertinggi.

Data hasil perhitungan ukuran Kristal ketiga sampel dapat dilihat pada table 4.1. Berdasarkan data tersebut terlihat pengaruh penambahan konsentrasi NH4Br menyebabkan ukuran kristal menurun. Ketika konsentrasi NH4Br 3mmol ukuran kristal hanya berkurang 0.014 nm, ketika konsentrasinya dinaikan menjadi 5 mmol ukuran partikel menurun drastis menjadi 25.35 nm atau dapat dikatakan mengalami penurunan sebesar 19.88 nm.

| Tabel | 4.2 | Hasil  | perhitungan   | ukuran   | kristal | (D)terhadap |
|-------|-----|--------|---------------|----------|---------|-------------|
|       |     | penamb | ahan konsentr | asi NH4B | r       |             |

| T(°C) | NH4Br<br>(mmol) | FWHM   | B(rad)           | θ      | Cos θ  | D (nm) |
|-------|-----------------|--------|------------------|--------|--------|--------|
| 160   |                 | 0.2007 | 0.00316<br>43971 | 14.431 | 0.9684 | 45.243 |
|       | 3               | 0.2007 | 0.00316<br>43971 | 14.370 | 0.9687 | 45.229 |
|       | 5               | 0.3346 | 0.00564 261771   | 14.260 | 0.9691 | 25.354 |

Ukuran Kristal ini pada umumnya akan berpengaruh terhadap hasil pengujian performa elektrokimia dari sampel yang akan dijadikan anoda.

Berdasarkan puncak difraksi ketiga dari variasi penambahan NH<sub>4</sub>Br pada Gambar 4.2, konsentrasi NH4Br 3mmol menunjukan puncak difraksi tajam dengan intensitas yang paling tinggi. Hal tersebut mengindikasikan MnO<sub>2</sub> yang disintesis menggunakan NH4Br 3 mmol memiliki fasa kristalin yang lebih banyak (Tomoki, 2000)

#### 4.2.2 Analisa Morfologi α-MnO<sub>2</sub> terhadap pengaruh konsentrasi NH<sub>4</sub>Br menggunakan scanning electron microscope (SEM)

Untuk mendapatkan informasi mengenai morfologi mikro, dilakukan pengujian dengan menggunakan scanning electron microscope



(SEM). Pengujian ini bertujuan untuk mengetahui apakah pengaruh penambahan NH<sub>4</sub>Br pada proses sintesis  $\alpha$ -MnO<sub>2</sub> melalui proses *hydrothermal*, mampu membentuk morfologi *nanowire* . menurut M.T Bojork (2002) nanowire didefinisikan sebagai semua material dalam bentuk solid dengan diameter kurang dari 100nm.



Gambar 4.4 Hasil uji SEM sampel dengan variasi konsentrasi NH4Br (a) 1 mmol (b) 3mmol dan (c) 5mmol perbesaran 25.000x

Hasi SEM sampel MnO<sub>2</sub> dengan variasi konsentrasi NH<sub>4</sub>Br saat proses sintesis hydrothermal dengan temperature 160°C dan waktu tahan



selama 24 jam menunjukan bahwa partikel yang terbentuk adalah *nanowire*. dari gambar tersebut tampak pengaruh NH<sub>4</sub>Br menyebabkan penurunan dimensi panjang pada *nanowire* yang terbentuk. Untuk memperjelas hasil pengukuran , maka data ditampilkan dalam bentuk table yang dapat dilihat pada Table 4.3. Pada konsentrasi NH<sub>4</sub>Br 3 mmol terjadi sedikit pengurangan pada dimensi panjangnya sementara pada konsentrasi NH<sub>4</sub>Br 5mmol terjadi pengurangan panjang yang sangat signifikan

| T. Hydrothermal | NH4Br (mmol) | Dimensi Partikel |            |
|-----------------|--------------|------------------|------------|
| (°C)            |              | Panjang (nm)     | Lebar (nm) |
| 160             | 1            | 5000-6.900       | 62-81      |
|                 | 3            | 3000-5.200       | 58-62      |
|                 | 5            | 1.600-1.900      | 82-115     |

Tabel 4.3 Distribusi ukuran Partikel berdasarkan hasil SEM

Berdasarkan Gambar 4.4 dan distribusi ukuran pada Table 4.3 , penambahan konsentrasi NH<sub>4</sub>Br mempengaruhi dimensi daripada morfologi yang terbentuk, semakin bertambah konsentrasi NH<sub>4</sub>Br dapat mengurangi ukuran panjang *nanowire* yang terbentuk. Hasil dari pengujian ini bersesuaian dengan penelitian yang dilakukan oleh Gao dkk (2005), dimana ketika konsentrasi NH<sub>4</sub>Cl ditambahkan, morfologi nanowire yang diperoleh semakin pendek. Tampaknya konsentrasi NH<sub>4</sub>Br berlebih mengakibatkan terhambatnya mekanisme *aggregation* pada saat *hydrothermal*. Mekanisme pertumbuahn nanowire diawali dengan terjadinya *nucleation* atau pengintian, kemudaian terjadi agregasi dimana antar inti yang terbentuk saling mengikat kearah memanjang kemudian terjadi pengabungan antara inti-inti yang terbentuk.





Gambar4.5Mekanisme pertumbuhan nanowire pada proses hydrothermal (Lili Feng et al, 2014).

#### 4.3 Analisa Hasil Pengujian Performa Elektrokimia 4.3.1 Analisa Hasil Pengujian *Cyclic Voltametry* (CV)

Uji CV dilakukan untuk mengetahui fenomena oksidasi dan reduksi yang terjadi pada rangkaian baterai. Reaksi katodik dan anodic pada baterai tipe CR2023 dengan variasi penambahan konsentrasi NH4Br yaitu 1 mmol, 3 mmol dan 5 mmol. Berikut hasil pengujian CV yang ditampilkan dalam bentuk grafik yang dapat dilihat pada gambar 4.8 (a), (b) dan (c)









Berdasarkan hasil pengujian CV dapat diamati grafik yang terbentuk akibat pengaruh konsentrasi NH<sub>4</sub>Br yang disajikan pada gambar 4.8. dari gambar tersebut didapatkan informasi mengenai intensitas arus oksidasi dan reduksi, kemudian jumlah oksidasi dan reduksi setiap siklusnya dan pada grafik tersebut dapat diketahui apakah terbentuk *solid electrolyte interface* (SEI) pada permukaan elektroda dengan elektrolit yang digunakan. Menurut *Xiang JY* (2010), SEI adalah lapisan tipis berbentuk seperti gel yang mengandung oligomer berbasis etilen-oksida, LiF, Li2CO3, dan lithium alkil karbonat (ROCO2LI), selama proses discharging pertama.

