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GAN-LSTM UNTUK PENINGKATAN FITUR DAN 

PEMBUATAN DATA PADA DATASET TAK-IMBANG 

DALAM ANALISIS MALWARE IOT 

Nama : Gregorius Edo Satriatama Eka Setiawan 

NRP : 6025231050 

Pembimbing : Prof. Tohari Ahmad, S.Kom., M.IT., Ph.D. 

ABSTRAK 

Perluasan layanan internet dan penggunaan Internet of Things (IoT), yang 

didorong oleh kemajuan jaringan seluler 5G, telah mengubah berbagai sektor, 

seperti komunikasi, data sharing, dan e-commerce. Pertumbuhan ini meningkatkan 

risiko keamanan siber mengingat aliran data yang besar dan sifat otonom sistem 

IoT yang membuat sistem tersebut rentan terhadap ancaman di dunia maya. Pada 

tahun 2024, lebih dari 1,2 miliar malware dan aplikasi yang berpotensi tidak 

diinginkan (PUA) terdeteksi, yang mencerminkan lonjakan ancaman di lapisan 

aplikasi. Meskipun metode enkripsi seperti Transport Layer Security (TLS) 

melindungi data privacy, metode enkripsi juga meningkatkan kompleksitas dalam 

mengidentifikasi lalu lintas berbahaya, meningkatkan kebutuhan akan mekanisme 

deteksi lanjutan. Selain bahaya tersebut, ketidakseimbangan data di dalam dataset 

juga menjadi perhatian karena data yang tidak imbang akan menekan kinerja 

deteksi malware, sehingga malasah tersebut harus diselesaikan. Penelitian ini 

memperkenalkan model FE-CGAN-LSTM yang dapat mengatasi 

ketidakseimbangan data dan meningkatkan representasi fitur secara efektif. Dataset 

asli menghasilkan hasil moderat pada deteksi malware dengan akurasi sekitar 90,7–

91,0% dan skor F1 yang lebih rendah. Menggunakan dataset yang telah 

ditingkatkan fiturnya oleh FE-CGAN-LSTM, terdapat peningkatan performa, 

dimana semua model klasifikasi mencapai skor 99,99% pada metrik akurasi, 

presisi, recall, dan skor F1. 

 

Kata Kunci: Dataset tak imbang, Generative Adversarial Networks, IoT-23, Long-

Short Term Memory, Malware, Pembuatan data sintetis, Peningkatan fitur 
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GENERATION ON IMBALANCE DATASET IN IOT 

MALWARE ANALYSIS 

 

Name    : Gregorius Edo Satriatama Eka Setiawan 

Student Identity Number : 6025231050 

Supervisor   : Prof. Tohari Ahmad, S.Kom., M.IT., Ph.D. 

ABSTRACT 

The expansion of internet services and the use of Internet of Things (IoT), 

which are driven by advances in 5G cellular networks, have transformed multiple 

sectors, that include communication, data sharing, and e-commerce. This growth 

amplifies cybersecurity risks given the massive data flow and the autonomous 

nature of IoT systems, making them susceptible to cyber threats. In 2024, over 1.2 

billion instances of malware and potentially unwanted applications (PUAs) were 

detected. These conditions reflects a surge in threats at the application layer. 

Although encryption methods like Transport Layer Security (TLS) safeguard data 

privacy, they also increase complexity in identifying malicious traffic, raising the 

demand for advanced detection mechanisms. In addition to these dangers, data 

imbalance is also a concern because imbalanced data will hinder the performance 

of malware detection, so it must be resolved immediately. This research introduces 

the FE-CGAN-LSTM model that can address data imbalance and improve feature 

representation in effective way. The original dataset yields moderate results with 

accuracies around 90.7–91.0% and lower F1 scores in malware identification. 

Using the dataset improved by FE-CGAN-LSTM, performances increase is 

observed, with all classifiers achieving scores of 99.99% accuracy, precision, recall, 

and F1-score. 

 

Keywords: Data generation, Feature enhancement, Generative adversarial 

networks, Imbalance dataset, IoT-23, Long-short term memory, Malware 
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CHAPTER 1  

INTRODUCTION 

In this chapter, it is explained about several things that underlie the research, 

including the background, problem formulation, research objectives, research 

benefits, research contributions, and limitations of the problem in the research. This 

research focuses on improving malware detection in IoT systems amid the growing 

cybersecurity challenges posed by the expansion of internet services and 5G 

networks. The study addresses the increasing threat of malicious traffic, with over 

1.2 billion malware and potentially unwanted applications identified in 2024 alone. 

The research aims to implement a feature enhancement technique using a GAN-

LSTM model to improve classification performance on imbalanced datasets, 

specifically targeting the IoT-23 dataset with 11 malware classes. The objectives 

include enhancing the quality of generated data and improving the model’s 

performance compared to existing approaches. The study’s scope encompasses 

testing the proposed method on a personal computer with specified hardware 

configurations. By contributing to the advancement of feature enhancement 

methods and GAN-LSTM performance, this research seeks to strengthen malware 

detection capabilities in the evolving landscape of IoT security. 

1.1. Background 

The development of the use of internet services has caused it to become an 

integral part of daily life (Shahin et al., 2024). The use is growing in the personal 

and professional realm which includes the fields of communication, data exchange, 

and retail activities. Large amounts of data are transmitted through one network 

access point to another through various hardware, software, and protocols (Lim et 

al., 2024).  The large amount of data transmitted causes variations in the data traffic 

pattern (Zang et al., 2024). The development of these types of data and variations 

has led to the development of cyberattacks that can attack various systems, one of 

which is IoT. 

Today’s rapidly evolving 5G cellular network technology is leading to a 

boom in the use of IoT technology (Torre et al., 2024). IoT is a rapidly developing 

field of technology that connects objects or things (Ullah & Mahmoud, 2021). IoT 
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in general is a set of sensors that send signals that will be processed in a central 

processor for further processing. IoT networks and equipment can automate tasks, 

therefore, it requires minimal intervention (Mishra et al., 2024). In this hyper-

connected world with the internet, traditional network architectures have stayed 

unchanged over the last few decades, resulting in various security concerns that 

might compromise IoT networks (Swathi et al., 2024). This necessitates the 

development of an effective malware detection model. 

The development of IoT is directly proportional to the risks faced. One of the 

threats faced is malicious traffic. This is a serious threat to network security. This 

threat refers to all network traffic that invades, interferes, or steals data without 

permission (Wei et al., 2023a). Such network traffic activity is quite frequent 

nowadays and is arguably the most significant network security threat. AV-TEST 

(2024) reports that from year to year there has been a significant increase in the 

number of malwares that has been successfully identified. In 2024 alone, there will 

be more than 1.2 billion malware and potentially unwanted applications (PUAs). 

Moreover, compared to intrusion at the network layer, malware at application scale 

has a faster propagation nature, which leads to a higher risk. More and more 

network applications are also using encryption protocols such as Transport Layer 

Security Protocol (TLS) to protect the privacy and security of an application (Xu et 

al., 2021) in fact, it can make the security gap itself so that the application that is 

malicious is even more difficult to detect. 

1.2. Research Questions 

The research question that will be discussed in this study is as follows: 

1. How to implement feature enhancement technique using GAN-LSTM 

model in imbalance dataset to improve the classification performance? 

2. How to improve the quality of the generated data and the performance of 

the model compared to other models? 

1.3. Research Objective 

The objectives of this study are as follows:  
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1. Implementing feature enhancement technique using GAN-LSTM model in 

imbalance dataset to improve the classification performance. 

2. Improving the quality of the generated data and the performance of the 

GAN-LSTM model compared to other models. 

1.4. Research Benefits 

The benefit of this study is to improve the quality of the imbalanced dataset 

using feature enhancement techniques in expectations of improving the 

performance of malware detection using deep learning. In addition, improving the 

performance of the GAN-LSTM model which is known to consume a lot of 

resources so that it can efficiently perform feature generation. 

1.5. Research Contributions 

This research is expected to contribute to several aspects such as: 

1. Improvement of the dataset for improving classification performance using 

deep learning methods. 

2. Improvement of the GAN-LSTM performance in feature enhancement. 

1.6. Research Scope 

This research has some limitations that need to be paid attention to: 

1. Testing of the proposed method using the IoT-23 dataset consisting of 11 

malware classes. 

2. Testing using a personal computer device with specifications: 

a. Processor : Intel Core i5-12400F 

b. Memory : 32GB DDR4 3600mhz 

c. GPU : NVIDIA RTX 3060 with 12GB VRAM 

d. Internal Storage : 500GB of SSD Storage  
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CHAPTER 2  

THEORETICAL BASIS 

This chapter presents the foundational theories and concepts that underpin 

the research study. It lays out the critical scientific principles, methodologies, and 

existing knowledge relevant to the development and evaluation of the proposed 

model. Key topics include the theoretical framework of data preprocessing 

techniques, machine learning algorithms, and generative adversarial networks 

particularly Conditional GANs and their applications in cybersecurity domains such 

as the IoT-23 dataset. This theoretical exploration not only establishes the context 

for the research but also identifies gaps and challenges that the current study aims 

to address through innovative modeling approaches. 

2.1. Related Works 

2.1.1. Support Vector Machines 

Support Vector Machines (SVMs) have been widely adopted in 

cybersecurity research, particularly for the detection and classification of malware 

in Internet of Things (IoT) environments. Previous studies consistently highlight 

the growing security risks posed by IoT malware, which exploit vulnerabilities 

inherent to devices primarily designed for functionality rather than protection. Shi 

et al. (2024) emphasize that the vast majority of IoT devices prioritize utility, 

neglecting critical security aspects, leaving them open to cyber threats. To address 

this, Shi and colleagues applied a one-class classification approach using SVMs, 

where the model is trained exclusively on benign traffic data. This strategy enables 

the detection of anomalous or malicious traffic by identifying deviations from the 

learned normal behavior. Their results demonstrated the effectiveness of this 

method, achieving an outstanding recall rate of 100%, which indicates that all 

malicious instances were successfully detected, coupled with precision rates 

exceeding 80% and 90% across several test datasets, signifying reliable accuracy in 

distinguishing malware from benign samples. 

It is important to recognize some inherent challenges in applying SVMs to 

datasets typical of IoT network traffic, such as the IoT-23 dataset. According to 

Abdalgawad et al. (2022), SVMs can exhibit performance degradation when 
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handling imbalanced datasets, which are common in IoT security where benign 

traffic overwhelmingly outnumbers malicious traffic. This imbalance causes the 

SVM to bias towards the majority class, consequently reducing its ability to 

accurately classify the minority, often more critical, malicious class. Recognizing 

and mitigating this bias is crucial for developing robust malware detection systems. 

Techniques such as data resampling, adjusted class weights, or hybrid models 

combining SVMs with other algorithms have been proposed to enhance detection 

in such imbalanced contexts. Thus, while SVMs remain powerful and theoretically 

sound classifiers, their practical application to IoT malware detection demands 

careful consideration of dataset characteristics and method adaptations that address 

challenges like class imbalance to achieve optimal performance. 

2.1.2. Synthetic Minority Oversampling Technique 

Synthetic Minority Oversampling Technique (SMOTE) is one of the 

methods that can be used to overcome data imbalance (Dablain et al., 2023). 

SMOTE is able to create synthetic data on minority classes. Often minority classes 

due to their small number, are less representative of the class and cause low 

classification performance. SMOTE’s ability to learn to create synthetic data in 

minority classes is able to improve classification performance. Study of the use of 

SMOTE with varying imbalance datasets such as the Pima Indian Diabetes Dataset, 

WPBC (Wisconsin Prognostic Breast Cancer), Ionosphere Dataset, Breast-cancer-

wisconsin Dataset, dan WDBC (Wisconsin Diagnostic Breast Cancer) show 

improved classification performance using Random Forest classifier. The 

performance score obtained for the model used has an average Accuracy of 96.97%, 

OOB Error 4.43%, F-value 96.53%, and G-value: 97.06% (Wang et al., 2021). 

However, in its implementation, SMOTE has several shortcomings such as 

the possibility of producing fake samples that misshape the representation of the 

minority class which may lead to model overgeneralization. SMOTE sometimes 

suffers from noise in the data which may introduce more distortion into the 

synthetic samples produced. SMOTE may also neglect some boundary instances 

that are critical in the definition of the decision boundary for different classes 

(Swana et al., 2022). 



7 

 

 

2.1.3. Generative Adversarial Networks for Malware Detection 

Generative Adversarial Networks (GANs) have emerged as a powerful and 

versatile tool in the domain of malware detection, particularly within the 

challenging environment of Internet of Things (IoT) networks. GANs operate on 

the principle of adversarial learning, where two neural networks, the generator and 

the discriminator, compete against each other to improve performance. Since their 

introduction by Goodfellow et al. (2014), GANs have been employed in a variety 

of applications, extending far beyond their initial scope of image synthesis to areas 

such as cybersecurity. In IoT malware detection, GANs contribute not only as 

classifiers but also as powerful enablers of data augmentation, anomaly detection, 

and feature learning. This adaptability is important given the dynamic and evolving 

nature of malware threats that can be difficult to characterize with traditional static 

datasets. By simulating realistic attack scenarios, GANs help researchers and 

practitioners to build more robust malware detection systems that generalize better 

to unseen or obfuscated malicious activities. 

Research by Shareef et al. (2024) highlights the practical application of 

GANs combined with optimization algorithms like the zebra optimization 

technique to enhance detection accuracy. Their hybrid approach achieved high 

performance metrics, including accuracy, precision, recall, and F1-score, all 

exceeding 92%, demonstrating the effectiveness of GANs in generating meaningful 

data representations and improving classification results. Beyond detection, GANs 

serve an indispensable role in addressing critical challenges such as class 

imbalance, which is pervasive in IoT datasets where benign traffic far outweighs 

malicious samples. Almasre & Subahi (2024) demonstrated the utility of GANs for 

synthetic data generation in network traffic datasets, so it can enrich the minority 

classes and enable more balanced and comprehensive model training. This 

enhancement significantly improves anomaly detection capabilities by providing 

diverse and realistic attack patterns. GANs not only improve malware detection 

efficacy but also contribute to the overall resilience and adaptability of IoT 

cybersecurity frameworks. 
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2.1.4. Temporal Pattern Learning on Generative Models 

Temporal pattern learning is crucial for a model to learn how data values 

change and evolve across time. Generative models can benefit from this ability, 

enabling them to capture complex dependencies that evolve in a sequence. It can 

learn to generate spatiotemporal data accurately in terms of sequence generation. 

