

Latar Belakang (1)

Pada perkembangan awal, perusahan menggunakan gambar 2 dimensi (2D) untuk menyajikan informasi bangunan

Perkembangan teknologi yang semakin pesat membuat perusahaan beralih menggunakan visualiasai 3 dimensi(3D) .Akan tetapi, penggunaan 3D membutuhkan biaya yang tidak sedikit

Invoice

Kemudian muncullah ide pengenggunaan game engine untuk menampilkan informasi gedung dalam bentuk 3D dengan biaya yang murah

Invoice

Pendahuluan

Latar Belakang (2)

 \mathbf{CZ}

Pada tugas akhir ini akan dilakukan pengembangan peta interaktif P<mark>erpustakaan</mark> Pusat ITS menggunakan UNREAL Engine

6

ENGINE

Pendahuluan

Latar Belakang (3)

Perumusan Masalah

Bagaimana membangun peta 3D yang informatif dengan menggunakan Unreal Engine ?

Bagaimana mengembangkan peta 3D yang interkatif, sehingga pengguna dapat berinteraksi dengan obyek-obyek yang ada di dalam peta ?

Bagaimana membuat peta 3D yang terstandarisasi, sehingga dapat dintergrasikan dengan peta lainnya yangsudah dibuat sebelumnya ?

Tujuan Tugas Akhin Mengembangkan aplikasi yang dapat memahami kateteristik teknologi tampilan gambar 3D dan membuatnya menggunakan Unreal Engine dalam embuatan peta 3D Perpustakaan Pusat yang interaktif dan informatif.

Manfaat Kegiatan Tugas Akhir

iiii

11

Institusi ITS akan memiliki peta 3D yang membantu pengunjung untuk melihat ITS dari jauh. Peta 3D juga dapat dijadikan sebagai sarana promosi yang lebih interaktif. Pendahuluan

Tinjauan Pustaka Unneal Engine Sound Physics Graphic Network Input Unreal Interface Script Pendahuluan

Autodesk 3ds Max

Tinjauan Pustaka :

Perangkat Lunak Modeling 30 Sebuah perangkat unak keluaran autodesk yang digunakan untuk melakukan modeling 3D, animasi, hingga rendering. Perangkat lunak ini adalah salah satu aplikasi modeling 3D berbayar

Tinjauan Pustaka : Perangkat Lunak Modeling 2 dimensi Sebuah tools expansion dari Microsoft yang dapat digunakan untuk membangu sebuah diagram, chart atapun dena ruang/lingkungan Microsoft Office Visio dalam konsep 2D.

Pendahuluan

Adobe Photoshop

Tinjauan Pustaka :

Perangkat Lunak Pengolah Gambar

Aplikasi yang digunakan untu membuat atau editing gambar dar memberikan efek didalamnya. Photoshop ini akan menjadi tool dalam proses pembuatan tekstur peta maupun obyek peta

Pendahuluan

Tinjauan Pustaka : Perangkat Lunak Pendukung Dengan menggunakan Adobe Flash kita dapat membuat animasi flash dan memasanc animasi flash tersebut ke dalam Unreal Engine. Adobe Flash.

Tinjauan Pustaka : Perangkat Lunak Pendukung Bink merupakan video codec untuk game dar sudah mendapatkan lisensi lebih dari <u>5800</u> game, termasuk Unrea Engine. Dengan membuat video bertipe .BINK, maka video dapat dijalankan dalam Unreal Engine sebagai video Bink pembuka yang menarik.

Standarisasi Peta 3D

🕗 1 meter = 64 pixel 🕗 Tinggi alas tanah mulai dasar hingga permukaan = 50 pixel Tinggi alas bangunan hingga permukaan bangunan = 50 pixel Ketebalan tembok = 10 pixel Lebar pintu = 48 pixel Tinggi pintu = 170 pixel

Metodologi Pengerjaan

Studi Pendahuluan & Literatur

Studi Pendahuluan dan Literatur yang dilakukan dalam pembuatan tugas akhir ini adalah pembelajaran dan pemahaman literatur yang berkaitan dengan permasalahan yang ada. Beberapa yang akan dipelajari seperti cara mengoperasikan Unreal Engine dan memanfaatkannya untuk membuat peta. Serta cara penggunaan perangkat lunak lainnya yang mendukung pengembangan aplikasi. Studi pendahuluan dan literatur ini tidak terbatas hanya bersumber dari buku dan jurnal, tetapi juga dari media lain seperti video tutorial ataupun sumber lain dari internet. Lebih jelasnya dapat dilhat pada Bab II tentang hasil studi Pendahuluan dan Literatur

Survey Lokasi & Pengambilan Data Pada tahap ini akan dilakukan pengambilan data dan survey pada lokasi gedung perpustakaan pusat, ini dilakukan dengan berbagai cara :

Melalui Internet, seperti google maps.
BluePrint dari ITS.
Foto di lokasi perpustakaan pusat.