Pada gambar 4.6 terlihat perbedaan intensitas arus anodic dan katodik yang terjadi pada setiap sampel. Reaksi redoks pada anoda akan mengikuti persamaan sebagai berikut :

Reduksi/interkalasi:

# $2Li_2O + Mn \rightarrow MnO_2 + 4Li^+ + 4e^- \dots \dots \dots \dots \dots 4.5$

Pada sampel dengan konsentrasi NH<sub>4</sub>Br 1mmol Gambar 4.6 (a) intensitas arus oksidasinya kurang dari 10 mAh/gr baik pada siklus pertama hingga ke 3, mengindikasikan sedikit Li<sup>+</sup> yang mampu dilepaskan. Reduksi pada siklus pertama terjadi pada 2.24V, MnO<sub>2</sub> berubah menjadi Mn, dan Li<sup>+</sup> masuk kedalam anoda . Puncak oksidasi terjadi pada 1.15 V yang berhubungan dengan proses *charging* baterai. Pada proses ini terjadi dekomposisi Li<sub>2</sub>O. Pada penambahan NH<sub>4</sub>Br 1mmol MnO<sub>2</sub> yang dihasilkan hanya terdapat masing-masing 1 puncak oksidasi dan reduksi pada siklus pertama, dan pada siklus ke 2 dan 3 tidak terdapat puncak reduksi , hal ini mengindikasikan terbentuk *solid electrolyte interface* (SEI) antara permukaan anoda MnO<sub>2</sub> dengan elektrolit LiPF<sub>6</sub>, menurut *Xiang JY* (2010) SEI yang terbentuk kemungkinan adalah LiF berupa film tipis seperti gel. Tidak adanya puncak reduksi pada siklus ke 2 dan 3 ini



kemungkinan adalah SEI yang terbentuk terlalu tebal dan kemungkinan yang kedua adalah SEI yang terbentuk pada saat reduksi siklus pertama tidak terdekomposisi pada proses oksidasi yang menyebabkan anoda tidak mampu menginterkalasi Li pada siklus ke 2 dan 3.

Tabel 4.3 Puncak Arus Oksidasi dan Reduksi pada pengujian Cyclic voltametri dengan variasi konsentrasi NH<sub>4</sub>Br siklus 1

| Variasi | Intensit<br>Reduksi | as Arus<br>(mAh/g) | Intensitas Arus<br>Oksidasi (mAh/g) |                   |
|---------|---------------------|--------------------|-------------------------------------|-------------------|
| (mmol)  | Reduksi<br>pertama  | Reduksi<br>kedua   | Oksidasi<br>pertama                 | Oksidasi<br>kedua |
| 1 1     | -15                 | 7)] - 175          | 3.3                                 |                   |
| 3       | -26.9               | -81.08             | 85.63                               | 38.72             |
| 5       | -168.88             | ~ -                | 125.89                              | 99.00             |



Variasi Konsentrasi NH<sub>4</sub>Br (mmol)

Gambar 4.7 Grafik perbandingan puncak arus reduksi pada siklus pertama pengujian CV



MnO<sub>2</sub> vang dihasilkan dengan konsentrasi NH<sub>4</sub>Br 3mmol Gambar 4.6 (b) grafik yang dihasilkan memperlihatkan adanya masing-masing 2 puncak oksidasi dan reduksi baik pada siklus 1 hingga siklus ke 3. Pada siklus pertama terjadi dua kali reduksi, reduksi pertama terjadi pada 2.28 V dan reduksi ke 2 terjadi pada 1.30 V yang dapat dihubungkan dengan fenomena pembentukan metal (Mn) pada reduksi pertama dan fenomena interkalasi lithium pada reduksi kedua, sesuai dengan Persamaan 4.4, pada siklus ke 2 dan 3 puncak reduksi masih tampak jelas, ini mengindikasikan lapisan SEI yang terbentuk bersifat reversible. Puncak reaksi oksidasi terjadi pada 1.17 V dan 2.5 V pada proses ini terjadi dekomposisi SEI yang terlihat terjadi secara bertahap kemudian Mn<sup>(0)</sup> teroksidasi menjadi Mn<sup>(4+)</sup> namun pada siklus ke 2 dan ke 3 puncak reaksi reduksi intensitasnya menurun begitu juga dengan potensialnya. Ini mengindikasikan bahwa proses dekomposisi SEI pada reaksi oksidasi sebelumnya tidak sempurna atau dengan kata lain masih ada SEI yang belum terdekomposisi pada permukaan anoda, sehingga menurunkan kemampuan interkalasi Li kedalam anoda. Pada konsentrasi NH4Br

MnO<sub>2</sub> yang dihasilkan dengan konsentrasi NH<sub>4</sub>Br 5mmol Gambar 4.6 (c) menunjukan terjadi 1 puncak reduksi dan 2 puncak oksidasi baik pada siklus 1 hingga 3, namun pada siklus ke 2-3 reduksi (interkalasi lithium) mengalami penurunan sedangkan oksidasi masih tetap konstan hingga siklus ke 3, hal ini mengindikasikan bahwa SEI tidak terdekomposisi dengan sempurna. Pada gambar 4.7 ditunjukan puncak arus oksidasi dari setiap variasi konsentrasi NH4Br, terlihat pada konsentrasi NH4Br 5 mmol memiliki peak yang paling tinggi, mengindikasikan Li+ yang interkalasi kedalam anoda sangat banyak, hal ini akan berpengaruh terhadap kapasitas spesifik dari anoda yang akan di ukur melalui pengujian *charge/discharge* 



# 4.3.2 Hasil analisa pengujian Galvanostatic Charge discharge α-MnO<sub>2</sub> dengan variasi konsentrasi NH<sub>4</sub>Br 1mmol, 3mmol dan 5mmol

Pengujian galvanostatic *Charge discharge* menggunakan instrumen galvanostat. Tujuan dari pengujian ini adalah untuk memperoleh kapasitas spesifik dari anoda pada saat charging, maupun discharging dan dapat juga diperoleh data mengenai stabilitas anoda saat di interkalasi dan de interkalasi ion lithium. informasi pada saat charging dan discharging dalam bentuk kurva yang disajikan pada gambar 4.7






Gambar 4.8 Grafik Charge-Discharge terhadap anoda  $\alpha$ -MnO<sub>2</sub> nanowire dengan variasi NH4Br (a) 1mmol (b) 2mmol (c) 3mmol



Anoda dengan penambahan 1mmol NH<sub>4</sub>Br, hanya memiliki kapasitas spesifik 16.1 mAh/g pada siklus pertama. Bahkan pada siklus ke 100 mengalami penurunan kapasitas yang sangat signifikan menjadi 0.9171 mAh/g dengan kata lain mengalami *capacity fading* sebesar 92.2% pada siklus ke 100. Hal ini mengindikasikan beberapa kemungkinan, yaitu material anoda tidak mampu menahan ekspansi volume pada proses redoks dimana anoda akan kehilangan *interpartikel bonding*, yang kedua adalah berkurangnya lithium karena terbentuknya *solid electrolyte interphase*. Gambar 4.1 (a) menunjukan *voltage plateu* (pada 0.5V -0,4 V) selama proses discharging dan sebuah *voltage plateu* (0,9 V -1.2 V) selama proses charging, hal ini mengindikasikan terjadi interkalasi dan de-interkalasi Li<sup>+</sup> pada anoda pada saat reaksi redoks.