Strategies that are commonly used by researchers are combining generative models 

with recurrent or attention-based architecture models in the expectation of a much 

better modelling in spatial and temporal data. With that ability, generated data can 

mimic a realistic dataset and further improve IDS. 

Integration of an LSTM network into generative models has been studied 

before, and it improves the temporal learning of the model. Graph convolutional 

networks (GCN) with LSTM networks inside GAN were used by Gao et al. (2021). 

GCN can capture spatial dependencies between nodes at each timestamp, while 

LSTM models capture temporal dependencies. Both combined make the generator 

able to generate realistic graph structure at future time steps, this ability addresses 

the challenges in handling evolving temporal patterns on network systems. 

Shao et al. (2023) develops a model called Temporal-Topological Demand 

Prediction (TTDP) GAN. TTDP-GAN architecture incorporates LSTM and multi-

head temporal self-attention to learn temporal dependencies at various scales. This 

design helps the model to capture short- and long-term temporal correlation in a 

spatiotemporal dataset. Adversarial training can train the generator to creates data 

that can reflect real data distributions based on temporal sequences. 

Generative models combined with a temporal model like LSTM show that 

it is capable of producing high-quality synthetic data. It can learn complex spatial 

and temporal distributions. Some models may be able to learn spatial features, but 

when sequence and timing play a crucial role, the ability to model time-dependent 

behaviors remains limited. Based on these findings, this study aims to generate a 

model that can learn from spatiotemporal features on a dataset through combining 

GANs and LSTM. Another research points out that we can benefit from using 

LSTM. A paper by Altunay & Albayrak (2023) explain that LSTM is best used with 

sequential dataset. With the ability to remember past information, LSTM are able 

to identify complex pattern of the malware attacks. LSTM in this paper is used with 
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CNN and achieving accuracy of 92.9% with UNSW-NB15 dataset, and 99.8% with 

X-IIoTID dataset. It shows that LSTM can be used or combined with other models 

easily. But there are some drawbacks using it. Imbalance dataset can hinder the 

LSTM performance and also combined with high computational resource due to 

LSTM architecture that has multiple gates (input, output, and forget gates). 

2.1.5. Improving Tabular Data Diversity using GANs 

Researchers have widely used GANs for data augmentation. The data 

augmentation includes various domains such as image, audio, and network signal 

data, regardless of whether the data is high or low dimensional. Using the UNSW-

NB15 dataset, research by Rahman et al. (2024) demonstrates the ability of GAN 

to create synthetic data that realistically mimics the original dataset. The resulting 

GAN dataset can replace or complement the main dataset. The dataset that has been 

augmented is classified using several ML models, including logistic regression 

(LR), random forest (RF), gaussian naïve bayes (GNB), and others. The 

classification results yielded values between 84% and 90% in evaluation metrics 

such as accuracy, precision, recall, and f1-score. 

GAN-based augmentation has also been applied to address data imbalance 

issues. Lu et al. (2022) proposed an augmented data model to overcome data 

imbalance in sensor readings from robot anomalies. The original dataset exhibited 

1:100 class ratio, was successfully adjusted to a more balanced ratio between 1:5 

and 1:1. The classification was performed using models such as support vector 

machine (SVM), isolation forest, light gradient-boosting machine (LighGBM), and 

multi-layer perceptron (MLP). The results showed an increase in accuracy from 

87% to 97%. 

Existing studies show that GANs are capable of learning complex 

distributions of original data and can produce synthetic data that resembles real 

data. However, in its implementation, GANs still need improvement. GANs 

requires a large enough resource and is unstable, causing mode collapse (Zhang & 

Liu, 2022). Lack of temporal understanding of GANs leads to poor performance, 

resulting in poor quality of generated data (Lu et al., 2022). 
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2.1.6. Advancing Classification Performance Through Synthetic Feature 

Augmentation 

Several feature enhancement (FE) models have been developed to improve 

the performance of IDS. The FE approach is carried out through an unsupervised 

and supervised model. Supervised Feature enhancement network (FENet) model 

developed by Cheng et al. (2025) able to directly learn labeled datasets through 

attention mechanisms on discriminatory spatial and channel features. The model is 

able to improve the performance of the classification by increasing the 

expressiveness of existing features, such as the number of pixels entered, and 

adding more channel attention to take into account so there is much more 

information entered into the calculation. However, in its application, this model is 

less capable of temporal features, and the existing dataset must go through an 

annotation process first to increase processing time and resource utilization. 

Another supervised model is channel-based feature enhancement through feature 

calibration and attention fusion (CEFC & CEAFF) developed by Zheng et al. 

(Zheng et al., 2025). That model can enhance adaptive features based on class labels 

from the dataset. Channel attention can increase the relevance of multi-scale 

features and fusion on diverse attacks. This model has a high computational load 

and has more complex tuning potential. 

In addition to supervised models, there are unsupervised models that can 

also be used. Autoencoder (AE) is one of the unsupervised models developed by Li 

et al. (2024). AE is used in feature extraction where downstream is supervised fine-

tuned. The model is able to retrieve nonlinear information from a dataset without a 

label but is resource-intensive and easier to enter an over or underfitting. Another 

feature generation model uses K-Means proposed by Wei et al. (2023). K-Means is 

used for clustering of existing features to form new large groups. The group will 

later be a representation of new features that correlate with a particular class. The 

newly created feature is then combined with the original feature to increase the 

difference between normal and abnormal traffic. This model is well applied to data 

with small dimensions but on complex distributions it is less effective and has the 

potential to stop at the local minima so that it fails to group features, especially on 

the imbalance dataset. 
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2.2. Theoretical Basis 

2.2.1. Internet of Things (IoT) 

The Internet of Things (IoT) refers to an interconnected network of physical 

devices, sensors, actuators, and embedded software systems that facilitate the 

collection, transmission, and exchange of data across the internet and other 

communication networks (Humayun et al., 2021). Fundamentally, IoT devices 

serve as smart things that are connected to a virtual world, that enables remote 

monitoring, control, and automation through internet-enabled infrastructures 

(Koohang et al., 2022). This connectivity transforms otherwise simple objects into 

smart devices capable of interacting with users and other systems, as a result 

enhancing the automation and efficiency of various processes. 

IoT technology can provide unprecedented convenience and operational 

efficiency across multiple sectors. By enabling real-time connectivity and data 

exchange, IoT systems allow users to remotely control and monitor devices, 

resulting in improved resource management, energy efficiency, and service quality. 

For instance, IoT applications have revolutionized domains such as smart homes, 

healthcare, industrial automation, transportation, and agriculture by facilitating 

innovations like predictive maintenance, environmental monitoring, and seamless 

remote access (Allam et al., 2022). 

The rapid increase in the use of IoT devices has been exceptional in these 

recent years. As of recent statistics, approximately 31 billion devices were 

connected through IoT networks globally, a number expected to soar to around 75 

billion by 2025 according to Schiller et al. (2022). This exponential growth is proof 

to the widespread adoption of IoT technology, fueled by advancements in wireless 

communication, sensor technologies, and cloud computing. 

Despite its benefits, the rapid expansion of IoT presents a concerning 

security challenges. The vast number of interconnected devices, often operating 

with limited computational resources and lacking standardized security protocols, 

increases the attack surface for potential cyber threats. Studies indicate that as many 

as 178 million IoT devices were exposed on public networks in 2022, many of 

which were vulnerable to unauthorized access and exploitation due to weak security 

configurations (Chaganti et al., 2022). This vulnerability is further confirmed by 
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the relatively low awareness of cybersecurity best practices among many users and 

organizations deploying IoT solutions. 

As IoT devices integrate deeper into critical infrastructures and daily lives, 

ensuring their security becomes the most important focus. The potential 

consequences of compromised IoT devices range from privacy breaches and data 

theft to disruption of essential services and even physical harm in sectors like 

healthcare and transportation. Addressing these vulnerabilities requires not only 

great but also robust security frameworks, continuous monitoring, and advanced 

detection techniques to mitigate the risks associated with the interconnected IoT 

ecosystem. 

2.2.2. Malware on IoT 

Malicious software, commonly known as malware, covers a broad range of 

software designed to infiltrate, disrupt, or damage computer systems without the 

user’s consent. Malware can perform harmful activities such as encrypting data to 

demand ransom (ransomware), stealing sensitive and personal information, 

covertly monitoring user behavior, and spying on communications (Moti et al., 

2021). The rapid evolution of malware in terms of complexity and volume has been 

a significant concern in cybersecurity. According to recent projections by AVG, it 

is estimated that by the year 2024, there will be approximately 190,000 malware 

attacks occurring every second worldwide, highlighting the sheer scale and 

aggressive nature of modern cyber threats (Estenssoro, 2024). 

This surge in malware attacks varies widely in type and intensity, presenting 

a growing threat to all networked systems, especially those with limited resources 

and weak defenses. One particularly vulnerable domain is the Internet of Things 

(IoT), where devices typically operate with constrained computing power, limited 

memory, and reduced security capabilities (Yuan et al., 2022). Despite their 

convenience and integral role in modern digital lifestyles, IoT devices are often 

inadequately protected due to these resource constraints and a widespread lack of 

digital security awareness among end-users (Wu et al., 2023). 

The exploitation of IoT devices by malware can lead to various disruptions, 

including unauthorized access to private data, erosion of user privacy, degradation 
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of device performance, and overall reduction in user trust and experience (S. H. 

Khan et al., 2023). As IoT technologies increasingly permeate critical aspects of 

daily life, such disruptions have far-reaching consequences, affecting personal 

security, business operations, and even national infrastructure in some cases. The 

low computational resources of many IoT devices make traditional malware 

detection and mitigation techniques difficult to apply, necessitating specialized 

approaches tailored to the unique challenges of IoT ecosystems. 

Consequently, the growing prevalence of IoT-targeted malware underscores 

the critical need for robust and early detection mechanisms. Early identification of 

malware not only minimizes the potential damage but also helps in maintaining the 

integrity, availability, and confidentiality of IoT networks. Effective 

countermeasures rely heavily on continuous monitoring, anomaly detection, and 

adaptive learning-based techniques to keep pace with the evolving malware 

landscape targeting IoT devices. 

2.2.3. Generative Adversarial Networks 

GANs is commonly used in image generation module. Because GANs is 

basically a neural network which in its application needs a binary data, in theory it 

can also generate tabular numerical data. The structure of Generative Adversarial 

Networks (GANs) has two components: a Generator (G) and a Discriminator (D). 

 

Figure 2.1 General GANs Architecture 
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From Figure 2.1 can be explained a short description of GAN components 

(Ruiz-Gándara & Gonzalez-Abril, 2024): 

1. Generator (G) The generator performs the function of generating new data 

samples based on noise inputs. Random inputs (usually in the form of Gaussian 

noise) are taken and transformed into a data sample pertaining to the required 

training data. As the generator is usually deep neural network architecture, it 

uses a number of layers to learn from complex data such as images and also 

employs transposed convolutions to up sample the data. 

2. Discriminator (D) The function of the discriminator is to identify which data 

samples is real (taken from the training dataset) and which one is synthetic and 

outputted by the generator. Guessed inputs exhibit the probability score that 

quantifies the degree of realism in the input, as an angle from zero or one. 

Similarly to the generator, the discriminator too is a deep neural network model 

which is most commonly designed to classify inputs into distinct groups 

through multiple convolutional and activation layers. 

The training mechanism of GANs is formulated as a minimax game, a 

competitive process between two neural network models: the Generator (G) and the 

Discriminator (D) (Goodfellow et al., 2014). In this adversarial setup, the 

generator’s goal is to create synthetic data samples that are indistinguishable from 

real data, and attempting to "fool" the discriminator by producing increasingly 

realistic outputs. Conversely, the discriminator functions as a binary classifier 

tasked with distinguishing between the genuine samples drawn from the real data 

distribution and the fake samples generated by the generator. This training dynamic 

can be understood through the concept of a zero-sum game where the generator 

tries to maximize the probability that the discriminator incorrectly identifies fake 

samples as real, while the discriminator strives to maximize its accuracy in correctly 

classifying both real and generated data.  

The training loop alternates between these two objectives: the discriminator 

updates its parameters to become better at telling apart real from fake data, and the 

generator updates its parameters to produce more convincing fake data. This 

iterative "game" continues until an equilibrium is reached, ideally when the 

generator produces data so realistic that the discriminator can no longer reliably 
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distinguish real samples from generated ones, making its predictions essentially 

random. 

Throughout this process, the GAN models engage in a feedback loop where 

the success of one model directly influences the improvement of the other. This 

dynamic pushes the generator to capture the underlying data distribution with high 

fidelity, resulting in synthetic outputs that appear very authentic. The minimax 

nature of this training provides a robust framework for learning complex data 

distributions without any explicit supervision on what the generated data should 

look like. 

The GAN equation is as follows: 

min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐴 + 𝐵 (2.1) 

where: 

𝐴 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)[log(𝐷(𝑥))] (2.2) 

and 

𝐵 = 𝐸𝑧~𝑝𝑧(𝑧) [1 − log (𝐷(𝐺(𝑧)))] (2.3) 

𝐺 is the generator, 𝐷 is the discriminator, 𝑥 are real data samples, and 𝑧 is the 

noise drawn from the distribution 𝐷 with the given standard deviation. 𝑝𝑑𝑎𝑡𝑎(𝑥) is 

the probability of the distribution of real data and 𝑝𝑧(𝑧) is the probability of random 

noise distribution. 

𝐿𝑜𝑠𝑠𝐷 = − log(𝐷(𝑥𝑟𝑒𝑎𝑙)) − log (1 − 𝐷(𝑥𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐)) (2.4) 

2.2.4. Long Short-Term Memory 

Long Short-Term Memory (LSTM) networks represent a specialized 

architecture within the broader class of recurrent neural networks (RNNs), designed 

specifically to address the inherent limitations associated with learning and 

remembering information over extended sequences of data (M. Khan et al., 2021). 

While traditional or “vanilla” RNNs are capable of processing sequential 

information, they suffer from the well-known vanishing gradient problem, which 
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significantly hampers their ability to retain information from earlier time steps as 

sequences grow longer. This limitation reduces the effectiveness of vanilla RNNs 

when applied to tasks requiring long-range temporal dependencies. 

To overcome this problem, LSTM networks introduce a unique structure 

composed of memory cells integrated with gating mechanisms that regulate the 

flow of information throughout the network. These gates typically called the input 

gate, forget gate, and output gate act as dynamic filters that control which 

information is admitted into the memory cell, which information is forgotten or 

retained, and which information is outputted to the next time-step. This refined 

control mechanism enables LSTMs to selectively remember or discard information, 

which gives the model the ability to capture and retain dependencies across much 

longer temporal windows as compared to vanilla RNNs. 