Metodologi

Survey Lokasi & Pengambilan Data Buka dan tutup pintu Menyalakan dan mematikan lampu Interaksi Penitipan Tas pengunjung lantai 1. Interaksi Video profil Perpustakaan Pusat ITS Interaksi Lift lantai 1 sampai lantai 6. Interaksi Peminjaman Ruang Seminar Interaksi Peminjaman Buku di Ruang Perpus Interaksi Video profil Eureka TV

Validasi

Kegiatan ini berupa pengecekan hasi survey yang telah didapat yang berguna untuk meyakinkan bahwa data yang telah Penulis peroleh sudah sesuai dengan kondisi nyata dari area, gedung-gedung dan juga objek yang ada di Gedung Perpustakaan pusat ITS dan Perancangan Desain Peta 2D

Pembuatan Peta 2D

Pada tahap ini dimaksudkan untuk menjadi acuan pada saat pembuatan peta 3D, sehingga nantinya pada saat integrasi, dapat dengan mudah disatukan. Pembuatan rancangan dilakukan dengan membuat konsep atau sketsa peta 2D secara komputerisasi.

Metodologi

Pembuatan Peta 3D secara keseluruhan(1) • Menentukan batasan-batasan dari aplikasi yang akan dibuat • Membuat level map Gedung Perpustakaan Pusat ITS dengan menggunakan Unreal Editor •Membuat tekstur dari bangunan menggunakan Adobe Photoshop atau aplikasi sejenis lalu memasang tekstur tersebut pada peta dengan menggunakan Unreal Editor

Metodologi

Pembuatan Peta 3D secara keseluruhan (2) • Mengumpulkan/membuat obyek 3D menggunakan Blender atau 3D Studio Max atau mencari obyek dari internet lalu memasang obyek pada peta dengan menggunakan Unreal Editor •Membuat gameplay, menu dan logika game menggunakan Unreal Kismet, •Membuat karakter dengan menggunakan Unreal PhAT,

Pembuatan Peta 3D secara keseluruhan (3) Melakukan scripting menggunakan bahasa pemrograman Unreal Script sehingga default aplikasi sesuai dengan yang penulis rencanakan • Testing aplikasi, Packaging aplikasi menggunakan Unreal Frontend.

Verifikasi

Setelah melakukan perancangan maka pada tahap ini Penulis melakukan pengecekan/pembuktian apakah semua area, gedung dan objek sudah terpenuhi dan sesuai dengan rancangan peta 2D yang telah dibuat sebagai acuan pembangunan aplikasi ini.

Metodologi

Langkah berikutnya, adalah menyatukan semua peta menjadi satu. Dan terakhir melakukan packaging keseluruhan peta menjadi sebuah aplikasi. Integrasi bersifat tidak wajib dilaksanakan saat kondisi peta 3D yang lain tersebut belum dapat dkatakan sama standarnya atau belum terselesaikan

Integrasi

Pembuatan Laporan

Pembuatan laporan ini dimaksudkan untuk mendokumentasikan langkahlangkah pekerjaan yang sudah dilakukan sehingga dapat memberikan informasi yang berguna bagi yang membacanya, selain itu, laporan ini juga berguna bagi pengembangan aplikasi di lain waktu.

Desain Aplikasi (1)

Pada bab ini akan dijelaskan mengenai desain aplikasi tugas akhir dari awa sampai akhir Desain sistem dibuat dengan mengacu pada kebutuhan aplikasi yang dibagi menjadi 2, yaitu fungsionalitas dan non fungsionalitas. Kebutuhan fungsionalitas aplikasi didefinisikan sebaga berikut:

Desain Aplikasi (2)

•Melihat Peta Tiga Dimensi (3D) •Melihat Peta Dua Dimensi (2D) •Interaksi dengan Objek Interaksi mengenai aktivitas atau informasi khusus dari lokasi Kebutuhan non-fungsional didefinisikan seperti berikut: •Hardware •Unreal Development Kit versi Februari 2012 •Aplikasi pendukung lain yang dibutuhkan.

Domain Model (1)

Tahap awal, Pendefinisian domain model pada pengerjaan tugas akhir ini sangat penting dikarenakan domain model menggambarkan obyek-obyek utama yang akan digunakan. Domain model dapat berubah seiring dengan pengembangan desain dan aplikasi, sehingga obyek-obyek yang digambarkan pada domain model akan semakin lengkap dan akurat sesua dengan alur sistem.

Domain Model (2)

Domain Model Awal

Penentuan & Desain Interaksi

Tahap kedua, penentuan dan desain interaksi yang didapatkan dari proses survey dan disesuaikan dengan kondisi minip dengan kondisi nyata di Perpustakaan Pusat ITS. Interaksiinteraksi tersebut dapat dilihat pada tabel dibawah beserta penjelasan singkatnya.