| Variasi<br>Konsetrasi     | Kapasita<br>(m.      | Capacity<br>Fading |     |
|---------------------------|----------------------|--------------------|-----|
| NH <sub>4</sub> Br (mmol) | Siklus 1             | Siklus 100         | (%) |
| 1                         | 11.79                | 0.9                | 92  |
| 3                         | 139.57               | 84.76              | 33  |
| 5 7 6                     | <mark>196.</mark> 03 | 33.3               | 87  |

 Tabel 4.4 Penurunan Kapasitas Spesifik Anoda pada siklus ke 100





**Gambar 4.9** Grafik persentase *capacity fading* (kehilangan kapasitas) pada anoda dengan variasi konsentrasi NH<sub>4</sub>Br 1mmol; 3mmol dan 5mmol

Dengan konsentrasi NH<sub>4</sub>Br 3mmol menghasilkan kapasitas spesifik pada siklus pertama mencapai 139.5 mAh/g yang ditunjukan pada kurva (b). Mengalami capacity fading sebesar 33.09 % pada siklus ke 100, hal ini mengindikasikan bahwa material anoda tidak mengalami perubahan fasa yang bersifat permanen dan cukup kuat mengalami ekspansi volume selama proses charging/discharging hal ini berkaitan dengan difraksi XRD yang tajam dan intensitasnya paling tinggi mengindikasikan fasa kristalin yang lebih banyak fasa kristalin ini berkaitan dengan active site dari anoda yang mampu menahan proses charging/discharging hingga siklus ke 100 tanpa mengalami perubanan struktur yang cukup banyak.

Ketika konsentrasi NH4Br 5mmol MnO2 yang dihasilkan memiliki kapasitas spesifik yang paling besar mencapai 196.1



mAh/g. Tetapi penurunan kapasitas terjadi sangat signifikan pada siklus ke 100 mencapai 82.9 % hal ini menunjukan anoda mengalami perubahan fasa permanen yang cukup signifikan, reduksi Mn<sup>4+</sup> pada proses discharging menjadi Mn bersifat permanen, sehingga *active site* bagi Li<sup>+</sup> berkurang yang mengakibatkan menurunya kapasitas.

Berdasarkan uji SEM, konsentrasi NH<sub>4</sub>Br 5mmol memiliki morfologi yang paling kecil dengan distribusi panjang dari 1600nm hingga 1900 nm dan memiliki ukuran kristal hanya 25.354 nm , hal ini berkaitan dengan fenomena difusi Li<sup>+</sup> kedalam anoda. Dengan kecilnya morfologi maka dapat memperpendek *diffusion path* Li<sup>+</sup> tetapi struktur kristalnya belum mampu menahan proses interkalasi dan de-interkalasi hingga siklus ke 100, sehingga terjadi *capacity fading* yang sangat signifikan



Gambar 4.10 efisiensi columbic terhadap anoda MnO<sub>2</sub> pada konsentrasi NH<sub>4</sub>Br 1mmol (a); 3mmol (b) dan 5mmol (c)

Konsentrasi NH<sub>4</sub>Br 5mmol, menghasilkan anoda dengan kapasitas spesifik yang paling besar mencapain 196.11 mAh/gram, tetapi



kurva *charging/discharging* yang dihasilkannya, anoda ini menunjukan capacity fading yang sangat signifikan pada siklus ke 100 hingga 82.9%. Jika diamati kurva columbic efficiency pada Gambar 4.8 dapat dilihat rasio energy untuk *charging/discharging* berada dibawah 100%, jika dibandingkan dengan konsentrasi NH<sub>4</sub>Br 3 mmol memiliki efisiensi yang konstan di anggka 100%. Kurva *columbic efficiency* menunjukkan bahwa seberapa besar efisiensi konversi dari anoda.

# 4.3.3 Hasil analisa EIS (*Electrochemical Impedance Spectroscopy*) α-MnO<sub>2</sub> dengan variasi konsentrasi NH4Br 1mmol, 3mmol, dan 5 mmol

Nilai dari impedansi diperlukan untuk meng interpretasi kecepatan difusi Li<sup>+</sup> kedalam anoda. Berikut adalah plot kurva dari hasil pengujian EIS dengan pengaruh konsentrasi NH4Br 1mmol , 3 mmol dan 5 mmol terhadap proses sintesis anoda  $\alpha$ -MnO<sub>2</sub>



**Gambar 4.11** Grafik EIS *Nyquist plot* dari sampel baterai dengan variasi konsentrasi NH<sub>4</sub>Br 1mmol, 3mmol, 5 mmol



Dari hasil ploting grafik EIS dapat diketahui *charge transfer resistance* ( $R_{ct}$ ) yang menyatakan besarnya tahanan suatu elektroda dan Rs adalah tahanan daripada electrolyte yang digunakan.

Tabel 4.5 NilaiRsdanRctmaterialanodaMnO2denganvariasikonsentrasiNH4Br1, 3dan 5mmol

| NH <sub>4</sub> Br<br>(mmol) | Rs (ohm) | R <sub>ct</sub> (ohm) |
|------------------------------|----------|-----------------------|
|                              | 33.28    | 423.16                |
| 3                            | 15.46    | 265.4                 |
| 5                            | 8.58     | 204.16                |





Nilai Rct dan Rs ditunjukan pada table 4.3, ada perbedaan pada nilai Rs yang ditampilkan pada table seharusnya nilai Rs untuk setiap sampel adalah sama, perbedaan ini diakibatkan oleh proses *assembly* 





manual dimana jumlah elektrolit yang digunakan serta tekanan pada mesin hidraulik dapat menyebabkan perbedaan. Antara sampel dengan konsentrasi NH<sub>4</sub>Br 3 dan 5 mmol memiliki perbedaan charge transfer resistance  $R_{ct}$  yang tidak jauh berbeda, dapat diinterpretasikan bahwa kecepatan difusi  $Li^+$  pada specimen ini memiliki kemiripan. Pengaruh Penambahan konsentrasi NH<sub>4</sub>Br terhadap Rct dapat dilihat pada Tabel 4.4 dimana semakin bertambahanya konsentrasi NH<sub>4</sub>Br dapat menurunkan  $R_{ct}$  dengan kata lain konduktivitas material anoda semakin meningkat mengingat resistansinya menurunt.

Penambahan konsentrasi NH<sub>4</sub>Br terhadap performa elektrokimia anoda MnO<sub>2</sub> yaitu dapat meningkatkan kapasitas spesifik dan juga *menurunkan charge transfer resistance* (R<sub>et</sub>), hal ini berkaitan juga dengan *cristal size* dan morfologi nanowire yang terbentuk, dimana semakin kecil ukuran kristal dan smakin kecil morfologi dapat memperpendek *diffusion path* Li<sup>+</sup> ke dalam anoda. Tetapi pengaruh penambahan NH<sub>4</sub>Br paling optimum pada saat konsentrasi 3 mmol dimana capacity fading yang dimiliki paling kecil yaitu 33 %, mengingat bahwa kategori anoda yang bagus tidak hanya ditunjukan oleh kapasitas spesifiknya saja, melainkan ditentukan juga oleh kemampuan strukturnya untuk mengalami reaksi redoks hingga berulang kali.