Thanks to this architectural innovation, LSTMs have become highly 

effective at modeling long-term sequential data dependencies, making them 

invaluable for a variety of applications that hinge on understanding complex time 

series or sequences. For example, LSTMs are commonly employed in language 

modeling, where the context from words or phrases far apart in a sentence must be 

retained and utilized to predict future words accurately. Similarly, in time series 

forecasting, LSTMs can uncover patterns and trends that span wide temporal 

ranges, facilitating more reliable predictions over extended horizons. Beyond these, 

the architecture is also well-suited for domains like speech recognition, anomaly 

detection in network traffic, and other settings requiring the retention of information 

over long sequences (Malashin et al., 2024). The detailed LSTM structure is 

depicted in Figure 2.2, highlighting its memory and gating mechanisms responsible 

for this temporal learning capability (Chu et al., 2024). 
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Figure 2.2 LSTM Cell (Azati et al., 2024). 

The major elements of the internal working of an LSTM cell are: 

1. Forget Gate: Controls the output of cell state and what information 

should be excluded. 

2. Input Gate: Controls the cell state output and which new information is 

required. 

3. Output Gate: Decides the information to output to cell state. 

With that architecture, LSTMs are capable of solving not only short-term 

dependencies tasks but also long-term dependencies which made them popular for 

many tasks in ML and natural language processing (Sherstinsky, 2020).  

2.2.5. Feature Enhancement 
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Figure 2.3 Feature Enhancement Model (Wei et al., 2023) 

Figure 2.3 shows the feature enhancement model proposed by Wei et al. 

(2023c). Feature enhancement proposed above aims to help discriminate between 

normal traffic and malicious one in the context of network datasets. The process 

consists of two main phases: feature grouping and feature generation. 

1. Feature grouping: This part deals with the separation of the raw features of 

network traffic into some smaller subgroups based on their Gaussian 

characteristics which include such statistical measures such as skewness, 

mean and standard deviation. The features are grouped such that those 

which have greater variation of the Gaussians are classified into different 

groups. This assists in determining the slight differences that exist between 

the two classes of traffic, normal and attacks. 

2. Feature generation: Once the grouping has been done, the procedure uses 

the k-means clustering algorithm to create cluster features from the grouped 

features. Thus, the set of original features becomes the distance of those 

items from the clustering centers of these groups. This change augments the 

variety of the characteristics of the samples of traffic and increases the 

differences between the normal traffic and the attack traffic. 

K-means clustering helps in feature generation. This method helps in natural 

grouping of raw feature data. this causes the dimensions of the data train to be 

reduced (D. Yang et al., 2023). The k-means equation is intended to minimize 

commonly used objective functions such as mean square error. the k-means 

equation can be seen below. 

𝑱 = ∑ ∑ ‖𝒙𝒋 − 𝒗𝒊‖
𝟐𝒏

𝒋=𝟏
𝒌
𝒊=𝟏  (2.5) 
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The overall goal of the feature enhancement method is to magnify the subtle 

differences between normal and abnormal traffic, then improving the performance 

of classification models used for detecting malicious activities in the network. 

2.2.6. Confusion Matrix 

The confusion matrix is a fundamental tool used to summarize and evaluate 

the performance of classification models. It provides a comprehensive snapshot of 

how well a model categorizes data by breaking down predictions into four key 

outcomes: true positives (TP), true negatives (TN), false positives (FP), and false 

negatives (FN) (Nguyen et al., 2023). True positives represent instances where the 

model correctly identifies positive cases, while true negatives correspond to cases 

correctly classified as negative. False positives indicate erroneous positive 

classifications, and false negatives are cases where the model fails to detect positive 

instances. 

In practical terms, the confusion matrix is organized as a square matrix 

where the rows correspond to the actual class labels, and the columns represent the 

predicted class labels. This arrangement allows stakeholders to visualize the 

distribution of correct and incorrect predictions for each class distinctly. By 

quantifying these values, one can derive essential performance metrics such as 

accuracy, precision, recall, and F1-score, which provide deeper insights into the 

strengths and weaknesses of the classifier. 

In the domain of malware analysis, the confusion matrix has important role 

in assessing the effectiveness of classification algorithms by visually representing 

how samples of malware are categorized into different classes. Specifically, when 

dealing with datasets like IoT malware, where the classifier needs to distinguish 

between multiple malware families or attack types, the confusion matrix illustrates 

which classes are being correctly recognized and which ones tend to be 

misclassified. For instance, in the case of classifying malware samples into 13 

distinct categories, the confusion matrix can reveal if certain types of malwares are 

often confused with others, identifying potential weaknesses in the model 

(Massarelli et al., 2020). 
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The performance of the confusion matrix is measured in the equation below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝑃𝑁+𝐹𝑁
 (2.6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2.7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2.8) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (2.9) 

2.2.7. Conditional GANs 

Conditional Generative Adversarial Networks (CGANs) represent a 

powerful extension of the original Generative Adversarial Networks (GANs) 

framework by incorporating auxiliary information, commonly class labels, into 

both the generator and discriminator networks. This conditioning enables the 

generation of synthetic data samples that are not only realistic but also class-

specific, facilitating targeted data augmentation for imbalanced datasets. Those 

abilities enable CGANs to enhance model training by improving representation 

across underrepresented classes, which is a persistent challenge in cybersecurity 

datasets. 

The IoT-23 dataset, widely utilized for benchmarking intrusion detection 

systems (IDS) in Internet of Things (IoT) environments, comprises diverse labeled 

network traffic, including benign flows and numerous attack types. However, it 

suffers from inherent class imbalance, particularly for rare attack categories. This 

imbalance limits the effectiveness of conventional machine learning models, often 

resulting in biased detection performance skewed toward majority classes. 

Recent studies have demonstrated that CGAN architecture provides an 

effective solution for augmenting minority class samples within IoT security 

datasets. By conditioning on attack class labels, CGANs synthesize high-fidelity 

artificial samples that preserve the statistical and semantic characteristics of 

underrepresented attacks, ultimately improving the robustness and accuracy of IDS 

models. 

Alabsi et al. (2023) introduced a Conditional Tabular GAN (CTGAN)-based 

intrusion detection system that leveraged label conditioning to generate synthetic 

cybersecurity event data focusing on DDoS and DoS attacks within the IoT-23 
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dataset. Their results showed significant improvements in detection accuracy and 

class balance, that shows CGAN’s efficacy in addressing data scarcity in IoT 

network attacks. 

Almasre & Subahi (2024) proposed a CGAN framework designed to create 

realistic synthetic IoT network datasets by conditioning on traffic classes. Their 

approach tackled the issue of data imbalance and scarcity in IoT-23, which enable 

downstream models to achieve better generalization capabilities and more reliable 

detection of rare attacks. 

More recently, hybrid architectures such as CE-GAN, combining CGAN 

with encoder-decoder models, have achieved superior performance in generating 

tabula IoT network traffic data that retain complex inter-feature dependencies and 

class distinctions. This advancement has further contributed to overcoming class 

imbalance problems in network intrusion detection tasks (Yang et al., 2025). 

Building upon these insights, the CGAN-LSTM model proposed in this 

thesis conditions synthetic data generation on class labels from the IoT-23 dataset 

to augment minority attack categories. That model is able to create balanced, high-

quality synthetic data, enhancing classifier training and detection performance in 

imbalanced IoT intrusion detection scenarios. 
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CHAPTER 3  

RESEARCH METHODOLOGY 

 

Figure 3.1 Research Workflow 

 In this chapter, the methodology and stages of the research are thoroughly 

explained, outlining the systematic approach employed to achieve the study’s 

objectives. This research utilizes a feature enhancement strategy to perform 

malware analysis on the IoT-23 dataset, which contains labelled network traffic 
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data generated by various IoT devices under both normal and attack conditions. As 

depicted in Figure 3.1, the stage highlighted in blue represents the core proposed 

method of this study. The research process begins with the essential step of pre-

processing the IoT-23 dataset, ensuring the data is clean, normalized, and properly 

formatted. Following this, the dataset is partitioned into training and testing subsets, 

where 75% of the data is allocated for training and 25% for testing. This split is 

useful to evaluate the model’s ability to generalize and accurately classify unseen 

data in real-world scenarios. 

The training dataset then undergoes a feature enhancement phase, where 

key attributes are transformed or emphasized to improve the performance of 

machine learning classifiers. Subsequently, multiple deep learning architectures 

namely Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), and Long Short-Term Memory networks (LSTM) are employed to classify 

the enhanced training data. These models are chosen for their ability to capture 

complex temporal and spatial patterns in network traffic data that are indicative of 

malicious behavior. Finally, the classification results obtained from the enhanced 

dataset are rigorously compared against results from the original, untreated dataset. 

This comparative evaluation provides insights into the impact of feature 

enhancement on model accuracy and robustness, so it enable a comprehensive 

analysis of both the performance improvements and the overall effectiveness of the 

proposed methodology. 

3.1. Dataset 

The IoT-23 dataset is a comprehensive labeled dataset containing both 

benign and malicious network traffic generated by various IoT devices. This dataset 

is created by capturing network traffic as these devices operate under normal 

conditions as well as during simulated attack scenarios, which include different 

types of malware and network-based attacks targeting IoT devices. The network 

traffic is captured using packet capture (PCAP) tools and monitored in real-time by 

a powerful network analysis framework called Zeek. Zeek acts as a network 

security monitor that processes the raw packet data collected from the network and 

extracts high-level logs and metadata useful for cybersecurity research and analysis. 

Essentially, Zeek inspects all network activity passing through the monitored 
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environment, recording detailed connection and event logs while still keeping the 

original PCAP files of the traffic flows. The PCAP files constitute the raw packet 

data that forms the basis of the IoT-23 dataset. This dataset can help researchers to 

analyze both the detailed network communications and the derived metadata for 

anomaly detection or attack classification. 

The architecture outlined in Figure 3.2 shows attackers launching various 

cyberattacks on a network containing multiple IoT devices, including cameras, 

smart taps, connected vehicles, and home automation systems. All traffic flowing 

through the network is captured and logged by Zeek, which segments this network 

data into structured PCAP files that represent the network traffic during both benign 

and attack phases. These labeled PCAP files provide a rich resource for training and 

evaluating machine learning models in the fields of intrusion detection and IoT 

security. The dataset published by Garcia et al. (2020) ensures that all captured 

traffic is preserved with detailed annotations for the type of attack and device 

involved. This dataset can give a valuable resource to create realistic and 

reproducible security research using open and publicly available data. 

 

The features selected from the IoT-23 dataset for this study are primarily 

numerical attributes that can represent various types of network traffic, including 

 

Figure 3.2 IoT-23 dataset capture diagram (Garcia et al., 2020) 
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attacks. These features encompass essential data points such as the duration of 

attacks, which provide important temporal context regarding how long malicious 

or benign events persist. The number of packets sent and received are some of the 

important feature, as it reveals the volume and flow of network communication 

during sessions, that helps to differentiate between normal and abnormal traffic 

patterns. Additionally, source and destination port numbers are selected to pinpoint 

where packets originate and terminate, allowing the model to recognize common or 

suspicious points of network activity. Furthermore, features indicating anomalies, 

such as missing bytes or unusual packet sizes, are included to capture irregularities 

that often accompany malicious behavior. 

3.2. Data Preprocessing 

The dataset used in this study is a network connection log dataset with 

Packet Capture (PCAP) format that records network traffic on packets. Then this 

dataset is extracted into the ‘conn.log.labeled’ format using the Zeek Network 

Analyzer tools. After extracting the data from the PCAP file using Zeek’s tools, the 

‘conn.log.labeled’ dataset then enters the data pre-processing stage to prepare the 

data for further analysis. In this stage, the 23 subdatasets are made into one in H5 

format. 

3.2.1. One-Hot Encoding 

One of the fundamental steps in the data preprocessing pipeline is the 

application of one-hot encoding, a technique crucial for converting categorical 

variables into a numerical representation that machine learning models can process. 

In the context of the IoT-23 dataset, categorical features namely ‘label’ inherently 

possess non-numeric labels that cannot be directly ingested by deep learning 

models, particularly LSTM networks which require numeric input sequences for 

training and inference (Gamal et al., 2024). 

One-hot encoding addresses this limitation by transforming each unique 

category within a categorical feature into a distinct binary vector. Each category is 

represented as a vector in which all elements are 0 except for the position 

corresponding to the specific category, which is marked as 1. This transformation 

eliminates any implicit ordinal relationship that might be misinterpreted by numeric 
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encodings such as label encoding, so it can preserve the categorical nature of the 

data without imposing unintended hierarchies. 

The importance of one-hot encoding in this study plays a vital role in 

enhancing model robustness and interpretability. By representing categorical 

variables in a higher-dimensional binary space, models can learn nuanced 

relationships and interactions across different categories without being hindered by 

scale differences or ordinality assumptions. Furthermore, this encoding guarantees 

compatibility with upstream normalization or scaling techniques, contributing to 

improved convergence during training and ultimately better predictive performance 

on IoT network traffic classification and anomaly detection tasks. 

3.2.2. MinMax Scaler 

Data preprocessing is a critical step in preparing the IoT-23 dataset for 

effective analysis and modeling, as it ensures that the features are on a comparable 

scale. One of the key preprocessing techniques applied is MinMax Scaler, which 

normalizes the feature values to a specific range, where in this study it is from -1 to 

+1. This normalization is essential because the IoT-23 dataset contains features with 

varying units and magnitudes, which, if left unchanged, could negatively impact 

the performance of machine learning algorithms. 

MinMax Scaling works by transforming the original feature values linearly 

so that the minimum value of each feature maps to -1, and the maximum maps to 

+1. All intermediate values are proportionally adjusted within this range, keeping 

the original distribution’s shape but ensuring that no feature dominates due to its 

scale. This is especially important for algorithms sensitive to the numeric range of 

inputs, such as neural networks and distance-based classifiers, which are often used 

in IoT anomaly detection tasks. 

𝒙𝒔𝒄𝒂𝒍𝒆𝒅 =
𝒙−𝒙𝒎𝒊𝒏

𝒙𝒎𝒂𝒙−𝒙𝒎𝒊𝒏
× (𝟏 − (−𝟏)) + (−𝟏) (3.1) 

 

where 𝒙 is the original data point, 𝒙𝒎𝒊𝒏 and 𝒙𝒎𝒂𝒙 is the minimum and maximum 

value of the feature across the dataset, and 𝒙𝒔𝒄𝒂𝒍𝒆𝒅 is the transformed value in the 

range of -1 to 1. 
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By applying this scaling approach to the IoT-23 dataset, we ensure that all 

feature data is standardized within a uniform range, improving the training stability 

of models and accelerating convergence. Moreover, scaling to a symmetrical range 

around zero retains important information about the sign and relative position of 

values, which can be beneficial for certain activation functions and algorithms. 