Penentuan & Desain Interaksi

(2)

No.	Interaksi	Deskripsi
1.0	Membuka pintu	Pintu dapat terbuka
2.	Menutup pintu	Pintu dapat tertutup
3.	Menyalakan lampu	Lampu dapat menyala
4.	Mematikanlampu	Lampu dapat mati
5.	Informasi ruangan 🤇	Pada setiap ruang yang memiliki
		interaksi terdapat penjelasan
		singkat dari ruangan tersebut
б.	Simulasi Sistem	Simulasi ini dilakukan di lantai 1
	penitipan tas.	bagi yangingin menitipkan
		tasnya padalocker yang di
		sediakan dengan prosedur berikut
		1. Menyerahkan tanda pengenal

Desain App

Penentuan & Desain Interaksi

(3)

		2. Menerima kunci loker
E/		5. Menujulokei dengan nomer
	m m	yang sesuai dengan kunci lalu
(Tr)		masukkan tas yang akan
R/J		dititipkan.
7.	Simulasi melihat	Simulasi dilakukan pada gedung
Tr)	Video profil singkat	perpustakaan pada lobby. Video
	perpustakaan pusat.	ini tentangprofil singkat dari
		seluruh kegiatan di dalam
De		perpusatakaanpusat.
8.	Simulasi Interaksi	Simulasi dilakukan pada seluruh
Tr)	Lift	lantai perpustakaan pusat dari
25		lantai 1 sampai lantai 6, dengan
Fo.	A A	urutan prosedur sebagai berikut :
Tr)		1. Menekan tombol atas / bawah
S.		pada depanlift.
		2. Pintu terbuka, lalu masuk.
\mathcal{D}_{ς}		3. Menekan tombol lantai mana
		yang dituju.
		4. Pintu Lift menuju lantai yang
Do		dituju.
		5 Pintu lift terbuka lalu keluar

Penentuan & Desain Interaksi [4 Simulasi sistem Simulasi ini dilakukan di lantai 2 9. bagi yang ingin menyewa atau peminjaman ruang meminjam ruang seminar yang seminar. berada di lantai 2. Berikut prosedur nya: 1. Menunjukkan tanda pengenal. 2. Mengecek tanggal atau tempat yang bisa di sewa. Mengisi form peminjaman 3.

Penentuan & Desain Interaksi

10. Simulasi Sistem peminjaman buku

[5]

11. Simulasi melihat video Demo Uureka TV. Simulasi dilakukan pada lantai 3,
4, dan 5. Simulasi ini untuk melihat sistem peminjaman buku yang ada pada perpustakaan pusat. Berikut prosedumya :
Mencari buku yang akan dipinjam.
Menuju ke frontdesk.
Menunjukkan buku yang akan dipinjam dankartu perpus anggota.

Simulasi dilakukan pada lantai 6, tepatnya di ruangan Eureka TV. Video yang ditayangkan adalah video profil singkat dari Eureka TV.

Penentuan & Desain Gedung

 $\left[1 \right]$

ISINYa.

Tahap ketiga adalah penentuan dan desain Gedung. Perpustakaan pusat memiliki 6 lanta tiap lantainya memiliki ruang atau desain yang berbeda. Disini akan dijelaskan tiap lantai dan

Penentuan & Desain Gedung

(2)

NO	Lantai	Ruang	Keterangan
	Lantai 1 (Gambar E-8)	 Lobby dan front desk Ruangbaca Kantin Fotokopi Loker penitipan Ruangkomputer Ruangpengolahan Ruang Pengadaan Lift 	Terdapat 3 Interaksi: • Nyala dan matilampu • Video Profil Perpustakaa n Pusat ITS. • Simulasi penitipan tas.
	Lantai 2 (Gambar E-9)	 Ruang Libry Ruang Papirus Ruang Kepala perpustakaan Pusat ITS. Ruang tata usaha Ruang Seminar Lift 	Terdapat 1 Interaksi : • Simulasi peminjaman ruang seminar
3	Lantai 3	 Sampoema Comer Ruang Referensi Ruang Internet Ruang Majalah Ruang IDIS-ITS Cafe HotSpot 	Terdapat macam- macam static mesh seperti Lemari buku, sofa, kursi, dan front desk.

Penentuan & Desain Gedung

Lantai4

6

(3)

Lantai 5 (Gambar E-10)

Ruang Perpustakaan

•

Ruang

Visual

Penelitian 🍸

Terdapat macam-Audio macam static mesh seperti Ruang Reserve Leman buku, tugas sofa, kursi, akhir dan ITS) komputer dan front desk. Terdapat Interaksi: Simulasi peminjaman

		buku
Lantai 6	Ruang Eureka TV	Terdapat 1
(Gambar	Ruang SPMPK	Interaksi :
E-11)	Ruang P3AI	• Video profil
	Ruang Server	Eureka TV.
Halaman	Parkiran belakang	Terdapat macam-
dan	Perpustakaan	macam static
sekitamya	 Lapangan bendera. 	mesh seperti
		pohon, rumput,
5 25		dantanaman.