### BAB V KESIMPULAN DAN SARAN

#### 5.1 Kesimpulan

Berdasarkan dari hasil analisis data dan pengujian yang dilakukan pada penelitian ini bahwa penggunaan NH<sub>4</sub>Br sebagai pereduksi KMnO<sub>4</sub> dengan metode hydrothermal terbukti nghasilkan struktur kristal α-MnO<sub>2</sub>. Pada konsentrasi NH<sub>4</sub>Br 3 mmol menghasilkan puncak difraksi tajam dengan intensitas yang paling tinggi yang mengindkasikan fasa kristalin yang lebih banvak. Pengujian SEM menunjukan terbentuk morfologi nanowire dengan diameter yang paling kecil. Fasa kristalin dari berpengaruh terhadap hasil pengujian performa anoda elektrokimianya ditunjukan oleh hasil pengujian charge/discharge yang menunjukan kapasitas spesifik mencapai 139.5 mAh/g pada siklus pertama dan hanya mengalami capacity fading sebesar 33% mengindikasikan material anoda mampu menahan reaksi redoks selama 100 siklus. Pengaruh penambahan NH4Br terlihat pada impedansi anoda, dimana semakin besar penambahan NH<sub>4</sub>Br R<sub>ct</sub> yang dihasilkan semakin kecil. Pada konsentrasi NH<sub>4</sub>Br 3mmol Charge transfer resistance yang dihasilkan pada pengujian EIS menghasilkan R<sub>ct</sub> yang cukup rendah mencapai 265 Ω. Anoda MnO<sub>2</sub> dengan konsentrasi NH<sub>4</sub>Br 3mmol memiliki potensi yang besar sebagai material anoda untuk baterai ion lithium

#### 5.2 Saran

Untuk melakukan penelitian selanjutnya terkait sintesis anoda  $\alpha$ -MnO<sub>2</sub> nanowire hal-hal yang perlu diperhatikan adalah:

- 1. Teflon yang digunakan untuk proses *hydrothermal* harus steril karena dapat mempengaruhi hasil sintesis
- 2. Dimensi Teflon dan kerapatan tutupnya perlu diperhatikan karena sangat berpengaruh pada hasil sintesis
- 3. Berat material aktif pada anoda antar sampel harus diperhatikan karena dapat mempengaruhi kapasitas spesifik

4. Komposisi binder yang digunakan sebaiknya ditingkatkan, karena mempengaruhi daya rekat pada current collector.



#### **DAFTAR PUSTAKA**

Broahead, John., Han C Kuo, (2004), *Handbook of Battery 3<sup>rd</sup> Edition*, Mc Graw Hill : New York

David, Linden, (2005), Handbook of Battery 3rd Edition, Mc Graw Hill : New York.

Dirgikey, (2008), Strucutre Intercalation of Lithium Ion Batteries.

E, Wang., D, Ofer., W, Bruder., N, Iltcheu., R, Moses., K. Brandt, (2000), *Journal Electrochemical Society*, 147, hal. 40-23

Feng, Q., Miyai, Y., Kanoh H., and Ooi, K., (1992), "Lithium Li<sup>+</sup>
Extraction/Insertion with Spinel-Type Lithium Manganese Oxides Characterization of Redox-Type and Ion-Exchange- Type Sites". *Langmuir*, Vol. 8, hal. 18 - 61.

Frank, Toolenar, (2008), *Battery Management Systems*. Springer : Netherlands.

G. Lenclanché. French Patent. 71,865,1866.

Gholam, Abbas., Gianfranco, Pistoia, (2009), Lithium Ion Batteries Science and Technology, Springer USA – Rome.

H.A Kiehne, (2003), *Handbook of Battery 2<sup>nd</sup> Edition*, Mc Graw Hill. New York.

Jianghong Wu, Hongliang Huang, Li Yu, Junqing Hu.2013. Controllable Hydrothermal Synthesis of MnO2 Nanostructures. Donghua University, Shanghai, China

Juichi Arai, Yasushi Muranaka, Mitsuru Koseki, High-power and high-energy lithium secondary batteries for electric vehicles, Hitachi Review vol.53 (2004). Kyeongse Song, Jaepyeong Jung Yoon-Uk Heo, Yoon Cheol

Lee, Kyeongjae Chc, and Yong-Mook Kang. 2013. Supporting Information for "a-MnO2 nanowire catalysts with ultra-high capacity and extremely low overpotential in lithium-air Batteries through tailored surface arrangement". Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 100-715, Republic of Korea

Lili Feng, Zhewen Xuan, Hongbo Zhao, Yang Bai, Junming Guo, Chang-wei Su, and Xiaokai Chen.2013. MnO2 prepared by hydrothermal method and electrochemical performance as anode for lithium-ion battery
Shu Jing Ee, Hongchang Pang, Ulaganathan Mani, Qingyu Yan, Siong Luong Ting, and Peng Chen.2014. An Interwoven Network of MnO2 Nanowires and Carbon Nanotubes as the Anode for Bendable Lithium-Ion Batteries. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

#### LAMPIRAN



**Peak List:** (Bookmark 3)

| K | Pos.    | Height<br>[cts] | FWHM Left<br>[°2T <mark>h.]</mark> | d-spacing<br>[Å]      | Rel. Int.<br>[%] |
|---|---------|-----------------|------------------------------------|-----------------------|------------------|
|   | 12.8096 | 32.03           | 0.4684                             | 6.91099               | 24.30            |
|   | 18.1364 | 49.71           | 0.2676                             | <mark>4.89</mark> 142 | 37.70            |
|   | 25.7364 | 17.26           | 0.4684                             | 3.46163               | 13.09            |
|   |         |                 |                                    |                       |                  |

Lampiran Gede Adiyaksa Permana-2712100004

| _ |         |        |        |         |        |
|---|---------|--------|--------|---------|--------|
|   | 8.8620  | 131.85 | 0.2007 | 3.09347 | 100.00 |
|   | 36.4810 | 24.00  | 0.4015 | 2.46301 | 18.20  |
|   | 37.6061 | 43.38  | 0.1338 | 2.39187 | 32.90  |
|   | 38.7985 | 27.93  | 0.2676 | 2.32106 | 21.18  |
|   | 41.0282 | 25.73  | 0.4015 | 2.19992 | 19.51  |
|   | 49.6788 | 22.85  | 0.3346 | 1.83523 | 17.33  |
|   | 56.0707 | 38.06  | 0.3346 | 1.64023 | 28.87  |
|   | 60.1573 | 28.15  | 0.4015 | 1.53822 | 21.35  |
|   | 69.3411 | 20.30  | 0.6691 | 1.35524 | 15.39  |
|   | 73.2137 | 9.68   | 0.8029 | 1.29282 | 7.34   |
|   |         |        |        |         |        |