3.3. Train Test Split 

Train-test splitting is a fundamental and widely adopted procedure in 

machine learning used to evaluate the generalizability and performance of 

predictive models. The core idea behind this method is to partition the available 

dataset into two separate subsets: one designed for training the model and the other 

reserved for testing its performance. The training dataset serves as the foundation 

on which the model learns patterns, relationships, and features present in the data, 

allowing it to adjust its internal parameters accordingly. By learning from this 

subset, the model creates a mapping from input features to their corresponding 

labels or outputs. 

The testing dataset is essential in assessing the model’s ability to generalize 

to unseen data that was not available during the training phase. This separation helps 

to simulate real-world scenarios where the model encounters new inputs and must 

make accurate predictions without prior exposure. Evaluating the model on the test 

dataset thus provides an unbiased estimate of its predictive performance and 

robustness. This practice helps detect issues such as overfitting, where a model 

performs well on training data but poorly on new data. The train-test split provides 

reliable assessment of machine learning models, guiding the selection and tuning 

of algorithms for optimal results. 

The first step, the train-test split, also has a few of the following defined 

objectives (van der Goot, 2021): 

1. Model development: The training set comprises the observations to train the 

model and thus, the patterns and relationships can be learned from data. 

2. Performance evaluation: The test set provides unbiasedness towards 

evaluation in the sense that the model is being tested in data that was not 

covered during training. 
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3. Overfitting detection: When researchers perform evaluations on the training 

and test sets, it allows them to measure performance differences and thus, 

determine the extent to which a model is overfitted. 

4. Generalization assessment: The test set also assists in evaluating the 

expected performance a model can yield in practice when it encounters new 

and unseen data. 

In most cases, more data usually goes to the training set and 80-20 or even 

70-30 ratios are followed (Khan, 2022). In this study, 75-25 train test split is used 

where the train data will be processed with FE-CGAN-LSTM model and test data 

will be used in the end of the model for comparing result in confusion matrix. The 

selection of that train test split is based on best distribution of train and test data 

itself and optimal for this dataset (Wakamiya et al., 2024). 

3.4. Hybrid FE-GAN-LSTM 

 

Figure 3.3 Model of the FE-GAN-LSTM 

The GAN component functions as the central framework in the hybrid 

architecture designed for this study that integrates LSTM networks within its 

structural elements. This integration enables the GAN to use the LSTM’s strong 

temporal learning capabilities while executing feature enhancement tasks on 

sequential data. The Generator components of the GAN incorporate LSTM 

networks, that allows the framework to process and learn from time-dependent 

features inherent in the datasets. The sequential nature of data is crucial for IoT 

network traffic, which often involves temporal dependencies and patterns. By 

embedding LSTMs, the GAN is expected to be better in modelling these sequences, 

improving the quality and representativeness of generated feature data, which helps 

in distinguishing between normal and malicious network behavior much more 
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effective. The overall architecture, including the GAN and embedded LSTM 

structures, is illustrated in Figure 3.3 of this study. 

One of the primary advantages of employing LSTM networks within the 

GAN, especially when working with the IoT-23 dataset, lies in their ability to 

capture and maintain context over extended sequences of data. IoT-23 datasets are 

fundamentally sequential as they consist of time-series representations of network 

traffic activities. LSTMs’ design includes memory cells that store information over 

long periods, that enable the model to retain relevant contextual data and temporal 

dependencies that are critical for generating realistic synthetic samples. This 

temporal preservation helps the GAN framework generate feature-enhanced data 

that is not only statistically consistent but contextually meaningful with respect to 

the sequence of events in network traffic. As a result, the inclusion of LSTMs in the 

GAN allows for better sequential data generation and more accurate modeling 

suited for intrusion detection and anomaly recognition tasks within IoT 

environments.  

3.4.1. Generator 

The Generator component, which contains LSTM layers, takes the input 

features (both train and test) and creates synthetic features through a generative 

process. The LSTM within the generator helps in learning temporal dependencies 

in the input data, enabling the generation of more realistic and temporally coherent 

features. The loss function provides feedback for improving both the generation 

quality and the temporal learning process. 

 

 
Figure 3.4 Input Layer of Generator 
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Both Figure 3.4 and Figure 3.5 shows generator architecture of CGAN-

LSTM model. In this model, generator try to generate features that closely resemble 

the real dataset. Using latent space and class label, generator generate random 

number that later multiplied by random weight of dense layer and added with bias. 

After that, it will generate 8x8 vector or 64 neurons. These data are then reshaped 

to create a timestep feature from 64 to 1,64, where it will be much easier for the 

LSTM layer to process it. In the LSTM layer, the data is then multiplied by some 

weights, such as forget, input, candidate, and output weights. It will generate 

another 1,64 neurons with its value. The data is then feed into the output layer where 

it dense into 10 features with activation function of tanh. The output layer is then 

reduced into 4 features as second output layer with activation function of tanh. The 

two outputs layer becomes the input of the discriminator model after concatenation. 

The discriminator model will determine if the data is real or fake by comparing it 

with the original dataset. All weight is then updated by the discriminator through 

discriminator loss function. 

 

Figure 3.5 CGAN-LSTM Generator Architecture 
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3.4.2. Discriminator 

The Discriminator, also containing LSTM layers, evaluates the quality of 

features produced by the Generator. The LSTM within the discriminator helps in 

assessing the temporal consistency and authenticity of the generated features. This 

component produces “Indistinguishable Features” that meet certain quality criteria, 

which are then passed to the Feature Integration component before final processing 

by the Detection Module. 

To mitigate the problem of mode collapse residing in the GAN-LSTM 

structures while generating signals from data sources with imbalanced datasets for 

instance IoT-23, a blend of hyperparameter search, architectural adaptation and 

suitable training methodologies is essential (Liu & Liu, 2021). 

Hyperparameter Tuning is important as it helps viability issues from arising. 

Changing the learning rate for the generator and the discriminator in model training 

helps to ensure that neither model goes faster than the other when being trained. A 

good batch size range should be used too and other designs besides the one currently 

being used should be tried out since this will improve the robustness of the GAN. 

The need for stability techniques is of importance because CGAN model 

relies on imbalanced data. With imbalanced data, methods like spectral 

normalization or gradient penalty significantly enhance the stability of the training 

by limiting the weight update of the discriminator. Further, changing the 

architecture to CGAN allows for eliminating diversity issues as generation of data 

gets controlled by images or labels (Gopali et al., 2021). 

To prevent mode collapse more stable loss functions can be used by 

implementing alternative GAN types, for example, Wasserstein GAN (WGAN) or 

Least Squares GAN (LSGAN). In addition, the concept of progressive growing is 

addressed which allows for both the generator and the discriminator to be more 

complex as the training progresses. This type of growing approach contributes to 

improved system quality as well as enhancement on the output Students are also 

directed to write components of working papers in appropriate formats (Ruiz-

Gándara & Gonzalez-Abril, 2024). 

SMOTE (Synthetic Minority Over-sampling Technique) can also be used to 

address the class imbalance problem by producing more instances of the under-
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represented or minority classes. This means that appropriate input is fed into the 

GAN model which in turn is able to produce different kinds of outputs that are 

accurate. In the case of data imbalance, a training L2 regularization is beneficial as 

it helps manage complexity of the models and prevent overfitting (Chatterjee et al., 

2025). 

Monitoring of the performance of the different GAN for example is crucial 

since it enables users to evaluate the quality of the samples generated. By actively 

monitoring the GAN’s performance, it is possible to prevent future collapse and 

instability. In order to save computational resources and to avoid degrading the 

quality of the model, changes can be made to set early stopping conditions when 

signs of instability are detected. 

 

 
Figure 3.6 CGAN-LSTM Discriminator Architecture 
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Figure 3.6 shows the discriminator architecture of CGAN-LSTM model. The output 

of the generator model becomes the input for discriminator. The input is then 

multiplied by weight and added bias up to 64 neurons or vectors. Then the sum of 

it gets the ReLU function for easier decision of real or fake samples. The data is 

given repeated treatment for the 32 and 4-neuron layers until it is reduced to a single 

neuron using sigmoid activation, after which the loss is calculated. Loss near 1 

represents uncertainty in the discriminator decision; otherwise, if it’s close to 0, 

then the discriminator is certain that the dataset is real or fake. 

3.5. Model Evaluation 

The evaluation methodology employs stratified 10-fold cross-validation, a 

robust technique particularly suited for imbalanced datasets like IoT-23. This 

approach partitions the dataset into 10 folds while still maintain the original class 

distribution in each subset, ensuring representative sampling of minority attack 

classes. The stratification mitigates bias in performance estimates, given the 

inherent class imbalance in IoT security data where certain attack types may be 

underrepresented. Metrics like accuracy (A), precision (P), recall (R), F1-score (F) 

are computed across all 10 folds and averaged to produce final performance 

estimates. To help this evaluation, this study employs 3 classifiers namely CNN, 

RNN, and LSTM with visual approach using PCA evaluation. 

3.5.1. Visual Evaluation using Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical technique that uses 

linear multivariate methods (Sadeghi et al., 2024). PCA reduces the dimensionality 

of variables into much less principal components (PCs) groups. The basis of the 

PCs rearrangement data is the interrelationship between multiple variables that are 

captured in a covariance matrix. After the dimensional reduction by PCA is done, 

the data can be observed visually. Visualization of the data was done to inspect the 

dataset feature clustering which is important in understanding the structure of the 

real dataset compared to augmented dataset. 

PCA works by calculating eigenvalue decomposition from the sample 

covariance matrix where the variance of the PCs is determined by the eigenvalue 

and the PCs direction is determined by eigenvectors (Robert Frost, 2022). 𝑿 ∈
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ℝ𝒏×𝒅 are the dataset matrix with 𝒏 is the number of samples and 𝒅 is the number 

of features. Covariance matrix 𝚺 is defined as: 

𝚺 =
𝟏

𝐧−𝟏
𝑿𝑻𝑿 (3.2) 

Eigenvalue decomposition: 

𝚺𝒗𝒊 = 𝝀𝒊𝒗𝒊 (3.3) 

Where 𝒗𝒊 is the 𝒊-th PCs, 𝝀𝒊 are the corresponding eigenvalue, and the 

eigenvectors with the biggest eigenvalue represent the PC. The original data is then 

projected into lower-dimensional space once the PC is obtained using: 

𝒁 = 𝑿𝑽𝒌 (3.4) 

Where 𝑽𝒌 ∈ ℝ𝒅×𝒌 is the matrix of the top 𝒌 eigenvectors, and 𝒁 ∈ ℝ𝒏×𝒌 is 

the transformed data.  

In this research, PCA is used to create 2D projections for both real and 

augmented datasets. Those projections are created to visualize the clustering 

behavior. Good cluster is when a data point is closer inside their class but distanced 

from other classes it can also means good class separability (Cui et al., 2021). PCA 

analysis is then supported by Silhouette Score to further verify the class cluster 

cohesion. 

3.5.2. Silhouette Score 

Silhouette score is one of the data quality measurement metrics where this 

score will assess a certain data cluster, which will be compared to other clusters. 

Therefore, this equation can be used to evaluate the quality of the GAN-LSTM data. 

The silhouette score for a single data point is calculated using the equation: 

𝑺𝒊 =
𝒃𝒊−𝒂𝒊

𝐦𝐚𝐱 (𝒃𝒊,𝒂𝒊)
 (3.5) 

where 𝒂𝒊 intra-cluster distance: 

𝒂𝒊 =
𝟏

|𝑪𝒊|−𝟏
∑ 𝒅(𝒊, 𝒋)𝒋∈𝑪𝒊,𝒋≠𝒊  (3.6) 

and 𝒃𝒊 nearest-cluster distance: 

𝒃𝒊 =
𝟏

|𝑪𝒊|−𝟏
∑ 𝒅(𝒊, 𝒋)𝒋∈𝑪𝒌

 (3.7) 



36 

 

Equation 𝒂𝒊 Calculating the average distance from a point 𝒊 with all the 

points within the cluster itself, while the equation 𝒃𝒊 calculate the average distance 

between points 𝒊 with data points in other clusters (Paramasivam et al., 2023). 

For the assessment of the quality of the GAN-LSTM results using silhouette 

scores, the values produced can vary but there are criteria that can be used as a 

reference (Bousmina et al., 2023): 

1. The silhouette score resulting from the equation has a value of -1 to 1.  

2. A score close to a value of 1 indicates that a data point is close to the cluster 

it is currently occupying and has different characteristics from the 

neighboring cluster. 

3. A score close to 0 indicates that a data point is at the boundary of 

characteristics between 2 different clusters. 

4. A negative score indicates that a data point is not in the appropriate cluster. 

In addition to being seen as a comparison of data similarity, silhouette score 

can be used to see if the GAN data is comparable to the raw dataset from IoT-23 

(Bourechak et al., 2023). If we focus on the IoT-23 dataset and similar use 

scenarios, A silhouette score greater than 0.5 would be deemed reasonable and 

scores greater than 0.7 would suggest that there is low overlapping of clusters 

formed with high quality generated data. 

3.5.3. Malware Identification 

In this study, Deep Neural Networks (DNNs) were employed as the primary 

models for classifying the datasets, leveraging the unique strengths of each 

architecture to optimize classification performance. Specifically, three types of 

DNNs were utilized: Convolutional Neural Networks (CNNs), Recurrent Neural 

Networks (RNNs), and Long Short-Term Memory Networks (LSTMs). 

CNNs were chosen due to their well-established ability to detect and learn 

intricate patterns within data, particularly excelling in identifying spatial hierarchies 

in images and similarly structured data formats. Beyond image processing, CNNs 

have proven highly effective in handling network traffic data represented in binary 

format, such as those derived from malware samples. Their inherent feature 

extraction capabilities enable the network to capture localized dependencies and 
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features, which contribute to achieving a relatively high level of classification 

accuracy in cybersecurity tasks (Mutambik, 2024). This makes CNNs suitable for 

scenarios where the data exhibits spatial correlations or structured patterns. 

RNNs, on the other hand, were selected for their aptitude in modeling 

temporal or sequential dependencies within data. Unlike CNNs, RNNs are designed 

to process sequential inputs by maintaining a dynamic internal state that reflects 

previous inputs, allowing the network to capture the context and behavioral patterns 

over time. This characteristic is particularly advantageous when analyzing malware 

behavior that unfolds across a time sequence, providing insights into how certain 

malicious activities develop and persist (Alqahtani et al., 2023). By capturing these 

temporal relationships, RNNs enhance the model’s ability to detect subtle 

anomalies or patterns indicative of malware. 