Pemilihan Tombol Navigasi dan Kontrol(1)Tahap keempat, penentuan dan peran tombol navigasi dan kontrol dalam sebuah aplikasi terutama dalam game itu sangat penting dikarenakan peta tiga dimensi interaktif ini dikembangkan dengan game engine dan berbentuk aplikasi pembelajaran. Pada penelitian sebelumnya telah dibuat standarisasi pemilihan tombol navigasi dan kontrol. Sebagai bagian dar Keseluruhan penelitian peta tiga dimensi interaktif ITS, maka aplikasi dari penelitian ini juga menggunakan standarisasi tombol navigasi dan kontrol tersebut.

Pemilihan Tombol Navigasi dan Kontrol (2)

No	Perintah	Tombol	Hasil	Analisa
Α			Navigasi	and and and
	Bergerak ke kiri		Menggerakkan tampilan sesuai dengan arah kiri	Umum dipakai pada permainan tiga dimensi
2	Bergerak ke kanan	D	Menggerakkan tampilan sesuai dengan arah kanan	Umum dipakai pada permainan tiga dimensi
3	Bergerak maju		Menggerakkan tampilan sesuai dengan arah depan	Umum dipakai pada permainan tiga dimensi
4	Bergerak mundur	S (Menggerakkan tampilan sesuai dengan arah belakang	Umum dipakai pada permainan tiga dimensi
5	Memutar searah jarum jam	panah kiri	Memutar tampilan searah jarum jam Peta akan berputar berlawanan dengan arah jarum jam	Umum dipakai pada permainan tiga dimensi

Pemilihan Tombol Navigasi dan Kontrol (3)

6	Memutar	panah	Memutar	Umum dipakai pada
	berlawan-	kanan	tampilan	permainan tiga
25	an arah	5	berlawanan	dimensi
	jarum jam		arah jarum	
			jam	
7	Bergerak	panah	Menggerakkan	Umum dipakai pada
	maju 👘	atas	tampilan	permainan tiga
			sesuai dengan	dimensi
	THE THE		arah tanda	
25			panah	
8	Bergerak	panah	Menggerakkan	Umum dipakai pada
	mundur	bawah	tampilan	permainan tiga 🦳 🚽
			sesuai dengan	dimensi
			arah tanda	
			panah	

Pemilihan Tombol Navigasi dan Kontrol (4)

Mem- bungkuk		Menggerakkan tampilan seakan aktor pengguna sedang membungkuk	Pada permainan tiga dimensi terdapat 2 pilihan umum, yaitu Ctrl atau C pada keyboard. Namun penulis memutuskan tombol C yang dipakai karena lebih mudah untuk ditekan.
Melompat	Spasi	Menggerakkan tampilan seakan aktor pengguna sedang melompat	Umum dipakai pada permainan tiga dimennsi

Pemilihan Tombol Navigasi dan

KO

				The second second second	
11	Ber-	Enter/	Menggerakkan	Dipilih karena	
	interaksi	Klik kiri	tampilan	interaksi adalah hal	
	dengan		sesuai dengan	yang paling sering	
	objek peta		interaksi objek	digunakan dan pada 🔍 🖉	
			peta	game umumnya	
	A A			digunakan tombol	
				mouse kiri untuk hal	
				yang paling sering	
	A			digunakan tersebut.	
В	ANA	Ko	ntrol Tingkat Pe	ta	
1	Menu	F1	Membuka menu	Umum dipakai	
	Bantuan		Bantuan. Tekan	pada permainan	
	A		Tombol sekali		
THE			lagi untuk 📜 🍸		
Res 1			keluar dari		
	A A		menu		
2	Menu In-	Esc	Membuka menu	Umum dipakai	
885	Game		In-Game, Tekan	pada permainan	
			Tombol sekali		
hu	NTTO NYTO		lagi untuk 👘 🝿		
SZ/5			keluar dari		
			menu		
				D-25al	h Add

Pemilihan Tombol Navigasi dan Kontrol (6)

Menu Peta M 2D Membuka menu Peta 2D. Tekan Tombol sekali lagi untuk keluar dari menu

Huruf M merepresentasikan kata Map/Peta yang juga umum dipakai pada permainan tiga dimensi untuk merepresentasikan masuk pada halaman peta dua dimensi

Pemilihan Tombol Navigasi dan Kontrol (6)

Menu Peta M 2D Membuka menu Peta 2D. Tekan Tombol sekali lagi untuk keluar dari menu

Huruf M merepresentasikan kata Map/Peta yang juga umum dipakai pada permainan tiga dimensi untuk merepresentasikan masuk pada halaman peta dua dimensi

Use Case Diagnam

Tahap kelima yaitu Use Case Diagram, aplikasi ini memiliki use case standar berdasarkan penelitian peta tiga dimensi interaktif ITS yang sebelumnya telah dibuat. Jadi untuk desain Peta 3D Perpustakaan Pusat ITS Surabaya harus mengacu pada Use Case tersebut.

Sequence Diagnam

Tahap keenam yaitu sequnce diagram. Sequence diagram memuat alur dalam use case dengan penjelasan yang mengarah pada pemrograman aplikasi, sehingga sebelum menancang sequence diagram diharuskan mengerti tentang teknologi yang akan diterapkan pada aplikasi.