# Pattern List: (Bookmark 4)

| Visib 🛛 | Ref.                           | Sco | <b>C</b> ompou         | Displace        | Scale  | <b>Chemica</b> |
|---------|--------------------------------|-----|------------------------|-----------------|--------|----------------|
| le      | Code                           | re  | nd<br>Name             | ment<br>[°2Th.] | Factor | l<br>Formula   |
| *       | 00 <mark>-04</mark> 4-<br>0141 | 34  | Mangan<br>ese<br>Oxide | -0.137          | 0.435  | Mn O2          |

Lampiran Gede Adiyaksa Permana-2712100004



**Peak List:** (Bookmark 3)

| Ş | Pos.<br>[°2Th.] | Height<br>[cts] | FWHM Left<br>[°2Th.] | d-spacing<br>[Å]       | Rel. Int.<br>[%] |
|---|-----------------|-----------------|----------------------|------------------------|------------------|
| 1 | 12.7568         | 135.17          | 0.1338               | 6.93951                | 59.13            |
|   | 18.0246         | 120.30          | 0.2007               | 4 <mark>.921</mark> 50 | 52.63            |
|   | 25.6303         | 22.47           | 0.5353               | 3.47572                | 9.83             |
|   | 28.7405         | 228.58          | 0.2007               | 3.10627                | 100.00           |
|   | 36.6400         | 42.88           | 0.5353               | 2.45269                | 18.76            |
|   |                 |                 |                      |                        |                  |

Lampiran Gede Adiyaksa Permana-2712100004

| 37.5920 | 134.09 | 0.1338 | 2.39273                | 58.66               |
|---------|--------|--------|------------------------|---------------------|
| 38.8639 | 42.24  | 0.2676 | 2.31730                | 18.48               |
| 41.0003 | 24.90  | 0.4015 | 2.20136                | 10.89               |
| 41.9673 | 39.46  | 0.2676 | 2.15285                | 17.26               |
| 49.8101 | 60.28  | 0.3346 | 1 <mark>.830</mark> 70 | <mark>26.</mark> 37 |
| 56.1365 | 52.14  | 0.3346 | 1.63847                | 22.81               |
| 60.1698 | 70.88  | 0.2007 | 1.53793                | 31.01               |
| 69.5060 | 44.49  | 0.4015 | 1.35243                | 19.46               |
| 73.3866 | 16.69  | 0.8029 | 1.29020                | 7.30                |
|         |        |        |                        |                     |

# Pattern List: (Bookmark 4)

| Visib | Ref.    | Sco | Compo  | Displace | Scale  | Chemic  |
|-------|---------|-----|--------|----------|--------|---------|
| le    | Code    | re  | und    | ment     | Factor | al      |
|       |         |     | Name   | [°2Th.]  |        | Formula |
| *     | 00-044- | 68  | Mangan | -0.083   | 0.683  | Mn O2   |
|       | 0141    |     | ese    |          |        |         |
|       |         |     | Oxide  |          |        |         |
|       |         |     |        |          |        |         |

Lampiran Gede Adiyaksa Permana-2712100004

1:5 160°C



Peak List: (Bookmark 3)

| Pos.<br>[°2Th.] | Height<br>[cts] | FWHM Left<br>[°2Th.] | d-spacing<br>[Å]       | Rel. Int.<br>[%]    |
|-----------------|-----------------|----------------------|------------------------|---------------------|
| 12.6743         | 79.70           | 0.3346               | 6. <mark>9844</mark> 6 | <mark>65.</mark> 63 |
| 18.0890         | 77.19           | 0.4684               | 4.90412                | 63.56               |
| 28.5212         | 121.45          | 0.3346               | 3.12966                | 100.00              |
| 37.4733         | 110.72          | 0.2007               | 2.40004                | 91.16               |
| 38.5869         | 32.50           | 0.2007               | 2.33330                | 26.76               |
| 41.9168         | 38.67           | 0.4015               | 2.15532                | 31.84               |

Lampiran Gede Adiyaksa Permana-2712100004

| _ |         |       |        |                        |                     |
|---|---------|-------|--------|------------------------|---------------------|
|   | 49.6456 | 39.18 | 0.3346 | 1.83638                | 32.26               |
|   | 55.9537 | 23.38 | 0.5353 | 1.64339                | 19.25               |
|   | 59.9729 | 38.77 | 0.6691 | 1.54251                | <mark>31.9</mark> 2 |
|   | 65.2438 | 12.65 | 0.8029 | 1.43006                | 10.41               |
|   | 69.5363 | 24.59 | 0.5353 | 1. <mark>351</mark> 91 | 20.25               |
|   | 81.5673 | 10.34 | 0.2342 | 1.18024                | 8.52                |
|   |         |       |        |                        |                     |

Pattern List: (Bookmark 4)

| Visib | Ref.    | Sco | Compo  | Displace | Scale  | Chemic  |
|-------|---------|-----|--------|----------|--------|---------|
| le    | Code    | re  | und    | ment     | Factor | al      |
|       |         |     | Name   | [°2Th.]  |        | Formula |
| 757   | DZ V7   | 11  |        |          |        |         |
| *     | 00-044- | 51  | Mangan | -0.147   | 0.659  | Mn O2   |
|       | 0141    |     | ese    |          |        |         |
|       |         |     | Oxide  |          |        |         |
|       |         |     |        |          |        |         |



# JCPDS 044-0141 Name and formula

Reference code:

Compound name: Common name:

00-044-0141

Manganese Oxide α-Mn O2

Empirical formula: Chemical formula:  $MnO_2$ MnO<sub>2</sub>

# **Crystallographic parameters**

Crystal system: Space group: Space group number:

a (Å): b (Å): c (Å): Alpha (°): Beta (°): Gamma (°): Calculated density (g/cm^3): Volume of cell (10<sup>6</sup> pm<sup>3</sup>): 274.10 Z:

9.7847 9.7847 2.8630 90.0000 90.0000 90.0000 4.21

Tetragonal

14/m

87

8.00

# Subfiles and quality

Subfiles:

Quality:

## Comments

Color: Creation Date: Modification Date: Analysis: Alloy, metal or intermetalic Inorganic Star (S)

Black 3/24/1993 1/11/2011 Chemical analysis showed a residual Li+ content of only

## References

Primary reference:

Liles, D., Rossouw, M., Thackeray, M., Div. Mater. Sci. & Tech., CSIR, Pretoria, South Africa., *Private Communication*, (1992)