Building upon the RNN architecture, LSTMs represent an advanced variant 

specifically designed to overcome the limitations of standard RNNs, such as the 

vanishing gradient problem. LSTMs incorporate memory cells and gate 

mechanisms that enable them to retain information over extended time intervals 

while selectively forgetting irrelevant data. This sophisticated design empowers 

LSTMs to identify dependencies between data points separated by longer time 

spans, making them particularly effective in processing sequential datasets with 

long-range correlations. In the context of IoT-23, which comprises sequential 

network traffic data, LSTMs are exceptionally well-suited due to their ability to 

recognize complex temporal patterns and correlations across time, which improve 

detection accuracy for cyber threats (Bensaoud & Kalita, 2024). 
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

This chapter presents comprehensive evaluation results from the proposed 

CGAN-LSTM model for enhancing feature in IoT malware detection that has been 

carried out. The analysis on both real and generated data are carried out with 

classifier performance and quality assessment of the generated data using measures 

like silhouette score and PCA. Research models are compared with other feature 

enhancement models by metrics like accuracy, recall, precision, and F1-score. 

Limitations are also discussed which was observed during the development and 

testing process. 

4.1. Experiment Environment 

The test environment includes the hardware and software components used 

in this system. Details of the hardware and software specifications used during the 

software test can be found in Table 4.1. 

 

4.2. Dataset 

The IoT-23 dataset comprises of 23 distinct features, each representing a 

different data capture session. These scenarios are categorized into 20 malicious 

traffic captures and 3 benign, that reflect realistic network activities encountered in 

IoT deployments. The malicious captures cover a broad spectrum of attack types 

that pose significant threats to IoT security, including botnet communications, 

scanning activities, information theft, and command and control (C&C) 

communications used by attackers to remotely manage compromised devices. 

Table 4.1 Experiment environment 

Parts Specification 

Processor Intel Core i5-12400F 

Graphic Processing Unit RTX 3060 12GB VRAM 

Memory 32GB Dual Channel Memory 

Storage 500GB NVMe SSD 

Operating System Windows 11 

Environment Python 3.10 
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The dataset includes traffic generated by various IoT gadgets, ranging from 

smart cameras to sensors, simulating practical attack scenarios across diverse 

device functionalities. The malicious traffic traces encompass multiple network 

protocols such as HTTP and DNS, among others, depending on the specific attack 

vectors employed. This diversity in protocol usage reflects the complex and diverse 

nature of contemporary cyber threats targeting IoT ecosystems. 

In addition to its richness in attack diversity, the IoT-23 dataset provides 

detailed labeled annotations, that enables supervised learning approaches to classify 

and detect malicious behavior accurately. These labeled scenarios help the 

evaluation of advanced machine learning and deep learning models, including the 

CGAN-LSTM model investigated in this research, which relies on comprehensive 

and robust data representations to generate and detect attack patterns. 

4.2.1. Dataset Features 

Analyzing the features inside the IoT-23 dataset are important especially 

when determining which feature to include in the model. Not all features equally 

contribute to creating an effective and understandable machine learning model 

Table 4.2 Features Contained in IoT-23 Dataset (Zeghida et al., 2024). 

Feature Name Description (Perbaiki Format Penulisan) 

ts Time Flow 

id.orig_h Source Address (IP) 

duration The Flow total duration 

orig_bytes number of payload from originator(in bytes) 

resp_bytes number of payload from responder(in bytes) 

missed_bytes the total missed bytes within a flow 

orig_pkts number of packets sent by originator 

orig_ip_bytes number of IP level sent by originator (in bytes) 

resp_pkts number of packets sent by responder 

resp_ip_bytes number of IP level sent by responder (in bytes) 

proto_icmp Transaction protocol ICMP 

proto_tcp Transaction protocol TCP 
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proto_udp Transaction protocol UDP 

conn_state_OTH Connection state(no SYN) 

conn_state_REJ Connection state(attempt rejected) 

conn_state_RSTO Connection state*connection Established, originator 

aborted) 

conn_state_RSTOS0 Connection state(originator send SYN followed by RST) 

conn_state_RSTR Connection state(responder sent RST) 

conn_state_RSTRH Connection state(responder send SYN followed by RST) 

conn_state_S0 Connection state (connection attempt seen) 

conn_state_S1 Connection state (connection established) 

conn_state_S2 Connection state (connection established and closed by 

originator) 

conn_state_S3 Connection state (connection established and closed by 

responder) 

conn_state_SF Connection state (normal establishment and termination) 

conn_state_SH Connection state (Originator sent a SYN followed by a FIN) 

conn_state_SHR Connection state (Responder sent a SYN ACK and FIN) 

Label Label (Malicious/Benign) 

Analyzing the features inside the IoT-23 dataset are important especially 

when determining which feature to include in the model. Not all features equally 

contribute to creating an effective and understandable machine learning model. 

Table 4.2 lists the overall features within the IoT-23 dataset. From the full 

list of features, this study selects the most informative and relevant ones for 

modeling network behavior, while discarding others to minimize noise, complexity, 

and redundancy. The selected features are as follows: 

1. id.orig_p and id.resp_p: These represent the source and destination port 

numbers. Port numbers provide critical information about the 

communication endpoints and help in identifying the types of services and 

protocols involved. Since certain ports are commonly targeted or used in 

attacks, their inclusion helps the model learn patterns related to network 

service usage and potential malicious access points. 
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2. duration: Measures the total time length of each network flow. This feature 

is crucial because the length of a connection can reveal behavioral patterns; 

malicious traffic may exhibit extremely short or unusually long durations 

compared to normal flows. 

3. orig_bytes and resp_bytes: These two features capture the amount of data, 

in bytes, sent by the originator and responder respectively. By considering 

both, this study evaluate the volume and directionality of communication, 

which helps distinguish between normal and anomalous traffic patterns such 

as data exfiltration or flooding. 

4. missed_bytes: Represents bytes lost or missed during transmission, which 

may indicate network issues or deliberate evasion tactics in malicious 

traffic. 

5. orig_pkts and resp_pkts: These indicate how many packets are sent by each 

side of the connection. Packet counts reflect the granularity of traffic 

exchanges, that complement byte-based measures and provide insights into 

packet-level behavior under different attack types. 

6. orig_ip_bytes and resp_ip_bytes: These features extend the byte count to 

the IP layer, including payload and headers. They provide a fuller picture of 

data transmission size and network overhead, useful for spotting subtle 

anomalies. 

7. proto: this indicates what protocol is being used to transmit the data. It can 

provide information about what protocol is used by the normal and 

malicious traffic. 

From all the columns available in the IoT-23 dataset, this study carefully 

selects only the most meaningful features that capture the essence of network traffic 

behavior for the purpose of intrusion detection. The chosen features represent the 

fundamental quantitative characteristics of network flows, encompassing both the 

size and volume of data exchanged as well as the timing of communication sessions. 

These features provide crucial insights into the behavior of both parties in a network 

conversation: the originator and the responder. Selecting these specific metrics 

enables the model to detect anomalies in the flow duration and asymmetric patterns 

in bytes and packets sent or received, which are often indicative of malicious 
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activity such as data exfiltration, denial-of-service attacks, or command-and-control 

communications. The focus on these numerical, protocol-agnostic features also 

simplifies the feature space by avoiding more complex or categorical attributes like 

connection states or protocol flags, which may introduce noise and complicate 

interpretability. Ultimately, this targeted feature selection strikes a crucial balance 

between capturing meaningful behavioral patterns in network traffic and 

maintaining model efficiency, robustness, and transparency all essential for 

effective IoT intrusion detection systems operating on diverse and evolving traffic 

patterns. 

4.2.2. Class Label 

The IoT-23 dataset includes a diverse range of malware types and attack 

vectors targeting Internet of Things (IoT) devices, each exhibiting distinct 

malicious behaviors and impacts. 

Table 4.3 Name and total of attacks inside IoT-23 dataset 

No. Type of Malware Num of Attack 

1 PartOfAHorizontalPortScan 825,933 

2 Okiru 262,689 

3 Benign 197,817 

4 DDoS 138,776 

5 C&C 15,103 

6 Attack 3,915 

7 benign 1,950 

8 C&C-HeartBeat 350 

9 C&C-FileDownload 43 

10 C&C-Torii 30 

11 FileDownload 14 

12 C&C-HeartBeat-FileDownload 9 

13 C&C-Mirai 1 

From Table 4.3 can be explained below: 

1. PartOfAHorizontalPortScan (825,933 attacks): This is the most frequent 

malware-like behavior recorded in the dataset. Horizontal port scanning is a 
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reconnaissance technique used by attackers to identify open ports across 

multiple devices within a network. In the context of IoT, such scans can 

reveal vulnerable devices or services that can be exploited. Although not 

inherently malicious on its own, persistent port scanning often precedes 

more targeted attacks such as exploitation or intrusion. 

2. Okiru (262,689 attacks): Okiru is a Trojan malware typically designed to 

compromise IoT devices by exploiting known vulnerabilities. It often 

establishes persistence on the device and connects it to a command and 

control (C&C) infrastructure for further exploitation or launching 

distributed attacks. 

3. Benign (197,817 + 1,950 attacks): These entries represent network traffic 

linked to normal, non-malicious activity of IoT devices. Such data serves as 

the baseline for distinguishing legitimate operations from malicious 

activities. 

4. DDoS (138,776 attacks): Distributed Denial of Service (DDoS) attacks 

overwhelm IoT devices or their network infrastructure with massive traffic 

to cause service outages or degrade performance. Due to the resource 

constraints of many IoT devices, they are particularly susceptible to 

disruption from DDoS attacks. 

5. C&C (Command and Control) Variants (Total 15,539 across several types): 

This includes generic C&C, HeartBeat signals, FileDownload commands, 

Torii variant, and Mirai. C&C malware enables attackers to remotely control 

compromised IoT devices, often to create coordinated attacks, update 

malware payloads, or steal data. 

6. Attack (3,915 attacks): This label may refer to generic or unspecified attack 

instances captured within the dataset that do not fall into the above 

categories but indicate suspicious or malicious activity. 

C&C datasets are combined because of the nature of the dataset. Some C&C 

variants have so little data, so it has to be combined with the main dataset inside the 

same class. 
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4.3. Data Preprocessing 

The preprocessing procedure begins with addressing placeholder values 

represented by the symbol ‘-’, converted to NaN (Not a Number). This 

transformation is essential to standardize the treatment of missing or undefined 

entries, facilitating consistent handling during subsequent data cleaning. 

Missing values denoted by NaN are substituted differently based on the 

feature type to maintain data integrity. Numerical columns are assigned to a value 

of 0, representing a neutral baseline or absence of activity. Categorical columns 

receive the value ‘Unknown’ to explicitly encode the absence of category 

information, enabling models to distinguish missing categories without introducing 

bias. 

The normalization of the class label column is one of the important step. 

This involves the removal of unique id and inconsistencies (such as (empty), -, or 

repeated terms like “Malicious”) to unify labels into coherent categories. The label 

naming is standardized programmatically to ensure consistent class representation, 

as demonstrated by the replacement of lowercase “benign” and empty strings with 

the capitalized label “Benign”. This process prevents fragmentation of classes that 

could otherwise hinder classification accuracy and clarity. 

In accordance with dataset provenance guidance, multiple related subclasses 

within the Command and Control (C&C) category specifically ‘C&CHeartBeat’, 

‘C&CTorii’, ‘C&CFileDownload’, ‘C&CHeartBeatFileDownload’, and 

‘C&CMirai’ are merged into a single big ‘C&C’ class. This join process aligns 

labeling with domain knowledge and simplifies model training by consolidating 

conceptually similar instances. 

The dataset is sorted based on the ‘ts’ column to maintain the sequence 

nature of the dataset. This sorting verifies that the progression of network events 

follows the exact timeline in which they occurred, keeping the chronological 

context critical for effective modeling. By arranging the data chronologically, the 

temporal dynamics of network traffic, including the progression and patterns of 

normal and anomalous events are maintained. This chronological ordering allows 

the LSTM component to learn temporal correlations and sequence dependencies 
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accurately, while the CGAN leverages this sequence-aware input to synthesize 

realistic data that mirrors time-evolving behaviors. 

The feature selection narrows down to a targeted set of relevant quantitative 

attributes that are crucial for capturing distinctive network flow behavior. These 

include ‘id.orig_p’ and ‘id.resp_p’, which represent the originator and responder 

port numbers, respectively, giving insight into communication channels used. The 

‘duration’ feature records the total connection time, providing temporal context of 

the flow. Byte counts are covered by ‘orig_bytes’ and ‘resp_bytes’, indicating the 

volume of data sent and received, while ‘missed_bytes’ captures anomalous or 

missing data in transmission streams, potentially signaling network irregularities or 

attacks. Packet counts such as ‘orig_pkts’ and ‘resp_pkts’ quantify the number of 

packets exchanged, and IP-layer byte counts ‘orig_ip_bytes’ and ‘resp_ip_bytes’ 

offer a deeper measure of the data load at the IP protocol level. 

To ensure feature values are on comparable scales and suitable for model 

input, all features undergo Min-Max scaler process to normalize the numerical 

values into a uniform range between -1 and +1. This process prevents dominance 

of features with large magnitude and stabilizes optimization during training. The 

target classes are then converted through one-hot encoding into seven distinct 

binary vectors, that makes the categorical labels can be processed by machine 

learning algorithms. Table 4.4 presents a sample of the original raw dataset prior to 

preprocessing, while Table 4.5 illustrates the dataset after undergoing systematic 

preprocessing transformations. 