Test Case

Tahap ketujuh yaitu Test case.Test case dirancang untuk mengarah pada performa aplikasi agar sesuai dengan desain yang dibuat. Jadi test case akan dijalankan dengan beberapa skenario yang sesuai dengan rancangan pada diagnam use case pada lampinan A. Untuk rancangan skenario dan test dapat dilihat pada ampiran D. Test case nantinya akan diuji coba berupa unit test.

PERFUNTAKAAN

GUI Story Board

Tahap selanjutnya adalah desain pembuatan GUI. Peran GUI Story Board yaitu memuat tampilan dan alur bagaimana aplikasi dijalankan GUI Story Board dalam aplikasi ini memuat beberapa tampilan static dan tampilan peta tiga dimensi.

PERFUNCACAN

Implementasi & Uji Coba Sistem

Aplikasi ini diimplementasikan pada beberapa komputer desktop. Spesifikasi sistem operasi dan perangkat keras yang digunakan dalam pengimplementasiannya dapat dilihat pada tabe

Spesifikasi

PERPENDICAL

Prosesor: Intel(R) Core(TM) i7 CPU @2.80GHz 2.80GHz Memori: `12288 MB RAM

VGA: NVIDIA GeForce GTX 670 2048 MBe

Sistem Operasi: Windows 7 Home Premium 64-bit

DirectX 11

Peta Dua Dimensi

Pembuatan Aplikasi – Level Map

Pertama yang diakukan dalam proses pembuatan apikasi adalah dengan dimulainya pembuatan level map. Level map dibuat berdasarkan proses survey yang berupa data blueprint dari gedung perpustakaan ITS dan juga foto.

Pembuatan level map ini mencakup pembuatan geometri dan pemberian material pada geometri yang telat dibuat.

Pembuatan Constructive Solid Geometry Proses pernbuatan Constructive Solid Geometry (CSG) adalah hal pertama yang harus dilakukan pada pembuatan Level Map CSG pada UDK berfungsi untuk pembentukan model tiga dimensi dari peta, yang mencakup wilayah bangunan dan semua permukaan bangunan peta, seperti tangga, tembok, atap, permukaan tanah/dasar gedung dan beberapa bagian dari peta yang menggunakan.

PERPUNTAKAAN

Pemberian Material

Setelah kerangka gedung Perpustakaan Pusat jadi yang sebelumnya telah dibuat dengan brushes, maka selanjutnya adalah pembuatan tekstur dan material. Tekstur adalah bagian dari material, jadi nantinya tekstur dimasukkan ke dalam material agar bisa menempel pada brushes. Hasil jadi tekstur dan material akan disimpan ke dalam package UDK, jadi sebelumnya package harus ada. File package akan disimpan dalam format *.upk dan direktori package sendiri yaitu pada UDK\UDKGame\Content Implementasi

Pemberian Tanda Interaksi

Pemberian tanda pada interaksi sangat penting. Nantinya untuk pengguna agan dapat mengetahui posisi interaksi pada level map. Maka pada setiap tempat yang memiliki interaksi diberi tanda dengan menggunakan Particle System

Penentuan Karakter Aktor

Unreal AnimSet merupakan salah satu bagian dari Unreal Engine yang digunakan untuk menentukan aktor yang akan digunakan d dalam Level Map kita. Beberapa pengaturan yang umum dilakukan, meliputi material aktor AnimSet aktor serta lokasi dan rotasi aktor dengan memanfaatkan fungsi pengaturan material, kita bisa mempercantik tampilan aktor seperti memberikan warna kulit, baju, dan lainnya. PERFUNCTIONAN

Pembuatan Objek 3D

Pembuatan Objek 3D dalam pembuatan level map ini semua menggunakan aplikasi Autodesk 3ds Max. Dalam Autodesk 3ds Max terdapat 4 tampilan perspektif yang berbeda, dari 4 tampilan perspektif itu ialah fungsinya untuk mempermudah kita dalam pengaturan terhadap suatu objek, yaitu dari atas, samping kanan, depan, dan perspective.

PERFUNCACAA

Import Objek 3D

Import Objek 3D ke dalam Unreal Editor dilakukan setelah selesai melakukan pembuatan Objek 3D. Setelah objek 3D dibuat menggunakan Autodesk 3Ds Max, maka objek export dalam format *.fbx, hal ini dilakukan agar objek 3D bisa di-import ke dalam UDK.

Pengaturan Pencahayaan

Selanjutnya adalah pengaturan cahaya untuk membuat objek 3D terlihat nyata seperti asli sehingga efek bayangan dan warna pada objek 3D akan terlihat lebih jelas dan detail. Pengaturan cahaya di UDK dilakukan melalui beberapa kelas aktor light (cahaya). Terdapat beberapa jenis kelas aktor light yang ada, yaitu DirectionalLight, PointLight, SkyLight, dan SpotLight.