# Peak list

| No. | h | k | 1. | d [A] 2 | Theta[deg | <u>[]   [%]</u> |
|-----|---|---|----|---------|-----------|-----------------|
| 1   | 1 | 1 | 0  | 6.91900 | 12.784    | 37.0            |
| 2   | 2 | 0 | 0  | 4.89500 | 18.108    | 53.0            |
| 3   | 2 | 2 | 0  | 3.46200 | 25.712    | 5.0             |
| 4   | 3 | 1 | 0  | 3.09300 | 28.842    | 82.0            |
| 5   | 4 | 0 | 0  | 2.44700 | 36.697    | 24.0            |
| 6   | 2 | 1 | 1  | 2.39500 | 37.523    | 100.0           |
| 7   | 3 | 3 | 0  | 2.30700 | 39.011    | 9.0             |
| 8   | 4 | 2 | 0  | 2.18800 | 41.226    | 5.0             |
| 9   | 3 | 0 | 1  | 2.15100 | 41.969    | 28.0            |
| 10  | 3 | 2 | 1  | 1.96990 | 46.038    | 2.0             |
| 11  | 5 | 1 | 0  | 1.91740 | 47.374    | 8.0             |
| 12  | 4 | 1 | 1  | 1.82730 | 49.865    | 50.0            |

| 13 | 4   | 4 | 0 | 1.73070 | 52.857  | 1.0        |
|----|-----|---|---|---------|---------|------------|
| 14 | 6   | 0 | 0 | 1.63080 | 56.373  | 29.0       |
| 15 | 4   | 3 | 1 | 1.61620 | 56.929  | 10.0       |
| 16 | 5   | 2 | 1 | 1.53420 | 60.276  | 58.0       |
| 17 | 0   | 0 | 2 | 1.43150 | 65.110  | 15.0       |
| 18 | 1   | 1 | 2 | 1.40130 | 66.693  | 1.0        |
| 19 | 7   | 1 | 0 | 1.38380 | 67.650  | 1.0        |
| 20 | 2   | 0 | 2 | 1.37420 | 68.187  | 5.0        |
| 21 | 5   | 4 | 1 | 1.34780 | 69.713  | 35.0       |
| 22 | 2   | 2 | 2 | 1.32340 | 71.191  | 1.0        |
| 23 | 3   | 1 | 2 | 1.29940 | 72.714  | 8.0        |
| 24 | - 7 | 3 | 0 | 1.28440 | 73.702  | 3.0        |
| 25 | 4   | 0 | 2 | 1.23520 | 77.162  | <b>4.0</b> |
| 26 | 3   | 3 | 2 | 1.21630 | 78.590  | 10.0       |
| 27 | 6   | 6 | 0 | 1.15320 | 83.821  | 2.0        |
| 28 | 5   | 1 | 2 | 1.14730 | 84.351  | 3.0        |
| 29 | 7   | 4 | 1 | 1.11750 | 87.150  | 2.0        |
| 30 | 6   | 0 | 2 | 1.07570 | 91.465  | 9.0        |
| 31 | . 7 | 1 | 2 | 0.99490 | 101.474 | 2.0        |
| 32 | 6   | 4 | 2 | 0.98490 | 102.908 | 1.0        |
| 33 | 8   | 5 | 1 | 0.97510 | 104.365 | 2.0        |
| 34 | 2   | 1 | 3 | 0.93240 | 111.410 | 6.0        |
| 35 | 6   | 6 | 2 | 0.89800 | 118.140 | 2.0        |
| 36 | 4   | 1 | 3 | 0.88540 | 120.918 | 5.0        |

Lampiran Gede Adiyaksa Permana-2712100004



# DIFRAKSI MnOOH



Peak List: (Bookmark 3)

| R | Pos.<br>[°2Th.] | Height<br>[cts] | FWHM Left<br>[°2Th.] | d-spacing<br>[Å]      | Rel. Int. |
|---|-----------------|-----------------|----------------------|-----------------------|-----------|
|   | 10.3455         | 13.24           | 0.4015               | 8.55088               | 1.60      |
|   | 26.1278         | 829.70          | 0.1338               | 3.41066               | 100.00    |
|   | 33.9241         | 85.16           | 0.1673               | 2.64256               | 10.26     |
|   | 35.5361         | 34.99           | 0.2007               | 2.52630               | 4.22      |
|   | 37.1896         | 156.98          | 0.1171               | <mark>2.4176</mark> 9 | 18.92     |
|   | 39.6559         | 60.55           | 0.1673               | 2.27283               | 7.30      |

Lampiran Gede Adiyaksa Permana-2712100004

| 40.4208 | 41.45  | 0.2007 | 2.23157 | 5.00  |
|---------|--------|--------|---------|-------|
| 41.0748 | 42.11  | 0.1673 | 2.19754 | 5.08  |
| 51.1934 | 79.15  | 0.1338 | 1.78444 | 9.54  |
| 53.7606 | 95.18  | 0.2007 | 1.70513 | 11.47 |
| 54.8854 | 243.24 | 0.1171 | 1.67282 | 29.32 |
| 56.1809 | 34.42  | 0.2676 | 1.63728 | 4.15  |
| 61.7993 | 24.11  | 0.4015 | 1.50123 | 2.91  |
| 65.1099 | 87.64  | 0.1004 | 1.43268 | 10.56 |
| 71.3695 | 62.55  | 0.1004 | 1.32162 | 7.54  |
| 81.4885 | 26.75  | 0.4015 | 1.18118 | 3.22  |
| 85.3764 | 26.76  | 0.1338 | 1.13706 | 3.22  |
| 87.4189 | 33.43  | 0.1224 | 1.11476 | 4.03  |

| <mark>Vi</mark> sib | Ref.    | Sco | Compou  | <b>Displace</b> | Scale  | Chemic  |
|---------------------|---------|-----|---------|-----------------|--------|---------|
| le                  | Code    | re  | nd      | ment            | Factor | al      |
|                     |         |     | Name    | [°2Th.]         |        | Formula |
| k ) ] [             | 01-088- | 48  | Mangan  | -0.039          | 0.510  | Mn O (  |
|                     | 0649    |     | ese     |                 |        | OH)     |
|                     |         |     | Oxide   |                 |        |         |
|                     |         |     | Hydroxi |                 |        |         |
|                     |         |     | de      |                 |        |         |
|                     |         |     |         |                 |        |         |

## PDF CARD MnOOH

Date: 1/6/2016Time: 11:35:20 AMUser: Tc File: KMnO4+NH4Br 1mmol 1mmol

#### Name and formula

Reference code:

01-088-0649

HMnO<sub>2</sub>

MnO (OH)

Mineral name: Compound name: Common name: Manganite Manganese Oxide Hydroxide γ-Mn O ( O H )

Empirical formula: Chemical formula:

#### Crystallographic parameters

| Crystal system:             | Monoclinic |
|-----------------------------|------------|
| Space group:                | P21/c      |
| Space group number:         | 14         |
| a (Å):                      | 5.3040     |
| b (Å):                      | 5.2770     |
| c (Å):                      | 5.3040     |
| Alpha (°):                  | 90.0000    |
| Beta (°):                   | 114.3800   |
| Gamma (°):                  | 90.0000    |
| Volume of cell (10^6 pm^3): | 135.22     |
| Z:                          | 4.00       |
| RIR:                        | 3.57       |