 

Table 4.4 Original Dataset 

ts uid id.orig_h id.orig_p 

1.53E+09 CwxSC… 192.168.100.103 43763 

1.53E+09 C3GBT… 192.168.100.103 41101 

1.53E+09 CC6vK… 192.168.100.103 43763 

1.53E+09 CDe43c… 192.168.100.103 60905 

1.53E+09 CJaDcG… 192.168.100.103 44301 
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id.resp_h id.resp_p proto service 

154.8.94.65 14336 udp Unknown 

111.40.23.49 23 tcp Unknown 

196.170.198.141 11764 udp Unknown 

131.174.215.147 23 tcp Unknown 

91.42.47.63 23 tcp Unknown 

Duration orig_bytes resp_bytes conn_state 

0 0 0 S0 

0 0 0 S0 

0 0 0 S0 

2.998796 0 0 S0 

0 0 0 S0 

local_orig local_resp missed_bytes history 

Unknown Unknown 0 D 

Unknown Unknown 0 S 

Unknown Unknown 0 D 

Unknown Unknown 0 S 

Unknown Unknown 0 S 

orig_pkts orig_ip_bytes resp_pkts resp_ip_bytes 

1 40 0 0 

1 60 0 0 

1 40 0 0 

3 180 0 0 

1 60 0 0 
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4.4. Performance Behavior on Original and Feature Enhanced Datasets 

In this study, both the original and enhanced datasets undergo rigorous 

evaluation using various neural network classifiers, specifically Convolutional 

Neural Networks (CNN), Recurrent Neural Networks (RNN), and Long Short-

Term Memory (LSTM) networks. The performance of these classifiers on the 

original dataset establishes a critical baseline, serving to highlight inherent 

limitations such as data imbalance, noise, and insufficient feature representation 

that could hinder the models’ predictive capabilities. Imbalanced datasets often 

cause classifiers to be biased toward majority classes, while noisy data and 

inadequate feature representation can further degrade performance by confusing the 

learning process. By benchmarking against these baseline results, the study exposes 

Table 4.5 Dataset after Preprocessing 

id.orig_p id.resp_p duration orig_bytes 

0.335561151 -0.562493324 -1 -1 

0.254322118 -0.999298085 -1 -1 

0.335561151 -0.640985733 -1 -1 

0.858701457 -0.999298085 -0.999923927 -1 

0.351979858 -0.999298085 -1 -1 

resp_bytes missed_bytes orig_pkts orig_ip_bytes 

-1 -1 -0.99999997 -0.999999958 

-1 -1 -0.99999997 -0.999999937 

-1 -1 -0.99999997 -0.999999958 

-1 -1 -0.999999909 -0.999999812 

-1 -1 -0.99999997 -0.999999937 

resp_pkts resp_ip_bytes proto_icmp proto_tcp proto_udp 

-1 -1 -1 -1 1 

-1 -1 -1 1 -1 

-1 -1 -1 -1 1 

-1 -1 -1 1 -1 

-1 -1 -1 -1 1 
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the challenges faced by traditional approaches when handling real-world IoT traffic 

data. 

Subsequently, the enhanced dataset by synthetic feature generation through 

the CGAN-LSTM model is evaluated using the same classifiers to assess 

improvements in detection performance. Key metrics such as accuracy, recall, 

precision, and F1-score are carefully observed as indicators of how well the models 

detect malware, especially in minority classes that typically suffer from poor 

representation in original datasets. The use of CGAN combined with LSTM aims 

to generate realistic, temporally consistent synthetic data that enriches the feature 

set, by doing so handling the class imbalance and improving classifier robustness. 

Furthermore, the stability and training dynamics of each model are assessed by 

analyzing loss curves during training epochs. This comprehensive evaluation helps 

determine whether the CGAN-LSTM enhancement can enhances classifier 

performance and generalization in identifying diverse malware behaviors within 

IoT network data. The additional features incorporated into the dataset through 

augmentation are summarized in Table 4.6. It provides a clear overview of the 

expanded feature space. 

 

4.4.1. Performance on Original Dataset 

The initial experiment was conducted using the original IoT-23 dataset to 

evaluate the classification capabilities of three deep learning models: CNN, RNN, 

and LSTM. The classification performance metrics, summarized in Table 4.7, Table 

4.8, and Table 4.9, demonstrate generally strong results with high overall accuracy 

across the models. A deeper analysis reveals critical shortcomings in detecting 

Table 4.6 Generated CGAN Features 

f14 f15 f16 f17 

-0.46124 0.228559 0.146804 -0.17757 

0.002825 0.263761 0.472883 -0.09463 

-0.37858 0.246763 0.173844 -0.21616 

-0.04649 0.251798 0.496857 -0.12977 

-0.01084 0.25594 0.471659 -0.09308 
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certain classes, as evidenced by extremely low or zero values in precision, recall, 

and F1-score for specific minority categories. 

 

The CNN classifier’s performance on the original IoT-23 dataset is initially 

assessed through the classification report that can be seen on Table 4.7, which 

reveals notable variability across different attack categories. The model achieves 

excellent precision and recall for certain classes such as DDoS (Precision: 98.42%, 

Recall: 99.83%, F1-score: 99.12%) and Okiru (Precision: 99.93%, Recall: 100%, 

F1-score: 99.96%), indicating its strong capability to correctly identify these attack 

types. The ‘PortScan’ class shows a high recall of 99.52% and an F1-score of 

92.40%, although precision is somewhat lower at 86.23%, suggesting occasional 

false positives. The model struggles with the ‘Attack’ and ‘FileDownload’ classes, 

both showing zero precision, recall, and F1-scores, which points to complete failure 

in detecting these categories. ‘Benign’ and ‘C&C’ classes reflect moderate 

performance with precision near 96.83% and 98.47% respectively, but low recall 

(40.18% and 43.64%), indicating the model misses a large portion of these samples. 

This performance distribution is confirmed by the confusion matrix that can be seen 

on Figure 4.1, which visually reveals this classification distribution. 

Table 4.7 CNN Classification Report (Original Dataset) 

Label P. (%) R. (%) F1. (%) Support 

Attack 0 0 0 783 

Benign 96.83 40.18 56.79 39953 

C&C 98.47 43.64 60.48 3107 

DDoS 98.42 99.83 99.12 27755 

FileDownload 0 0 0 3 

Okiru 99.93 100 99.96 52538 

PortScan 86.23 99.52 92.40 165187 
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In the confusion matrix a great performance can be seen for DDoS and Okiru 

class which has 27,709 TP, 52,537 TP respectively. Despite the great performance 

from those classes, this matrix also shows a substantial number of 

misclassifications. The ‘Attack’ class has 783 data points, had no TPs but was 

entirely misclassified as ‘PortScan’ (783 FN). The benign class missed 23,698 

samples that were incorrectly predicted as ‘PortScan’ and had additional false 

negatives incorrectly labeled as C&C and DDoS. The ‘PortScan’ class had 485 

samples misclassified as benign and 302 as DDoS, contributing to FP for those 

classes. This distribution of FN and FP across key classes aligns with the recall and 

precision values seen in the classification report, confirming the model’s struggle 

to differentiate between certain overlapping traffic patterns, especially 

misclassifying attacks as port scans or benign traffic. The confusion matrix also 

shows minimal errors for classes like ‘DDoS’ and ‘Okiru’, supporting their high 

classification metrics. 

 

Figure 4.1 Confusion matrix of CNN model on Original Dataset 
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The result of RNN model in Table 4.8 shows a similar result to CNN where 

it is great at detecting classes such as ‘DDoS’ and ‘Okiru’ but shows poor 

performance in other classes like failing to detect the ‘Attack’ and ‘FileDownload’ 

classes. For the ‘Benign’ class, the RNN shows relatively high precision (90.10%) 

but low recall (42.09%), indicating it predicts benign instances with reasonable 

accuracy but misses many true benign samples, lowering overall detection 

effectiveness for this class. In contrast, the RNN classification report are improved 

when detecting ‘C&C’ attacks compared to CNN, with a recall of 98.39% and F1-

score of 92.55%, showing strong recognition capability. The performance on 

dominant attack classes such as ‘DDoS’ and ‘Okiru’ remains robust, with near-

perfect recall and F1-scores exceeding 99%, reflecting high sensitivity and 

accuracy. The ‘PortScan’ class also demonstrates a good balance, with precision at 

87.61%, recall at 99.7%, and an F1-score of 93.27%, although some false positive 

predictions are present. 

The result of the classification report is proved further with the visualization 

of predicted and actual class inside confusion matrix in Figure 4.2. Misclassification 

is a common occurrence across all classes. True Positives dominate along the 

diagonal for classes like ‘DDoS’ (27,709), ‘Okiru’ (52,537), ‘C&C’ (3,057), and 

‘PortScan’ (164,696), confirming effective detection for these categories. However, 

the matrix also exposes significant misclassifications: all 783 samples of the 

‘Attack’ class were incorrectly labeled as ‘PortScan’, aligning with the zero-

Table 4.8 RNN Classification Report (Original Dataset) 

Label P. (%) R. (%) F1. (%) Support 

Attack 0 0 0 783 

Benign 90.10 42.09 58.91 39953 

C&C 87.37 98.39 92.55 3107 

DDoS 98.53 99.83 99.18 27755 

FileDownload 0 0 0 3 

Okiru 99.91 100 99.95 52538 

PortScan 87.61 99.7 93.27 165187 
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performance metrics from the classification report. The ‘Benign’ class confuses the 

model, with 22,424 benign samples misclassified as ‘PortScan’, 441 as ‘C&C’, and 

221 as ‘DDoS’, explaining the low recall. False positives are high in the ‘PortScan’ 

category due to 300 benign and 191 DDoS samples being predicted as ‘PortScan’. 

 

The LSTM classifier provides a comparable performance to the RNN model 

showing improvements in certain classes but poor in others that can be seen on 

Table 4.9. The LSTM fails to detect the rare ‘Attack’ and ‘FileDownload’ classes, 

similar to previous models. The ‘Benign’ class shows moderate performance with 

a precision of 96.09%, a recall of 40.19%, and an F1-score of 56.67%, indicating 

the classifier is relatively accurate when labeling benign traffic but still misses 

numerous instances (false negatives). The ‘C&C’ class sees marginal improvement 

in precision (97.91%) but retains a low recall (43.64%), suggesting more false 

negatives compared to its precision. Major attack categories like ‘DDoS’ and 

‘Okiru’ maintain strong performance, with recall near or at 100% and F1-scores 

nearing 99%, confirming the LSTM robustness to these prevalent threats. The 

 

Figure 4.2 Confusion matrix of RNN model on Original Dataset 
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‘PortScan’ class also performs well, with an F1-score of 92.44% supported by high 

recall (99.48%) and solid precision (86.33%), despite some classification noise. 

 

 

The confusion matrix on Figure 4.3 is the representation of the LSTM model 

on the original dataset. The diagonal highlights correct identifications for critical 

classes, such as 27,709 ‘DDoS’, 52,537 ‘Okiru’, 1,356 ‘C&C’, and 164,332 

‘PortScan’ samples. However, the rare ‘Attack’ and ‘FileDownload’ classes remain 

Table 4.9 LSTM Classification Report (Original Dataset) 

Label P. (%) R. (%) F1. (%) Support 

Attack 0 0 0 783 

Benign 96.09 40.19 56.67 39953 

C&C 97.91 43.64 60.37 3107 

DDoS 97.94 99.83 98.88 27755 

FileDownload 0 0 0 3 

Okiru 99.9 100 99.95 52538 

PortScan 86.33 99.48 92.44 165187 

 

 

 

Figure 4.3 Confusion matrix of LSTM model on Original Dataset 

 



54 

 

undetected, with all 783 and 3 instances, respectively, misclassified predominantly 

as ‘PortScan’. The ‘Benign’ class again confuses the model, where 23,488 ‘Benign’ 

samples are wrongly predicted as ‘PortScan’, 326 as ‘DDoS’, and 29 as ‘C&C’, 

explaining the low recall. There are also notable false negative contributions in the 

‘PortScan’ category, including ‘599’ benign and 256 ‘DDoS’ samples mistakenly 

categorized, suggesting some difficulty in clearly discriminating against these 

classes.  

This failure confirms the findings in the literature, which stated that 

imbalanced datasets skew model learning towards majority classes, resulting in 

biased decision boundaries and poor minority class detection (Alfares & 

Banimelhem, 2024). The original IoT-23 dataset’s imbalance ratio spans around 

59,000:1 down to more balanced classes, directly correspond to poor model 

performance. 

 

The CNN model’s loss curve Figure 4.4 exhibits relatively stable learning 

dynamics through the epochs. The training loss steadily decreases and approaches 

a plateau, while the validation loss is generally lower and closely follows the 

training curve, indicating good generalization. However, a slight increase in 

validation loss near the middle epoch suggests minor overfitting, where the model 

begins to fit noise or specific training details that do not generalize well. This 

overfitting can limit the model’s ability to classify samples accurately beyond the 

training set. 

 

Figure 4.4 Loss Curve of CNN model on Original Dataset 



55 

 

 

 

The RNN’s loss curve Figure 4.5 highlights a more pronounced overfitting 

tendency. Initial epochs show declining training and validation loss, but from about 

epoch 60 onward, the validation loss rises sharply while the training loss remains 

low and flat. This divergence implies that while the model fits the training data well, 

it struggles to generalize. It results in the overfitting because of the noise and 

outliers.  

 

The LSTM model shows less overfitting compared to the RNN, with 

training and validation losses progressing more concordantly. There are minor 

oscillations present, typical in sequential models fine-tuning their parameters, yet 

both losses stay close, showing stable and effective learning. Despite this, there is 

 

Figure 4.5 Loss Curve of RNN model on Original Dataset 

 

 

 
Figure 4.6 Loss Curve of LSTM model on Original Dataset 
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slight variability in the validation loss. It can be a signals that the dataset is less 

regularized or it needs data balancing to further enhance generalizability. 

4.4.2. Performance on FE Dataset 

CGAN-LSTM model was implemented to generate synthetic features 

conditioned on class labels. These synthetically generated features were then 

integrated into the original dataset, producing a more expressive and balanced 

feature representation for each class. This augmentation method addresses the 

inherent class imbalance issues present in the original data, which is evident from 

the classification metrics. Table 4.10, Table 4.11, and Table 4.12 report the 

classification results when the models are trained on the augmented dataset enriched 

with CGAN-LSTM synthetic features. 

 

The CNN classifier’s performance shows a remarkable improvement after 

applying CGAN-LSTM feature enhancement on the IoT-23 dataset. According to 

the classification report, precision, recall, and F1-scores for all classes have 

achieved near-perfect or perfect values, specifically 100% for classes including 

‘Attack’, ‘Benign’, ‘C&C’, ‘DDoS’, ‘FileDownload’, ‘Okiru’, and ‘PortScan’. This 

reflects the significant positive impact of the feature enhancement in enabling the 

CNN model to distinguish between different types of network traffic or attack 

categories with extremely high accuracy. Classes like ‘FileDownload’ and ‘Attack’ 

which had 0 scores previously, now demonstrate perfect detection capability, 

Table 4.10 CNN Classification Report (FE Dataset) 

Class P. (%) R. (%) F1. (%) Support 

Attack 100 100 100 783 

Benign 99.98 100 99.99 39953 

C&C 100 99.87 99.94 3107 

DDoS 100 99.98 99.99 27755 

FileDownload 100 100 100 3 

Okiru 100 100 100 52538 

PortScan 100 100 100 165187 
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showing that the synthetic data and enhanced features addressed previous class 

imbalance or insufficient feature representation. 