PERFUNCACAA

Penambahan Suara

Tahap penambahan suara pada Level Map dimulai dari meng-convert suara menggunakan Anyvideo converter, selanjutnya meng-import suara ke dalam UDK.

Import Suara

Selanjutnya hasil dari aplikasi Anyvideo yang berupa file *wav itu kemudian di-import ke dalam content browser UDK. File hasil import tersebut berubah menjadi SoundNodeWave Contoh file SoundNodeWave yang sudah berhasil di-import. Supaya dapat digunakan untuk dimasukkan ke dalam Unreal Kismet atau Unreal Matinee, maka dibutuhkan SoundCue.

Pembuatan Interaksi

Pembuatan interaksi dalam UDK diatur dalam UnrealKismet yang didalamnya terdapat matinee untuk membuat gerakan-gerakan dari objek 3D dalam map, selain itu interaksi dapat juga berupa tampilan animasi flash. Tampilan Matinee atau gabungan antara keduanya dimana interaksi tersebut dilengkap dengan flash untuk membuat tampilan informasi dari ruangan atau objek 3D yang ada di dalam map. ERVINEARAN

Layar Informasi

Layar informasi yang dimaksud disini adalah sebuah interaksi menggunakan animasi flash, dimana yang memuat informasi suatu tempat dalam map. Layar informasi muncul setiap aktor melewati tempattempat penting yang perlu diketahui oleh pengguna, contohnya aula ruang seminaratau kantor Tempattempat penting ini juga dapat dilihat oleh pengguna melalui Menu Peta Dua Dimensi.

PERFUNTARAAN

Peta Dua Dimensi

Menu peta dua dimensi menampikan peta 2D yang sesuai dengan peta 3D, berguna untuk memberikan informasi lokasi-lokasi penting dar peta dan juga posisi dari aktor Tampilan menu peta dua dimensi berupa animasi flash yang mempunyai tiga fungsi yaitu mengetahui posisi aktor teleportasi ke suatu tempat dan menunjukkan arah menuju suatu tempat.

Pergantian siang dan malam

Pergantian siang dan malam bertujuan agar pengguna mendapatkan gambaran yang lebih realistis dan sesuai dengan keadaan nyata pada peta 3D. Tahap awal pembuatan simulasi pergantian siang dan malam adalah pemberiar static mesh langit. Static mesh ini berbentuk kubah setengah bola yang digunakan sebagai latar belakang langit yang mengelilingi keseluruhan peta

Informasi Objek

Informasi objek merupakan interaksi yang menggunakan animasi flash dan matinee yang menampikan informasi dari sebuah objek 3D, contohnya informasi membuka pintu, menutup pintu menyalakan lampu atau simulasi kegiatan pada perpustakaan. Beberapa interaksi merupakan satu kesatuan interaksi seperti misalnya membuka dan menutup pintu. Kedua interaksi tersebut memerlukan dua tampilan animasi flash yang berbeda, namun menggunakan objek pintu Staticmesh yang sama dengan tipe objek InterpActor di Level Map. Implementasi

Informasi Objek

Informasi objek merupakan interaksi yang menggunakan animasi flash dan matinee yang menampikan informasi dari sebuah objek 3D, contohnya informasi membuka pintu, menutup pintu menyalakan lampu atau simulasi kegiatan pada perpustakaan. Beberapa interaksi merupakan satu kesatuan interaksi seperti misalnya membuka dan menutup pintu. Kedua interaksi tersebut memerlukan dua tampilan animasi flash yang berbeda, namun menggunakan objek pintu Staticmesh yang sama dengan tipe objek InterpActor di Level Map. Implementasi

Integrasi (1)

Integrasi antar peta di UDK dilakukan dengan dua cara yaitu Level Streaming. Leve Streaming artinya integrasi peta dilakukan secara ive tanpa perantara (loading). Dalam Level Streaming, cara untuk menggabungkan antar peta adalah pilih peta yang akan digabung dengan Add Existing Level dan pilih dengan Always Visible. Dalam hal ini peta yang akan digabung yaitu peta gedung perpustakaan pusat ITS dari lantai 1 sampai atap. Lokasi peta dapat diatur sesuai kebutuhan sehingga posisi peta gedung perpustakaan pusat ITS bisa disesuaikan letaknya. Implementasi
Integrasi (2)

Levels	
Level View D	
Content Browser	Actor Classes Levels Scene Layers Documentation
6 PA	No keywords specified. Click for information.
EK. E	Persistent Level (741 actors)* - CURRENT LEVEL -
	INI3D_Perpustakaanlt2 (954 actors)
	INI3D_Perpustakaanlt3 (2285 actors)
	INI3D_Perpustakaanlt4 (12868 actors)
	INI3D_Perpustakaanlt5 (703 actors)
	INI3D_Perpustakaanit6 (1318 actors)
	INI3D_Perpustakaanlt7 (269 actors)
	INI3D_Perpustakaanlt1 (804 actors)
	INI3D_Perpustakaanlt3_5 (4378 actors)
	INI3D_Perpustakaan_taman (600 actors)
	sky_doom (421 actors)
	INI3D_Perpustakaanlt5_1 (10721 actors)
	Implementas

Integrasi (3)

PETTO

TIT

FUEL BUILDER AND

ATTA.