User: Teknik Material

#### Status, subfiles and quality

| Status:<br>Subfile | 5:        |                 |           | Alternate Pati<br>Common Pha<br>Forensic<br>ICSD Pattern<br>Inorganic<br>Mineral | tern<br>se         |                   |                        |                         |
|--------------------|-----------|-----------------|-----------|----------------------------------------------------------------------------------|--------------------|-------------------|------------------------|-------------------------|
| Quality            | -         |                 |           | Star (S)                                                                         |                    |                   |                        |                         |
| Comr               | nents     | i               |           |                                                                                  |                    |                   |                        |                         |
| AND:               |           |                 |           | AX2                                                                              |                    |                   |                        |                         |
| Creatio            | n Date:   | then a          |           | 11/20/2008                                                                       |                    |                   |                        |                         |
| MOGING<br>AND: :   | ation Da  | 1091            |           | 1/19/2011<br>AXZ                                                                 |                    |                   |                        |                         |
| Analysi            | s:        |                 |           | H1 Mn1 02                                                                        |                    |                   |                        |                         |
| Farmul             | la from o | original        | source:   | Mn 0 (0 H)                                                                       |                    |                   |                        |                         |
| ICSD O             | ollection | Code:           |           | 04949                                                                            |                    |                   |                        |                         |
| Calcula            | ited Patt | ern Ori         | ginal Rer | narks: Crysta                                                                    | l is slightly twir | rned              |                        |                         |
| Unit Ca            | ll Data 9 | nce:<br>Source: |           | Single Crystal                                                                   | L                  |                   |                        |                         |
| D - E              | in Data c |                 |           | onge orjee                                                                       |                    |                   |                        |                         |
| Refe               | rences    | 5               |           |                                                                                  |                    |                   |                        |                         |
| Primary            | y referer | nce:            |           | Calculated fro                                                                   | om ICSD using      | POWD-12++         |                        |                         |
| Structu            | re:       |                 |           | Kahler, T., Ar                                                                   | mbruster, T., L    | libowitzky, E., D | . Solid State Chem, 13 | <b>(3</b> , 486, (1997) |
| Date:              | 1/6/201   | 16Time          | : 11:35:  | 20 AMUser: Te File                                                               | e: KMnO4+NH4       | HBr 1mmol 1mm     | lai                    | User: Teknik Materia    |
| 1                  | 1         | 0               | 0         | 4.83100                                                                          | 18.350             | 0.8               |                        |                         |
| 6                  | -         | 1               | 1         | 3.56330                                                                          | 24.969             | 0.6               |                        |                         |
| 3                  | -1        | -               | 1         | 3.40540                                                                          | 26.147             | 100.0             |                        |                         |
| 5                  | ō         | 2               | ô         | 2.63850                                                                          | 33,949             | 26.6              |                        |                         |
| 6                  | -1        | õ               | 2         | 2.63850                                                                          | 33.949             | 26.6              |                        |                         |
| 7                  | 1         | 1               | 1         | 2.52400                                                                          | 35.539             | 13.8              |                        |                         |
| 8                  | 0         | 0               | 2         | 2.41550                                                                          | 37.193             | 40.0              |                        |                         |
| 9                  | 2         | 0               | 0         | 2.41550                                                                          | 37.193             | 40.0              |                        |                         |
| 10                 | -2        | 1               | 1         | 2.36100                                                                          | 38.084             | 0.9               |                        |                         |
| 11                 | -1        | 1               | 2         | 2.36100                                                                          | 38.084             | 0.9               |                        |                         |
| 12                 | 0         | 2               | 1         | 2.31560                                                                          | 38.860             | 0.9               |                        |                         |
| 1.0                | -1        | 2               | 1         | 2.31560                                                                          | 30.060             | 10.9              |                        |                         |
| 15                 | -2        | ñ               | 2         | 2.22890                                                                          | 40.436             | 2.7               |                        |                         |
| 16                 | D         | 1               | 2         | 2,19640                                                                          | 41.062             | 10.0              |                        |                         |
| 17                 | 2         | 1               | 0         | 2.19640                                                                          | 41.062             | 10.0              |                        |                         |
| 18                 | -2        | 1               | 2         | 2.05330                                                                          | 44.067             | 0.1               |                        |                         |
| 19                 | 1         | 2               | 1         | 1.94360                                                                          | 46.697             | 0.1               |                        |                         |
| 20                 | 1         | 0               | 2         | 1.87320                                                                          | 48.563             | 0.1               |                        |                         |
| 21                 | -1        | 2               | 2         | 1.86620                                                                          | 48.757             | 0.3               |                        |                         |
| 22                 | -2        | 2               | 1         | 1.86620                                                                          | 48.757             | 0.3               |                        |                         |
| 24                 | 6         | 2               | 2         | 1.78160                                                                          | 51.235             | 26.5              |                        |                         |
| 25                 | 1         | 1               | 2         | 1.76530                                                                          | 51.743             | 0.7               |                        |                         |
| 26                 | 2         | 1               | 1         | 1.76530                                                                          | 51.743             | 0.7               |                        |                         |
| 27                 | -3        | 0               | 2         | 1.70270                                                                          | 53.795             | 10.5              |                        |                         |
| 28                 | -2        | 2               | 2         | 1,70270                                                                          | 53.795             | 10.5              |                        |                         |
| 29                 | -1        | 1               | 3         | 1.67070                                                                          | 54.912             | 36.4              |                        |                         |
| 30                 | -3        | 1               | 1         | 1.67070                                                                          | 54.912             | 36.4              |                        |                         |
| 31                 | 1         | 3               | 0         | 1.65280                                                                          | 55.557             | 0.5               |                        |                         |
| 32                 | 0         | 3               | 1         | 1.65280                                                                          | 55.557             | 0.5               |                        |                         |
| 33                 | -1        | 3               | 1         | 1.63620                                                                          | 56.171             | 8.7               |                        |                         |
| 10.00              |           |                 |           | 1 - Prof 19911                                                                   | 20 Ph - 16 Ph /    | 1 - K             |                        |                         |