 

The confusion matrix for the CNN model on the CGAN-LSTM feature-

enhanced dataset reveals a strong and clear dominance along its diagonal, which 

corresponds precisely to the true positives for each respective class. The ‘Attack’ 

class shows an exact count of 783 instances correctly identified as attacks. This 

number perfectly matches the actual number of attack records present in the dataset, 

signifying that the model did not miss any attack instance. The ‘Benign’ class 

exhibits a true positive count of 39,953, again exactly matching the total benign 

instances in the dataset. This confirms that all benign traffic was properly 

recognized, avoiding any misclassification as malicious or other types of network 

traffic. The "Okiru" malware class, with 52,538 true positives, the model 

successfully identified all occurrences of this attack type. Each class listed in the 

confusion matrix follows this strong diagonal pattern, showing that the model’s 

predictions are largely in perfect alignment with the true labels, indicating near-

zero false negatives and false positives overall. 

 
Figure 4.7 Confusion matrix of CNN model on FE Dataset 

 



58 

 

 

 

Classification report of RNN classifier (Table 4.10) shows increased 

performance across almost all classes on the enhanced feature dataset compared to 

the original dataset. It shows that CGAN-LSTM feature enhancement can improve 

the classification accuracy. Major classes such as ‘Attack’, ‘Benign’, ‘C&C’, 

‘DDoS’, ‘Okiru’, and ‘PortScan’ achieves precision, recall, and F1 scores 

approaching or reaching 100%. These results indicate the model can identify and 

classify these networks traffic types and attack categories with minimal error. 

Enhanced dataset as a result from feature enhancement model can show a much 

more generalized feature than original dataset. The ‘Attack’ class is classified with 

100% precision and recall, resulting in a perfect F1 score of 100%, signifying that 

the model successfully identifies all attack instances without misclassifying benign 

ones as attacks, or vice versa. The ‘Benign’ class similarly shows a precision of 

99.98%, recall of 99.99%, and an F1 score of 99.99%, demonstrating strong 

reliability in distinguishing normal from malicious traffic. The high precision and 

recall for ‘C&C’, ‘DDoS’, ‘Okiru’, and ‘PortScan’ further underscore the model’s 

impressive detection capabilities. Regardless of the strong result, RNN fails to 

detect ‘FileDownload’ class due to limited number of sample.  

To further analyze the classification report, the classification result in details 

can be seen in the confusion matrix in Figure 4.8. 

Table 4.11 RNN Classification Report (FE Dataset) 

Class P. (%) R. (%) F1. (%) Support 

Attack 100 99.99 100 783 

Benign 99.98 99.99 99.99 39953 

C&C 99.84 99.97 99.90 3107 

DDoS 100 99.98 99.99 27755 

FileDownload 0 0 0 3 

Okiru 100 100 100 52538 

PortScan 100 100 100 165187 
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The classification report of RNN is further analyzed with confusion matrix. 

It shows that all classes can be well classified in each their respective class. The 

model correctly classifies 738 data points in the ‘Attack’ class. The ‘Benign’ class 

shows great performance where the model only misclassified 3 data points into 

‘C&C’ class. Other classes like ‘C&C’, ‘DDoS’, ‘Okiru’, and ‘PortScan’ also 

exhibit very high numbers of true positives, confirming that the model able to 

distinguishes these classes in the enhanced feature space. The ‘FileDonwload’ class 

is an exception because none of the three true instances of ‘FileDownload’ are 

correctly identified where all are misclassified as Benign traffic. There are some 

confusions of the model when handling ‘Benign’ and ‘FileDownload’ traffic where 

the model had trouble differentiating the normal and malicious traffic. The 

confusion matrix confirmed the RNN model’s strong classification following the 

CGAN-LSTM feature enhancement, with a high accuracy in detecting multiple 

attack types and benign traffic. 

 

Figure 4.8 Confusion matrix of RNN model on FE Dataset 
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The LSTM model in Table 4.12 demonstrates remarkably strong 

performance on the enhanced dataset, achieving high accuracy and robustness 

across all key evaluation metrics. This is evident in its ability to reach precision, 

recall, and F1 scores approaching 99.99% or even a perfect 100% in most classes, 

which underscores its effectiveness in classifying diverse network traffic types with 

minimal error. One of the crucial factors behind this strong performance is the 

inherent design of the LSTM architecture, which makes it especially suited to 

handle the temporal and spatial characteristics present in the dataset. Unlike other 

models, the LSTM is built to capture sequential dependencies and temporal patterns 

in data, enabling it to understand the complex time-series behavior of network 

traffic and cyber-attacks. This temporal sensitivity allows the model to maintain 

contextual information over periods, thus enhancing its discriminatory power 

between benign and malicious activities.  

Figure 4.9 LSTM confusion matrix further confirms the classification report 

claims where only several data points are misclassified. The matrix shows that 

every one of the 783 samples labeled as ‘Attack’ is correctly identified, with zero 

misclassifications. In the ‘Benign’ class, the 39,953 instances correctly classified, 

highlighting the model’s strong ability to distinguish normal network traffic from 

malicious activity. 

Table 4.12 LSTM Classification Report (FE Dataset) 

Class P. (%) R. (%) F1. (%) Support 

Attack 100 100 100 783 

Benign 99.98 100 99.99 39953 

C&C 99.97 99.87 99.92 3107 

DDoS 100 99.98 99.99 27755 

FileDownload 100 100 100 3 

Okiru 100 100 100 52538 

PortScan 100 100 100 165187 
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Figure 4.10, Figure 4.12, Figure 4.11, presents the loss curves for the 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and 

Long Short-Term Memory (LSTM) models respectively which evaluated on the 

feature enhanced dataset. These loss graphs provide critical insights into the 

 

Figure 4.9 Confusion matrix of LSTM model on FE dataset 

 

Figure 4.10 Loss curve of CNN model on Enhanced Dataset 
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learning dynamics, model stability, and the underlying quality of the synthetic data 

produced by the CGAN-LSTM augmentation process. 

The CNN model in Figure 4.10 demonstrates an initially steep decline in 

training loss within the first few epochs, indicating effective early learning and 

rapid convergence. Despite this, the training loss exhibits oscillations after the 

initial phase, with fluctuations that suggest some instability in fitting, potentially 

caused by variations in the enhanced data’s distribution or overfitting to certain data 

patterns. The validation loss remains consistently low and relatively smooth 

throughout training. It shows that the CNN model generalizes reasonably well to 

unseen data, reaffirming the enhanced dataset’s capacity to maintain the structural 

integrity and variability needed for robust model training. 

 

The RNN’s loss curve in Figure 4.11 indicates more volatility in training. 

The training loss shows pronounced spikes, particularly near epochs 20 and 35, 

suggesting periods where the model struggles to fit the data or experiences 

disruptions in the optimization trajectory. The validation loss curve remains fairly 

flat and low but includes a sharp peak around epoch 35, potentially reflecting 

moments where the model overfits transient artifacts or noise introduced during 

augmentation. This instability may highlight sensitivity in RNN architectures to 

subtle distributional shifts in augmented sequential data or suggest that further 

tuning of augmentation parameters is necessary to improve data fidelity and model 

robustness. 

 

Figure 4.11 Loss curve of RNN model on Enhanced Dataset 
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The LSTM model in Figure 4.12 exhibits the most stable loss progression 

among the three models. Both training and validation losses remain consistently 

near zero for the majority of the epochs, indicating strong learning capability and 

generalization. However, a spike in validation loss around epoch 100 signals a 

possible overfitting event or outlier behavior not reflected in training, underscoring 

the need for vigilant monitoring and potentially early stopping or regularization to 

prevent degradation in model performance. The overall low loss values across 

training and validation phases suggest that the LSTM, given its architectural design 

tailored for sequential dependencies, can leverage the augmented dataset for 

learning long-term temporal patterns with minimal overfitting, further evidence of 

the quality of the generated synthetic data. 

In summary, the comparative loss analysis highlights that dataset quality 

and structure significantly influence model training dynamics. The marked stability 

in the LSTM model’s loss curve validates the effectiveness of the CGAN-LSTM 

augmentation approach in preserving meaningful temporal characteristics needed 

for sequential classification tasks. On the other hand, the fluctuations in CNN and 

particularly RNN losses point towards areas where augmentation refinement or 

model hyperparameter tuning could further optimize generalization and 

performance. These insights are invaluable not only for interpreting the augmented 

data’s realism and utility but also for guiding iterative improvements in data 

 

Figure 4.12 Loss curve of LSTM model on Enhanced Dataset 
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generation and deep learning model selection strategies in IoT network security 

contexts. 

The CGAN-LSTM model is designed to enhance the feature and temporal 

pattern of the data by giving a richer feature to represent a class. Aside from 

improving, this model can also give latent inconsistencies, which reduce the overall 

performance of the classifier. It can be shown on the RNN model where the loss 

curve shows sharp spikes and unstable convergence, which may be caused by noise 

and temporal inconsistencies inside the enhanced feature. On the other hand, CNN 

shows moderate instability, which suggests the model cannot capture the spatial or 

local features provided in the synthetic dataset, or the dataset may present data that 

cannot represent each class. The best result of the classifier is LSTM, which shows 

a more stable loss curve. Both training and validation losses are low and closely 

aligned. The LSTM model can benefit from its capability to extract temporal 

continuity and sequential dependencies. It is suggested that the generated data can 

appear structurally meaningful to this model. 

 

Table 4.13 Macro and weighted average metrics across all classifier models 

Model With FE A. (%) P. (%) R. (%) F1 (%) 

CNN 

No 

90.77 68.70 54.95 58.65 

RNN 90.67 68.92 54.79 58.49 

LSTM 91.02 68.70 55.24 58.95 

CNN No 

(Weighted 

Avg.) 

90.77 91.29 89.73 58.39 

RNN 90.67 67.36 62.86 63.41 

LSTM 91.02 68.31 54.74 58.33 

CNN 

Yes 

99.99 87.11 86.41 86.64 

RNN 99.99 95.69 95.70 95.69 

LSTM 99.99 97.12 97.13 97.13 

CNN Yes 

(Weighted 

Avg.) 

99.99 99.99 99.99 99.99 

RNN 99.99 99.99 99.99 99.99 

LSTM 99.99 99.99 99.99 99.99 
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Table 4.13 presents a comprehensive summary of the macro average metrics 

for classifier performance across all tested models (CNN, RNN, and LSTM) on 

both the original and feature enhanced datasets. These results are obtained through 

10-fold stratified k-fold cross validation to ensure the stability of the results. The 

original dataset achieves accuracy score of around 90-91%, precision score of 

around 68-69%, recall score below 55%, and f1-score of 58-64%. The scores 

indicate that the model was accurate but struggle to be consistent across all classes. 

Weighted average is higher because of the performance of majority classes that are 

high, making the minority class negligible. The score difference from macro and 

weighted average emphasize the class imbalance problem settled inside the dataset. 

The results from enhanced dataset show significant improvement from the 

baseline result of the non-FE dataset. All models can achieve accuracy, precision, 

recall, and f1-score of 99.99% in the weighted average metrics after the 

implementation of FE. FE model are capable of enhancing the dataset because it 

can generate realistic and diverse feature making the classifier able to learn and 

generalize the complex pattern that may underrepresented in the original dataset, so 

it can address the class imbalance. But, the macro average score still lower than the 

weighted average because the failure to detect extreme minority class of 

‘FileDownload’. 

4.5. Quality of The FE Dataset 

CGAN-LSTM, as a hybrid generative model, is capable of producing 

diverse synthetic features that can significantly enhance the richness and balance of 

datasets, particularly those suffering from class imbalance or limited representation. 

However, the effectiveness of the generated dataset depends critically on the quality 

and relevance of the synthetic data produced. It is essential that CGAN-LSTM not 

only generates data samples that vary broadly but also ensures these samples are 

meaningful and reflect the true underlying distribution of the original dataset. This 

means maintaining the characteristics and statistical properties of each class, so that 

the augmented data remains representative of real-world patterns and does not 

introduce distortions that could mislead the learning process. 
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Model must keep class identity where each generated feature must be 

accurately aligned with its intended class to avoid confusing the classifier during 

training. At the same time, measures must be taken to prevent overfitting in the 

GAN training process. Overfitting in generative models can lead to repeated or 

overly similar synthetic samples, reducing the diversity advantage and potentially 

causing the model to memorize existing data points rather than generalize new, 

plausible features. Hamed et al. (2025) stated that evaluating the quality of 

generated data involves verifying that the synthetic features are sufficiently similar 

to real data to support improved classification performance, yet sufficiently novel 

to enrich the feature space. The goal is to create augmented datasets that aid 

classifiers in learning more robust and generalized decision boundaries, as a result 

improving detection accuracy especially in minority or rare classes. 

4.5.1. Visual Analysis using PCA 

Visual analysis using Principal Component Analysis (PCA) is a widely 

adopted technique for evaluating the distribution of real and augmented datasets. 

PCA plays a critical role in data analysis by reducing the dimensionality of data 

while retaining most of the variance present in the original features. In this context, 

PCA reduces the dataset from potentially dozens or hundreds of features down to 

just two principal components, which can be easily visualized on a two-dimensional 

plot. This reduction simplifies complex, high-dimensional data into a form that 

allows clearer visual inspection and intuitive understanding of the data’s structure. 

The key importance of PCA lies in its ability to capture the most significant 

patterns and variations within the dataset. By transforming the original correlated 

features into a set of linearly uncorrelated principal components, PCA highlights 

the directions in which the data varies the most. This feature is especially valuable 

when comparing real and synthetic (augmented) datasets, as it allows researchers 

to check whether the synthetic data covers the same feature space similar to the real 

data. If the synthetic data distribution aligns well on the principal component plot, 

it suggests that the augmentation process preserves the underlying patterns and 

statistical properties of the original dataset. 



67 

 

Moreover, PCA’s ability to reveal clustering tendencies in a reduced 

dimension makes it an excellent tool for assessing the effectiveness of data 

augmentation techniques such as CGAN-LSTM. For instance, tightly grouped 

points in the PCA scatter plot reflect compact and well-separated clusters, which 

indicate good class separability. Conversely, overlapping or dispersed points may 

suggest poor cluster definition or insufficient augmentation quality. PCA can serves 

as a diagnostic tool that provides visual confirmation of improvements or 

limitations in the synthetic data generation process. The resulting plot can be used 

to complement quantitative metrics like silhouette scores. 