-

ETT

- HALLET

TIT

四朝

Uji Coba Fungsional

No.	Test Case ID	Hasil
1.	TC1-01	Berhasil
2.	TC1-02	Berhasil
3.	TC2-01	Berhasil
4.	TC3-01	Berhasil
5.	TC3-02	Berhasil
6.	TC3-03	Berhasil
7.0	TC3-04	Berhasil
8.	TC4-01	Berhasil
9.	TC5-01	Berhasil
10.	TC5-02	Berhasil

PERFORTATION

Uji Coba Non Fungsional (1)

Uji coba non-fungsional dilakukan dengan cara mengukur performa yang dihasilkan oleh sistem perangkat keras dalam menjalankan aplikasi. Ketentuan-ketentuan yang dipaka dalam uji coba sebagai berikut : Spesifikasi komputer yang digunakan ada 4 • 4 spesifikasi komputer dianggap mewakili segmentasi komputer yang ada. Spesifikasi komputer 1 merupakan PC gaming yang memiliki spesifikasi tinggi. Spesifikasi komputer 2 merupakan PC Server yang memiliki kestabilan dan durabilitas yang tinggi. Komputer 3 dan 4 merupakan PC Notebook. Implementasi

Uji Coba Non Fungsional (2)

•Uji coba yang dilakukan menggunakan peta tiga dimensi interaktif yang dibuat pada tugas akhir ini yang mencakup Perpustakaan Pusat ITS. •Pengambilan data FPS dilakukan dengan cara mengarahkan pandangan karakter ke depan belakang, kiri dan kanan baik itu didalam gedung maupun diluar gedung. •FPS dideteksi dengan fitur dari UDK yaitu Stat FPS. Aplikasi dijalankan melalui Unreal Editor atau Unreal FrontEnd kemudian menekan tombol tab pada keyboard dan mengetikkan tulisan stat FPS, maka akan muncul laporan FPS rate. Implementasi

Uji Coba Non Fungsional (3)

Tabel 5. 5 Spesifikasi Komputer 1

Spesifikasi

Prosesor: Intel® Core^{IM} i7 CPU 860 @2.80GHz(8 CPUs), ~2.8GHz

Memori: 12288 MB RAM

VGA: NVIDIA GeForce GTX 670 4042 MB

OS: Windows 7 Home Premium 64-bit

DirectX 11

Tabel 5. 6 Spesifikasi Komputer 2

Spesifikasi

Prosesor : Intel® Xeon® CPU E5-2609 @2.40GHz (4CPUs), ~2.40GHz Memori : 16384MB RAM VGA: AMD RADEON HD 5670_4095MB

OS: Windows 7 Ultimate 64-bit (6.1, Build 7601)

DirectX 11

Tabel 5. 7 Spesifikasi Komputer 3

Spesifikasi

Implementasi

Prosesor : Intel@CoreTMi7-2630QM CPU@2.00GHz(8CPUs)~2.00GHz Memori : 8192MB RAM

VGA : NVIDIA Geforce GT540M 4046MB

OS: Windows 7 Home Premium 64-bit (6.1, Build 7601)

DirectX 11

Uji Coba Non Fungsional (4)

A A A	Tabel 5. 8 Spesif	ikasi Kompu	iter 4	
	Spes	ifikasi		
Prosesor: Intel® Con	re™ i5-3317U (CPU@1.7GH	Iz (4CPUs)~	1.7GHz
Memori : 4042MB	RAM			
VGA : NVIDIA Ge	force GT 635N	1 2048MB		A
OS : Windows 7 Ho	me Premium 64	l-bit (6.1, Bu	ild 7601)	
DirectX 11				
				1002
				TRUTT
	12 PAR	1.1		

Uji Coba Non Fungsional (5)

Tabel 5. 9 Hasil Uji Coba			
Spesifikasi	FPS Indoor	FPS Outdoor	Keterangan
Spesifikasi 1	20	60	
Spesifikasi 2	15 m	50 ₆ - 50	
Spesifikasi 3	12	41	
Spesifikasi 4	10	25	DATE DATE D

Uji Coba Non Fungsional (6)

Tabel 5. 9 Hasil Uji Coba			
Spesifikasi	FPS Indoor	FPS Outdoor	Keterangan
Spesifikasi 1	20	60	
Spesifikasi 2	15 m	50 ₆ - 50	
Spesifikasi 3	12	41	
Spesifikasi 4	10	25	and and a

Uji Coba Non Fungsional (7)

Keterangan:
FPS> 50, maka spesifikasi tersebut sangat aman dianjurkan untuk menjalankan aplikasi
FPS< 50 namun FPS> 25, maka spesifikasi tersebut cukup layak untuk menjalankan aplikasi
FPS< 25, maka spesifikasi tersebut tidak layak dan tidak dianjurkan untuk menjalankan aplikasi

Uji Coba Non Fungsional (8) Analisa hasil uji coba

Spesifikasi yang sangat layak digunakan dan dianjurkan adalah spesifikasi 1 dikarenakan pada saat menjalankan di spesifikasi 1 aplikasi berjalan sangat lancar ketika diluar maupun di dalam area peta 3D.