| 34 | -2 | 1 | 3 | 1.62080 | 56.752 | 0.2  |
|----|----|---|---|---------|--------|------|
| 35 | -3 | 1 | 2 | 1.62080 | 56.752 | 0.2  |
| 36 | 3  | 0 | 0 | 1.61030 | 57.156 | 0.3  |
| 37 | 0  | 1 | 3 | 1.54020 | 60.017 | 0.1  |
| 38 | 3  | 1 | 0 | 1.54020 | 60.017 | 0.1  |
| 39 | 1  | 2 | 2 | 1.52740 | 60.573 | 0.3  |
| 40 | 2  | 2 | 1 | 1.52740 | 60.573 | 0.3  |
| 41 | 1  | 3 | 1 | 1.50030 | 61.785 | 11.5 |
| 42 | -1 | 3 | 2 | 1.46380 | 63.503 | 0.3  |
| 43 | -2 | 3 | 1 | 1.46380 | 63.503 | 0.3  |
| 44 | 2  | 0 | 2 | 1.43700 | 64.830 | 6.4  |
| 45 | -2 | 2 | 3 | 1.43030 | 65.171 | 4.8  |
| 46 | -3 | 1 | 3 | 1.43030 | 65.171 | 4.8  |
| 47 | 0  | 3 | 2 | 1.42190 | 65.604 | 1.5  |
| 48 | 2  | 3 | 0 | 1,42190 | 65,604 | 1.5  |
| 49 | 2  | 1 | 2 | 1.38650 | 67.500 | 0.1  |
| 50 | -2 | 3 | 2 | 1.38080 | 67.817 | 0.1  |
| 51 | 0  | 2 | з | 1.37460 | 68.164 | 0.4  |
| 52 | 3  | 2 | 0 | 1.37460 | 68.164 | 0.4  |
| 53 | 3  | 1 | 1 | 1.32400 | 71.154 | 7.5  |
| 54 | 1  | 1 | 3 | 1.32400 | 71.154 | 7.5  |
| 55 | -2 | 0 | 4 | 1,32000 | 71.403 | 3.8  |
| 56 | 0  | 4 | 0 | 1.32000 | 71.403 | 3.8  |
| 57 | -1 | 0 | 4 | 1.30530 | 72.333 | 0.1  |
| 58 | -3 | 2 | 3 | 1.29470 | 73.020 | 0.8  |
| 59 | 2  | 3 | 1 | 1.28230 | 73.843 | 0.3  |
| 60 | 1  | 3 | 2 | 1.28230 | 73.843 | 0.3  |
| 61 | -2 | 1 | 4 | 1.28050 | 73.964 | 0.6  |
| 62 | -4 | 1 | 2 | 1.28050 | 73.964 | 0.6  |
| 63 | 0  | 4 | 1 | 1.27260 | 74.500 | 0.3  |
| 64 | 1  | 4 | 0 | 1.27260 | 74.500 | 0.3  |



## LAMPIRAN PERHITUNGAN

#### Massa Prekursor

KMnO₄ 1mmol = ..... gr

NH<sub>4</sub>Br 1mmol =.....gr

NH₄Br 3mmol =.....gr

NH4Br 5mmol =.....gr

Perhitungan

Mr KMnO<sub>4</sub> = 158.034 g/mol

Mr NH<sub>4</sub>Br = 97.94 g/mol

Massa KMnO<sub>4</sub> = mol KMnO<sub>4</sub> x Mr KMnO<sub>4</sub>

= 1 x 10<sup>-3</sup> mol x 158.034 g/mol

= 0.158034 gram

Massa NH<sub>4</sub>Br 1 mmol = 1 x 10 <sup>-3</sup> x 97.94 g/mol

= 0.09794 gram

Massa NH<sub>4</sub>BR 2 mmol = 2 x10<sup>-3</sup> mol x 97.94 g/mol

= 0.19588 gram

Massa NH₄Br 3 mmol = 3 x10<sup>-3</sup> mol x 97.94 g/mol

= 0.29382 gram

## **Contoh Perhitungan Parameter Kisi**

| Sampel | dengan | NH₄Br | 1 | mmc | ) |
|--------|--------|-------|---|-----|---|
|        |        |       |   |     |   |

| h | k | Ι | d spacing |
|---|---|---|-----------|
| 2 | 1 | 1 | 2.839187  |
| 5 | 2 | 1 | 1.53822   |

Rumus Untuk tetragonal

$$\frac{1}{d} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$

Menentukan parameter kisi a, b, c

Persamaan 1.

$$\frac{1}{2.39187^2} = \frac{2^2 + 1^2}{a^2} + \frac{1^2}{c^2}$$

$$\frac{1}{5.71} - \frac{5}{a^2} = \frac{1}{c^2}$$

Persamaan 2.

$$\frac{1}{1.53822^2} = \frac{5^2 + 2^2}{a^2} + \frac{1^2}{c^2}$$
$$\frac{1}{2.366} - \frac{29}{a^2} = \frac{1}{c^2}$$

Eleminasi Persamaan 1 dan 2

$$\frac{1}{5.721} - \frac{1}{2.366} = \frac{5}{a^2} - \frac{29}{a^2}$$

$$0.1748 - 0.432 = -\frac{24}{a^2}$$

$$0.2482 = \frac{24}{a^2}$$

$$a^2 = 96.6962$$

$$a = 9.837$$
Menentukan Nilai c
$$\frac{1}{c^2} = 0.1231$$

$$c = 2.85$$

### Perhitungan Kristal Size

Rumus untuk menghitung kristal size  $D = \frac{0.9 \lambda}{B \cos \theta}$ Gunakan Puncak dengan intensitas Tertinggi D = kristal size  $\lambda$ = panjang gelombang (CuK $\alpha$ ) B =  $\sqrt{B_m^2 - B_s^2}$  (radian) Bs = 0.084

Contoh

Sampel dengan NH₄Br 1 mmol

Diketahui

 $2\theta = 28.862^{\circ}$   $\theta = 14.431$ 

B = 
$$\sqrt{B_m^2 - B_s^2} = \sqrt{0.2007^2 - 0.084^2} \times 0.0174533$$
 radian

= 0.0031643971 radian

 $D = \frac{0.9 \,\lambda}{B \cos \theta}$ 

 $D = \frac{0.9 \ x \ 1.54056}{0.0031643971 \ cos \ 14.431}$ 

*D* = 452.43 Å

#### **BIODATA PENULIS**



Penulis bernama lengkap Gede Adiyaksa Permana. Dilahirkan di kota Seririt pada tanggal 21 April 1994. Penulis merupakan anak pertama dari dua bersaudara. Penulis telah menempuh pendidikan formal di SD No 9 Banjar, SMP Negeri 1 Seririt, dan Negeri singaraja. SMA 1 Lulus Sekolah Menengah Ataspada tahun 2012. penulis melanjutkan pendidikannya salah satu perguruan

tinggi di Indonesia,mengambil biadng Teknik Material dan Metalurgi Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya.

Selama menjadi mahasiswa, penulis aktif di organisasi Himpunan Mahasiswa Teknik Material dan Metalurgi (HMMT) FTI-ITS sebagai staf Badan Semi Otonom Kewirausahaan (2013-2014) dan wakil ketua II Departemen Hubungan Internal TPKH ITS (2013-2014) dan menjada kepala divisi usaha mandiri pada BSO KWU periode 2014-2015. Semasa kuliah penulis juga melakukan kegiatan On the Job Training di JOB Pertamina Petrochina East Java dan kegiatan perkuliahannya diakhiri dengan melakukan penelitian yang dijadikan Tugas Akhir dengan judul "Analisa Pengaruh Konsentrasi NH<sub>4</sub>Br pada Proses Sintesa Anoda MnO<sub>2</sub> Terhadap Morfologi dan Performa Elektrokimia Baterai Lithium Ion".

CP:

Email : <u>permanagede@gmail.com</u> Line : Adiyaksa182