 

 

Figure 4.13 PCA Visualization of Original Dataset 
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Figure 4.13 shows the PCA projection of the original dataset. Original 

dataset showed that some classes are poorly clustered. ‘Benign’ class shows a 

scattered dot across the figure. It’s suggested that this class has high variance and 

thus can overlap with other classes. It can lead to false positive behavior in the 

classification process. ‘Attack’ class shows a tight and linear cluster that indicates 

a limited intra class variance. It can be positive for classifier performance, but it can 

lead to domination of larger classes if the class is imbalanced. ‘C&C’, ‘DDoS’, and 

‘PartOfAHorizontalPortScan’ appears to have multimodal clustering where the data 

points are divided into subgroups even in the same class. This shows an intra-class 

inconsistency which leads to a reduced accuracy and makes the classifier ignore the 

minor classes. ‘FileDownload’ and ‘Okiru’ represent a sparse distribution across 

the figure. This indicates underrepresentation in the dataset. These conditions can 

hinder the performance of the classifier where it limits the classifier to learn due to 

low examples. Decision boundaries will incline towards neighboring class which 

were more dominant. 

The PCA analysis further confirms that the original dataset have class 

imbalances that can affect negatively classifier performance, poor intra-class 

clustering that leads to misclassification, and overlapping cluster that results in false 

positives. Class imbalances makes some of the classes like ‘FileDownload’, 

‘Okiru’, and ‘DDoS’ nearly invisible in the PCs spaces. This will result in a less 

sufficient exposure to that class leading to difficulty of the models to learn 

meaningful pattern inside the class. This cause the model to misclassify or may 

entirely missing these rare classes. On the other hand, poor intra-class clustering 

weakens the ability of classifier to create interpretation of each class. It will increase 

confusion and false categorization especially when handling the data that looks 

similar to other classes or borderline data. Another issue is data overlap, where data 

in different classes overlapping with another class which create a further more 

confusion especially in ‘Benign’ class. It is dangerously fatal when models cannot 

detect abnormal behavior over the normal one which further increases the damage 

done by the malware. 
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Figure 4.14 is the PCA visualization of the augmented dataset. The PCA 

analysis of the augmented dataset gives insight of how CGAN-LSTM affects the 

dataset. Almost every class shows an improvement in the overall structure and 

quality of the dataset. Cluster are more visible compared to the original dataset. 

PCA spaces shows clearer class boundaries, reduced overlap, and more compact 

intra-class clustering. This indicates that augmentation makes the dataset more 

 

Figure 4.14 PCA Visualization of Enhanced Dataset 
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reliable, has clear distribution, and affects positively towards the performance of 

the classifiers. 

Improvement of the dataset can be seen through the clustering of each class. 

‘Benign’, ‘C&C’, and ‘DDoS’ classes is no longer scattered over the PCA spaces 

which form tighter and more centralized clusters. It shows how CGAN-LSTM able 

to preserve the class cluster by enriching the dataset. This augmentation allows 

classifiers to learn more about the underlying pattern and distribution of these 

classes. It contributes to the increase in classifier performance across all models. 

The CGAN-LSTM model can also improve the class visibility which is shown by 

the inter-class clustering that is more visible across all class. The augmented dataset 

shows reduction in the region that overlaps one another especially ‘Benign’ and the 

other attack types. In the original dataset, ‘Benign’ class often share feature to 

another class in the same space, which in the augmented dataset it was more distinct 

and well-partitioned on the projection 

4.5.2. Cluster Analysis using Silhouette Score 

Silhouette Score is widely used to evaluate clustering validity by measuring 

how well the data point placed inside a cluster is compared to other clusters. 

Silhouette Score ranges between +1 means well-clustered and -1 means poorly 

clustered. This part is exploring the silhouette scores for each class/cluster before 

and after applying FE-CGAN-LSTM. This analysis aims to understand how the 

synthetic features affect the compactness and separability of each class. It is crucial 

to understand this in terms of the data quality generated by CGAN-LSTM. 

 

Table 4.14 Silhouette score across all class 

Class 
Dataset 

Improvement (∆) 
Original Enhanced 

Attack -0.2957 0.6703 0.9660 

Benign -0.4484 -0.2717 0.1767 

C&C -0.1324 0.3339 0.4663 

DDoS -0.0254 0.2720 0.2974 

FileDownload 0.7045 -0.5429 -1.2474 

Okiru 0.5541 0.6536 0.0995 

PortScan -0.4311 -0.0970 0.3341 
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Table 4.14 presents a comprehensive overview of the increases in silhouette 

scores across almost all the analysed classes. This result indicates how effective the 

CGAN-LSTM approach in enhancing the quality of clustering. From these results, 

it is evident that CGAN-LSTM significantly improves both the compactness within 

clusters and the separability between different classes. This means that the data 

points belonging to the same class are grouped more tightly together, while distinct 

classes are more clearly differentiated from each other. 

The ‘Attack’ class shows a particularly remarkable improvement. Initially, 

this class exhibited poor clustering quality, as reflected by a negative silhouette 

score which indicated overlapping or poorly defined clusters. After applying the 

CGAN-LSTM augmentation, the Silhouette score shifted positively, suggesting a 

much clearer and well-defined cluster structure for this category. Similarly, the 

‘C&C’ class and the ‘PortScan’ class both demonstrate notable gains in their 

silhouette scores. However, it is important to highlight that the ‘PortScan’ class, 

despite showing improvement, continues to reside in the negative silhouette score 

range, indicating that while the clustering is better, it is still not ideal. 

The synthetic features introduced through CGAN-LSTM augment the 

dataset by adding variance that broadly aligns with the inherent characteristics of 

the original data. However, this augmentation is not uniformly precise across all 

classes, which explains the disparity in improvements observed. For example, the 

‘DDoS’ class sees a moderate increase in cluster quality, with Silhouette scores 

rising from negative values into the positive range. This improvement points out 

the ability of the augmentation to better isolate class samples, likely due to enhanced 

representation of their periodic traffic patterns and volume behavior, which are key 

characteristics in identifying DDoS attacks. 

On the other hand, the ‘Benign’ class, the normal, non-attack traffic, shows 

only modest improvement and unfortunately remains within the negative silhouette 

score area. Despite this, the synthetic augmentation plays a critical role in reducing 

the false positive rate within this class, which is crucial for practical deployment 

where minimizing false alarms is paramount. Lastly, the ‘Okiru’ class, which is 

already well-clustered in the original dataset, experiences reinforcement of its 
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existing cluster patterns through the augmentation process, without any distortion 

or degradation to its cluster structure. 

4.6. Performance of FE and Non-FE Model 

This section discusses the effect of FE models compared with non-FE 

models. Table 4.15 presents the impact of feature enhancement (FE) on the 

weighted average performance metrics across various models used for multiclass 

malware detection on IoT datasets. It compares accuracy, precision, recall, and F1-

score for different models with and without the application of feature enhancement, 

illustrating how enhancing the feature set can improve detection performance. The 

table spans different datasets and model architectures. Models that incorporate 

feature enhancement tend to achieve higher classification metrics, particularly for 

more complex scenarios with increased numbers of classes. 

 

In this study, the impact of FE on malware detection is highlighted by 

examining various models and datasets, illustrating how feature enhancement 

significantly influences classification efficacy and granularity. The Artificial 

Neural Network (ANN) model, employed on the ToN-IoT dataset with nine classes 

Table 4.15 Impact of FE on Weighted Average Performance Metrics in Multiclass 

Malware Detection 

Model Dataset NoC.* A. 

(%) 

P.  

(%) 

R. 

(%) 

F1. 

(%) 

ANN 

(Jamal et al., 2022) 

ToN-

IoT 

9 
97.08 98.45 98.41 96.55 

Hybrid CNN-RNN 

(Alanzi & Alzahrani, 

2024) 

IoT-23 2 

99.70 99.20 99.10 99.20 

DEMD-IoT 

(Nobakht et al., 2023) 

IoT-23 2 
99.90 99.83 99.97 99.90 

FE-MDTM 

(Wei et al., 2023) 

IoT-23 4 
99.70 99.70 99.70 99.70 

CGAN-LSTM IoT-23 7 99.99 99.99 99.99 99.99 

*NoC: Number of trained classes 
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(one benign and eight attack types), achieves moderately high weighted average 

metrics, accuracy at 97.08%, precision at 98.45%, recall at 98.42%, and F1-score 

at 96.55%. Although ANN shows solid capability in detecting malicious activities 

broadly, its performance is hindered by difficulty in correctly classifying minority 

classes, which leads to misclassification errors, especially for less common attack 

types. This limitation further emphasize the challenge of complex multiclass 

scenarios without advanced feature treatment. 

Hybrid CNN-RNN model applied to the IoT-23 dataset simplifies the 

classification into two categories, benign and malicious. The performance improves 

significantly, with accuracy nearing 99.7% and similarly high precision, recall, and 

F1-score values. The model benefits from the complementary nature of CNN and 

RNN architectures to extract spatial and temporal features; however, its binary 

classification restricts its practical application in identifying specific attack types, 

limiting actionable insights. 

The DEMD-IoT model further utilizes a deep CNN for malware detection, 

also on the IoT-23 dataset with two major classes. Despite not incorporating feature 

enhancement, this model attains excellent results with accuracy and F1-score near 

99.9%, indicative of the power of deep feature extraction in distinguishing benign 

from malicious traffic. Nonetheless, like the Hybrid CNN-RNN, the lack of feature 

enhancement and limited class granularity reduces its usefulness for nuanced threat 

identification. 

The FE-MDTM model explicitly integrates a feature enhancement process 

before classification using general neural networks and random forest algorithms 

on a 4-class IoT-23 dataset, ‘Benign’, ‘PortScan’, ‘C&C’, and ‘DDoS’. This 

enhancement step refines and augments the feature space, capturing more 

discriminative patterns intrinsic to each class, consequently improving 

classification robustness. The model achieves a balanced 99.7% across accuracy, 

precision, recall, and F1-score, demonstrating that feature enhancement elevates 

performance when distinguishing among multiple attack types rather than simple 

binary splits. 

The CGAN-LSTM model proposed in this study represents the peak of 

performance by combining Conditional Generative Adversarial Networks (CGAN) 
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for data augmentation and Long Short-Term Memory (LSTM) networks for 

sequential pattern learning. Utilizing seven classes from the IoT-23 dataset, Benign, 

‘Attack’, ‘PortScan’, ‘C&C’, ‘Okiru’, ‘FileDownload’, and ‘DDoS’, the model 

achieves near-perfect weighted average scores of 99.99% across all metrics. The 

feature enhancement gives positive effect to the dataset by enriching the input 

representations, allowing the LSTM to capture complex temporal and spatial 

dependencies in the data. The CGAN component further amplifies the benefit by 

generating synthetic yet realistic samples, addressing class imbalance, and 

improving minority class detection. This combination showcases how feature 

enhancement synergizes with advanced modelling to drastically improve the 

accuracy and reliability of multiclass malware detection in IoT environments. 

4.7. Limitations 

The CGAN-LSTM model, despite its innovative integration of conditional 

generation and sequential learning, faces several notable challenges that can impact 

its performance and usability in practice. One of the primary difficulties is the 

vanishing gradients problem, which occurs during the adversarial training phase. 

As the discriminator network becomes highly proficient at distinguishing real from 

synthetic data, the gradient signals that the generator relies on to improve become 

increasingly weak or vanish altogether. This phenomenon can hinder the 

generator’s learning progress, causing delays in convergence or even failure to 

generate high-quality synthetic samples. The delicate balance between generator 

and discriminator requires meticulous hyperparameter tuning and potentially the 

use of advanced training techniques such as gradient penalty or modified loss 

functions to alleviate this issue. 

Furthermore, the CGAN-LSTM model is susceptible to mode collapse, a 

scenario where the generator produces a limited variety of outputs rather than 

adequately capturing the diverse distribution of the underlying data. This happens 

particularly in complex datasets like IoT-23, which contains multiple classes with 

highly imbalanced representation. Mode collapse limits the diversity and richness 

of the synthetic samples generated, thus constraining the model’s capacity to 

genuinely augment minority classes. This reduction in variability can bias the 
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downstream classifiers trained on the augmented dataset, potentially leading to 

overfitting synthetic examples and diminishing generalization to real-world data. 

Techniques such as mini-batch discrimination, feature matching, or incorporating 

multiple generators have been proposed to address this issue, but no universal 

solution fully eliminates the problem. 

Another challenge lies in the inconsistency occasionally observed in the data 

generated. Due to the adversarial dynamics and the inherent instability in GAN 

training, the synthetic outputs may sometimes exhibit discrepancies or noise that do 

not conform to the statistical properties of the original dataset. These 

inconsistencies can manifest as unrealistic feature values, anomalous correlations, 

or distributional shifts, which may inadvertently mislead the classifiers trained on 

this data. In high-stakes domains like cybersecurity, the introduction of such noisy 

or biased synthetic data can degrade model reliability and compromise detection 

accuracy, particularly for subtle or rare attack patterns. Ensuring high fidelity in 

synthetic data production often demands additional regularization, validation 

mechanisms, or post-generation filtering steps. 
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CHAPTER 5  

CONCLUSIONS AND SUGGESTIONS 

5.1. Conclusion 

5.1.1. Implementation of CGAN-LSTM to Enhance Dataset and Improve 

Classifier Performance 

CGAN-LSTM can be implemented to enhance the dataset and improve the 

classifier performance for up to 20% from baseline model where the average score 

across all macro-averaged metrics are Accuracy (99.99%), Precision (93.30%), 

Recall (93.08%), and F1-score (93.15%). These results confirm that the CGAN-

LSTM model can perform feature enhancement to boost the classification 

performance of Intrusion Detection System. 

5.1.2. Quality of Generated Data and Model Performance Compared to Other 

Models 

Performance of all classifiers significantly increased from the baseline 

model. Compared to other model, this model achieved 99.99% score across all 

metrics. Although there was great performance showed by the model, minority class 

like ‘FileDownload’ still failed to be detected, it suggest that the model failed to 

generalize underrepresented classes. CGAN-LSTM generated data shows great 

quality but need to be analysed further because of the potential of mode collapse. 

5.2. Suggestion 

To further enhance the performance and robustness of CGAN-LSTM-based 

feature enhancement, future research should explore fine-tuning techniques to 

prevent issues such as mode collapse, where the generator fails to produce sufficient 

diversity in output. Strategies may include adjusting learning rates, experimenting 

with different loss functions, applying instance noise or label smoothing, and 

incorporating class-wise loss monitoring during training. 

The quality of synthetic data can be improved by enforcing distributional 

constraints through techniques such as feature matching or auxiliary classifiers. For 

underrepresented classes, conditional sampling or oversampling in the latent space 

may help ensure balanced class representation. 
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