Untuk spesifikasi 2 yang merupakan komputer serverternyata dapat menjalankan aplikasi dengan cukup baik. Spesifikasi 2 ini layak namun tidak terlalu dianjurkan.

Uji Coba Non Fungsional (9) Analisa hasil uji coba

Sedangkan untuk spesifikasi 3 dan 4 tidak dianjurkan untuk menjalankan aplikasi 3D interaktif ini karena PC Notebook bekenja kenas sehingga mengalami sedikit overheating. Maka untuk kedepan tidak layak untuk menjalankan secara lama, terlebih untuk spesifikasi 4 karena spesifikasi terlalu rendah.

Uji Coba Non Fungsional (10) Analisa hasil uji coba

Berdasarkan data dari tabel uji coba performa diatas, maka rekomendasi spesifikasi komputer yang dapat digunakan sebagai acuan untuk melakukan pengembangan yang lebih lanjut pada tabel dibawah ini :

Spesifikasi

Prosesor: Intel® Core™ i7 CPU 860 @2.80GHz (8 CPUs), ~2.8GHz

Memori: 12288 MB RAM

VGA: NVIDIA GeForce GTX 670 4042 MB

OS: Windows 7 Home Premium 64-bit

DirectX 11

Evaluasi Implementasi (1)

Evaluasi dilakukan dengan cara validasi peta 3D Unreal Engine dengan memperlihatkan perbandingan gamban pada peta 3D dengan foto pada kondisi nyata. Pada evaluasi ini akan digambarkan secara jelas tentang hasil implementasi ruangan yang telah dimodelkan pada peta 3D beserta gambar asli ruangan tersebut.

Evaluasi Implementasi (2)

Ruangan	Kondisi Nyata	Peta 3D	
Gedung Perpustaka an Pusat			
Keterangan	Tampilan gedung Perpu depan. Pada peta 3D s kondisi nyata. Wama br pendukung sekitamya.	ustakaan Pusat ITS dari sudah terlihat mirip dari ush dan cat, dan gedung	
Pintu samping P3M			
Keterangan	Tampilan peta 3D pintu s mirip dari kondisi nyata.	amping sudah terlihat Wama brush, papan P3M.	

Evaluasi Implementasi (3)

Tampilan peta 3D Ruang tata usaha sudah terlihat mirip dari kondisi nyata. Meja bundar kuning, lemari dan meja kerja.

Keterangan

Keterangan

Tampilan peta 3D Cafe HotSpot sudahterlihat mirip dengan kondisi nyata. Wama brush kayu dan meja cafe.

Evaluasi Implementasi (4)

Ruang Perpus Lantai 5

Keterangan

Tampilan ruang perpus lantai 5 sudah terlihat mirip dengan kondisi nyata. Meja resepsionis dan sekitamya.

Ruang Referensi

Tampilan depan ruang referensi sudah terlihat mirip dengan kondisi nyata. Pintu depan dan isinya.

Kesimpulan (1)

•Karena sudah ditetapkan standarisasi dari aplikasi INI3D sebelumnya, maka pembuatan peta tiga dimensi dapat dilakukan dengan cukup mudah dengan menggunakan Unreal Development Kit beserta fitur-fitur yang disediakan dengan mengacu pada standarisas yang bisa digunakan sebagai pedoman pembuatan aplikasi. Penggunaan standarisasi sangat membantu dalam proses integrasi dengan peta tiga dimensi menggunakan metode loading, sehingga sistem berjalan dengan ringan. Kesimpulan dan Saran

Kesimpulan (1)

•Penggunaan brusher lebih baik diutamakan daripada static mesh, karena menggunakan brusher hanya berat diawal proses building peta, tetapi building selanjutnya akan lebih ringan, dan sebaliknya, menggunakan static mesh akan berat di setiap building peta.

PERFUNCATAR

Kesimpulan dan Saran

Sanan (1), and an an an an an an an

•Pengembangan aplikasi INIBD sebaiknya dilakukan pada komputer yang seharusnya mendukung untuk proses pembuatan game minimal memiliki prosesor yang berkecepatan tinggi dan memiliki VGA standalone . •Menggunakan UDK versi terbaru agar fitur fiturnya bisa lebih di perbarui lagi dan lebih baik lagi dalam hasil akhirnya beserta bug yang sering terjadi di UDK versi 2012.

Kesimpulan dan Saran

Sanan (2)

Interaksinya lebih dikembangkan lagi atau lebih unik yang belum ada sebelumnya lagi dalam menampilkannya.
Agar lebih cepat pekerjaannya, sarannya

untuk berikutnya lebih baik bekerja sebagai tim

PERPUNCANA

Kesimpulan dan Saran

